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Abstract

Tariff wars have reemerged as a serious threat to the global economy.

Yet measuring the prospective cost of a global tariff war remains computa-

tionally prohibitive, unless we restrict attention to a small set of countries

and industries. This paper develops a new methodology that measures

the cost of a global tariff war in one simple step as a function of observ-

able shares, industry-level trade elasticities, and markup wedges. Apply-

ing this methodology to data on 44 countries and 56 industries, I find that

(i) the prospective cost of a global tariff war has more-than-doubled over

the past fifteen years, with small downstream economies being the most

vulnerable. (ii) Meanwhile, due to the rise of global markup distortions,

the potential gains from cooperative tariff policies have also elevated to un-

precedented levels.

1 Introduction

The global economy is entering a new era of tariffs, with many economic lead-
ers warning against the eminent threat of a global tariff war. Just recently, Chris-
tine Lagarde, head of the International Monetary Fund, labeled the escalating
US-China tariff war as “the biggest risk to global economic growth.”1

Concurrent with these real-world developments, there has been a growing
academic interest in measuring the cost of tariff wars. One natural approach

1Source: https://www.bloomberg.com/news/articles/2019-06-09/
lagarde-says-u-s-china-trade-war-looms-large-over-global-growth
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is the “ex-post” approach adopted by Amiti et al. (2019) and Fajgelbaum et al.
(2019). This approach, uses data on observed tariff hikes; employs economic
theory to estimate the passthrough of tariffs onto consumer prices; and mea-
sures the welfare cost of these already-applied tariffs.

The evidence put forward by the “ex-post” approach is revealing, but it does
not speak to an outstanding policy question: what is the prospective cost of a full-
fledged global tariff war? To answer such “what if” questions, we first need to
determine the non-cooperative Nash tariff levels that will prevail under a global
tariff war. The “ex-ante” approach undertaken by Perroni and Whalley (2000)
and Ossa (2014) accomplishes this exact task.2 They use economic theory to
estimate the Nash tariff levels that will prevail and the welfare cost that will
result from a hypothetical (but now imminent) global tariff war.

The “ex-ante” approach has been quite influential and recent methodolog-
ical advances by Ossa (2014) have made it more accessible to researchers. Yet
existing techniques are plagued with the curse of dimensionality when applied
to many countries and industries. The current state-of-the-art technique com-
putes the Nash tariffs using an iterative process where each iteration performs
a country-by-country numerical optimization based on the output of the pre-
vious iterations.3 As the number of countries or industries grows, the compu-
tational burden underlying this approach can raise exponentially. This is per-
haps why the current implementations of the “ex-ante” approach are limited
to a small set of countries and abstract from salient but complex features of the
global economy like input trade.

In this paper, I develop a simple sufficient statistics methodology to mea-
sure the prospective cost of a global tariff war.4 My optimization-free method-
ology circumvents some of the main computational challenges facing existing
“ex-ante” techniques. This feature allows me to uncovers the cost of a global
tariff war across many years and countries, including a long list of previously-
neglected small, emerging economies. I find that the cost of a global tariff
war has risen dramatically over the past two decades, with small downstream

2See Balistreri and Hillberry (2018) for a recent application of the ex-ante approach to the
current US-China tariff war.

3See Ossa (2016) for a comprehensive review of the iterative global optimization technique.
Advances that have made this technique more efficient include (i) reformulating the problem
using the exact hat-algebra technique; (ii) parallelizing the country-by-country optimizations;
and (iii) providing analytical derivatives for the optimization algorithm.

4The sufficient statistics methodology developed here is akin to the Arkolakis et al. (2012)
methodology, and exhibits key differences with the sufficient statistics approach popularized
by Chetty (2009) in the public finance literature. See Chapter 7 in Costinot and Rodríguez-Clare
(2014) for more discussion on these differences.
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economies being –by far– the most vulnerable.
The new methodology relies on the analytical characterization of Nash tar-

iffs in a state-of-the-art quantitative trade model featuring multiple industries,
markup distortions, intermediate input trade, and political economy pressures.
Nash tariffs correspond to tariff levels that will prevail in the event of a global
tariff war. Prior characterizations of Nash tariffs are impractical for my analy-
sis, as they are limited to partial equilibrium or single industry-two country mod-
els.5 I, therefore, derive new analytic formulas for Nash tariffs that are compat-
ible with my general equilibrium, multi-country and multi-industry analysis.6

These formulas are especially advantageous as they describe Nash tariffs as a
function of observable shares and structural parameters.

Using my analytic tariff formulas and the exact hat-algebra methodology,
popularized by Dekle et al. (2007), I can compute the Nash tariffs and their
welfare effects in one simple (optimization-free) step. Moreover, this entire
procedure can be performed with information on only (i) observable shares, (ii)
industry-level trade elasticities, and (iii) constant industry-level markup wedges. The
same logic can be employed to compute the gains from cooperative tariffs.7

These are internationally coordinated tariffs that correct global markup distor-
tions, and are notoriously difficult to compute (Ossa (2016)).

The new methodology is remarkably fast: It computes the cost of a global
tariff war and the gains from future trade talks in a matter of seconds. In com-
parison, optimization-based techniques may take hours or even days, depend-
ing on the number of countries and industries being analyzed. This improve-
ment in speed is partly due to bypassing the need for iterative numerical op-
timization. But it is also due to a reduction in dimensionality, since analytic
formulas indicate that Nash tariffs are uniform along certain dimensions.

I apply the new methodology to the World Input-Output Database (WIOD,
Timmer et al. (2012)) from 2000 to 2014, covering 43 major countries and 56
industries. For each country in the sample, I compute the prospective cost of
a global tariff war in each year during the 2000-2014 period. I first perform

5See e.g., Johnson (1953), Gros (1987), and Felbermayr et al. (2013) for a prior characteriza-
tion of Nash tariffs in two-country and single industry setups.

6My characterization of Nash tariffs shares similarities with Beshkar and Lashkaripour
(2019) and Lashkaripour and Lugovskyy (2020). The aforementioned studies analyze unilater-
ally optimal trade taxes in two-country general equilibrium trade models. This paper analyzes
many non-cooperative countries that strategically impose tariffs against each other.

7Specifically, I first derive an analytic formula for cooperative tariffs. I then calibrate these
formulas to data using the exact hat-algebra technique. This procedure can be carried with
knowledge of only observable shares, trade elasticities, and markup wedges.
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my analysis using a baseline multi-industry Eaton and Kortum (2002) model. I
subsequently introduce markup distortions, political pressures, and input trade
into the baseline model to determine how these additional factors contribute to
the cost of a tariff war. May analysis delivers four basic insights:

i. A global tariff war can shrink the average country’s real GDP by 2.8%.
This figure is aggravated by the increased dependence of countries on in-
termediate input trade and the exacerbation of pre-existing markup dis-
tortions. To give some perspective, the expected cost of a global tariff war
was $1.7 trillion in 2014, when added up across all countries. Such a cost
is the equivalent of erasing South Korea from the global economy.

ii. The prospective cost of a global tariff war has more-than-doubled from
2000 to 2014. The rising cost is driven by two distinct forces. First, the rise
of global markup distortions, which prompts countries to impose more-
targeted (i.e., more-distortionary) Nash tariffs in the event of a tariff war.
Second, the increasing dependence of emerging economies on intermedi-
ate input trade since 2000.

iii. Small downstream economies are the main casualties of a global tariff war.
Take Estonia, for example, where imported inputs account for 30% of the
national output inclusive of services. Due to its strong dependence on
imported inputs, 10% of Estonia’s real GDP will be wiped out by a global
tariff war. Similar losses will be incurred by other small, downstream
economies like Bulgaria, Latvia, and Luxembourg.

iv. Due to the global rise of markup distortions, the gains from cooperative
tariffs have also multiplied from 2000 to 2014. Stated otherwise, the un-
explored gains from deeper trade negotiations have risen on par with the
prospective cost of a global trade war. To present some numbers, cooper-
ative tariffs could have added up to $347 billion to global GDP in 2014, up
from a mere $184 billion in 2000.

Aside from the already-discussed methodological contribution, this paper
makes three conceptual contributions to the literature. First, my analytic for-
mulas for Nash tariffs highlight a previously overlooked contributor to the cost
of tariff wars. I show that Nash tariffs (in all countries) are targeted at high-
markup industries. As a result, they shrink global output in high-markup in-
dustries below their already sub-optimal level. These developments exacerbate
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pre-existing market distortions and inflict an efficiency loss that is distinct from
the standard trade-loss emphasized in the prior literature (e.g., Gros (1987)).

Second, this paper sheds new light on the winners and losers of global
tariff wars. Since Johnson (1953), an immense body of literature has empha-
sized that country size dictates the winners (Kennan and Riezman (2013)). My
analysis shows that a country’s dependence on imported input is an equally-
determining factor. For instance, Norway that is a net exporter in upstream in-
dustries (due its commodity exports) can gain from a global tariff war despite
being small. These gains obviously come at the expense of small downstream
economies incurring significant losses. These findings, though, assume that
governments apply tariffs-subject-to-duty-drawbacks, which are input-output
blind by design. Beshkar and Lashkaripour (2020) look beyond this simple case
and present a more comprehensive view of how global value chains amplify the
cost of a global trade war.

Third, my approach highlights the pitfalls of data aggregation, which is
common-place in the tariff war literature. To elaborate, existing analyses of
tariff wars often restrict attention to a small set of countries and aggregate the
“rest of the world” into one taxing authority. Such aggregation schemes al-
low researchers to handle the computational complexities inherent to tariff war
analysis. Capitalizing on the computational efficiency of my sufficient statistics
approach, I can measure the cost of a tariff war with and without such aggre-
gation schemes. Comparing the outcomes indicates that standard aggregation
schemes overstate the loss from a tariff war quite considerably. Simply, because
they artificially assign significant market power to “the rest of the world.”

Finally, at a broader level, the approach developed here can be viewed
as a sufficient statistics methodology to quantify the gains from trade agree-
ments. In that regard, it contributes to Arkolakis et al. (2012), Costinot and
Rodríguez-Clare (2014), and Arkolakis et al. (2015) who propose sufficient
statistics methodologies that quantify the gains from trade relative to autarky
in an important class of trade models. Like the aforementioned studies, my
proposed methodology quantifies the gains from trade, but it does so relative
to a world without trade agreements as opposed to autarky.

This paper is organized as follows. Section 2 presents the theoretical model,
based on which a sufficient statistics approach is developed to measure the cost
of a global tariff war in Section 3. Section 4 extends the methodology to com-
pute cooperative tariffs. Section 5 presents a quantitative implementation of the
methodology. Section 6 concludes.
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2 Theoretical Framework

The present methodology applies to a wide range of quantitative trade models.
In the interest of exposition, I begin my analysis with a baseline multi-industry,
multi-country Ricardian model that nests the Eaton and Kortum (2002) and
Armington models as a special case. I subsequently extend the baseline model
to account for (a) political economy pressures and profit-shifting effects à la
Ossa (2014), and (b) intermediate input trade under duty drawbacks.

Throughout my analysis, I consider a global economy consisting of i =

1, ..., N countries and k = 1, .., K industries, with C and K respectively denoting
the set of countries and industries. Labor is the only primary factor of produc-
tion. Each country i is populated with L̄i workers, each of whom supplies one
unit of labor inelastically. Workers are perfectly mobile across industries but
immobile across countries.

2.1 Demand

In the baseline Ricardian model, all varieties in industry k are differentiated by
country of origin, with the triplet ji, k denoting a variety corresponding to ori-
gin j–destination i–industry k. Under the Eaton and Kortum (2002) interpreta-
tion of the model, national product differentiation of this kind can be attributed
to Ricardian specialization within industries. The representative consumer in
Country i maximizes a general utility function, which yields an indirect utility
function as follows

Vi(Yi, P̃i) = max
Qi

U(Qi) s.t. P̃i ·Qi = Yi. (1)

In the above problem, Yi denotes total income; Qi = {Qji,k} denotes the vector
of composite consumption quantities, P̃i = {P̃ji,k} denotes the corresponding
vector of “consumer” price indexes, and “·” is the inner product operator (i.e., a ·
b = ∑i aibi). To avoid any confusion, I emphasize that tilde on the price variable
is used to distinguish between (after-tax) consumer and (pre-tax) producer prices.
The representative consumer’s problem yields a Marshallian demand function,

Qji,k = Qji,k
(
Yi, P̃i

)
, (2)

which describes optimal consumption in country i as function of income, Yi,
and consumer prices, P̃i. When analyzing optimal tariff policy in each coun-

6



try, several demand-side variables play a key role. First, expenditure shares
which represent the importance of each good in the consumption basket. Sec-
ond, demand elasticities, which summarize the demand function specified un-
der Equation 2. Below, I formally define these set of variables.

Definition 1. [Expenditure Shares] The share of country i’s expenditure on industry
k goods is denoted by ei,k, and the within-industry share of expenditure on variety ji, k
(origin j–destination i–industry k) is denoted by λji,k:

ei,k ≡
P̃i,k ·Qi,k

P̃i ·Qi
=

∑N
j=1 P̃ji,kQji,k

Yi
; λji,k ≡

P̃ji,kQji,k

P̃i,k ·Qi,k
=

P̃ji,kQji,k

ei,kYi
.

Building on the above definitions, the unconditional expenditure share on variety ji, k
(eji,k) and the overall share of expenditure on goods from origin j (λji) is defined as

eji,k ≡ λji,kei,k; λji ≡
K

∑
k=1

λji,kei,k.

Note the distinction between eji,k, and λji,k. The former concerns the share
of variety ji, k in total expenditure. The latter concerns the share of expenditure
on variety ji, k conditional on buying industry k goods. As we will shortly,
λji,k governs the Marshallian demand elasticities under CES preferences. These
elasticities are defined as follows for the general (not-necessarily CES) case.

Definition 2. [Demand Elasticities] The elasticity of demand for good ji, k with
respect to the price of good ni, g is denoted by

ε
(ni,g)
ji,k ≡ ∂ lnQji,k(Yi, P̃i)/∂ ln P̃ni,g. (3)

Correspondingly, the matrix of “nominal” and “expenditure-adjusted” demand elastic-
ities are denoted by

E(ni)
ji ≡


ε
(ni,1)
ji,1 ... ε

(ni,K)
ji,1

... . . . ...

