Welfare Analysis: Part II

International Trade (PhD), Fall 2019

Ahmad Lashkaripour

Indiana University

General Setup

- Many countries (i = 1, ..., N), each endowed with L_i units of labor.
- Every country supplies a composite good produced with only labor.
- The representative consumer in country i has a CES utility:

$$u_{i}(Q_{1i},...,Q_{Ni}) = \left(Q_{1i}^{\frac{\sigma-1}{\sigma}} + ... + Q_{Ni}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

– P_{ji} is the price index of the good supplied by country j to market i.

Aggregate Price Indexes in Quantitative Trade Models

Following Costinot and Rodriguez-Clare (2014):

$$P_{ji} = \tau_{ji} w_j \ \times \ \left(\left(\frac{L_i}{f_{ji}} \right)^{\frac{\delta}{1-\sigma}} \frac{\tau_{ji} w_j}{P_i} \right)^{\eta} \ \times \ \left(\frac{L_j}{f_j^e} \right)^{\frac{\delta}{1-\sigma}} \ \times \ \xi_{ji}$$

- f_{ji} : fixed operating cost
- f_i^e : sunk entry cost
- $\xi_{j\,i}$ is composed of structural parameters

Aggregate Price Indexes in Quantitative Trade Models

Following Costinot and Rodriguez-Clare (2014):

$$P_{ji} = \tau_{ji} w_j \ \times \underbrace{\left(\left(\frac{L_i}{f_{ji}}\right)^{\frac{\delta}{1-\sigma}} \frac{\tau_{ji} w_j}{P_i}\right)^{\eta}}_{\text{firm-selection effects}} \ \times \underbrace{\left(\frac{L_j}{f_j^e}\right)^{\frac{\delta}{1-\sigma}}}_{\text{scale effects}} \ \times \xi_{ji}$$

- f_{ji} : fixed operating cost
- f_i^e : sunk entry cost
- ξ_{ji} is composed of structural parameters

Aggregate Price Indexes in Quantitative Trade Models

Following Costinot and Rodriguez-Clare (2014):

$$P_{ji} = \tau_{ji} w_j \ \times \underbrace{\left(\left(\frac{L_i}{f_{ji}}\right)^{\frac{\delta}{1-\sigma}} \frac{\tau_{ji} w_j}{P_i}\right)^{\eta}}_{\text{firm-selection effects}} \ \times \underbrace{\left(\frac{L_j}{f_j^e}\right)^{\frac{\sigma}{1-\sigma}}}_{\text{scale effects}} \ \times \xi_{ji}$$

c

- Krugman: $\delta=1$ and $\eta=0$
- Eaton-Kortum $\delta=0$ and $\eta=\left(\frac{\theta}{\sigma-1}\right)\left(1+\frac{1-\sigma}{\theta}\right)$
- Melitz-Pareto $\delta = 1$ and $\eta = \left(\frac{\gamma}{\sigma 1}\right) \left(1 + \frac{1 \sigma}{\gamma}\right)$

National Welfare from the Lens of Trade Models

Given that (i) $\lambda_{ii} = (P_{ii}/P_i)^{1-\sigma}$; (ii) $W_i \equiv w_i/P_i$; and (iii) $\epsilon \equiv (\sigma - 1)(1 + \eta)$, we can use the expression for P_{ii} to write the **real GDP p/c** of country i as

$$W_{i} = A_{i} \tau_{ii}^{-1} \lambda_{ii}^{-\frac{1}{\epsilon}} f_{ii}^{-\frac{\delta\eta}{\epsilon}} (f_{i}^{e})^{-\frac{\delta}{\epsilon}} L_{i}^{\frac{\delta}{\sigma-1}}$$

Application I: Asymmetric Trade Costs and Cross-Country Income Differences

Perfectly Competitive Models ($\delta = 0$)

$$W_{i} = A_{i} \times \lambda_{ii}^{-\frac{1}{\epsilon}} \times \tau_{ii}^{-1}$$

Perfectly Competitive Models ($\delta = 0$)

- The cross-country heterogeneity in real GDP p/c is puzzlingly large.
- This is partly due to poor countries facing higher export costs:

 $\tau_{ns} < \tau_{sn}$

where n denotes *North* and *s* denotes *South*.

- Under balanced trade (Total Imports = Total Exports)

$$\lambda_{nn} = 1 - \frac{\sum_{i=1}^{N} X_{ni}}{Y_N} < 1 - \frac{\sum_{i=1}^{N} X_{si}}{Y_s} = \lambda_{ss}$$

- The cross-country heterogeneity in real GDP p/c is puzzlingly large.
- This is partly due to poor countries facing higher export costs:

$$au_{ns} < au_{sn}$$

where n denotes *North* and s denotes *South*.

