Multi-Country Ricardian Model

Eaton and Kortum (2002)

International Trade (PhD), Spring 2023

Ahmad Lashkaripour
Indiana University

Roadmap

- Today, we will cover Eaton and Kortum (2002).
- The Eaton-Kortum model extends DFS1977 by allowing for
- arbitrarily many countries
- arbitrary trade costs
- The Eaton-Kortum model provides a Ricardian foundation for the gravity equation

Ricardian specialization $\longrightarrow \quad$ Trade Value $\propto \frac{\text { Exporter's GDP } \times \text { Importer's GDP }}{\text { Distance }^{\beta}}$

Environment

- The global economy consist of $N \geq 2$ countries
- We use $i, j, n \in\{1, . ., N\}$ to index countries
- There is a continuum of homogeneous goods $\omega \in[0,1]$
- Each good ω which is sourced from the chepast supplier.
- Labor is the only factor of production:
- country i is populated by L_{i} workers
- w_{i} denotes the wage rate in country i
- Perfect competition + constant returns to scale.

Demand

CES Utility Function

- The representative consumer in country i has a CES utility function:

$$
U_{i}(\mathbf{q})=\left[\int_{\omega} q_{i}(\omega)^{\frac{\sigma-1}{\sigma}} d \omega\right]^{\frac{\sigma}{\sigma-1}}
$$

- σ is the elasticity of substitution across goods.
- The Cobb-Douglas utility function in DFS1977 is a special case of the CES utility function, where $\sigma \rightarrow 1$.

Demand

CES Utility Function

- Utility maximization \longrightarrow expenditure on good ω equals

$$
p_{i}(\omega) q_{i}(\omega)=\frac{p_{i}(\omega)^{1-\sigma}}{\int_{\omega^{\prime}} p_{i}\left(\omega^{\prime}\right)^{1-\sigma} d \omega} Y_{i}
$$

- $p_{i}(\omega)$ is the price of good ω in country i.
- $Y_{i}=w_{i} L_{i}$ is total income in country i.

Supply

- The price of good ω in country i if sourced from country n

$$
p_{n i}(\omega)=\tau_{n i} a_{n}(\omega) w_{n}
$$

- $\tau_{n i}$ is the iceberg trade cost
- $a_{n}(\omega)$ is the unit labor cost of producing ω in country n
- Country i buys good ω from the cheapest supplier:

$$
p_{i}(\omega)=\min \left\{p_{1 i}(\omega), \ldots, p_{N i}(\omega)\right\}
$$

Technology

- Let $Z_{n}(\omega) \equiv 1 / a_{n}(\omega)$ denote productivity.
- Let $F_{n}($.$) denote the distribution of country n's productivity:$

$$
F_{n}(z) \equiv \operatorname{Pr}\left\{z_{n}(\omega) \leq z\right\}
$$

- EK2002 assume $F_{n}(z)$ is Frechet:

$$
F_{n}(z)=\exp \left(-T_{n} z^{-\theta}\right)
$$

- Why Frechet? If ideas arrive with a Poisson distribution, and the technology of producing goods is determined by the best "idea," then the limiting distribution is Frechet, where T_{n} reflects the country n 's stock of ideas.

The Frechet Distribution

Source: Fieler (2011, Econometrica)

Equilibrium Expenditure Shares

- The probability that $p_{n i}(\omega) \leq p$ is given by

$$
\begin{aligned}
G_{n i}(p) & \equiv \operatorname{Pr}\left(p_{n i}(\omega) \leq p\right) \\
& =\left\{\frac{w_{n}}{z_{n}(\omega)} \tau_{n i} \leq p\right\}=1-\exp \left\{-\Phi_{n i} p^{\theta}\right\}
\end{aligned}
$$

where $\Phi_{n i} \equiv T_{n}\left(w_{n} \tau_{n i}\right)^{-\theta}$.

Equilibrium Expenditure Shares

- The probability that $p_{n i}(\omega) \leq p$ is given by

$$
\begin{aligned}
G_{n i}(p) & \equiv \operatorname{Pr}\left(p_{n i}(\omega) \leq p\right) \\
& =\left\{\frac{w_{n}}{z_{n}(\omega)} \tau_{n i} \leq p\right\}=1-\exp \left\{-\Phi_{n i} p^{\theta}\right\}
\end{aligned}
$$

where $\Phi_{n i} \equiv T_{n}\left(w_{n} \tau_{n i}\right)^{-\theta}$.

