The Melitz-Pareto Model

International Trade (PhD), Fall 2019

Ahmad Lashkaripour

Indiana University

Overview

- Today, we introduce firm-level heterogeneity into the Krugman model.
- This extension preserves the gravity equation:

 $\label{eq:trade_state} Trade \ Value \propto \frac{Exporter's \ GDP \times Importer's \ GDP}{Distance^{\beta}}$

- Main references:

- 1. Melitz (2003, Econometrica), "The impact of trade on intra-industry reallocations and aggregate industry productivity."
- 2. Chaney (2008, AER), "Distorted Gravity: The Intensive and Extensive Margins of International Trade."

Why was the Melitz Model Developed?

- From the perspective of the Krugman model:
 - all firms have similar productivity levels.
 - all firms participate in exporting.
- Firm-level data suggests that:
 - there is great cross-firm heterogeneity in productivity.
 - most firms do not export: only 4% of U.S. firms exported in 2000.
 - exporters are more productive that non-exporters.
- The Melitz model was developed to account for these data regularities.

Environment

– j, i = 1, ..., N countries

- The entire economy is modeled as one industry
- Labor is the only factor of production
 - Country i is endowed with L_i units of labor
- Each country hosts many monopolistically competitive firms
 - firms are indexed by $\boldsymbol{\omega}$
 - firms are *heterogeneous* in their productivity

Demand

The representative consumer in country i has a CES utility function:

$$U_{i}(\boldsymbol{q}_{1i},...,\boldsymbol{q}_{Ni}) = \left[\sum_{j=1}^{N} \left(\int_{\boldsymbol{\omega} \in \Omega_{ji}} q_{ji}(\boldsymbol{\omega})^{\frac{\sigma-1}{\sigma}} d\boldsymbol{\omega} \right) \right]^{\frac{\sigma}{\sigma-1}}$$

where

- Goods are differentiated at the firm-level.
- Index ji corresponds to Exporter j \times Importer i
- $q_{ji}(\omega)$: quantity of firm-level variety ω originating from country j.
- $\sigma \geqslant 1$ is the cross-firm elasticity of substitution.

Demand

- Consumer's problem (p is price, Y is income):

$$\max_{\mathbf{q}} \quad U_{i}(\mathbf{q}_{1i}, ..., \mathbf{q}_{Ni})$$
s.t.
$$\sum_{j=1}^{N} \left(\int_{\omega \in \Omega_{ji}} p_{ji}(\omega) q_{ji}(\omega) d\omega \right) \leqslant Y_{i}$$
 (CP)

– Demand function implied by CP:

$$p_{ji}(\omega)q_{ji}(\omega) = \left(\frac{p_{ji}(\omega)}{P_i}\right)^{1-\sigma} Y_i$$

-
$$P_i$$
 is a CES price index: $P_i = \left[\sum_{j=1}^{N} \left(\int_{\omega \in \Omega_{ji}} p_{ji}(\omega)^{1-\sigma}\right)\right]^{\frac{1}{1-\sigma}}$

Supply: Cost Function

- The market structure is monopolistic competition.
- Firm $\boldsymbol{\omega}$ located in country j, faces three types of cost
 - entry cost: $w_i f^e$
 - fixed overhead cost: $w_i f_{ji}$ per market i
 - variable cost: $\tau_{ji}a_j(\omega)w_jq_{ji}(\omega)$ per market i
- The total cost faced by firm $\boldsymbol{\omega}$ from country j:

$$TC_{j}(\omega) = w_{j}f^{e} + \sum_{i=1}^{N} \mathbb{1}_{ji}(\omega) \left(\tau_{ji}a_{j}(\omega)w_{j}q_{ji}(\omega) + w_{i}f_{ji}\right).$$

where $\mathbb{1}_{ji}(\omega)$ is an indicator of whether ω serves market i.

Entry Scheme

- There is a pool of *ex-ante* identical firms in Country j.
- Each of these firms, can pay the entry cost $w_j f^e$ to independently draw a productivity $\phi \equiv 1/a(\omega)$ from distribution $G(\phi)$.