- Under balanced trade (Total Imports = Total Exports)

$$\lambda_{nn} = 1 - \underbrace{\frac{\sum_{i=1}^{N} X_{ni}}{Y_{N}}}_{\frac{\underline{Exports_{n}}}{GDP_{n}}} < 1 - \underbrace{\frac{\sum_{i=1}^{N} X_{si}}{Y_{s}}}_{\frac{\underline{Exports_{s}}}{GDP_{s}}} = \lambda_{ss}$$

Eliminating asymmetries in trade costs can reduce North-South income differences:

$$rac{ au_{
m sn}}{ au_{
m ns}}\downarrow \implies rac{\lambda_{
m ss}}{\lambda_{
m nn}}\downarrow \implies rac{W_{
m s}}{W_{
m n}}\propto \left(rac{\lambda_{
m ss}}{\lambda_{
m nn}}
ight)^{-rac{1}{arepsilon}}\uparrow$$

.

 Eliminating asymmetries in trade costs can reduce North-South income differences:

$$rac{ au_{
m sn}}{ au_{
m ns}}\downarrow \implies rac{\lambda_{
m ss}}{\lambda_{
m nn}}\downarrow \implies rac{W_{
m s}}{W_{
m n}}\propto \left(rac{\lambda_{
m ss}}{\lambda_{
m nn}}
ight)^{-rac{1}{arepsilon}}\uparrow$$

 $TABLE \ 4 \\ - \\ - Income \ Differences \ with \ Counterfactual \ Trade \ Costs$

	Baseline	Autarky	$\min(\tau_{ij},\tau_{ji})$	OECD τ	$\tau_{ij} = 1$
var $[\log(y)]$	1.30	1.35	1.05	1.13	0.76
y_{90} / y_{10}	25.7	23.5	17.3	19.8	11.4
Mean change in y, percent	—	-10.5	24.2	10.0	128.0

.

Application I: The Income-Size Elasticity Puzzle

Krugman Models ($\delta = 1$; $\eta = 0$)

$$W_{i} = A_{i} \times \lambda_{ii}^{-\frac{1}{\epsilon}} \times \tau_{ii}^{-1} \times (f_{i}^{e})^{-\frac{1}{\epsilon}} \times L_{i}^{\frac{1}{\sigma-1}}$$

Krugman Models ($\delta = 1$; $\eta = 0$)

Ramondo, Rodríguez-Clare, Saborío-Rodríguez (2016, AER)

The Income-Size Elasticity Puzzle

– Quantitative trade models predicts that even after controlling for trade openness (i.e., $\lambda_{ii})$

$$\frac{\partial \ln \text{Real GDP } p/c_i}{\partial \ln \text{Population Size}_i} \equiv \frac{\partial \ln W_i}{\partial \ln L_i} = \frac{1}{\sigma - 1} > 0$$

- Actual data indicate that after controlling for trade openness:

$$\frac{\partial \ln \text{Real GDP } p/c_i}{\partial \ln \text{Population Size}_i} \approx 0$$

Ramondo, Rodríguez-Clare, Saborío-Rodríguez (2016, AER)

– The income-size elasticity puzzle can be partially explained by the fact that domestic trade frictions are higher in larger countries: $\frac{\partial \ln \tau_{ii}}{\partial \ln L_i} > 0$

Panel A. Domestic frictions and country size

– Real income p/c in country i

$$W_{i} = A_{i} \quad \tau_{ii}^{-1} \quad \lambda_{ii}^{-\frac{1}{\epsilon}} \quad (f_{i}^{e})^{-\frac{1}{\epsilon}} \quad L_{i}^{\frac{1}{\sigma-1}}$$

- The conditional elasticity of real income p/c w.r.t. population size

$$\frac{\partial \ln W_{i}}{\partial \ln L_{i}} \mid \lambda_{ii} = \frac{1}{\sigma - 1} - \underbrace{\frac{\partial \ln \tau_{ii}}{\partial \ln L_{i}}}_{>0}$$

 So, accounting for domestic trade frictions lowers the predicted income-size elasticity.

Ramondo, Rodríguez-Clare, Saborío-Rodríguez (2016, AER)

Panel B. Symmetric model

FIGURE 3. SCALE EFFECTS, TRADE OPENNESS, AND DOMESTIC TRADE COSTS (Relative to US in logs)

Domestic Trade Friction do not Fully Resolve the Puzzle! Explanation 1

– A_i or f_i^e are correlated with L_i (no convincing evidence for this!)

