Two-Country Ricardian Model

Dornbusch-Fischer-Samuelson (1977)

International Trade (PhD), Spring 2023

Ahmad Lashkaripour

Indiana University

- In the next two classes, we show how the gravity equation can be reproduced using a Ricardian model that builds on rich micro-foundation.
- Today, we cover the two-country many goods Ricardian model: Dornbusch, Fischer, and Samuelson (1977, AER)
- Next class, we cover the many-country, many goods Ricardian model: *Eaton and Kortum (2002, Econometrica)*

Environment

- Two countries: Home (*H*) and Foreign (*F*).
- A continuum of homogeneous goods $z \in [0, 1]$.
- Labor is the only factor of production:
 - Country $i \in \{H, F\}$ is populated by L_i workers.
 - Each worker is paid a wage, w_i.
- Perfect competition + constant returns to scale.

Demand

The representative consumer in country $n \in \{H, F\}$ has a Cobb-Douglass utility

$$U_n(\mathbf{q}) = \int_0^1 b(z) \ln q(z) dz$$

- *z* indexes the good.
- b(z) is the share of expenditure on good z.
- By assumption: $\int_0^1 b(z) dz = 1$

Demand

Utility maximization implies

$$\begin{cases} p_H(z)q_H(z) = b(z)Y_H\\ p_F(z)q_F(z) = b(z)Y_F \end{cases}$$

.

- $p_i(z)q_i(z)$: expenditure on good *z* in country *i*.
- $Y_i = w_i L_i$: total income in country *i*

- Let $a_i(z)$ denote the unit labor requirement for producing good z in country *i*.
- Order the goods so that $A(z)\equiv rac{a_F(z)}{a_H(z)}$ is decreasing.
 - *H* has a comparative advantage in the low-*z* goods.
 - *F* has a comparative advantage in the high-*z* goods.
- Assume A(z) is *strictly* monotone.

Supply

- Suppose trade is costless: $p_H(z) = p_F(z) = p(z)$.
- Good *z* will be produced by *H* if

$$a_H(z)w_H < a_F(z)w_F \iff A(z) > \frac{w_F}{w_H}$$

- Good *z* will be produced by *F* if

$$a_H(z)w_H > a_F(z)w_F \iff A(z) < rac{w_F}{w_H}$$

Equilibrium Outcomes:

- 1. relative wage $\omega = \frac{w_H}{w_F}$
- 2. cut-off \tilde{Z} , such that
 - *H* produces every good $z \in [0, \tilde{z}];$
 - *F* produces every good $z \in [\tilde{z}, 1]$

Equilibrium Condition (1)

$$A(\tilde{z}) = \omega$$

- Denote by $\theta(\tilde{z}) \equiv \int_0^{\tilde{z}} b(z) dz$ the fraction of income spent on goods produced in *H*.

- Equilibrium Condition (2) [Balanced Trade]

$$\underbrace{\theta(\tilde{z}) \mathbf{W}_{F} L_{F}}_{\text{Home exports}} = \underbrace{\left[1 - \theta(\tilde{z})\right] \mathbf{W}_{H} L_{H}}_{\text{Home imports}}$$

- Note that B(.) is strictly increasing function, i.e., B'(.) > 0

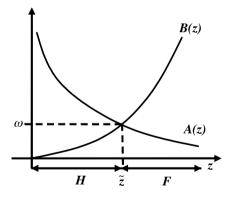
- Denote by $\theta(\tilde{z}) \equiv \int_0^{\tilde{z}} b(z) dz$ the fraction of income spent on goods produced in *H*.