- Note: The above probability is the same for all goods ω

Equilibrium Expenditure Shares

- The probability that good ω is supplied at a price lower than p in country i

$$
\begin{aligned}
G_{i}(p) & =\operatorname{Pr}\left\{p_{i}(\omega) \leq p\right\} \\
& =1-\prod_{n=1}^{N}\left(1-G_{n i}(p)\right)=1-\exp \left\{-\Phi_{i} p^{\theta}\right\}
\end{aligned}
$$

where Φ_{i} is defined as

$$
\Phi_{i}=\sum_{n=1}^{N} \Phi_{n i}
$$

$$
\Phi_{n i} \equiv T_{n}\left(w_{n} \tau_{n i}\right)^{-\theta}
$$

Equilibrium Expenditure Shares

- The probability that country n is the lowest cost supplier of $\operatorname{good} \omega$ to country i is

$$
\begin{array}{r}
\pi_{n i} \equiv \operatorname{Pr}\left\{p_{n i}(\omega) \leq \min _{j \neq n} p_{j i}(\omega)\right\}=\int_{0}^{\infty} \operatorname{Pr}\left\{\min _{j \neq n} p_{j i}(\omega) \geq p\right\} d G_{n i}(p) \\
=\int_{0}^{\infty} \prod_{j \neq n}\left(1-G_{j i}(p)\right) d G_{n i}(p)
\end{array}
$$

- Substituting $G_{n i}(p)=1-\exp \left(-\Phi_{n i} p^{\theta}\right)$ in the last line, yields:

$$
\pi_{n i}=\frac{\Phi_{n i}}{\Phi_{i}}=\frac{T_{n}\left(\tau_{n i} w_{n}\right)^{-\theta}}{\sum_{j=1}^{N} T_{j}\left(\tau_{j i} w_{j}\right)^{-\theta}}
$$

Equilibrium Expenditure Shares

- The probability that country n is the lowest cost supplier of $\operatorname{good} \omega$ to country i is

$$
\begin{array}{r}
\pi_{n i} \equiv \operatorname{Pr}\left\{p_{n i}(\omega) \leq \min _{j \neq n} p_{j i}(\omega)\right\}=\int_{0}^{\infty} \operatorname{Pr}\left\{\min _{j \neq n} p_{j i}(\omega) \geq p\right\} d G_{n i}(p) \\
=\int_{0}^{\infty} \prod_{j \neq n}\left(1-G_{j i}(p)\right) d G_{n i}(p)
\end{array}
$$

- Substituting $G_{n i}(p)=1-\exp \left(-\Phi_{n i} p^{\theta}\right)$ in the last line, yields:

$$
\pi_{n i}=\frac{\Phi_{n i}}{\Phi_{i}}=\frac{T_{n}\left(\tau_{n i} w_{n}\right)^{-\theta}}{\sum_{j=1}^{N} T_{j}\left(\tau_{j i} w_{j}\right)^{-\theta}}
$$

- Because (a) all goods receive i.i.d. draws and (b) there are a continuum of varieties, by the law of large numbers, this probability will be equal to the fraction of goods sourced from origin n.

Equilibrium Expenditure Shares

- Claim: The distribution of realized (\mathcal{R}) prices for goods purchased from origin n is independent of country n 's characteristics!
- Proof: Define $G_{n i}^{R}(p) \equiv\left\{p_{n i}(\omega) \leq p \mid p_{n i}(\omega) \leq \min _{j \neq n} p_{j i}(\omega)\right\}$, as the distribution of realized prices from origin n. We can easily verify that $G_{n i}^{\mathcal{R}}(p)$ is independent of n :

$$
G_{n i}^{\mathcal{R}}(p)=\frac{\int_{0}^{p} \prod_{j \neq n}\left(1-G_{j i}(\tilde{p})\right) d G_{n i}(\tilde{p})}{\pi_{n i}}=G_{i}(p)
$$