ε
(ni,1)
ji,K · · · ε

(ni,K)
ji,K

 ; Ẽ(ni)
ji ≡


eji,1ε

(ni,1)
ji,1 ... eji,1ε

(ni,K)
ji,1

... . . . ...

eji,Kε
(ni,1)
ji,K · · · eji,Kε

(ni,K)
ji,K

 ,

with Eji ∼ E(ji)
ji denoting the matrix of own-price elasticities of demand.

I assume that consumer preferences are well-behaved in that ε
(ji,k)
ji,k < −1.8

8The income elasticity of demand plays a less prominent role in my analysis, so I relegate its
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We can appeal to two properties of the Marshallian demand function, namely,
(i) Cournot aggregation, and (ii) homogeneity of degree zero, to prove that the
elasticity matrixes, Eji, and Ẽji are invertible.

Lemma 1. The matrixes Eji ∼ E(ji)
ji and Ẽji ∼ Ẽ(ji)

ji are non-singular.

The above lemma is formally proven in Appendix A. As we will see shortly,
the ability to invert the elasticity matrixes is essential for deriving sufficient
statistics formulas for optimal tariffs in each country.

2.2 Production

In the baseline Ricardian model, labor is the sole factor of production and the
unit labor cost of production and transportation is invariant to policy. Corre-
spondingly, the “producer” price of composite variety ji, k can be expressed as
a function of the labor wage rate in country j, wj, multiplied by the constant unit
labor cost of production, āj,k, and the iceberg trade cost, τ̄ji,k (with τ̄ii,k = 1):

Pji,k = τ̄ji,k āj,kwj. (4)

The bar notation indicates that āj,k and τ̄ji,k are invariant to policy. The “con-
sumer” price, by definition, equals the “producer” price times the tariff applied
by country i on variety ji, k, namely, tji,k:

P̃ji,k = (1 + tji,k)Pji,k. (5)

The invariance of āj,k to policy change derives from constant returns to scale
technologies. It amounts to a flat export supply curve, which entails that the
passthrough of taxes on to consumer prices is complete after we net out general
equilibrium wage effects. This assumption is consistent with ex-post studies
of the recent US-China tariff war, like Amiti et al. (2019) and Fajgelbaum et al.
(2019).

2.3 General Equilibrium

Given the vector of tariffs in each country i, ti = {tji,k}, equilibrium consists
of a vector of wages, w = {wj}, a vector of “producer” and “consumer” price
indexes, Pi = {Pji,k} and P̃i = {P̃ji,k} (as described by Equations 4 and 5), and

definition to the appendix.
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consumption quantities, Qi, given by the Marshallian demand function 2, such
that wage income in each country equals sales net of taxes,9

wi L̄i =
N

∑
j=1

K

∑
k=1

[
Pij,kQij,k

]
=

N

∑
j=1

K

∑
k=1

[
1

1 + tij,k
λij,kej,kYj

]
(6)

and total income equals the wage bill plus tariff revenue:

Yi = wi L̄i + ∑
j,i

K

∑
k=1

[
tji,kPji,kQji,k

]
= wi L̄i + ∑

j,i

K

∑
k=1

[
tji,k

1 + tji,k
λji,kei,kYi

]
. (7)

For the reader’s convenience, Table 1 reports a summary of the key variables
and parameters of the model.

Social Welfare. Provided that equilibrium is unique, all equilibrium variables
can be uniquely characterized as a function of global tariff rates, t, and wages,
w, with the latter implicitly depending on tariffs, i.e., w = w(t)—see Appendix
A for details. Social welfare in Country i can, accordingly, be expressed as fol-
lows given the indirect utility function:

Wi(ti, t−i; w) ≡ Vi(Yi(ti, t−i; w), P̃i(ti, t−i; w)).

Treating tariffs in the rest of world as given (i.e., t−i = t̄−i), country i’s marginal
welfare gain from imposing tji,k can be calculated as

dWi(ti, t̄−i; w)

d ln(1 + tji,k)
=

∂Wi(ti, t̄−i; w)

∂ ln(1 + tji,k)
+

(
∂Wi(ti, t̄−i; w)

∂ ln w

)
t
· d ln w

d ln(1 + tji,k)
. (8)

The first term in the above equation accounts for the direct effect of tariffs on
consumer prices and tariff revenues, holding w fixed. The second term ac-
counts for the welfare effects that are mediated through general equilibrium
wage adjustments. d ln w/d ln(1 + tji,k) can be calculated by applying the Im-
plicit Function Theorem to the system of national labor market clearing con-
ditions (Equation 6). Let rni ≡ Pni ·Qni/wnLn denote the share of origin n’s
wage revenue from sales to destination i. It is straightforward to cross-check
from actual trade data that rni/rii ≈ 0 if n , i. Stated verbally, each individual
foreign destination accounts for a negligible fraction of country i’s national in-

9The above equation along with the representative consumer’s budget constraint, ensure
that trade is balanced between countries
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come.10 This observation should come at little surprise since a substantial frac-
tion of national output in each country is generated in the non-traded sector.
Furthermore, the tradeable fraction of national output is sold to many foreign
destinations. Based on this observation and assigning wj as the numeraire, the
change in country i’s welfare can be approximated as (see Appendix B):11

dWi(ti, t̄−i; w)

d ln(1 + tji,k)
≈ ∂Wi(ti, t̄−i; w)

∂ ln(1 + tji,k)
+

(
∂Wi(ti, t̄−i; w)

∂ ln wi

)
t,w−i

d ln wi

d ln(1 + tji,k)
. (9)

The above approximation posits that tji,k can affect Wi by raising wi relative to
wages in the rest of world, w−i. But treating wj as the numeraire, the welfare
effects of tji,k that occur through a change in wn/wj are zero to a first-order
approximation iff n , i and j. To be clear, the above approximation is strictly
weaker than the small open economy assumption. It also does not rule out
general equilibrium wage effect altogether, which is a common limitation of
the classic trade policy literature (Maggi (2014)).

In what follows, I use the above approximation to derive sufficient statistics
formulas for Nash tariffs. Appendix D derives sufficient statistics formulas for
Nash tariffs without the above approximation. Computing Nash tariffs using
the approximation-free formulas will be computationally more involved, but
the computed tariff levels will be indistinguishable from the baseline levels.

3 Measuring the Cost of a Tariff War

This section presents my sufficient statistics technique for measuring the cost
of a global tariff war. In the event of a global tariff war, each country i sets
their vector of unilaterally optimal tariffs t∗i , given applied tariffs in the rest of
the world, t−i. The unilaterally optimal tariff, t∗i = t∗i (t−i), which describes

10In a sample of 44 major countries in 2014, the median country had an avgn,i (rni/rii) =
0.001—see Section 5 for a full description of the data behind this statistic. Also, rni/rii ≈ 0 is
consistent with the complete passthrough estimated by Amiti et al. (2019) and Fajgelbaum et al.
(2019), since the tariff passthrough (minus one) is proportional to rni for each exporter n , i.

11More specifically, wage effects in Equation 8 can be characterized as

∂Wi(ti, t−i; w)

∂ ln w
· d ln w

d ln(1 + tji,k)
=

∂Wi(.)
∂ ln wi

d ln wi
d ln(1 + tji,k)

(
1 +

Ψi
Ψ̄−i

r̄−ii
rii

)

where Ψi ≡ ∑k [1 + rii,kεk(1− λii,k)], Ψ−1
−i ≡

∑n,i[λnirniΨ−1
n ]

∑n,i λnirni
and r̄−ii = avgn,i (rni) =

∑n,i(λnirni)
∑n,i λni

.
It is immediate from actual trade data that r̄−ii/rii ≈ 0, yielding Equation 9.
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Table 1: Summary of Key Variables

Variable Description

P̃ji,k Consumer price index of variety ji, k (origin j–destination i–industry k)

Pji,k Producer price index of variety ji, k (origin j–destination i–industry k)

Qji,k Consumption quantity/Output of variety ji, k

χji,k Share of variety ji, k in origin j’s total exports (j , i)

Yi Total income in country i

wi L̄i Wage income in country i (wage×population size)

t∗ji,k Nash/Optimal tariff imposed by country i on variety ji, k

t̄ji,k Applied (status-quo) tariff on variety ji, k

ei,k Country i’s expenditure share on industry k

λji,k Expenditure share on variety ji, k: λji,k = P̃ji,kQji,k/ei,kYi

rji,k Revenue share from variety ji, k: rji,k = Pji,kQji,k/µiwiLi

ε
(ni,g)
ji,k Price elasticity of demand: ε

(ni,g)
ji,k = ∂ lnQji,k/∂ ln P̃ni,g

εk Constant trade elasticity under CES preferences

µk Constant industry-level markup

µi Output-weighted average markup in country i

γ̃nj,k Share of country n’s labor in origin j–industry k’s gross final good output

country i’s best non-cooperative response to t−i, solves the following problem:

t∗i (t−i) = arg max
ti

Wi (ti; t−i; w) , (P1)

where recall that the wage vector, w = w(ti; t−i), is itself an implicit function of
applied tariffs all over the world.12 Considering the above problem, we can de-
fine the non-cooperative Nash equilibrium that transpires in the event of global
tariff war as follows.

Definition 3. [The Non-Cooperative Nash Equilibrium] A global tariff war cor-
responds to a non-cooperative Nash equilibrium in which all countries simultaneously
set their vector of optimal tariffs, taking applied tariffs by the rest of the world as given.

12Implicit in my analysis is the assumption that governments are disinclined to directly tax
exports. This aversion may be driven by either political economy or institutional resistance to
export taxation. As such, export taxes are not formally introduced in the government’s optimal
policy problem (P1).
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The Nash tariffs, therefore, solve the following system
t1 = t∗1(t2, ..., tN)
...

tN = t∗N(t1, ..., tN−1)

,

where t∗i (t−i) is the unilaterally optimal tariff response implied by Problem (P1).

Below, I derive an analytical characterization for t∗i (t−i) to calculate the vec-
tor of Nash tariffs, t∗. Before that, let me briefly outline why calculating Nash
tariffs with brute force is plagued by the curse of dimensionality. The curse is
driven by two factors: First, the above system involves N(N− 1)K tariff rates—
a number than can grow exponentially as we increase the number of countries.
Second, to solve the above system numerically, one has to solve t∗i = t∗i (t−i)

iteratively for all N countries. In this process optimal tariffs are first computed
for each country by conducting N constrained global optimization problems,
given applied (status-quo) tariffs in the rest of the world. Then, the optimal tar-
iffs are updated by performing another N constrained global optimizations that
condition on the optimal tariff levels obtained in the first step. This procedure
is repeated iteratively until we converge to the solution where the applied and
optimal tariff levels coincide in every country.13

We can circumvent these issues, by obtaining an analytical characterization
for t∗i (.). The following proposition accomplishes this exact goal.

Proposition 1. Country i’s optimal non-cooperative import tariff is uniform and char-
acterized by the following formula

t∗i (t−i) =
−1

∑j,i

[
X∗ij ·

(
IK + E∗ij +

tj
1+tjλ

∗
jj

Ẽ(ij)∗
jj

)
1K

] ,

as a function demand elasticities, E, and export shares, X, in the counterfactual non-
cooperative equilibrium (denoted by ∗). The elements of the K × 1 vector of export
shares, Xij ≡

[
χij,k

]
k, are defined as χij,k ≡

Pij,kQij,k
∑n,i Pin·Qin

.

13Ossa (2016) points to an alternative approach, wherein the constrained global optimiza-
tion is converted to a set of first-order and complementary slackness conditions. Under this
approach, one can compute the Nash tariffs by solving a system of 2N + N(N − 1)K equa-
tions. This approach bypasses the need for iterations as described above, but it leaves us with
a problem that has significantly more free-moving variables. So, not surprisingly, this second
approach is even less efficient than the iterative approach (see Ossa (2016)).
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A formal proof for the above proposition is provided in Appendix A. The
proof is involved, and invokes envelope conditions and the core properties of
the Marshallian demand function. There is, however, a simple intuition be-
hind the optimal tariff formula presented above. Since the unit labor cost is
constant, the only channel for country i to improve its terms-of-trade (ToT) is
to raise wi relative w−i. The unilaterally optimal way to achieve this ToT im-
provement is through a uniform tariff that distorts domestic consumption as
little as possible.14 Also, note that (by the Lerner symmetry) a uniform tariff
is akin to a uniform export tax, which is itself akin to a markup on wi in for-
eign (non-i) markets.15 Accordingly, the optimal tariff formula resembles the
optimal monopoly markup on wi across all foreign destination markets.

Computing Nash Tariffs using Proposition 1

We can employ Proposition 1 to measure the prospective cost of a global tariff
war without performing the iterative optimization procedure highlighted ear-
lier. But to get there, we first need to impose additional structure on the utility
function, Ui(.). One commonly-used specification in the quantitative trade lit-
erature is the Cobb-Douglas-CES specification. Namely,

Ui(Qi) = ∏
k

(
∑

i
ς̄ ji,kQρk

ji,k

)ei,k/ρk

, (10)

where ς̄ ji,k is a structural demand shifter. Adopting the above parametrization,
the within-industry expenditure shares assume the following formulation:

λji,k =
ς̄ ji,kP̃−εk

ji,k

∑N
n=1

(
ςni,kP̃−εk

ni,k

) , (11)

where εk ≡ ρk/(ρk − 1) denotes the industry-level trade elasticity. Under this
specification, the cross-price elasticities of demand between varieties from dif-

14The uniformity of unilaterally optimal tariffs in a two-country Ricardian model was first
established by Opp (2010) and subsequently extended by Costinot et al. (2015). Beshkar and
Lashkaripour (2020) show that the uniformity results hold under input-output linkages as far
as export taxes are available to the government.