Explanation 2 (Lashkaripour & Lugovskyy, 2019)

- Trade models artificially assume that

degree of firm-level market power = degree of love-for-variety

– The above assumption imposes that

 $\partial \ln W_i / \partial \ln L_i = 1/trade$ elasticity

Using micro-level data we can separately estimate (a) the degree of firm-level market power, and (b) the degree of love-for-variety:

 $\partial \ln W_i / \partial \ln L_i \approx 0.65 / trade$ elasticity

Standard Krugman Model

Standard Krugman Model

Krugman + Domestic Trade Frictions

Krugman + DTF + Micro-Estimated Scale Elasticity

Krugman w/ domestic trade costs & estimated scale elasticity

The Exact Hat-Algebra Approach

Definition of Equilibrium

– In the class of models we considered, equilibrium is a vector of wages $w = \{w_i\}$ that satisfy

$$w_i L_i = \sum_{j=1}^N \lambda_{ij}(\boldsymbol{w}) w_j L_j, \quad \forall i$$

where

$$\lambda_{ij}(\boldsymbol{w}) = \frac{\chi_{ij} \left(\tau_{ij} w_{i}\right)^{-\varepsilon}}{\sum_{\ell=1}^{N} \chi_{\ell j} \left(\tau_{\ell j} w_{\ell}\right)^{-\varepsilon}}$$

– $\chi_{ij},\,L_i,\,and\,\varepsilon$ are structural parameters that do not vary with $\tau_{ji}.$

Hat-Algebra Notation

- For any variable, let x denote the factual value and x' denote the counterfactual value.
- Define $\hat{\mathbf{X}}$ as follows:

$$\hat{\mathbf{x}} \equiv \frac{\mathbf{x}'}{\mathbf{x}}$$

- **Example:** suppose countries i and j sign an agreement that lowers the bilateral trade cost by $20\% \implies \hat{\tau}_{ji} = \hat{\tau}_{ij} = 0.8$

The Counterfactual Equilibrium in Hat-Algebra Notation

- Policy change of interest: $\{\hat{\tau}_{ji}\}$
- Given (a) the multiplicatively separability of the gravity equation and

(b) that fact that $\chi_{j\mathfrak{i}}'=\chi_{j\mathfrak{i}},$ we can write

$$\lambda_{ji}^{\prime} = \frac{\chi_{ji} \left(\hat{\tau}_{ji} \tau_{ji} \hat{w}_{j} w_{j}\right)^{-\epsilon}}{\sum_{\ell=1}^{N} \chi_{\ell i} \left(\tau_{\ell i} \hat{\tau}_{\ell i} \hat{w}_{\ell} w_{\ell}\right)^{-\epsilon}} = \frac{\lambda_{ji} \left(\hat{\tau}_{ji} \hat{w}_{j}\right)^{-\epsilon}}{\sum_{\ell=1}^{N} \lambda_{\ell i} \left(\hat{\tau}_{\ell i} \hat{w}_{\ell}\right)^{-\epsilon}}$$

- Balanced trade in the counterfactual equilibrium:

$$\underbrace{\hat{w}_{i}w_{i}}_{w_{i}^{\prime}}L_{i} = \sum_{j=1}^{N} \underbrace{\frac{\lambda_{ij}\left(\hat{\tau}_{ij}\hat{w}_{i}\right)^{-\epsilon}}{\sum_{\ell=1}^{N}\lambda_{\ell j}\left(\hat{\tau}_{\ell j}\hat{w}_{\ell}\right)^{-\epsilon}}}_{\lambda_{ij}^{\prime}}\underbrace{\hat{w}_{j}w_{j}}_{w_{j}^{\prime}}L_{j}$$

The Counterfactual Equilibrium in Hat-Algebra Notation

- Policy change of interest: $\{\hat{\tau}_{ji}\}$
- Given (a) the multiplicatively separability of the gravity equation and

(b) that fact that $\chi_{j\mathfrak{i}}'=\chi_{j\mathfrak{i}},$ we can write

$$\lambda_{j\mathfrak{i}}^{\prime} = \frac{\chi_{j\mathfrak{i}}\left(\hat{\tau}_{j\mathfrak{i}}\tau_{j\mathfrak{i}}\hat{w}_{j}w_{j}\right)^{-\epsilon}}{\sum_{\ell=1}^{N}\chi_{\ell\mathfrak{i}}\left(\tau_{\ell\mathfrak{i}}\hat{\tau}_{\ell\mathfrak{i}}\hat{w}_{\ell}w_{\ell}\right)^{-\epsilon}} = \frac{\lambda_{j\mathfrak{i}}\left(\hat{\tau}_{j\mathfrak{i}}\hat{w}_{j}\right)^{-\epsilon}}{\sum_{\ell=1}^{N}\lambda_{\ell\mathfrak{i}}\left(\hat{\tau}_{\ell\mathfrak{i}}\hat{w}_{\ell}\right)^{-\epsilon}}$$