- Equilibrium Condition (2) [Balanced Trade]

$$\omega = \frac{\theta(\tilde{z})}{1 - \theta(\tilde{z})} \left(\frac{L_F}{L_H}\right) \equiv B(\tilde{z})$$

- Note that B(.) is strictly increasing function, i.e., B'(.) > 0

– Equilibrium conditions (1) and (2) jointly determine (\tilde{z}, ω)



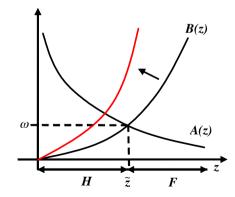
Gains from Trade

- Assign Home labor as the numeraire: $w_H = 1$
- After opening to trade
 - $Y_H = w_H L_H = L_H$ remains the same
 - $p_H(z)$ remains the same if z is not imported
 - $p_H(z)$ decreases if z is imported.
- So, Home gains from trade!

Comparative Statics

Question: What happens if $\frac{L_F}{L_H}$ goes up?

Answer: $\omega = \frac{w_H}{w_F}$ goes up and \tilde{z} goes down (intuition?)



Claim: if L^F / L^H increases:

- Home's welfare improves
- Foreign's welfare worsens.

Proof

- $Y'_H = Y_H = L_H$, by choice of numeraire ($w_H = 1$).
- If good z's production remains at $H: p_H(z) = p_H(z)'$
- If goods z's production remains in F:

$$w_F' < w_F \implies p_H(z)' = w_F' a_F(z) < p_H(z)$$

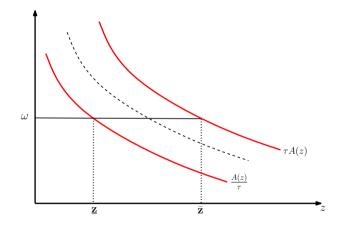
- If goods *z*'s production moves to *F*:

$$w'_F a_F(z) \le a_H(z) \implies p_H(z)' < p_H(z)$$

Trade Costs

- Until now, we assumed costless trade $\Longrightarrow p_H(z) = p_F(z)$
- Suppose trade is subject to an iceberg trade cost, τ :
 - Home will export good *z* if $\tau w_H a_H(z) \le w_F a_F(z)$
 - Foreign will export good z if $w_H a_H(z) \ge \tau w_F a_F(z)$
- Define \underline{z} such that: $\tau w_H a_H(\underline{z}) = w_F a_F(\underline{z})$
- Define \bar{z} such that: $w_H a_H(\bar{z}) = \tau w_F a_F(\bar{z})$
 - Home will produce and export $z \in [0, \underline{z}]$
 - Foreign will produce and export $z \in [\bar{z}, 1]$
 - Goods $z \in [\underline{z}, \overline{z}]$ are non-traded.

Trade Costs



– See Dornbush, Fischer and Samuelson (1977) for the generalized trade balance equation that pins down ω in the presence of trade costs.

Extensions of DFS1977

- Costinot (2009): extends the analytical results to many countries and many goods.
- Matsuyama (2000)
 - Non-homothetic preferences: goods are indexed according to priority.
 - *H* has a comparative advantage in low-priority goods.
- Eaton, and Kortum (2002)
 - Parametric assumption on the distribution of $a_i(z)$'s.
 - Closed-form gravity equation in a multi-country framework.

A Limitation of the Ricardian Model

- The Ricardian model is silent about the origins of cross-national productivity differences.
- A big body of literature on "Institutions and Trade" seeks to answer to this question:
 - Acemoglu, Antras, & Helpman (2007), Antras (2005), Costinot (2009), Levchenko (2007); Nunn (2007); Vogel (2007); Beck (2000), Kletzer & Bardhan (1987);
 Matsuyama (2005); Manova (2007); Davidson, Martin, & Matusz (1999); Cunat & Melitz (2007), Helpman & Itskhoki (2006).

Institutions and Trade

- Basic Idea:1
 - 1. Even if firms have access to the same technological know-how around the world, institutional differences across countries may affect how firms organize their production process.
 - 2. If institutional differences affect productivity relatively more in some sectors, then institutions become source of comparative advantage.

- General Theme:

- Countries with "better institutions" tend to be relatively more productive, and so to specialize, in sectors that are more "institutionally dependent"

¹Borrowed from Costinot and Donaldson's lecture notes.