15The equivalence between uniform import and export taxes is a manifestation of the Lerner
symmetry. The aforementioned symmetry is often articulated in the context of a two-country
model. But the same arguments apply to a multi-country setup subject to the welfare approxi-
mation in 9. Relatedly, we can re-formulate the optimal tariff specified by Proposition 1, so that
is corresponds to the optimal mark-down of a multi-product monopsonist. Such a reformula-
tion simply involves using the wage in country i as the numeraire.
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ferent industries collapse to zero, while the remaining elasticities are fully char-
acterized by λji,k’s and εk’s:

ε
(ij,k)
ij,k = −1− εk

(
1− λij,k

)
; ε

(ij,k)
nj,k = εkλij,k; ε

(ij,g)
ij,k = 0. (12)

Plugging the above equations into the optimal tariff formula (characterized by
Proposition 1) yields

t∗i (t−i) =
1

∑k ∑j,i

(
χ∗ij,kεk

[
1− (1− δ∗j,k)λ

∗
ij,k

]) , (13)

where δj,k ≡
tjλjj,kej,k
1+tjλjj

accounts for the general equilibrium effect of country i’s
tariff on country j’s tariff revenue. To compute the Nash equilibrium, we can
employ the hat-algebra notation, whereby x̂ ≡ x∗/x denotes the change in
variable x when tariffs are elevated from their applied rate to the Nash rate.
Observing that by definition λ∗ji,k = λ̂ji,kλji,k, the Nash tariff rate implied by
Equation 13 can be expressed as

t∗i =
1

∑k ∑j,i

(
χ∗ij,kεk

[
1− (1− δ∗j,k)λ̂ij,kλij,k

]) , (14)

where δ∗j,k and χ∗ij,k are respectively given by

δ∗j,k ≡
t∗j λ̂jj,kλjj,kej,k

1 + t∗j λ̂jjλjj
, χ∗ij,k =

1
1+t∗j

λ̂ij,kλij,kej,kYjŶj

∑,i ∑g
1

1+t∗
λ̂i,kλi,ke,kYŶ

.

Capitalizing on the multiplicatively-separable structure of the CES demand sys-
tem, λ̂ji,k can be itself expressed as follows:

λ̂ji,k =

[
( ̂1 + tji,k)ŵj

]−εk

∑N
n=1

(
λni,k

[
( ̂1 + tni,k)ŵn

]−εk
) =

[(
1+t∗i

1+t̄ji,k

)
ŵj

]−εk

∑N
n=1

(
λni,k

[(
1+t∗i

1+t̄ni,k

)
ŵn

]−εk
) ,

where t̄ji,k denotes the applied (status-quo) tariff on good ji, k. Using the same
logic, we can express the equilibrium conditions specified by Equations 6 and 7
in hat-algebra notation. Solving the optimal tariff formula (Equation 14) along-
side these equilibrium conditions, determines the Nash tariffs and their welfare
effects in one simple step. The following proposition outlines this claim.
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Proposition 2. If preferences are described by functional form 10, the Nash tariffs,
{t∗i }, and their effect on wages, {ŵi}, and total income, {Ŷi}, can be solved as a solution
to the following system:

t∗i = 1
∑j,i ∑k

(
χ∗ij,kεk

[
1−(1−δ∗j,k)λ̂ij,kλij,k

]) [optimal tariff]

χ∗ij,k =

1
1+t∗j

λ̂ij,kλij,kej,kYjŶj

∑,i ∑g
1

1+t∗
λ̂i,kλi,ke,kYŶ

; δ∗j,k ≡
t∗j λ̂jj,kλjj,kej,k

1+t∗j λ̂jjλjj
[export shares and δ]

λ̂ji,k =
[( ̂1+tji,k)ŵj]

−εk

∑N
n=1

(
λni,k[( ̂1+tni,k)ŵn]

−εk
) ; ̂1 + tji,k =

1+t∗i
1+t̄ji,k

[expenditure shares]

ŵiwi L̄i = ∑k ∑j

[
1

1+t∗j
λ̂ij,kλij,kej,kŶjYj

]
[wage bill = sales net of taxes]

YiŶi = ŵiwi L̄i + ∑k ∑j,i

[
t∗i

1+t∗i
λ̂ji,kλji,kei,kŶiYi

]
[income = wage bill + tax rev.]

.

Importantly, solving the above system requires information on only (i) industry-level
trade elasticities, εk; (ii) applied tariffs, t̄ji,k, (iii) observable shares, λji,k and ei,k; and
(iii) national income, Yi.16

Proposition 2 is significant from a computational standpoint. The system
specified by the above proposition involves 3N independent equations and
unknowns—namely, N Nash tariff rates, {t∗i }, N wage changes, {ŵi}, and N
income changes, {Ŷi}. Solving this system requires information on a set of
observable or estimable sufficient statistics. Namely, observable applied tariffs
(t̄ji,k), expenditure shares (λji,k and ei,k), and national income data, which are
typically reported in standard datasets, as well as estimated values for industry-
level trade elasticities (εk) that are attainable with standard techniques.

Before moving forward, let us compare the procedure outlined by Propo-
sition 2 to the standard approach that computes Nash tariffs using iterative
numerical optimization. Each iteration in the standard approach performs N
numerical optimizations over 2N + (N − 1)K free-moving variables. Proposi-
tion 2 not only shrinks the number of tariff variables to be computed, it also lets
us bypass numerical optimization altogether. As such, it is remarkably faster
than the standard optimization-based procedure— a point I will elaborate more
on in Section 5.

The solution to the system specified by Proposition 2 immediately pins

16Wage income can be inferred from t̄ji,k, λji,k, ei,k, and Yi as wi L̄i = Yi

(
1−∑k,j

λji,kei,k
1+t̄ji,k

)
.
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down the prospective cost of a global tariff war for each country i as

%∆Real GDPi = Ŷi/
K

∏
k=1

(
ˆ̃Pei,k
i,k

)
,

where ˆ̃Pi,k = ∑N
n=1

(
λni,k

[
( ̂1 + tni,k)ŵn

]−εk
)−1/εk

denotes the CES price index.

In the following sections, I discuss how the above methodology extends to
richer frameworks that accommodate political pressures, profit-shifting effects,
and intermediate input trade. Later, in Section 5, I use Proposition 2 and the
subsequent propositions to quantify the cost of a global tariff war.

3.1 Accounting for Markup Distortions and Political Pressures

In the Ricardian model, the market equilibrium is efficient and Nash tariffs
only internalize the terms-of-trade gains from trade restriction. Ideally, we
should also account for pre-existing markup distortions, which give rise to
profit-shifting motives behind tariff imposition. After accounting for profits,
we can also introduce political economy pressures into the model.

To introduce these two channels, I consider a generalized multi-industry
Krugman (1980) model with restricted entry that nests Ossa (2014) as a spe-
cial case. In this extension, firms enjoy market power and collect profits. As
such, tariffs can induce a profit-shifting externality that was absent in the base-
line model. Moreover, as in Grossman and Helpman (1994), governments can
assign different weights to profits collected in different industries in response
to political pressures. For the sake of exposition, I start with the case where
governments assign the same political weight to all industries. I subsequently
discuss how introducing political pressures modifies the baseline results.

The generalized Krugman model extends the Ricardian model in two di-
mensions. First, on the demand side, each composite country-level variety ag-
gregates over differentiated firm-level varieties indexed by ω,

Qji,k =

(∫
ω∈Ωj,k

qji,k(ω)
σk

σk−1 dω

) σk−1
σk

,

where σk > 1 and Ωj,k denotes the set of firms serving industry k from origin j.
Noting the above specification, the Ricardian model can be viewed as a special
case of the generalized Krugman model where σk → ∞.
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The second difference concerns the supply side. Each industry k in country j
hosts a fixed number of firms, M̄j,k, that compete under monopolistic competi-
tion and charge a constant optimal markup over marginal cost. This distinction
aside, each firm employs labor as the sole factor of production, with τ̄ji,k āj,k(ω)

denoting the constant unit labor cost of production and transportation facing
firm ω (in origin j–industry k). Since firms incur no fixed marketing costs, the
heterogeneity in āj,k(ω)’s is inconsequential to my optimal tariff analysis.17

Combining these features, the producer price index of composite vari-
ety ji, k can be expressed as a function the labor wage rate in country j,
wj, the average unit labor cost of production and transportation, āj,k =(∫

ω∈Ωj,k
āj,k(ω)1−σk dω

)1/(1−σk)
, the number of firms located in country j, M̄j,k,

and the constant markup wedge, µk = σk/(σk − 1). In particular,

Pji,k = µkτ̄ji,k āi,k M̄−µk
j,k wj.

Correspondingly, the consumer price index is given by P̃ji,k = (1 + tji,k)Pji,k.
Equilibrium in the generalized Krugman model has a similar definition as the
Ricardian model, except that total income in each country equals the sum of the
wage bill plus profits, µ̄iwiLi, and tariff revenues:

Yi = µ̄iwi L̄i + ∑
j,i

∑
k

tji,kPji,kQji,k = µiwi L̄i + ∑
j,i

∑
k

tji,k

1 + tji,k
λji,kei,kYi, (15)

where µi denotes the output-weighted average markup in country i:

µi =
∑K

k=1 ∑N
j=1 Pij,kQij,k

∑K
k=1 ∑N

j=1
1

µk
Pij,kQij,k

.

In the above setup, country i’s tariffs can deliver two types of welfare gains.
First, as in the Ricardian model, tariffs can inflate country i’s wage relative to
the rest of the world. Second, tariffs can correct allocative inefficiency in coun-
try i, which is crudely measured by the output-weighted variance of markups
across industries.18 Specifically, if Vark(µk − µi) > 0 there is suboptimal out-

17As I will discuss later in Section 3.4, the present framework is isomorphic to one where
aj,k(ω)s have a Pareto distribution and the fixed marketing costs is paid in terms of labor in the
destination country.

18Note that if markups are positive but uniform across industries, the market allocation is
efficient. So, inefficiency in the generalized Krugman model is purely driven by markup het-
erogeneity across industries. See Hsieh and Klenow (2009) for a detailed discussion on how to
calculate the economy’s distance from the efficiency frontier.
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put in high-µ industries, which can be partially corrected by restricting imports
in high-markup (high-µ) industries. Such restrictions, though, inflict a neg-
ative profit-shifting externality on the rest of the world. Despite this added
complexity introduced by markup distortions, the optimal tariff response of
each country can be analytically characterized in terms of reduced-form de-
mand elasticities and observable shares. This claim is outlined by the following
proposition.19

Proposition 3. Under the generalized Krugman model, country i’s optimal import
tariff is characterized by the following formula:

1 + t∗i (t−i) = (1 + t∗i )1(N−1)K �
(

1 + E∗−1
−ii E(ii)∗

−ii

[
1− µk

µi

]
k

)
,

as a function of demand elasticities, E, constant markup wedges, µ, and export shares,
X, in the counterfactual equilibrium (denoted by ∗); with the uniform component of

tariff given by t∗i = 1/ ∑j,i

[
X∗ij ·

(
IK + E∗ij +

tj
1+tjλ

∗
jj

Ẽ(ij)∗
jj

)
1K

]
.

As in the baseline model, the above proposition can be used to measure
the cost of a global tariff war provided that we impose additional structure on
preferences. Specifically, assume that preferences have a Cobb-Douglas-CES
parameterization as in Equation 10. Proposition 3 implies that country i’s Nash
tariff is uniform across exporters and given by

1 + t∗i,k =

1 +
1

∑g ∑j,i

(
χ∗ij,gεg

[
1− (1− δ∗j,g)λ

∗
ij,g

])
 1 + εkλ∗ii,k

1 + µi
µk

εkλ∗ii,k
, (16)

where δ∗j,g ≡
tj,gλ∗jj,gej,g

1+∑g tj,gλ∗jj,gej,g
. To provide a brief intuition, the uniform tariff com-

ponent in bracket corresponds to the optimal markup on wi (or markdown on
w−i), which is applied uniformly to all exported (or imported) goods. The in-
tuition behind this component is similar to that provided in the baseline case.
The second component, which is industry-specific, accounts for country i’s in-
centive to restore allocative efficiency in the local economy. Correspondingly,
the non-uniform tariff component restricts imports in industries that exhibit an
above-average markup (i.e., µk > µi), but subsidizes imports in industries that

19The vector operator � denotes element-wise division: a � b = [ai/bi]i. As before, the
optimal non-cooperative tariff response maximizes welfare given applied tariffs in the rest of
the world, as specified by Problem (P1). Also, note that the formula specified by Proposition 3
assumes a unitary income elasticity of demand. See Online Appendix A for a formal proof.
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exhibit a below average markup (i.e., µk < µi).
20 As such, the non-uniform

tariff component imposes an additional profit-shifting externality on the rest of
the world that was absent in the baseline Ricardian model.

Proposition 3 uncovers a crucial point: When all countries simultaneously
protect their high-µ industries, global output in these industries shrinks below
its already sub-optimal level. As a result, a full-fledged tariff war exacerbates
misallocation in the global economy in a way that was absent in the competitive
baseline model. Later, when I map the model to data, it will become apparent
that the cost of exacerbated misallocation is comparable to pure of cost of trade
reduction in the event of a full-fledged tariff war.

Moving forward, we can appeal to Equation 16 in order to compute the
Nash tariffs and the welfare cost associated with them in one simple step as
a function of only observable shares and structural elasticities. The following
proposition formally outlines this point.

Proposition 4. If preferences are described by functional form 10, the Nash tariffs,
{t∗i,k}, and their effect on wages, {ŵi}, and total income, {Ŷi}, can be solved as a
solution to the following system:

1 + t∗i,k =

[
1 + 1

∑j,i ∑k

(
χ∗ij,kεk

[
1−(1−δ∗j,k)λ̂ij,kλij,k

])
]

1+εkλ̂ii,kλii,k

1+
µ∗i
µk

εkλ̂ii,kλii,k

[optimal tariff]

χ∗ij,k =

1
1+t∗j

λ̂ij,kλij,kej,kYjŶj

∑,i ∑g
1

1+t∗
λ̂i,kλi,ke,kYŶ

; δ∗j,k ≡
t∗j,kλ̂jj,kλjj,kej,k

1+∑k t∗j,kλ̂jj,kλjj,kej,k
[export shares and δ]

λ̂ji,k =
[( ̂1+tji,k)ŵj]

−εk

∑N
n=1

(
λni,k[( ̂1+tni,k)ŵn]

−εk
) ; ̂1 + tji,k =

1+t∗i,k
1+t̄ji,k

[expenditure shares]

ŵiwi L̄i = ∑k ∑j

[
1

µk(1+t∗j,k)
λ̂ij,kλij,kej,kŶjYj

]
[wage bill = sales net of taxes]

µ∗i = ∑k ∑j

[
1

(1+t∗j,k)
λ̂ij,kλij,kej,kŶjYj

]
/ŵiwi L̄i [average markup]

ŶiYi = µ∗i ŵiwi L̄i + ∑k ∑j,i

( t∗i,k
1+t∗i,k

λ̂ji,kλji,kei,kŶiYi

)
[income = wage bill + tax rev.]

Importantly, solving the above system requires information on only (i) industry-level
trade elasticities and markup wedges, εk and µk; (ii) applied tariffs, t̄ji,k, (iii) observable
shares, λji,k and ei,k; and (iii) national income, Yi.21

Compared to the baseline Ricardian model, the above system involves

20The industry-specific term is an artifact of governments not having access to first-best do-
mestic subsidies. Faced by this restriction on their policy space, they resort to tariffs as a second-
best policy for correcting allocative efficiency (see Lashkaripour and Lugovskyy (2020)).