Equilibrium Expenditure Shares

- Claim: The distribution of realized (\mathcal{R}) prices for goods purchased from origin n is independent of country n 's characteristics!
- Proof: Define $G_{n i}^{R}(p) \equiv\left\{p_{n i}(\omega) \leq p \mid p_{n i}(\omega) \leq \min _{j \neq n} p_{j i}(\omega)\right\}$, as the distribution of realized prices from origin n. We can easily verify that $G_{n i}^{\mathcal{R}}(p)$ is independent of n :

$$
G_{n i}^{R}(p)=\frac{\int_{0}^{p} \prod_{j \neq n}\left(1-G_{j i}(\tilde{p})\right) d G_{n i}(\tilde{p})}{\pi_{n i}}=G_{i}(p)
$$

- Implication: the fraction of goods sourced from origin n is equal to the fraction of income spent on goods from n :

$$
\lambda_{n i} \sim \pi_{n i} \quad \longrightarrow \quad X_{n i}=\lambda_{n i} Y_{i}
$$

Equilibrium Price Index

- The CES utility implies that the price index in country i is

$$
P_{i}=\left(\int_{\omega} p_{i}(\omega)^{1-\sigma} d \omega\right)^{\frac{1}{1-\sigma}}=\left(\int_{0}^{\infty} p^{1-\sigma} d G_{i}(p)\right)^{\frac{1}{1-\sigma}}
$$

- Noting that $(a) G_{i}(p)=1-\exp \left(-\Phi_{i} p^{\theta}\right)$, and $(b) \Phi_{i}=\sum_{n=1}^{N} T_{n}\left(w_{n} \tau_{n i}\right)^{-\theta}$, the above expressions yields

$$
P_{i}=C\left(\sum_{n=1}^{N} T_{n}\left(w_{n} \tau_{n i}\right)^{-\theta}\right)^{\frac{-1}{\theta}}
$$

where $C \equiv \Gamma\left(\frac{\theta+1-\sigma}{\theta}\right)^{\frac{1}{1-\sigma}}$ (reminder: $\Gamma(t)=\int_{0}^{\infty} x^{t-1} e^{-x} d x$).

General Equilibrium soution agaorthm

For any given vector of exogenous parameters and variables $\left\{\tau_{i n}, T_{i}, L_{i}, \theta\right\}_{i, n}$, equilibrium is a vector wage, $\left\{w_{i}\right\}_{;}$, such that labor markets clear in all countries. Namely,

$$
\sum_{n=1}^{N} \underbrace{\lambda_{\text {in }}\left(w_{1}, \ldots, w_{N}\right) \times E_{n}\left(w_{n}\right)}_{\text {country } n^{\prime} \text { 's demand for } i^{\prime \prime} \text { s labor services }}=w_{i} L_{i}, \forall i
$$

where the expenditure shares $\left(\lambda_{\text {in }}\right)$ and total national expenditure $\left(E_{n}\right)$ are given by

$$
\begin{cases}\lambda_{i n}\left(w_{1}, \ldots, w_{N}\right)=\frac{T_{i}\left(\tau_{i n} w_{i}\right)^{-\theta}}{\sum_{j=1}^{N} T_{j}\left(\tau_{j n} w_{j}\right)^{-\theta}} & (\forall i, j) \\ E_{n}\left(w_{n}\right)=w_{n} L_{n} & (\forall i, \text { balance budegt })\end{cases}
$$

General Equilibrium-defined in terms of Y

For any given vector of exogenous parameters and variables $\left\{\tau_{i n}, T_{i}, L_{i}, \theta\right\}_{i, n}$, equilibrium is a vector of GDP levels, $\left\{Y_{i}\right\}_{i}$, such that labor markets clear in all countries. Namely,

$$
\sum_{n=1}^{N} \underbrace{\lambda_{i n}\left(Y_{1}, \ldots, Y_{N}\right) \times E_{n}\left(Y_{n}\right)}_{\text {country } n \text { 's demand for i's labor services }}=Y_{i}, \forall i
$$

where the expenditure shares $\left(\lambda_{i n}\right)$ and total national expenditure $\left(E_{n}\right)$ are given by

$$
\begin{cases}\lambda_{i n}\left(Y_{1}, \ldots, Y_{N}\right)=\frac{T_{i} L_{i}^{\theta}\left(\tau_{i n} Y_{i}\right)^{-\theta}}{\sum_{j=1}^{N} T_{j} L_{j}^{\theta}\left(\tau_{j n} Y_{j}\right)^{-\theta}} & (\forall i, j) \\ E_{n}\left(Y_{n}\right)=Y_{n} & (\forall i, \text { balance budegt })\end{cases}
$$