– Firms enter to the point that

Total Expected $Profit_j = w_j f^e$.

- After entry, a firm sells to market i from j if

Market-Specific $Profit_{ji} \ge w_i f_{ji}$.

Supply: Optimal Pricing

- Productivity, φ , uniquely determines the firm-level outcomes \implies we can express all firm-level variables as a function of φ .
- A firm with productivity ϕ sets price to maximize variable profits

$$\pi_{ji}(\phi) = \max_{p_{ji}(\phi)} \left[p_{ji}(\phi) - \tau_{ji} w_j / \phi \right] q_{ji}(\phi)$$

s.t. $q_{ji}(.)$ being given by the CES demand function.

- Optimal price equals *constant markup*×*marginal cost*:

$$p_{ji}(\phi) = \frac{\sigma}{\sigma - 1} \tau_{ji} w_j / \phi$$

Entry and Selection into Markets Zero Profit Cut-off Condition

– Firms with productivity $\phi \geqslant \phi^*_{ji}$ export to market i from j, where

$$\pi_{ji}(\phi_{ji}^*) = w_i f_{ji} \quad (ZPC)$$

Free Entry Condition

- Let N_j denote the number of firms operating in country j.
- N_j is determined by the *free entry* condition (i.e., firms enter until expected profits are drawn to zero)

$$\sum_{i=1}^{N} \left[\mathbb{E} \left(\pi_{ji}(\phi) - w_i f_{ji} \right) \right] = w_j f^e \quad (FE)$$

Entry and Selection into Markets Zero Profit Cut-off Condition

– Firms with productivity $\phi \ge \phi_{ji}^*$ export to market i from j, where

$$\pi_{ji}(\phi_{ji}^*) = w_i f_{ji} \quad (ZPC)$$

Free Entry Condition

- Let N_j denote the number of firms operating in country j.
- N_j is determined by the *free entry* condition (i.e., firms enter until expected profits are drawn to zero)

$$\sum_{i=1}^{N} \left[\int_{\phi_{ji}^{*}}^{\infty} \left(\pi_{ji}(\phi) - w_{i}f_{ji} \right) dG(\phi) \right] = w_{j}f^{e} \quad (FE)$$

Key Assumption

– Following Chaney (2008, AER), assume that G(.) is *Pareto*:

$$G(\phi) = 1 - \phi^{-\gamma}$$

- γ represents the degree of firm-level heterogeneity.
- The Pareto assumption is key to obtaining a gravity equation.

Deriving the Gravity Equation

- Export sales from country j to i are the sum of all firm-level sales:

$$X_{ji} = N_j \int_{\phi_{ji}^*}^{\infty} p_{ji}(\phi) q_{ji}(\phi) dG(\phi)$$

– The CES demand function implies that

$$\begin{split} X_{ji} = & N_j \int_{\varphi_{ji}^*}^{\infty} \left(\frac{p_{ji}(\phi)}{P_i} \right)^{1-\sigma} Y_i dG(\phi) \\ = & \gamma N_j \left(\frac{p_{ji}(\phi_{ji}^*)}{P_i} \right)^{1-\sigma} Y_i \int_{\varphi_{ji}^*}^{\infty} \left(\frac{p_{ji}(\phi)}{p_{ji}(\phi_{ji}^*)} \right)^{1-\sigma} \phi^{-\gamma-1} d\phi \\ = & \gamma \sigma N_j w_i f_{ji} \int_{\varphi_{ji}^*}^{\infty} \left(\frac{p_{ji}(\phi)}{p_{ji}(\phi_{ji}^*)} \right)^{1-\sigma} \phi^{-\gamma-1} d\phi, \end{split}$$

– The last line follows from the ZPC condition: $\left(\frac{p_{ji}(\phi_{ji}^*)}{P_i}\right)^{1-\sigma} Y_i = \sigma w_i f_{ji}.$