21Wage income can be inferred from t̄ji,k, λji,k, ei,k, and Yi, as wi L̄i = ∑k ∑n
λin,ken,kYn
µk(1+t̄in,k)

.
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N(K + 2) unknowns, namely, NK Nash tariff rates, {ti,k}; N wage changes,
{ŵi}; and N income changes, {Ŷi}. Also, in addition to data on t̄ji,k, λji,k,
ei,k, and Yi; and estimates for εk, we need estimates for industry-level markup
wedge, µk, in order to solve the above system. Once the system is solved, the
solution immediately pins down the prospective cost of a tariff war for each
country as

%∆Real GDPi = Ŷi/
K

∏
k=1

(
ˆ̃Pei,k
i,k

)
,

where ˆ̃Pi,k = ∑N
n=1

(
λni,k

[
( ̂1 + tni,k)ŵn

]−εk
)−1/εk

denotes the change in desti-

nation i–industry k’s CES price index.

Introducing Political Pressures. To introduce political pressures, I follow
Ossa’s (2014) adaptation of Grossman and Helpman (1994). His approach
builds on the fact that under the Cobb-Douglas-CES utility, social welfare
in Country i can be expressed as Wi ≡ Vi(.) = Yi/P̃i, where P̃i =

∏k

(
∑j P̃−εk

ji,k

)−ei,k/εk
is the aggregate consumer price index. Instead of the gov-

ernment in country i maximizing the social welfare, it maximizes a politically-
adjusted welfare function:

Wi =
Yi

P̃i
+ ∑

k,j

[
(θi,k − 1)

µkwiLi,k

P̃i

]
= ∑

k

[
θi,kµkwiLi,k

P̃i

]
+ ∑

j,k

[ tji,kPji,kQji,k

P̃i

]
,

which assigns a political weight θi,k ∈ R+ to industry k, with the sum of weights

normalized to one: ∑K
k=1 θi,k

K =1. As shown in Appendix C, Propositions 3 and
4 characterize the Nash tariffs and their effects in the political setup with no
further qualification other than µk and µi,k being replaced in all the formulas
with politically-adjusted counterparts. Namely,

µPi,k = θi,kµk, µPi =
∑K

k=1 ∑N
j=1 Pij,kQij,k

∑K
k=1 ∑N

j=1
1

θi,kµk
Pij,kQij,k

.

So, to calibrate the model to data under political pressures, it suffices to estimate
θi,k, update the markup values, and perform the procedure under Proposition
4 with the new politically-adjusted markup values.

Before moving forward, it is useful to discuss how political pressures mod-
erate or magnify the cost of a tariff war. If political pressures favor high-µ in-
dustries, then Nash tariffs will be targeted even more intensively towards high-
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µ industries. As such, politically-motivated Nash tariffs will drag the global
economy further away from its efficiency frontier compared to non-political
(baseline) Nash tariffs. Conversely, if political pressures favor low-µ indus-
tries, politically-motivated Nash tariffs will be less distortionary than the non-
political Nash tariffs—see Appendix C for further discussion.

3.2 Intermediate Input Trade with Duty Drawbacks

This section introduces input trade into the baseline Ricardian model with the
assumption that tariffs are subject to “duty drawbacks.” The drawback con-
dition corresponds to tariffs being applied on imported goods net of their re-
exported content. As detailed in Online Appendix F, duty drawbacks are of-
fered by governments in most major economies.22 In the US, for instance, duty
drawbacks have been an integral part of the tariff scheme since 1789. So, it
is reasonable to assume that non-cooperative governments will maintain their
voluntarily-adopted duty drawbacks in the event of a tariff war.23

Duty drawbacks are also necessary to make the present extension compati-
ble with the baseline model. They afford governments the ability to impose tar-
iffs without taxing exports in a subset of industries. To be more specific, recall
my baseline assumption that governments are averse to taxing exports on an
industry-specific basis. Based on this assumption, the baseline non-cooperative
optimal policy problem (P1) excluded export taxes. Duty drawbacks in the
present extension of Problem (P1), maintain the government’s ability to apply
tariffs without taxing (a subset of) exports. Absent duty drawbacks, a tariff
on intermediate inputs will, by construction, tax exporters that use tariffed
inputs—see Beshkar and Lashkaripour (2020).24 As detailed in Online Ap-
pendix C, the optimal tariff formula derived under duty drawbacks can be alter-
natively derived from a revised version of problem (P1) where governments are

22Among the countries included in my quantitative analysis in Section 5, all with the excep-
tion of Russia offer duty drawbacks. Michalopoulos (1999) documents that all the major de-
veloping countries aside from Singapore, Honk Kong, Benin, Ivory Coast, and the Dominican
Republic offer duty drawbacks. Though, under somewhat different implementation schemes.

23As noted in Online Appendix F, claims about the prevalence of duty drawbacks are subject
to two caveats: First, in some countries the duty drawback scheme requires that firms formally
apply for a tariff rebate, which leads to a significant fraction of the duty drawback value going
unclaimed. Second, some countries offer a fixed drawback scheme, wherein all exporters receive
a tariff rebate irrespective of how much tariffed inputs they use. The fixed drawback scheme,
by design, taxes a subset of exporters and subsidizes the others—see Online Appendix F.

24This issue is strictly different from the Lerner symmetry, wherein a uniform import tariff
acts as a uniform (across-the-board) tax on all exports.
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afforded the liberty to tax exports but they assign an infinitely-negative weight
to export tax revenues.

With the above background, let me proceed to the presentation of the ex-
tended model, which I call the IO model hereafter. To present the IO model, let
us temporarily abstract from tariffs. Production in each country combines labor
and intermediate input varieties sourced from various international suppliers
using a Cobb-Douglas aggregator. Assuming that the final and intermediate ver-
sion of a given good are priced similarly, the price index of composite variety
ji, k can be expressed as

Pji,k = τ̄ji,k āj,kw
γj,k
j ∏

`,g
P

ᾱ
`,g
j,k

`j,g , (17)

where γj,k = 1 − ∑`,g ᾱ
`,g
j,k , with ᾱ

`,g
j,k denoting the constant share of origin `–

industry g inputs in the production of origin j–industry k output. It is straight-
forward to verify that (from a welfare standpoint) the IO model is isomorphic
to a reformulated model where (i) instead of intermediate inputs crossing the
borders, the production of final goods employs labor from various locations,
and (ii) only final consumption goods (denoted by C) are traded internation-
ally. In this reformulated IO model, the price index of a final good variety ji, k can
be expressed as

PCji,k = τ̄ji,k ˜̄aj,k

N

∏
`=1

w
γ̃`j,k
` , (18)

where ˜̄aj,k is a weighted geometric average of constant unit labor costs (āj,ks),
while γ̃`j,k denotes the share country `’s labor in the production of origin j–
industry k’s final good. The NK × K matrix of labor shares, γ̃ = [γ̃`j,k]j×k,`, can
be derived in terms of the input-output (IO) shares as follows,25

γ̃ = (INK −A)−1 γ, (19)

where A ≡ [ᾱ
`,g
j,k ]j×k,`×g is the NK × NK global IO matrix; and γ is a NK × K

matrix composed of origin×industry-specific nominal labor shares:

γ ≡ diag (γi) =


γ1 0 0
... . . . ...
0 0 γN

 ; γi ≡


γi,1

...
γi,K


25Equation 19 can be obtained by applying the Implicit Function Theorem to Equation 17.
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Let me provide a brief intuition behind the price formulation specified by Equa-
tion 18. There are two equivalent ways to interpret variety ji, k’s production
process. One where production employs intermediate inputs produced with
labor from various countries, indexed by `. Another, where final good pro-
duction directly employs labor from various origins indexed by `. Equation 18
corresponds to this latter interpretation. It is also straightforward to check that

∑N
`=1 γ̃`j,k = 1 for all j and k.

Now, let us switch to the case where tariffs are applied with duty draw-
backs. The drawback scheme ensures that tariffs do not propagate through
input-output network. Or, put differently, tariffs with drawbacks are akin to a
tariff applied on the traded final goods in the reformulated IO model. Accord-
ingly, from the lens of the reformulated IO model, the consumer price index of
the traded final goods can be expressed as

P̃Cji,k = (1 + tji,k)τ̄ji,k ˜̄aj,k

N

∏
`=1

w
γ̃`j,k
` . (20)

Equilibrium in the reformulated IO model assumes a definition that is analo-
gous to that of the baseline Ricardian model. Specifically, given the vector of
national tariffs, ti, equilibrium consists of a vector of wages, w; a vector of pro-
ducer and consumer price indexes for final goods, PCi = {PCji,k} and P̃Ci = {P̃Cji,k}
(Equations 18 and 20); and consumption quantities, QCi , given by the demand
function QCji,k = Qji,k(Yi, P̃Ci ), which derives from utility-maximization (1) sub-
ject to total income equaling wage income plus tariff revenue:

Yi = wi L̄i + ∑
j,i

∑
k

tji,kPCji,kQCji,k = wi L̄i + ∑
j,i

∑
k

tji,k

1 + tji,k
λCji,keCi,kYi. (21)

Equilibrium also requires that labor markets clear in that total wage income in
country i is equal to the sum country’s labor compensation from global sales:

wi L̄i = ∑
k

∑
n

γ̃in,kPCni,kQCni,k = ∑
k

∑
n

γ̃in,k

1 + tin,k
λCin,keCn,kYn. (22)

Before moving forward, let me summarize the reformulated IO model one last
time. Production in each economy employs labor from various locations to
produce traded final goods, indexed by C. Trade in final goods is subject to
regular tariffs. In terms of welfare implications, the reformulated IO model
is isomorphic to our original IO model where production employs local labor
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plus intermediate inputs, but with tariffs applied subject to duty drawbacks.
Note that if tariffs were not subjected to drawbacks, they will multiply through
input-output linkages and break the isomorphism between the original and re-
formulated IO models.

In the above setup, we can first show that the optimal tariff is uniform.
Though, the optimal rate takes into account the input-output structure. A uni-
form tariff that inflates wi (relative to w−i) can now affect the entire schedule of
producer prices in all origin countries. To keep track of these linkages, define
the NK× K matrix Γ̃i as

Γ̃i ≡ 11×K ⊗
[

γ̃in,g

γ̃ii,g

]
n×g

= 11×K ⊗


γ̃i1,1
γ̃ii,1

...
γ̃iN,K
γ̃ii,K


where 11×K is a row vector of ones and ⊗ denotes the Kronecker product. Not-
ing the above definitions, we can once again characterize the optimal tariff in
each country as a function of observable shares and reduced-form demand elas-
ticities. The following proposition outlines this claim.

Proposition 5. Country i’s optimal tariff (with duty drawbacks) is uniform and can
be characterized in terms of reduced-form demand elasticities and value-added export
shares as

t∗i (t−i) =
−1

∑j,i

[
Φ∗ij ·

(
IK + E∗ijΓ̃i +

t̄j
1+t̄jejj

Ẽ∗jjΓ̃i

)
1K

] .

The K × 1 vector Φij =
[
φij,k

]
k is composed of value added export shares, which are

defined as φij,k ≡
γ̃ii,kPCij,kQCij,k

∑j,i ∑g γ̃ii,gPCij,kQCij,k
.

The intuition behind uniformity is that duty drawbacks prevent tariffs from
propagating through the input-output network. So, to a first-order approxima-
tion, country i’s tariffs can improve its terms-of-trade only by inflating wi rel-
ative to w−i.26 Unlike the baseline Ricardian model, though, Nash tariff levels
internalize country i’s dependence on imported intermediate inputs. A strong
dependence on imported inputs, which amounts to having a low γ̃ii,k, leads to
less export market power and lower optimal/Nash tariffs. I will elaborate more
on this issue in Section 5 when the model is calibrated to data.

26Without duty drawbacks, tariffs can propagate through the input-output network and in-
directly tax exports. So, when export banned are but countries posses export market power,
optimal tariffs will be non-uniform as they attempt to mimic export taxes—see Beshkar and
Lashkaripour (2020).
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Under Cobb-Douglas-CES preference, Proposition 5 indicates that country
i’s Nash tariffs are given by the following formula:

t∗i =
1

∑j,i ∑k

[
φ∗ij,kεk

(
1−

(
1− δ∗j,k

)
∑n

γ̃in,k
γ̃ii,k

λC∗nj,k

)] (23)

where δ∗j,k ≡
t∗j λC∗jj,kej,k

1+t∗j λC∗jj
. Using the above formula, we can once again invoke

the multiplicatively-separable nature of the CES demand system and the hat-
algebra notation (x̂ = x∗/x) to compute the Nash tariffs under input trade. This
procedure requires that we solve the above tariff formula in combination with
the equilibrium conditions specified under Equations 21 and 22. Doing so com-
putes the cost of a global tariff war in one step with data on trade elasticities
and observable shares. The following proposition presents this result.

Proposition 6. If preferences are described by functional form 10, the Nash tariffs,
{t∗i }, and their effect on wages, {ŵi}, and total income, {Ŷi}, can be solved as a solution
to the following system:

t∗i = 1

∑j,i ∑k

[
φ∗ij,kεk

(
1−
(

1−δ∗j,k

)
∑n

γ̃in,k
γ̃ii,k

λ̂Cnj,kλCnj,k

)] [optimal tariff]

φ∗ij,k =

γ̃ii,k
1+t∗j

λ̂Cij,kλCij,kej,kŶjYj

∑n,i ∑k
γ̃ii,k
1+t∗n

λ̂Cin,kλCin,ken,kŶnYn
, δ∗j,k ≡

t∗j λ̂Cjj,kλCjj,kej,k

1+t∗j λ̂Cjjλ
C
jj

[value-added shares and δ]

λ̂Cji,k =

[
( ̂1+tji,k)∏` ŵ

γ̃`j,k
`

]−εk

∑N
n=1

(
λCni,k

[
( ̂1+tni,k)∏` ŵ

γ̃`n,k
`

]−εk
) , ̂1 + tji,k =

1+t∗i,k
1+t̄ji,k

[expenditure shares]

ŵiwi L̄i = ∑k ∑j

[
1

1+t∗j
λ̂Cij,kλCij,kej,kŶjYj

]
[wage bill = sales net of taxes]

ŶiYi = ŵiwi L̄i + ∑k ∑j,i

(
t∗i

1+t∗i
λ̂Cji,kλCji,kei,kŶiYi

)
[income = wage bill + tax rev.]