An Overview of the Eaton-Kortum Model

- The Eaton-Kortum model belongs to the quantitative class of models reviewed earlier:

$$
\tilde{\chi}_{i} \sim T_{i} L_{i}^{\theta}, \quad \epsilon \sim \sigma-1
$$

- The indirect utility or welfare of the representative consumer in country i is

$$
W_{i}=\frac{Y_{i}}{P_{i}}, \quad P_{i}=\left[\sum_{n=1}^{N} \int_{\omega \in \Omega_{n i}} p_{n i}(\omega)^{1-\sigma} d \omega\right]^{\frac{1}{1-\sigma}}
$$

An Overview of the Eaton-Kortum Model

- The Eaton-Kortum model belongs to the quantitative class of models reviewed earlier:

$$
\tilde{\chi}_{i} \sim T_{i} L_{i}^{\theta}, \quad \epsilon \sim \sigma-1
$$

- The indirect utility or welfare of the representative consumer in country i is

$$
W_{i}=\frac{Y_{i}}{P_{i}}, \quad P_{i}=C \times\left[\sum_{n=1}^{N} T_{n} L_{n}^{\theta}\left(\tau_{n i} Y_{n}\right)^{-\theta}\right]^{-\frac{1}{\theta}}
$$

An Overview of the Eaton-Kortum Model

- The Eaton-Kortum model belongs to the quantitative class of models reviewed earlier:

$$
\tilde{\chi}_{i} \sim T_{i} L_{i}^{\theta}, \quad \epsilon \sim \sigma-1
$$

- The indirect utility or welfare of the representative consumer in country i is

$$
W_{i}=\frac{Y_{i}}{P_{i}}, \quad P_{i}=C \times\left[\sum_{n=1}^{N} T_{n} L_{n}^{\theta}\left(\tau_{n i} Y_{n}\right)^{-\theta}\right]^{-\frac{1}{\theta}}
$$

Krugman vs. Neoclassical Trade Models

- The Krugman model predicts similar gains from trade (up-to a choice of trade elasticity) as neoclassical models-e.g., Armington, Eaton-Kortum

$$
G T_{i}=1-\lambda_{i i}^{\frac{1}{\theta}} \sim 1-\lambda_{i i}^{\frac{1}{\epsilon}}
$$

- It also predict the same welfare impacts in response to a given trade cost shock $\left\{\hat{\tau}_{i n}\right\}_{i, n}$, which are

$$
\widehat{W}_{i}=\frac{\widehat{Y}_{i}}{\widehat{P}_{i}}, \quad \widehat{P}_{i}=\left[\sum_{n} \lambda_{n i} \hat{\tau}_{n i}^{-\theta} \widehat{Y}_{n}^{-\theta}\right]^{-\frac{1}{\theta}}
$$

where \widehat{Y}_{i} can be calculated with data on the expenditure matrix, $\left\{\lambda_{i n}\right\}_{i, n}$, and GDP levels, $\left\{Y_{i}\right\}_{i}$, using the following system:

$$
\widehat{Y}_{i} Y_{i}=\sum_{n=1}^{N}\left[\frac{\lambda_{i n} \hat{\tau}_{i n}^{-\theta} \widehat{Y}_{i}^{-\theta}}{\sum_{j=1}^{N} \lambda_{j n} \hat{\tau}_{j n}^{-\theta} \widehat{Y}_{j}^{-\theta}} \widehat{Y}_{n} Y_{n}\right]
$$

Other Elements of Eaton \& Kortum (2003)

- The Eaton-Kortum model satisfies the common macro-level representation covered earlier \longrightarrow the same quantitative techniques apply
- Other elements of Eaton \& Kortum (2002)
- roundabout production (a special case of input-output extension covered later)
- non-traded sector (a special case of the multi-sector extension covered later)
- two approaches to estimating the trade elasticity, θ, which we will review later.

Class Assignment

Assignment Goals

- Taking inspiration from Eaton \& Kortum (2002), we'd like you to examine the impacts of tariff liberalization.
- Denote by $t_{n i}$ the tariff applied by country i on goods originating from n
- Tariffs (unlike iceberg trade costs) generate revenue

$$
\text { Revenue from } t_{n i}=\frac{t_{n i}}{1+t_{n i}} \lambda_{n i} E_{i}
$$

- By definition, domestic sales are exempt from tariffs: $t_{i j}=0$.