Deriving the Gravity Equation

- The last expression on the previous slide, can be simplified in 3 steps.
- First, we can simplify the integral by a change in variables, $\nu = \phi/\phi_{ii}^*$:

$$X_{ji} = N_j w_i f_{ji} \left(\phi_{ji}^* \right)^{-\gamma} \int_1^\infty \nu^{-\sigma-\gamma} d\nu$$

– Second, we appeal to the ZPC condition to characterize φ_{ii}^* :

$$\left(\frac{p_{ji}(\phi_{ji}^{*})}{P_{i}}\right)^{1-\sigma}Y_{i} = \sigma w_{i}f_{ji} \implies \phi_{ji}^{*} = \frac{\sigma}{\sigma-1}\tau_{ji}w_{j}\left(\frac{Y_{i}P_{i}^{\sigma-1}}{\sigma w_{i}f_{ji}}\right)^{\frac{1}{1-\sigma}}$$

– Third, we can gather all *non-exporter-specific* terms into one term, A_i :

$$X_{ji} = A_i N_j f_{ji}^{1 - \frac{\gamma}{\sigma - 1}} \left(\tau_{ji} w_j \right)^{-\gamma}$$

.

The Gravity Equation with Firm-Selection Effects

- Combining (a) $X_{ji} = A_i N_j f_{ji}^{1-\frac{\gamma}{\sigma-1}} (\tau_{ji} w_j)^{-\gamma}$, and (b) $\sum_{i=1}^{N} X_{ji} = Y_i$, we can produce the following gravity equation:

$$X_{ji}(\mathbf{N}, \boldsymbol{w}) = \frac{N_j (\tau_{ji} w_j)^{-\gamma} f_{ji}^{1 - \frac{\gamma}{\sigma - 1}}}{\sum_{\ell=1}^N N_\ell (\tau_{\ell i} w_\ell)^{-\gamma} f_{\ell i}^{1 - \frac{\gamma}{\sigma - 1}}} Y_i$$

where, due to FE, $Y_i = w_i L_i$ for all i.

- $\{w_i\}$ and $\{N_i\}$ are endogenous variables; but we can use the FE condition to write N_j as a function of *structural* parameters.

An Illustration of Firm-Selection Effects

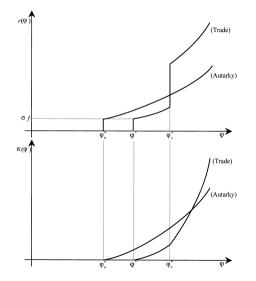


FIGURE 2.- The reallocation of market shares and profits.

Using the FE Condition to Pin Down N_i

 The free entry condition yields a closed-form solution for the number of firms:

$$\sum_{j=1}^{N} \left(\frac{X_{ij}(\boldsymbol{w}, \boldsymbol{N})}{\sigma} - N_{ij} w_j f_{ij} \right) = N_i w_i f^e , \forall i \quad (FE)$$

where
$$N_{ij} \equiv \left[1 - G(\phi_{ij}^*)\right] N_i$$
 for all j.

- After some tedious algebra, the above equation implies that

$$N_{i} = \frac{\sigma - 1}{\sigma \gamma} \frac{L_{i}}{f^{e}}$$

The Trade Equilibrium

Equilibrium is a vector of wages, $w = \{w_i\}$ that satisfy the *balanced trade* (BT) condition:

$$\sum_{j=1}^{N} X_{ij}(\boldsymbol{w}) = Y_{i}(\boldsymbol{w}_{i}) , \forall i \quad (BT)$$

where

$$\begin{cases} X_{ij}(\boldsymbol{w}) = \frac{L_i(\tau_{ji}w_i)^{-\gamma} f_{ji}^{1-\frac{\gamma}{\sigma-1}}}{\sum_{\ell=1}^{N} L_\ell(\tau_{\ell i}w_\ell)^{-\gamma} f_{\ell i}^{1-\frac{\gamma}{\sigma-1}}} Y_j(w_j) & \forall i, j \\ Y_i(w_i) = w_i L_i & \forall i \end{cases}$$