Importantly, solving the above system requires information on only (i) industry-level
trade elasticities, εk; (ii) applied tariffs, t̄ji,k, (iii) observable shares, λCji,k, ei,k, and ᾱ

n,g
j,k ;

and (iii) net national income, Yi.

The system specified by Proposition 6 involves the same set of unknowns as
the baseline Ricardian model. However, solving it requires international data
on “final” good expenditure to determine λCji,k eCi,k, and Yi. It also requires data
on the global input-output table, A, to determine the domestic value-added
shares, γ̃ii,k’s, through Equation 19.27 Once we solve the above system, the

27Yi in this setup has a slightly different interpretation than national expenditure. More
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cost of a global tariff war can be calculated as %∆Real GDPi = Ŷi/ ∏k

(
ˆ̃PCi,k
)ei,k

,

where ˆ̃PCi,k = ∑N
n=1

(
λni,k

[
( ̂1 + tni,k)∏` ŵγ̃`n,k

`

]−εk
)−1/εk

denotes the change in

the CES price index of final goods in the reformulated IO model.

3.3 Integrated Model

As a final extension, I combine markup distortions and intermediate input trade
into one integrated model. As before, the integrated model can be converted
into a model where the production of final goods employs labor from multiple
origins, paying a compounded markup on the wage rate. The producer prices
can, correspondingly, be formulated as follows:

PCji,k = µ̃Ci,kτ̄ji,k ˜̄aj,k

N

∏
`=1

w
γ̃`j,k
` ,

where µ̃Ci,k is the compounded markup associated with origin j–industry k final
goods and γ̃ij,k is given by Equation 19.28 Final goods are, then, traded subject
to import tariffs, such that P̃Cji,k = (1 + tji,k)PCji,k. Under this reformulation of

the model, total income in each country is Yi = µiwi L̄i + ∑k ∑j,i

(
tji,kPCji,kQCji,k

)
,

where µi denotes the average markup that accrues to economy i from the sales
of final goods:29

µi =
∑k ∑j ∑n

(
γ̃ij,kPCjn,kQCjn,k

)
∑k ∑j ∑n

(
γ̃ij,k

µ̃Cj,k
PCjn,kQCjn,k

) .

The optimal tariffs, in the integrated model, internalize both markup distor-
tions and input trade. Under Cobb-Douglas-CES preferences and duty draw-
backs, the optimal tariff on good ji, k can be characterized as follows (see Online

specifically, it denotes total spending on only final goods, which is still a readily observable
variable. Moreover, solving the system specified by Proposition 6 requires information on total
wage income, wiLi, which can be uniquely inferred from λFji,k, βFi,k, Yi, and γ̃i,k(i).

28State formally, the vector µ̃ ≡ [µ̃i,k]i×k can be calculated as

µ̃ = (INK −A)−1 (1N ⊗ µ) , (24)

where µ ≡ [µk]k is a K× 1 vector of industry-level markups.
29The implicit assumption here is that profits are collected by a global fund à la Chaney

(2008), and distributed among countries in accordance to their value-added share in output.
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Appendix D):

1 + t∗ji,k =

 1 + εkλC∗ii,k

1 +
[

1− γ̃ii,k

(
1− µ̄∗i

µ̃Ci,k

)]
εkλC∗ii,k


(

1 + t̄∗i − [1−
µ̄∗i
µ̃Cj,k

]γ̃ij,k

)
, (25)

where the uniform tariff component t̄∗i is described by Equation.30 To offer
some intuition, a tariff on good ji, k pursues two objectives in the integrated
model: First, improving country i’s terms-of-trade, primarily through inflating
wi relative to w−i. Second, restoring allocative efficiency in the local economy
as a second-best policy measure. Both of these effects were also present in the
generalized Krugman model. Unlike that model, however, a tariff on good ji, k
now internalizes country i’s claims to profits in the rest of the world. Restoring
allocative efficiency through profit shifting is, thus, less effective under input
trade. I will elaborate on this point later in Section 5 when the model is mapped
to data.

3.4 Discussion: Cost Channels and Extensions

To take stock, I presented a new methodology to compute the cost of a global
tariff war in one optimization-free step as function of (i) observable shares, (ii)
applied tariffs, (iii) industry-level trade elasticities, and (iv) and industry-level
markup wedges. Moreover, my theory identified two distinct avenues through
which a tariff war inflicts a cost on the global economy:

i. pure trade reduction, the importance of which depends on a country’s
dependence on imported inputs, and

ii. the exacerbation of pre-existing markup distortions as a result of non-
cooperative profit-shifting incentives.

Granted, some readers may share Krugman’s (1997) skepticism that govern-
ments do not necessarily set Nash tariffs with the objective to non-cooperatively
maximize national welfare. This type of skepticism, however, does not pose
a problem for the present methodology. Instead, the methodology is flexible
enough to accommodate arbitrary preferences towards protection. For instance,
if we believe that governments arbitrarily assign a higher weight to the agricul-
tural sector, the present methodology can easily account for that.

30To be specific: t̄∗i = 1/ ∑j,i,k

[
φ∗ij,kεk

(
1−

(
1− δ∗j,k

)
∑n

γ̃in,k
γ̃ii,k

λ∗nj,k

)]
.
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That being said, let me discuss a few possible concerns with the above
methodology. Some of these concerns are easy to address, but some others are
more consequential and actually apply to the broader literature on this topic.

A first concern is my assumption on restricted entry. This assumption was
adopted in line with Ossa (2014), with the justification that it makes the model
amenable to the introduction of political pressures. But what happens if we
replace the restricted entry assumption with free entry? It is easy to verify that
the optimal tariff formulas will remain intact. But the predicted losses from a
tariff war can be quite different, and presumably larger under free entry–see
Lashkaripour and Lugovskyy (2020) for a similar discussion but in the context
of unilateral trade taxes.

A second concern is my abstraction from firm-selection effects. This con-
cern is misplaced if we believe that the firm-level productivity distribution is
Pareto and that the fixed marketing cost is paid in terms of labor in the des-
tination country. In this particular but standard case, the heterogeneous firm
model with selection effects becomes isomorphic to the generalized Krugman
model introduced in Section 3.1.31 Beyond this particular case, the concern is
not easy to address. Mostly, because producing analytic formulas for Nash tar-
iffs becomes increasingly difficult under arbitrary selection effects.32

A third and perhaps more serious concern, is that my analysis overlooks
dynamic adjustment costs. This concern applies to a broader literature that em-
ploys static trade models when analyzing tariff wars. For instance, by imposing
balanced trade, my analysis inevitably overlooks the dynamic losses or gains
from trade rebalancing. Recently, several papers in the international macroeco-
nomics literature, including Balistreri et al. (2018), Barattieri et al. (2018), and
Bellora and Fontagné (2019), have used dynamic models to quantify these ad-
justments costs. The general consensus arising from these studies is that dy-
namic adjustment costs are non-trivial.

4 Cooperative Tariffs

Until now, I have focused on a global tariff war characterized by non-
cooperative Nash tariffs. In this section I switch attention to cooperative tar-

31Kucheryavyy et al. (2016) establish this isomorphism under free entry. But the same iso-
morphism argument applies readily to the case of restricted entry.

32Costinot et al. (2016) have made significant headway in this direction. They characterize
the optimal firm-level trade policy under general firm-selection effects.
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iffs that maximize global rather than national welfare. Such tariffs can be sup-
ported as the outcome of a Nash bargaining game with lump-sum transfers
between counties. As such, cooperative tariffs inform us of the potential gains
from further trade talks. Stated formally, the vector of cooperative tariffs, t?, is
determined by the following problem:33

t? = arg max
t

N

∑
i=1

Wi (t; w) (P2),

As noted by Ossa (2016), computing cooperative tariffs is even more burden-
some than Nash tariffs, because “all countries’ tariffs have to be chosen at the same
time.” However, following the same logic presented earlier, this computational
burden can be bypassed with the aid of analytic formulas for cooperative tariffs.

Based on the first welfare theorem, the Ricardian model with or without in-
put trade yields an efficient market equilibrium. So, it follows trivially that
t? = 0 in the aforementioned models. In the generalized Krugman model,
however, the market equilibrium is inefficient and cooperative tariffs can help
restore efficiency to some degree. As proven in Online Appendix E, the coop-
erative tariff on goods imported by country i in industry k can be formulated
as

1 + t?ji,k = 1 + t?i,k =
εkλii,k + 1
εkλii,k +

µk
µ

, (26)

where µ = ∑n (µnwn L̄n) / ∑n (wnLn) denotes the output-weighted average
global markup. The above formula indicates that cooperative tariffs subsidize
high-markup imports. More so in low-εkλii,k markets where imported goods
are less substitutable with domestic varieties. The derivation of the above
formula invokes two intermediate results: First, an envelope result whereby
∂ ∑N

i=1 (Wi (t; w)) /∂w = 0. Second, a well-known result that global profits are
a constant share of global revenue under Cobb-Douglas-CES preferences.

To gain further intuition, note that the first-best cooperative policy in the
generalized Krugman model consists of domestic subsidies (equal to 1/µk) that
restore marginal-cost-pricing (Lashkaripour and Lugovskyy (2020)). If first-
best domestic subsidies are inapplicable due to political and institutional bar-
riers, it is optimal to use import tariffs to mimic them. The cooperative tar-
iffs characterized by Equation 26 achieve this objective. Accordingly, in the

33The above formulation of the cooperative tariff problem is akin to Ossa (2019), since the
global gains from cooperation are assumed to redistributable with international transfers.
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limit where εkλii,k → 0 and foreign varieties do not compete with domestic al-
ternatives, the cooperative tariff formula collapses to the inverse markup rate:
1 + t?i,k = 1/µk.

The fact that cooperative tariffs are non-zero suggests that there are po-
tentially large gains from future trade talks. As such, the true cost of non-
cooperative behavior exceeds the pure cost of a global tariff (which was implied
by Proposition 4). Recalling that t∗ denotes the vector of non-cooperative Nash
tariffs, the true cost of non-cooperation can be calculated as follows

True Cost of Non-Cooperation =
N

∑
i=1

(Wi (t?; w?))−
N

∑
i=1

(Wi (t∗; w∗)) ,

=
N

∑
i=1

(Wi (t?; w?)− W̄i)︸                          ︷︷                          ︸
gains from future trade talks

+
N

∑
i=1

(W̄i −Wi (t∗; w∗))︸                          ︷︷                          ︸
cost of a global tariff war

,

where W̄i denotes country i’s welfare under the status quo. Following the same
logic presented earlier, we can combine the cooperative tariff formula speci-
fied under Equation 26 with equilibrium conditions to compute the “true cost
of non-cooperation” in one optimization-free step (see Online Appendix E for
details). The next section performs these calculations using actual trade and
production data from many countries and over many years.

5 Quantitative Implementation

In this section, I employ Propositions 2, 4, and 6 to compute the prospective cost
of a tariff war for 43 major economies and to study how this cost has evolved
over time. To solve the system specified by Propositions 2 and 4, I need data
on the full matrix of industry-level bilateral trade values, Xji,k ≡ Pji,kQji,k and
applied tariffs, t̄ji,k. Knowing these values, I can determine total expenditure,
Yi = ∑j ∑k Xji,k; wage revenue, wi L̄i = ∑j ∑k Xij,k/(1 + t̄ij,k); as well as expen-
diture shares, ei,k = ∑j

(
Xji,k

)
/Yi , and λji,k = Xji,k/ei,kYi.34 To solve the system

specified by Proposition 6, I also need data on “final” good trade and the global
IO matrix, A. Below, I describe how the required data is collected from different
sources.

34In the case of Proposition 4 we need information on non-tariff revenue, which can be simi-
larly calculated as µ̄iwiLi = ∑j ∑k Xij,k/(1 + t̄ij,k).
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Data on Trade Values and IO Shares. Data on bilateral trade values are taken
from the 2016 release of the World Input-Output Database (WIOD, see Timmer
et al. (2012)). The dataset spans years 2000 to 2014, covering 43 countries (plus
an aggregate of the rest of the world) and 56 industries. The 43 countries fea-
tured in the WIOD are listed in the first column of Table 2. Following Costinot
and Rodríguez-Clare (2014), I group the industries into 16 industrial categories,
assuming that industries belonging to the same category are governed by the
same trade elasticity parameter—the details of this categorization and the list
of industries is provided in Table 4 of the appendix.

Solving the system specified by Propositions 6 requires two additional data
points. First, I need the full matrix of final good trade values, {XCji,k}, which
is readily reported in each version of the WIOD. Second, I need data on in-
ternational IO shares in order to construct the labor share matrix, γ̃, based on
Equation 19. For each country, the WIOD reports IO shares at the industry-
level. With this information, I can construct the variety-level IO shares, ᾱ

n,g
j,k ,

as the variety-level expenditure share, λji,k, times the reported industry-level
input share. Country i’s wage revenue and total final good expenditure can be
respectively calculated as wi L̄i = ∑j ∑n ∑k γ̃ij,kXCjn,k and Yi = ∑i ∑k XCji,k. With
information on Yi, I can immediately calculate the final good expenditure shares
as eCi,k = ∑j(XCji,k)/Yi and λCji,k = XCji,k/eCi,kYi.

Importantly, to make the WIOD data compatible with theory, I need to purge
it from trade imbalances. This adjustment is necessary, because Propositions 2,
4, and 6 implicitly assume that trade is balanced. Applying these propositions
to imbalanced data would, therefore, identify the sum of the (i) tariff war cost,
and (ii) trade balancing cost. Hence, to recover the pure cost of a global tariff
war, I follow the methodology in Dekle et al. (2007) to purge the data from
underlying trade imbalances.

Data on Applied Tariffs. To evaluate Propositions 2, 4, and 6, I also need
information on applied tariffs for each of the countries and industries in
the WIOD sample. For this purpose, I use data on applied tariffs from the
United Nations Statistical Division, Trade Analysis and Information System
(UNCTAD-TRAINS). The UNCTAD-TRAINS for 2014 covers 31 two-digit (in
ISIC rev.3) sectors, 185 importers, and 243 export partners. In line with Caliendo
et al. (2015), I assign the simple tariff line average of the effectively applied tariff
(AHS) to t̄ji,k. When tariff data are missing in a given year, I use tariff data
for the nearest available year, giving priority to earlier years. To aggregate the
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UNCTAD-TRAINS data into individual WIOD industries, I closely follow the
methodology outlined in Kucheryavyy et al. (2016). Finally, I have to deal with
the fact that individual European Union (EU) member countries are not rep-
resented in the UNCTAD-TRAINS data during the 2000-2014 period. To deal
with this issue, I rely on the fact that the EU itself is featured as a reporter;
and the fact that intra-EU trade is subject to zero tariffs while all EU members
impose a common external tariff on non-members.