General Equilibrium with Tariffs

- For a vector of tariffs, $\left\{t_{n i}\right\}_{n, i}$, and exogenous parameters and variables, equilibrium is a vector of GDP levels, $\left\{Y_{i}\right\}_{i}$, such that labor markets clear in all countries:

$$
\sum_{n=1}^{N} \underbrace{\frac{1}{1+t_{i n}} \lambda_{i n}\left(Y_{1}, \ldots, Y_{N}\right) \times E_{n}\left(Y_{n}\right)}_{\text {country } n^{\prime} \text { s demand for i's labor services }}=Y_{i}, \forall i
$$

where the expenditure shares $\left(\lambda_{i n}\right)$ and total national expenditure $\left(E_{n}\right)$ are given by

$$
\left\{\begin{array}{l}
\lambda_{i n}\left(Y_{1}, \ldots, Y_{N}\right)=\frac{T_{i} L_{i}^{\theta}\left[\left(1+t_{n i}\right) \tau_{i n} Y_{i}\right]^{-\theta}}{\sum_{j=1}^{N} T_{j} L_{j}^{\theta}\left[\left(1+t_{j i}\right) \tau_{j n} Y_{j}\right]^{-\theta}} \\
E_{n}\left(Y_{n}\right)=Y_{n}+\underbrace{\sum_{i} \frac{t_{n i}}{1+t_{n i}} \lambda_{i n}\left(Y_{1}, \ldots, Y_{N}\right) \times E_{n}\left(Y_{n}\right)}_{\text {tariff revenue }}
\end{array}\right.
$$

Task 1: Tariff Liberalization in a two-country setting

- Supplement the previous hat-algebra example with tariff data:

$$
\lambda=\left[\begin{array}{cc}
0.88 & 0.02 \\
0.12 & 0.98
\end{array}\right] ; \quad \mathbf{Y}=\left[\begin{array}{l}
1 \\
4
\end{array}\right] ; \quad \mathbf{D}=\left[\begin{array}{c}
0.04 \\
-0.04
\end{array}\right] ; \quad \mathbf{t}=\left[\begin{array}{cc}
0 & 0.026 \\
0.015 & 0
\end{array}\right]
$$

- Our goal is to calculate welfare effects if t is counterfactually lowered to zero (with and without trade imbalances).

Task 1: Tariff Liberalization in a two-country setting

- Supplement the previous hat-algebra example with tariff data:

$$
\lambda=\left[\begin{array}{cc}
0.88 & 0.02 \\
0.12 & 0.98
\end{array}\right] ; \quad \mathbf{Y}=\left[\begin{array}{l}
1 \\
4
\end{array}\right] ; \quad \mathbf{D}=\left[\begin{array}{c}
0.04 \\
-0.04
\end{array}\right] ; \quad \mathbf{t}=\left[\begin{array}{cc}
0 & 0.026 \\
0.015 & 0
\end{array}\right]
$$

- Our goal is to calculate welfare effects if t is counterfactually lowered to zero (with and without trade imbalances).
- To perform this task you must update the previous code to account for tariffs and tariff revenues.

Task 1: Tariff Liberalization in a two-country setting

- For a change in tariff $\left\{t_{n i}\right\}_{n, i} \longrightarrow\left\{t_{n i}^{\prime}\right\}_{n, i}$, we can write the labor-market clearing condition in changes as

$$
\hat{Y}_{i} Y_{i}=\sum_{n=1}^{N}\left[\frac{1}{1+t_{i n}^{\prime}} \frac{\lambda_{i n}\left[\left(\widehat{1+t_{i n}}\right) \hat{Y}_{i}\right]^{-\theta}}{\sum_{j n}\left(\left(\widehat{1+t_{j n}}\right) \hat{Y}_{j}\right)^{-\theta}} \times \hat{E}_{n} E_{n}\right],
$$

where \hat{E}_{n} can be specified in terms of $\left\{\hat{Y}_{i}\right\}_{i}$, using the balanced budget condition:

$$
\hat{E}_{n} E_{n}=\hat{Y}_{n} Y_{n}\left(1-\sum_{i=1}^{N}\left[\frac{1}{1+t_{i n}^{\prime}} \frac{\lambda_{i n}\left[\left(\widehat{1+t_{i n}}\right) \hat{Y}_{i}\right]^{-\theta}}{\sum_{j} \lambda_{j n}\left(\left(\widehat{1+t_{j n}}\right) \hat{Y}_{j}\right)^{-\theta}}\right]\right)^{-1}
$$