- Balanced trade in the counterfactual equilibrium:

$$\hat{\boldsymbol{w}}_{i}\boldsymbol{w}_{i}\boldsymbol{L}_{i} = \sum_{j=1}^{N} \frac{\lambda_{ij} \left(\hat{\tau}_{ij} \hat{\boldsymbol{w}}_{i}\right)^{-\epsilon}}{\sum_{\ell=1}^{N} \lambda_{\ell j} \left(\hat{\tau}_{\ell j} \hat{\boldsymbol{w}}_{\ell}\right)^{-\epsilon}} \hat{\boldsymbol{w}}_{j} \boldsymbol{w}_{j} \boldsymbol{L}_{j}$$

Solving for Wage and Welfare Effects

– The following system involves N equations and N unknowns, $\{\hat{w}_i\}$:

$$\hat{\boldsymbol{w}}_{i}\boldsymbol{w}_{i}\boldsymbol{L}_{i} = \sum_{j=1}^{N} \frac{\lambda_{ij} \left(\hat{\tau}_{ij}\hat{\boldsymbol{w}}_{i}\right)^{-\epsilon}}{\sum_{\ell=1}^{N} \lambda_{\ell j} \left(\hat{\tau}_{\ell j}\hat{\boldsymbol{w}}_{\ell}\right)^{-\epsilon}} \hat{\boldsymbol{w}}_{j}\boldsymbol{w}_{j}\boldsymbol{L}_{j}$$

- $w_i L_i$ and λ_{ji} , are observable; ϵ is estimable.
- The solution, $\{\hat{w}_i\}$, automatically determines the gains from policy:

$$\hat{W}_{i} = \hat{\lambda}_{ii}^{-\frac{1}{\epsilon}} = \frac{\hat{w}_{i}}{\left(\sum_{\ell=1}^{N} \lambda_{\ell i} \left(\hat{\tau}_{\ell i} \hat{w}_{\ell}\right)^{-\epsilon}\right)^{-1/\epsilon}}$$

Example: the US and the Rest of the World

– *Two countries*: US (i = 1) and ROW (i = 2)

$$\lambda = \left[\begin{array}{cc} 0.88 & 0.98 \\ 0.12 & 0.02 \end{array} \right]; \ \ Y_{scaled} = \left[\begin{array}{c} 1 \\ 4 \end{array} \right]$$

- Suppose international trade costs fall by 20%:

$$\hat{\mathbf{ au}} = \left[egin{array}{cc} 1 & 0.8 \ 0.8 & 1 \end{array}
ight]$$

Example: the US and the Rest of the World

- System of equations characterizing balanced trade :

$$\hat{w}_{1} = \frac{0.88 (\hat{w}_{1})^{-\epsilon}}{0.88 (\hat{w}_{1})^{-\epsilon} + 0.12 (0.8 \cdot \hat{w}_{2})^{-\epsilon}} \hat{w}_{1} + \frac{0.02 (0.8 \cdot \hat{w}_{1})^{-\epsilon}}{0.02 (0.8 \cdot \hat{w}_{1})^{-\epsilon} + 0.98 (\hat{w}_{2})^{-\epsilon}} \hat{w}_{2} \cdot 4$$
$$\hat{w}_{2} \cdot 4 = \frac{0.12 (0.8 \cdot \hat{w}_{1})^{-\epsilon}}{0.88 (\hat{w}_{1})^{-\epsilon} + 0.12 (0.8 \cdot \hat{w}_{2})^{-\epsilon}} \hat{w}_{1} + \frac{0.98 (\hat{w}_{1})^{-\epsilon}}{0.02 (0.8 \cdot \hat{w}_{1})^{-\epsilon} + 0.98 (\hat{w}_{2})^{-\epsilon}} \hat{w}_{2} \cdot 4$$

– Assuming $\epsilon = 5$, solving the system implies¹

$$\hat{oldsymbol{w}} = \left[egin{array}{c} 0.982 \ 1.006 \end{array}
ight] \implies \% \Delta oldsymbol{W} = \left[egin{array}{c} 3.79\% \ 0.96\% \end{array}
ight]$$

¹See Canvas for the Matlab code that generates these numbers.

Discussion

- Note that the choice of micro-foundation is inconsequential for the numbers produced on the previous slide!
- So, the ACR2012 argument applies irrespective of what counterfactual policy analysis we wish to conduct.
- What is key is the CES assumption, which ensures *multiplicative separability.*
- *Adao, Costinot, and Donaldson (2018, AER)* present a technique to perform counterfactual analyses without the CES assumption.