Industry-Level Trade Elasticities. I estimate the industry-level trade elastici-
ties, {εk}, with data on aggregate trade flows, {Xji,k}, and applied tariff rates,
t̄ji,k. To this end, I choose 2014 as the baseline year and employ the triple-
difference methodology developed by Caliendo and Parro (2015) to estimate
a trade elasticity for each of the WIOD industry categories in my analysis. Fur-
ther details regarding the estimation procedure are provided in Online Ap-
pendix G. The estimated trade elasticities are also reported in Table 4 of the
appendix.35

In the case of the generalized Krugman model, I need mutually-consistent
estimates for the constant industry-level markup wedges and the trade elas-
ticities. Attaining such estimates requires micro-level data, and is not possible
with the macro-level data reported by the WIOD. Considering this, I borrow the
estimated µk and εk’s from Lashkaripour and Lugovskyy (2020) for each of the
WIOD industries in my analysis. These adopted values are reported in Table 3
of the online appendix. To maintain transparency, I also assume equal political
economy weights for all industries, which is motivated by Ossa’s (2016) point
that “average optimal tariffs and their average welfare effects are quite similar with and
without political economy pressures.” The reason behind this apparent insignifi-
cance is that “political economy pressures are more about the intranational rather than
the international redistribution of rents.”36

5.1 The Cost of a Global Tariff War for Different Nations

Table 2 reports (i) the computed Nash tariff levels, as well as (ii) the per-cent
loss in real GDP as a result of the tariff war for various countries and under

35I normalize the trade elasticity for the service sector to 10, which is in between the two
normalizations proposed by Costinot and Rodríguez-Clare (2014).

36As noted earlier, there are specific cases where political economy pressures magnify the
efficiency loss resulting from a tariff war. One example is when governments assign higher
political economy weights to high-profit (high-µ) industries, which leads to more distortionary
Nash tariffs.
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various modeling assumptions. Recall that in the baseline Ricardian model,
tariffs are targeted solely at improving a country’s wage relative to the rest of
the world. The Nash tariffs are, as a result, uniform and stand around 40%
for the average economy. The heterogeneity in Nash tariffs across countries is
driven primarily by the average trade elasticity underlying a country’s exports.
For instance, the Nash tariffs are significantly lower for Australia, Norway, and
Russia who predominantly export primary commodities that are subject to high
trade elasticities.

From the perspective of the baseline Ricardian model, the average country
loses 2.4% of its real GDP in the event of a tariff war. These losses are driven
by pure trade reduction. Even though the losses are quite heterogeneous, all
countries lose without exception, with smaller countries being the most affected
due to their greater reliance on trade and limited market power.

Once we account for markup distortions, Nash tariffs are no longer uniform
as they include two components: a terms-of-trade-driven component as well as a
profit-shifting component. The profit-shifting component taxes imports in high-
markup industries but subsidies imports in low markup industries. The Nash
tariffs average around 37% across all countries and industries. Even though the
average Nash tariffs is lower than in the baseline case, the predicted losses from
a global tariff war is on average higher, standing around 2.6% of the real GDP.

The magnification of cost under markup distortions relates the point raised
in Section 3.4: A global tariff war inflicts two types of inefficiency in the pres-
ence of pre-existing markup distortions: (i) an efficiency loss that is driven
purely by trade reduction, and (ii) an efficiency loss due to the exacerbation of
pre-exiting markup distortions. To be specific: output in high-markup indus-
tries is already sub-optimal prior to the tariff war. In the event of the tariff war,
countries impose tariffs that (on average) tax high-markup industries, thereby
lowering global output in these industries and dragging the global economy
further away from its efficiency frontier. While all countries lose from these
developments, economies like Korea and Taiwan that are net exporters in high-
markup industries experience the greatest efficiency loss.37

Accounting for input trade magnifies the Nash tariffs and their correspond-
ing cost to yet another level. It also reveals that some countries are significantly
more exposed to the cost than in the baseline case. Somewhat surprisingly,

37It should be noted that using tariffs as a profit-shifting device is an artifact of first-best
domestic taxes being unavailable to the governments—see Lashkaripour and Lugovskyy (2020)
for a more detailed discussion.
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Table 2: The welfare cost of a tariff war (year 2014)

Baseline Model Baseline + distortions Baseline + distortions + IO

Country Nash Tariff %∆ Real GDP Nash Tariff %∆ Real GDP Nash Tariff %∆ Real GDP

AUS 14.1% -1.38% 34.3% -1.15% 41.9% -0.68%
AUT 45.7% -2.82% 45.3% -3.61% 45.1% -2.41%
BEL 55.9% -3.27% 40.6% -4.23% 51.6% -3.58%
BGR 37.1% -3.24% 31.3% -3.46% 32.1% -5.73%
BRA 98.2% -0.50% 41.4% -0.85% 46.4% -0.57%
CAN 21.0% -2.37% 29.8% -2.03% 26.4% -2.76%
CHE 51.9% -1.97% 29.8% -2.35% 41.5% -0.74%
CHN 40.7% -0.35% 39.3% -0.59% 78.5% -0.43%
CYP 12.5% -3.48% 18.5% -2.39% 19.4% -5.79%
CZE 49.3% -2.85% 49.4% -4.09% 59.2% -3.36%
DEU 59.1% -0.96% 63.0% -1.94% 67.0% 0.16%
DNK 59.3% -2.31% 30.8% -3.11% 44.4% -3.07%
ESP 59.9% -1.45% 48.7% -1.71% 58.0% -1.27%
EST 28.4% -4.18% 26.0% -4.85% 50.6% -5.15%
FIN 31.4% -1.75% 65.8% -2.54% 57.5% -1.23%
FRA 51.8% -1.73% 37.7% -1.89% 54.0% -1.61%
GBR 27.9% -2.03% 31.1% -1.34% 28.0% -2.77%
GRC 12.5% -2.81% 30.6% -2.14% 20.9% -4.77%
HRV 38.3% -3.12% 29.6% -3.16% 36.6% -3.70%
HUN 52.7% -4.23% 41.8% -5.56% 65.6% -3.74%
IDN 54.1% -0.99% 43.1% -1.52% 59.0% -0.45%
IND 49.6% -0.90% 41.4% -1.13% 55.3% -0.68%
IRL 117.7% -1.42% 26.0% -5.17% 39.0% -4.47%
ITA 49.8% -0.78% 62.1% -1.38% 50.6% -0.65%
JPN 44.9% -0.53% 47.1% -0.87% 75.6% -0.23%
KOR 43.6% -1.22% 42.5% -1.99% 89.3% 0.61%
LTU 31.8% -4.00% 33.1% -4.44% 43.6% -3.74%
LUX 12.0% -6.33% 17.6% -4.55% 12.9% -19.47%
LVA 26.0% -3.16% 25.3% -2.89% 27.0% -6.79%
MEX 39.7% -2.42% 39.9% -2.25% 68.8% -0.85%
MLT 12.4% -5.45% 19.9% -3.95% 15.8% -14.09%
NLD 37.1% -4.19% 30.0% -4.09% 50.7% -0.29%
NOR 17.2% -2.05% 38.9% -2.07% 55.7% 1.15%
POL 46.4% -2.67% 38.5% -2.70% 53.2% -3.29%
PRT 27.3% -2.49% 28.7% -1.93% 47.5% -2.19%
ROU 32.8% -2.56% 29.7% -2.03% 42.5% -2.84%
RUS 12.2% -2.54% 33.7% -1.88% 55.4% 0.43%
SVK 41.5% -4.48% 41.6% -4.36% 66.3% -4.06%
SVN 46.3% -3.26% 40.1% -3.79% 46.3% -3.31%
SWE 38.5% -1.95% 49.1% -2.37% 57.1% 0.10%
TUR 45.6% -1.28% 48.9% -1.91% 46.3% -1.50%
TWN 35.4% -2.35% 29.7% -3.05% 87.8% 1.52%
USA 43.6% -0.76% 39.7% -0.56% 38.3% -1.10%
Average 40.5% -2.42% 37.5% -2.63% 48.9% -2.81%
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countries like Brazil, Norway, and Indonesia even gain –though modestly–
from a tariff war. These gains, however, come at a significant cost to other
economies like Greece, Estonia, or Portugal. More surprisingly, these sup-
posed winners are not the largest economies by any account. Instead, they are
economies that are less dependent on imported inputs. On the flip side, the ma-
jor losers are also small economies that rely heavily on imported intermediate
inputs—a point I come back to in Subsection 5.3.

Aside from dependence on imported inputs, national exposure to a global
tariff war is determined by two primary factors:

i. Overall dependence on international trade, which is measured by the
share of imports in gross national expenditure and the degree to which
imported goods are substitutable with domestic alternatives; and

ii. Tariff concessions given under existing agreements, i.e., the extent of tariff
liberalization undertaken by a country relative to the Nash benchmark.

Figure 1 sheds light on the second factor from the lens of the integrated model
that accounts for both markup distortions and input trade. The radial graph
presented under Figure 1 plots the tariff revenues each country could have col-
lected from its trading partners under the non-cooperative Nash equilibrium.
These potential revenues, however, have been capitulated to maintain the coop-
erative equilibrium that currently prevails. Evidently, countries like Japan and
Korea have given more tariff concession than they have received. As such, these
countries are less exposed to the cost of a global tariff war than, say, Canada or
Brazil who are net receivers of tariff concessions.

Before concluding this section, let me address a standard question often
thrown at this type of analysis: How believable are these numbers? To get a
“rough” answer, we can contrast the present numbers with those following the
only documented full-fledged tariff war in history. Namely, the tariff war trig-
gered by the Smoot-Hawley Tariff Act of 1930. The tariffs that were imposed
during this documented tariff war averaged around 50%, a number strikingly
close to the numbers reported in Table 2.38 Despite this stark resemblance, one
should still keep in mind that the models considered here overlook many rele-
vant cost channels. So, the present results should be ultimately interpreted with
great caution.

38See Bagwell and Staiger (2004) for more details regarding the tariff war that followed the
Smoot-Hawley Tariff Act.
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Figure 1: Tariff concessions undertaken to avoid a global tariff war
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Note: The source of the data is the 2014 WIOD. The underlying model is the integrated model
from Section 3.3. Each arrow in the radial graph depicts the millions of dollars forgone in tariff
revenues on trading partners to maintain the current state of global cooperation.

5.2 The Cost of a Global Tariff War Over Time

A key advantage of the present approach is its remarkable computational
speed, which I detail later in this section. Building on this advantage, I em-
ploy my methodology to compute the cost of a global tariff war under differ-
ent modeling specifications and across many years, so far as data availability
permits—that would be from 2000 to 2014 in the case of the WIOD data.

Figure 2 displays the final results. For every year, the cost of a tariff war to
the global economy is calculated as the change in real global GDP. To calculate
this change, I use yearly data on constant real GDP from the Penn World Tables.
I multiply and add the per-cent loss in real GDP for each country by its constant
real GDP level in that year. I perform this task starting from the baseline Ricar-
dian model and subsequently introduce pre-existing markup distortions and

36



Figure 2: The prospective cost of a tariff war over time

input trade into the analysis.
Based on Figure 2, the prospective cost of a tariff war has multiplied from

2000 to 2014. Especially so, if we account for input and the exacerbation of
markup distortions by a tariff war. To provide numbers, if we account for the
exacerbation of markup distortions, the prospective cost has nearly doubled
from $676 billion in 2000 to around $1,448 billion in 2014.39 If we account for
input trade, the prospective cost has more-than-doubled from $684 billion to
$1,662 billion. This rise is driven by three separate developments:

i. The increased openness of small economies to foreign trade. This devel-
opment perhaps explains why the cost of a tariff war has multiplied over
time even from the lens of the baseline Ricardian model.

ii. The increased specialization of small, developing countries in high-profit
(high-µ) industries. In light of this development, these countries are more
inclined to erect tariffs for profit-shifting motives in the non-cooperative
equilibrium. As such, Nash tariffs have become more distortionary. This

39In terms of percentages, the cost of a global tariff war has increase from 1.9% to 2.6% of real
GDP for the average country.
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Table 3: Computational Speed: New vs. Optimization-Based Approach
# countries # industries Nash tariffs Cooperative tariffs

Ossa (2014) N = 7 K = 33 96 minutes 50 hours

New approach N = 44 K = 56 4 seconds 15 seconds

Note: The computational times associated with Ossa (2014) are based on the figures reported in
the article’s replication file: https://doi.org/10.3886/E112717V1. The computational times
reported for the new approach developed in this paper are based on a MAC machine with the
following specifications: Intel Core i7 @2.8 GHz processor, with 4 physical cores, and 16 GB of
RAM. Both approaches are implemented in MATLAB.

factor can explain the divergence between the losses predicted with and
without accounting for markup distortions.

iii. The increased dependence of individual economies on the imported in-
puts. This factor, explains why the model with input trade predicts a more
dramatic rise in the cost of a tariff war compared to the baseline model.

In any case, the present analysis indicates that given the current state of the
global economy, the prospective cost of a global tariff war seems higher than
ever. To give some perspective, the cost of a global tariff war was $1,696 billion
in 2014 once we account for both input trade and markup distortions. Such a
loss is the equivalent of erasing South Korea from the global economy.

Before concluding this section, let me uncover some details about the com-
putational efficiency of the new methodology. To this end, Table 3 compares
the computational speed of the new methodology to the standard optimization-
based methodology in Ossa (2014). While the new analysis includes more than
6-times as many countries, it calculates the non-cooperative Nash tariffs 1440-
times faster and the cooperative tariffs 12,000-times faster. As noted earlier,
this remarkable improvement in efficiency is driven by (1) a reduction in the
dimensionality of the optimal policy problem, and (2) bypassing numerical op-
timization altogether.