Melitz-Pareto versus Armington: Gravity

- Melitz-Pareto
$$X_{ji} = \frac{\left(\tilde{a}_{ji}\tau_{ji}w_{j}\right)^{-\gamma}}{\sum_{\ell=1}^{N}\left(\tilde{a}_{\ell i}\tau_{ji}w_{j}\right)^{-\gamma}}Y_{i}$$

 $\begin{array}{l} - \gamma : \mbox{ degree of firm-level heterogeneity.} \\ - \ \tilde{a}_{ji} \equiv f_{ji}^{\frac{1}{\gamma} - \frac{1}{\sigma - 1}} L_{j}^{-\frac{1}{\gamma}} : \ \mbox{ selection \& scale-adjusted unit labor cost.} \end{array}$

- The Armington model

$$X_{ji} = \frac{\left(\tau_{ji} a_{j} w_{j}\right)^{1-\sigma}}{\sum_{\ell=1}^{N} \left(\tau_{\ell i} a_{\ell} w_{\ell}\right)^{1-\sigma}} Y_{i}$$

- σ : degree of national product differentiation
- a_j : unit labor cost.

Melitz-Pareto versus Armington: Welfare

- Melitz-Pareto $\frac{w_{i}}{P_{i}} = \frac{w_{i}}{\mathcal{C}_{i} \left(\sum_{\ell=1}^{N} \left(\tilde{a}_{\ell i} w_{\ell} \tau_{\ell i}\right)^{-\gamma}\right)^{-1/\gamma}}$

$$\begin{array}{l} - \gamma: \mbox{ degree of firm-level heterogeneity.} \\ - \ \tilde{a}_{ji} \equiv f_{ji}^{\frac{1}{\gamma} - \frac{1}{\sigma - 1}} L_j^{-\frac{1}{\gamma}}: \mbox{ scale-adjusted unit labor cost.} \end{array}$$

- The Armington model

$$\frac{w_{i}}{P_{i}} = \frac{w_{i}}{\left(\sum_{k=1}^{N} \left(w_{\ell} a_{\ell} \tau_{\ell i}\right)^{1-\sigma}\right)^{\frac{1}{1-\sigma}}}$$

- σ : degree of national product differentiation
- a_j : unit labor cost in country j.

Class Question

Why does σ not show up in the gravity equation implied by the Melitz-Pareto model?

- *Hint*: applying the Leibniz rule show that

$$\frac{\partial \ln X_{ji}}{\partial \ln \tau_{ji}} = \underbrace{\frac{\int_{\phi_{ji}}^{\infty} x_{ji}(\phi) \frac{\partial \ln x_{ji}(\phi)}{\partial \ln \tau_{ji}} \tau_{ji} dG(\phi)}{X_{ji}}_{\text{Extensive Margin}} + \underbrace{\frac{x_{ji}(\phi_{ji}^{*})\phi_{ji}^{*} \frac{\partial \ln \phi_{ji}^{*}}{\partial \ln \tau_{ji}} dG(\phi_{ji}^{*})}{X_{ji}}_{\text{Intensive Margin}} = \gamma,$$

where $x_{ji}(\phi) \equiv p_{ji}(\phi)q_{ji}(\phi)$.

Final Remarks

 Arkolakis et. al. (2018, ReStud) show that the CES assumption is not necessary for obtaining a gravity equation. As long as the firm-level productivity distribution is Pareto, any demand function satisfying the following functional-form will deliver gravity:

 $q_{\boldsymbol{\omega}}(\boldsymbol{p},\boldsymbol{y}) = \mathcal{D}(\boldsymbol{p}/\boldsymbol{P}(\boldsymbol{p},\boldsymbol{y})) \mathcal{Q}(\boldsymbol{p},\boldsymbol{y})$

- The Melitz-Pareto and Armington models are observationally equivalent (i.e., isomorphic) inso far as *macro-level* trade values are concerned.So, the gravity equation produced by the Krugman model can be estimated along the same exact steps highlighted in Lecture 1.
- In the Melitz-Pareto model, however, the *bilateral resistance term* is driven by both the iceberg cost, τ_{ji} , and the fixed exporting cost, f_{ji} .