- Note: $\lambda_{i n}, E_{i}, Y_{i}, t_{n i}$ are data; $t_{n i}^{\prime}=0$ under tariff liberalization; and $\theta=4$.

Task 1: Tariff Liberalization in a two-country setting

- Solving the previous system of equations determines \hat{Y}_{i} and \hat{E}_{i}
- We can then determine the change in welfare (real expenditure) as

$$
W_{i}=\frac{\hat{E}_{i}}{\hat{P}_{i}}, \quad \text { where } \quad \hat{P}_{i}=\left[\sum_{n=1}^{N} \lambda_{n i}\left[\left(\widehat{1+t_{n i}}\right) \hat{Y}_{i}\right]^{-\theta}\right]^{-\frac{1}{\theta}}
$$

Task 2: Tariff Liberalization in a multi-country setting

- The next task is scale up the previous analysis to a multi-country setting
- I will upload the following data on Canvas
- balanced global expenditure matrix from WIOD $\longrightarrow\left\{\lambda_{i n}, Y_{i}, E_{n}\right\}_{i, n}$
- average tariff rates from TRAINS $\longrightarrow\left\{t_{i n}\right\}_{i, n}$
- Number of countries: $N=44$
- Due Date: February 2

Additional Material

Algorithm for Calculating The Equilibrium Wages

Alvarez \& Lucas (2007) rewrite the excess demand function as

$$
f_{i}(\mathbf{w})=\frac{1}{w_{i}}\left[\sum_{n=1}^{N} \frac{T_{i}\left(\tau_{i n} w_{i}\right)^{-\theta}}{\sum_{j=1}^{N} T_{j}\left(\tau_{j n} w_{j}\right)} w_{n} L_{n}-w_{i} L_{n}\right],
$$

and show that it satisfies the following properties for $\mathbf{w} \gg 0$

1. $f_{i}($.$) is continuous.$
2. $f_{i}($.$) is homogeneous of degree zero: f_{i}(\alpha \mathbf{w})=f_{i}(\mathbf{w})$
3. $\sum_{i=1}^{N} Y_{i} f_{i}(\mathbf{w})=0$ (Walras' law)
4. There exists a $b>0$ such that $f_{i}(\mathbf{w})>-b, \quad(\forall i)$.
5. Let $\overline{\mathbf{w}}$ be a vector of GDP where $\bar{w}_{l}=0$ and $\bar{w}_{n}>0$ for all $n \neq l$. Then, $\lim _{\mathbf{w} \rightarrow \overline{\mathbf{w}}} \max _{i} f_{i}(\mathbf{w})=\infty$

Algorithm for Calculating The Equilibrium Wages

- Alvarez \& Lucas (2007) also show that $f_{i}($.$) satisfies the gross substitute property:$

$$
\frac{\partial f_{i}(\mathbf{w})}{\partial w_{k}}>0 \quad \forall k \neq i
$$

- The above property sates that if the wage in other countries rises, the demand for goods from country i increases.
- $f_{i}($.$) satisfies the gross substitute property \longrightarrow$ unique equilibrium.

Algorithm for Calculating The Equilibrium Wages

- To compute the equilibrium wages, define the following mapping:

$$
M_{i}(\mathbf{w})=w_{i}\left[1+\lambda \frac{f_{i}(\mathbf{w})}{L_{i}}\right]
$$

- If we start with a vector of wages that satisfy $\sum_{i} w_{i} L_{i}=1$, then $\sum_{i} M_{i}(\mathbf{w}) L_{i}=1$.
- Starting with an initial guess \mathbf{w}^{0}, and updating according to $\mathbf{w}^{m}=M_{i}\left(\mathbf{w}^{m-1}\right)$, yields the unique equilibrium wage: $\mathbf{w}^{*}=M_{i}\left(\mathbf{w}^{*}\right)$.
return