5.3 Dependence on Imported Inputs

The present analysis provides a glimpse into how international supply chains
have exposed some countries more than ever to a global tariff war. To make
this point formally, let me fix ideas by using the baseline Ricardian model as
a conceptual benchmark. In this baseline, a country’s market power is driven
by its monopoly over differentiated varieties produced with local labor. Now,
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Figure 3: Cost of tariff war vs. Dependence on imported imputs
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Dependence on Imported Inputs

introduce input trade into the mix. In that case, local labor will account for a
smaller fraction of a country’s differentiated output the more it specializes in
downstream industries. Input trade, therefore, diminishes a downstream econ-
omy’s market power vis-à-vis the rest of the world. That is, a downstream
economy’s tariffs have a relatively small effect on its terms-of-trade, as mea-
sured by its wage relative to the rest of the world. On the flip side, the relative
market power of upstream economies will be multiplied (in relative terms) by
input trade.

To demonstrate this point from the lens of the calibrated model, Figure 3
plots the national-level cost of a global tariff war against national-level depen-
dence on imported inputs. The dependence index (assigned to the x-axis) is
measured as one minus a trade-weighted average of γ̃ii,k’s. Roughly speaking,
this index tells us what percentage of a country’s output is comprised of foreign
(non-local) labor content.

It is evident from Figure 3 that small downstream economies like Malta and
Luxembourg, which depend more heavily on imported inputs, experience the
greatest losses from a global tariff war. This outcome is aligned with my above
assertion that input trade diminishes relative market power for downstream
economies. By contrast, a country like Norway that exports predominantly in
upstream industries (like crude oil) can even gain from a global tariff war due
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to its upstream position in the global supply chain.
On a broader level, the above arguments qualify an old belief that large

countries can win a tariff war, whereas small countries always lose (Johnson
(1953)). My analysis indicates that a country’s dependence on input trade is as
important of a factor as its size. consider again the case of Norway, which gains
around 1.3% in the event of a tariff war once we account for input trade. By
every account, Norway is a small economy. However, it exports primarily in
upstream industries like Oil. Based on Johnson’s (1953) theory, Norway should
lose from a tariff war, and the baseline Ricardian model that neglects input trade
confirms this view. But this prediction is overturned, as soon as we account for
the global input-output structure.

It should be noted once again that these results hinge on countries providing
duty drawbacks in the event of a tariff war. As noted earlier, duty drawbacks
are voluntarily adopted by many countries and reflect the government’s aver-
sion to export taxation. So, there is no reason to believe they will be disposed
of if a tariff war escalates. Anyhow, without duty drawbacks, tariffs can mimic
industry-level export taxes, providing governments with an additional avenue
to manipulate their terms-of-trade. Accordingly, the welfare cost of a global
tariff war may be higher in the absence of duty drawbacks. By accounting
for these additional cost channels, Beshkar and Lashkaripour (2020) provide a
more comprehensive view of tariff wars in the presence of global value chains.

5.4 Data Aggregation Can Distort the Estimated Cost

As noted in the Introduction, existing analyses of tariff wars often restrict their
attention to a limited sample of countries. This is done by aggregating smaller
countries into a single taxing authority that is labeled the rest of the world
(ROW). This aggregation scheme is often adopted to overcome the computa-
tional complexities inherent to tariff war analysis.40

Capitalizing on the computational efficiency of my sufficient statistics ap-
proach, I can test if such aggregation schemes pose a problem. To this end, I
re-do my analysis with aggregated data, which is restricted to Brazil, China,
Germany, Great Britain, France, Italy, India, Japan, and the United States. The
remaining 34 countries (in the aggregated data) are lumped with the ROW and

40See Ossa (2016) for an overview of this literature. To give specific examples, Perroni and
Whalley (2000) and Ossa (2014) aggregate the data into 6 economies and an aggregate of the
ROW. Note, however, that they aggregate EU member countries into one taxing authority and
the ROW only includes non-EU countries.
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Figure 4: % Loss from a Tariff War: with and without aggregation
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treated as one taxing authority.
Figure 4 compares the welfare losses computed using the non-aggregated

sample to those computed using the aggregated sample. Evidently, aggregating
the data overstates the cost of a tariff war. There is a simple intuition behind
this outcome. Aggregating many countries into the ROW, gives the ROW an
artificially high degree of market power. As a result, the ROW imposes artifi-
cially high Nash tariffs that inflict a large welfare loss on other (non-aggregated)
economies. By adopting the sufficient statistics approach developed here, re-
searchers can avoid such data aggregation and the bias that accompanies it.

5.5 The Gains from Cooperative Tariffs

The gains from cooperative tariffs can be calculated with the same data and
logic used to measure the cost of a tariff war. This procedure capitalizes on
the cooperative tariff formula specified by Equation 26. More details about im-
plementation are provided in Online Appendix E. As reported in Table 3, this
procedure is remarkably fast and (like the tariff war analysis) can be seamlessly
performed on data from multiple years. Without this procedure, however, the
cost of computing cooperative tariffs can be prohibitively high given the num-
ber of countries and industries in my analysis.

Following the discussion in Section 4, the gains from cooperative tariffs can
be interpreted as the potential gains from further trade talks. Figure 5 plots
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Figure 5: The gains from cooperative tariffs over time
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these gains for the 2000-2014 period. The results indicate that the potential gains
from further trade talks (measured in terms of constant real GDP) have multi-
plied, increasing from $184 billion in 2000 to $347 billion in 2014.41 This rise
is indicative of two developments: First, markup distortions have worsened in
the global economy. Second, due to the rise in international trade, trade policies
have become a more effectives second-best policy at correcting markup distor-
tions. This rise also suggests that the opportunity cost of non-cooperative tariff
policies has elevated to unprecedented levels. By adopting a non-cooperative
approach countries not only expose themselves to retaliation, but also miss out
on the unexploited-but-sizable benefits of further cooperation.

6 Concluding Remarks

Building on recent advances in quantitative trade theory, I developed a sim-
ple, sufficient statistics methodology to compute the prospective cost of a full-
fledged global tariff war. My proposed methodology has two basic advantages.
First, it derives analytic formulas for Nash tariffs, delivering a more than 1000-
fold increase in computational speed relative to standard optimization-based
approaches. Second, it can be easily extended to account for salient features of
the global economy like input trade and pre-existing markup distortions.

I applied the new methodology to data spanning many countries, indus-

41In terms of percentages, the gains from cooperative tariffs have increase from 0.21% to
0.46% of real GDP for the average country.
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tries, and years. This application uncovered patterns that are crucial to the on-
going discourse surrounding trade policy: (i) The prospective cost of a global
tariff war has more-than-doubled over the past 15 years; (ii) a significant frac-
tion of the cost associated with a full-fledged tariff war is due to the exacerba-
tion of already-existing markup distortions; (iii) small downstream economies
are the most vulnerable to a now-imminent global tariff war; and (iv) cooperative
tariffs have become a more effective tool at correcting rising markup distortions
in the global economy.

Moving forward, a natural next step is to apply the proposed methodology
to an even broader set of countries and industries using richer, confidential
data. Previously, such applications were partially impeded by computational
burden; but practitioners can employ the present methodology to circumvent
this particular obstacle. Another avenue for future research is to extend the
methodology, itself, by incorporating multiple factors of production and other
short-run adjustment costs.
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A Proof of Proposition 1

Step #1: Express Equilibrium Variables as function of P̃i, w, and t−i

The first step of the proof is to express equilibrium variables (e.g., Qji,k, Yi, etc.) as a function of (1) the

vector of consumer prices in country i,

P̃i ≡
{

P̃ji,k
}

j,k = {P1i,1, ...PNi,1, ...., P1i,K, ...PNi,K} ; (27)

which recall i is the country we are characterizing the unilaterally optimal policy for;(2) the vector of

national-level wage rates all over the world,

w = {w1, ..., wN} ;

and (3) the vector of applied tariffs in the rest of world excluding country i,

t−i = {t1, ..., ti−1, ti+1, ..., tN} ,

where tj =
{

t1j,1, ...tNj,1, ...., t1j,K, ...tNj,K
}

is the vector of tariff rates applied by country j , i. Consider-

ing the above notation, we can immediately establish the following result.

Lemma 2. All equilibrium outcomes (excluding P̃i and w) can be uniquely determined as a function of t−i, P̃i,

and w.

Proof. The proof follows from solving all equilibrium conditions excluding the equilibrium expression

for consumer prices, P̃ji,k (which pins down P̃i), and the country-specific balanced trade condition

(which pins down w). Stated formally, we need to solve the following system treating t−i, P̃i, and w

as given:

Pj`,k = aj`,kwj; P̃jι,k = (1 + tjι,k)Pjι,k ι , i, [competitive pricing]

Qj`,k = Dj`,k(Y`, P̃1`,1, ...P̃N`,1, ..., P̃1`,K, ..., P̃N`,K) [optimal consumption]

Y` =w`L` + ∑
j,`,

∑
k

[(
P̃j`,k − Pj`,k

)
Qj`,k

]
[income = wage bill + tax revenue]

Since there is a unique equilibrium, the above system is exactly identifies in that it uniquely determines

Pj`,k, Qj`,k, and Y` as a function of t−i, P̃i, and w . �

Following Lemma 2, we can express total income in country i, Yi, as well as the entire demand

schedule in that country as follows:

Yi ≡ Yi(P̃i, t−i; w); Qji,k ≡ Qji,k(P̃i, t−i; w) = Qji,k
(
Yi(P̃i, t−i; w), P̃i

)
.

Recall that Qji,k(.) denotes the Marshallian demand function facing variety ji, k. Observing the above

representation, my main objective is to reformulate country i’s policy problem as one where the gov-

47



ernment chooses P̃i (as opposed to directly choosing tariff rates) taking t−i as given. This reformula-

tion, though, needs to take into account that w is an equilibrium outcome that implicitly depends on

t−i and P̃i. To track this constraint, define the (P̃i, t−i; w) combinations that are feasible as follows.

Definition 4. A combination (P̃i, t−i; w) is feasible iff given P̃i and t−i, the vector of wages, w,

satisfies the balanced trade condition in every country ` ∈ C. More specifically, observing that

Pjn = τ̄jn,k āj,kwj:42

(P̃i, t−i; w) ∈ F ⇐⇒ ∑
j,n

K

∑
k=1

[
τ̄jn,k āj,kwjQjn,k(P̃i, t−i; w)− τ̄nj,k ān,kwnQnj,k(P̃i, t−i; w)

]
= 0.

Equipped with the above definition, we can now proceed with the reformulation of the optimal policy

problem (P1).

Step #2: Reformulate the Optimal Tariff Problem

Recall the optimal tariff problem (P1) from Section 2. The next intermediate result shows that coun-

try i’s optimal tariff problem can be cast as on where the government chooses the optimal vector of

consumer prices in the local economy instead directly choosing the vector of tariffs.

Lemma 3. Country i’s vector of optimal tariffs, ti, can be determined by solving the following problem:

max
P̃i

Wi(P̃i, t−i; w) ≡ Vi(Yi(P̃i, t−i; w), P̃i) s.t. (P̃i, t−i; w) ∈ F (P̃1)

Proof. The proof proceeds in two steps. First, I show that the policy space afforded to the government

under the price vector, P̃i, is identical to that afforded under the tariff vector, ti = {tji,k}j,i,k. Second, I

show that the optimal choice w.r.t. P̃i implicitly and uniquely pins down the optimal choice w.r.t. ti.

Step (a) To set stage for the first step, note that ti is composed of (N − 1)K elements, whereas

P̃i =
{

P̃1i, ..., P̃ii, ..., P̃Ni
}

is composed of NK elements: namely, (N − 1)K import prices, P̃−ii, plus K

domestic prices, P̃ii. Below, I show that –because markets are competitive– the optimal policy should

never tax good ii, k. This claim requires that I establish the following:

dWi(P̃i, t−i; w)

d ln P̃ii
= 0 ⇐⇒ P̃ii = Pii,

which entails that the optimal choice w.r.t. P̃ii of is equal to the producer price. If that is true, adding

P̃ii to the government’s policy choice set does not afford the government more policy space than if the

government was directly setting tariffs, ti. To prove this above claim, we can invoke the chain rule to

produce the following expression (recalling that P̃−ii ≡ P̃i −
{

P̃ii
}

):

dWi(.)
d ln P̃ii

=+
∂Vi(Yi, P̃i)

∂ ln P̃ii
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi

∂ ln P̃ii

)
w, t−i , P̃−ii

+

(
∂Wi(.)

∂w

)
t−i , P̃i

(
dw

d ln P̃ii

)
t−i , P̃−ii

. (28)

42The bar notation indicates that τ̄jn,k and āj,k are constant structural variables.
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By Roy’s identity, the first term on the right-hand side can be formulated as

[Roy’s identity]
∂Vi(Yi, P̃i)

∂ ln P̃ii
= −P̃ii ·Qii,

where the operator “·” corresponds to the inner product of two vectors. The second term on the right-

hand side in Equation 28 can be determined by taking a derivative w.r.t. P̃ii from the balanced budget

condition, Yi = wiLi + ∑N
j=1
(
P̃ji − Pji

)
·Qji, which yields43

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi

∂ ln P̃ii

)
w, t−i , P̃−ii

= P̃ii ·Qii +
(
P̃ii − Pii

)
·
(

∂Qii

∂ ln P̃ii

)
w, t−i , P̃−ii

.

The last term on the right-hand side of Equation 28 is also equal to zero:
(

dw
d ln P̃ii

)
t−i , P̃−ii

= 0, since

demand is homogenous of degree zero. Combining these expressions and plugging them back into

Equation 28 establishes that

dWi(.)
d ln P̃ii

=
(
P̃ii − Pii

)
·
(

∂Qii

∂ ln P̃ii

)
w, t−i , P̃i−{P̃ii}

= 0 ⇐⇒ P̃ii = Pii.

Step (b) It is straightforward to verify that there is a one-to-one correspondence between the op-

timal choice w.r.t. P̃−ii ≡ P̃i −
{

P̃ii
}

and ti. More specifically the optimal choice w.r.t. P̃−ii implicitly

pins down the entire vector of optimal tariffs as

{
1 + t∗1i,1, ..., 1 + t∗Ni,1, ..., 1 + t∗1i,K, ..., 1 + t∗Ni,K

}
=

{
P̃∗1i,1

P1i,1
, ...,

P̃∗Ni,1

PNi,1
, ...,

P̃∗1i,K

P1i,K
, ...,

P̃∗Ni,K

PNi,K

}
.

Put differently, there is always unique vector of tariffs that can implement the optimal import price

vector, P̃∗−ii. Together, Steps (i) and (ii) establish the equivalence between Problems (P1) and (P̃1). �

Step #3: Solving the System of F.O.C.’s Associated with P̃1

This step derives and solves the system of F.O.C.s associated with Problem P̃1. I will adopt the dual

approach in this process, which relies heavily on Marshallian demand elasticities. So, to fix ideas and

avoid any confusion later on, I formally define these elasticities in the following.

Notation A [Marshallian Demand Elasticities] Let Qji,k ≡ Qji,k(Yi, P̃i) denote the Marshallian demand

function facing variety ji, k. This demand function is characterized by the following reduced-form demand

elasticities:

[price elasticity] ε
(ni,g)
ji,k ≡

∂ lnQji,k(Yi, P̃i)

∂ ln P̃ni,g

[income elasticity] ηji,k ≡
∂ lnQji,k(Yi, P̃i)

∂ ln Yi
,

43To be clear: ∑N
j=1
(
P̃ji − Pji

)
·Qji = ∑N

j=1 ∑K
k=1

[(
P̃ji,k − Pji,k

)
Qji,k

]
by definition of the inner product opera-

tor, “·”.
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where P̃i corresponds to the entire of vector of consumer prices in market i as specified by 27. Recall from the main

text that V(Yi, P̃i) denotes the indirect utility associated with the Marshallian demand function, Qji,k(Yi, P̃i).

The general equilibrium problem we are analyzing has many free-moving components. So, when

taking partial derivative it is important to specify the variables that are being held constant. At the

same, I would like to maintain a compact notation. So, for future reference, the following clarifies my

choice of notation w.r.t. partial derivatives.

Notation B [Partial derivatives] Since the vector of tariffs in the rest of the world, t−i, is treated as given

and the elements of P̃i are treated as policy choices, the partial derivative of variable x ≡ x(P̃i, t−i; w) w.r.t.

P̃ji,k ∈ P̃i should be interpreted as a partial derivative holding t−i and P̃i −
{

P̃ji,k
}

fixed. Namely,

∂x
∂ ln P̃ji,k

≡
(

∂x
∂ ln P̃ji,k

)
P̃i−{P̃ji,k}, t−i

;

(
∂x(.)

∂ ln P̃ji,k

)
w

≡
(

∂x(.)
∂ ln P̃ji,k

)
w, P̃i−{P̃ji,k}, t−i

.

Considering Lemma 3 and the notation outlined above, we can write the system of F.O.C.’s underlying

Problem P̃1 as

∇P̃i
Wi(P̃i, t−i; w) = 0.

Using the cain rule, the F.O.C. w.r.t. P̃ji,k ∈ P̃i, in particular, can be stated as follows:

dWi(.)
d ln P̃ji,k

=
∂Vi(.)

∂ ln P̃ji,k
+

∂Vi(.)
∂Yi

(
∂Yi

∂ ln P̃ji,k

)
w

+

(
∂Wi(.)
∂ ln w

)
P̃i

· d ln w
d ln P̃ji,k

=
∂Vi

∂Yi

(
∂Vi(.)

∂ ln P̃ji,k

(
∂Vi

∂Yi

)−1

+

(
∂Yi

∂ ln P̃ji,k

)
w

+

(
∂Wi(.)
∂ ln w

)
P̃i

· d ln w
d ln P̃ji,k

(
∂Vi

∂Yi

)−1
)

= 0 (29)

To elaborate, the first two terms in Equation 29 correspond to the change in Wi holding w fixed. The

last term accounts for general equilibrium wage effects. In particular, (∂Wi(.)/∂ ln w)P̃i
corresponds

to the pure effect of wages, w, on welfare, Wi, holding all elements of P̃i and t−i fixed. The term

d ln w/d ln P̃ji,k corresponds to the change in w in response to a change in P̃ji,k (holding t−i and P̃i −{
P̃ji,k
}

fixed). Following Lemma 3, d ln w/d ln P̃ji,k is pinned down by the balanced trade condition.

The first term in Equation 29, which reflects the direct effect of prices on welfare, can be character-

ized using Roy’s identity. Specifically noting that Vi(.) ≡ Vi(Yi, P̃i), the optimal consumption choice

entails that

[Roy’s identity]
(

∂Vi(.)
∂Yi

)−1 ∂Vi(.)
∂ ln P̃ji,k

= −P̃ji,kQji,k. (30)

The second term in Equation 29, which encompasses income effects holding w fixed, can be deter-

mined by taking a partial derivative w.r.t. to the balanced budget condition, which can be expressed

as follows given that tni,g = P̃ni,g − Pni,g:

Yi = wiLi + ∑
n,i,

K

∑
g=1

[(
P̃ni,g − Pni,g

)
Qni,g

]
. (31)
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Observe that P̃in,g ∈ P̃i for all ni, g and that Pni,g = τ̄ni,g ān,gwn. Taking the partial derivative of Equation

31 w.r.t. P̃ji,k yields the following expression(
∂Yi(P̃i, t−i; w)

∂ ln P̃ji,k

)
w

= P̃ji,kQji,k + ∑
n,i

∑
g

[(
P̃ni,g − Pni,g

)
Qni,g

(
∂ ln Qni,g(.)

∂ ln P̃ji,k

)
w

]
, (32)

where the optimality of final demand entails that adjustments to demand are regulated by the Mar-

shallian demand elasticities:(
∂ ln Qni,g(.)

∂ ln P̃ji,,k

)
w

=
∂ lnQni,g(Yi, P̃i)

∂ ln P̃ji,k
+

∂ lnQni,g(Yi, P̃i)

∂ ln Yi

(
∂Yi(.)

∂ ln P̃ji,k

)
w

= ε
(ji,k)
ni,g + ηni,g

(
∂Yi(.)

∂ ln P̃ji,k

)
w

.

Plug the above expression back into Equation 32 and use the inner product “·” and vector calculus to

economize on the notation. We can, thus, express the direct income effects (featured in Equation 29)

as follows(
∂Yi(P̃i, t−i; w)

∂ ln P̃ji,k

)
w

= P̃ji,kQji,k + ∑
n,i

[(
P̃ni − Pni

)
·Qni �

(
ε
(ji,k)
ni + ηni

(
∂Yi(.)

∂ ln P̃ji,k

)
w

)]
,

where ε
(ji,k)
ni ≡

[
ε
(ji,k)
ni,g

]
g

is a K × 1 vector denoting the price elasticity of all imported varieties from

origin n w.r.t. P̃ji,k, ηni ≡
[
ηni,g

]
g is a K × 1 vector denoting the income elasticity of demand facing

these varieties. The operator � represents element-wise multiplication: a� b = [aibi]i.

Assign wage in country j as the numeraire: wj = 1. The last term in Equation 29 can be decom-

posed as

∂Wi(.)
∂ ln w

d ln w
d ln P̃ji,k

(
∂Vi

∂Yi

)−1

=

[(
∂Wi

∂ ln wi

)
w−i

d ln wi

d ln P̃ji,k
+

(
∂Wi

∂ ln w−i

)
wi

· d ln w−i

d ln P̃ji,k

](
∂Vi

∂Yi

)−1

Following the discussion in Appendix B, after assigning wj as the numeriare,
(

∂Wi
∂ ln w−i

)
wi
· d ln w−i

d ln P̃ji,k
= 0

to a first-order approximation if rni,k/rii,k ≈ 0 for n , i. So, by choice of numeraire, we can treat w̄−i

as fixed hereafter—see Appendix D for a derivation of optimal tariffs without this approximation.

Importantly, though, the choice of P̃ji,k has a non-trivial effect on the ratio of wi relative to w−i. This

effect, which is represented by d ln wi/d ln P̃ji,k, can be evaluated by applying the Implicit Function

Theorem to the balanced trade condition in country i,

Ti(P̃i, t−i; wi, w−i) ≡∑
n,i

[Pni ·Qni − Pin ·Qin]

=∑
k

∑
n,i

[
τ̄ni,k ān,kwnQni,k(P̃i, t−i; w)− τ̄in,k āi,kwiQin,k(P̃i, t−i; w)

]
= 0
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while treating w−i = w̄−i as given. This step yields the following equation

(
d ln wi

d ln P̃ji,k

)
w̄−i

=
−
(

∂Ti(P̃i ,t−i ;wi ,w̄−i)
∂ ln P̃ji,k

)
w(

∂Ti(P̃i ,t−i ;wi ,w̄−i)
∂ ln wi

)
w̄−i

=

−∑n,i

[
Pni ·

(
∂ ln Qni(.)

∂ ln P̃ji,k

)
w

]
(

∂Ti(P̃i ,t−i ;wi ,w̄−i)
∂ ln wi

)
w̄−i

. (33)

The second line follows from the fact that
(

∂ ln Qin,g(.)
∂ ln P̃ji,k

)
w

= 0 if n , i. That is, if we fix the vector of

wages, w, the choice of P̃ji,k has no effect on the demand schedule in the rest of the world. The only

way the effect of P̃ji,k travels to foreign markets is through its effect on w. Define the importer-wide

term,

τ̄i ≡
∂Wi(.)/∂ ln wi

∂Vi(.)/∂Yi

(∂Ti(.)/∂ ln wi)w̄−i

,

and note that τ̄i does not feature an industry-specific subscript. Using Equation 33 and the definition
for τ̄i, the last term in F.O.C. (Equation 29) becomes

(
∂Wi

∂ ln w

)
P̃i

· d ln w
d ln P̃ji,k

(
∂Vi
∂Yi

)−1
=

∂Wi
∂ ln wi

d ln wi

d ln P̃ji,k

(
∂Vi
∂Yi

)−1
= −τ̄i

(
∂Ti(.)

∂ ln P̃ji,k

)
w

= −τ̄i ∑
n,i

[
Pij ·

(
∂ ln Qij(.)

∂ ln P̃ji,k

)
w

]
= −τ̄i ∑

n,i

[
Pni ·Qni �

(
ε
(ji,k)
−ii + η−ii

(
∂Yi(.)

∂ ln P̃ji,k

)
w

)]
.

(34)

Plugging Equations 32, 30, and 34 back into the F.O.C. specified by Equation 29), yields the following

necessary condition for optimality:

∑
n,i

[(
P̃ni,g − (1 + τ̄i)Pni,g

)
·Qni � ε

(ji,k)
ni

]
+ ∑

n,i

[(
P̃ni,g − (1 + τ̄i)Pni,g

)
·Qni � ηni

] ( ∂Yi

∂ ln P̃ji,k

)
w

= 0

Given that demand is homogeneous of degree zero, it is immediate that the solution to the above

system should satisfy

∑
n,i

[(
P̃ni,g − (1 + τ̄i)Pni,g

)
·Qni � ε

(ji,k)
ni

]
= 0 ∀ji, k , ii, k. (35)

To solve the above system of equations, we can be stated in matrix form as follows (refer to Section 2

for the definition of eni,k)


e1i,1ε

(1i,1)
1i,1 · · · eNi,ε

(1i,1)
Ni,1 · · · e1i,Kε

(1i,1)
1i,K · · · eNi,Kε

(1i,1)
Ni,K

...
. . . . . . . . .

...

e1i,1ε
(Ni,K)
1i,1 · · · eNi,ε

(Ni,K)
Ni,1 · · · e1i,Kε

(Ni,K)
1i,K · · · eNi,Kε

(Ni,K)
Ni,K


︸                                                                                              ︷︷                                                                                              ︸

Ẽi


1− (1 + τ̄i)

P1i,1
P̃∗1i,k

...

1− (1 + τ̄i)
PNi,K
P̃∗Ni,K

 = 0.

The final step is to show that the unique solution to the above system is the trivial solution. The

following lemma establishes this property.
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Lemma 4. Matrix Ei is non-singular, so that EiX(N−1)K×1 = 0⇐⇒ X(N−1)K×1 = 0.

Proof. Following Proposition 2.E.2 in Mas-Colell et al. (1995) the Marshallian demand elasticities sat-

isfies the Cournot aggression. So, observing that ε
(ji,k)
ji,k < −1 and ε

(ni,g)
ji,k > 0, we can deduce the

following:

[Cournot aggregation] eji,k + ∑
n

∑
g

eni,gε
(ji,k)
ni,g = 0 =⇒ | eji,kε

(ji,k)
ji,k |= eji,k + ∑

n,i
∑
g
| eni,gε

(ji,k)
ni,g |

Since, by definition, there exists a ji, k for which eji,k > 0, the matrix Ei is strictly diagonally dominant,

i.e.,

∃ jk :
∣∣∣[Ei]jk,jk

∣∣∣ > ∑
ng∈N×K−{jk}

∣∣∣[Ei]jk,ng

∣∣∣
The Lèvy-Desplanques Theorem (Horn and Johnson (2012)), therefore, ensures that Ei is non-singular.

The non-singularity of Ei trivially implies that the unique solution to the system, EiX(N−1)K×1 = 0, is

the trivial solution, X(N−1)K×1 = 0. �

Following Lemma 4, the unique solution that satisfies the system of F.O.C.s associated with P̃1 is

1− (1 + τ̄i)
Pji,1

P̃∗ji,k
= 0 for all j , i and k. Noting from Lemma 3 that P̃∗ji,k/Pji,k = 1 + t∗ji,k, the unique

solution to the system of F.O.C.’s characterizing the optimal tariff problem (P1) is a uniform tariff

equal to τ̄i:

t∗ji,k = t∗i = τ̄i, ∀j , i, k. (36)

Step #4: Characterizing τ̄i

The final step in characterizing the optimal tariff is to determine, τ̄i, which recall is defined as

τ̄i ≡
(∂Wi(.)/∂ ln wi)w̄−i

∂Vi(.)/∂Yi

(∂Ti(.)/∂ ln wi)w̄−i

∼
(∂Wi(.)/∂ ln wi)P̃i ,t−i ,w̄−i

∂Vi(.)/∂Yi

(∂Ti(.)/∂ ln wi)P̃i ,t−i ,w̄−i

. (37)

The numerator in Equation 37 can characterized along the following steps

(∂Wi(.)/∂ ln wi)P̃i ,t−i ,w̄−i

∂Vi(.)/∂Yi
=

∂Vi(.)/∂Yi
∂Vi(.)/∂Yi

(
∂Yi

∂ ln wi

)
P̃i ,t−i ,w̄−i

= wiLi −
(

∂

∂ ln wi
∑
n

(
P̃ni − Pni

)
·Qni

)
P̃i ,t−i ,w̄−i

= wiLi − Pii ·Qii + ∑
j,i

[(
P̃ji − Pji

)
·
(

∂Qji

∂ ln wi

)
P̃i ,t−i ,w̄−i

]
= wiLi − Pii ·Qii + τ̄iP−ii ·

(
∂Q−ii
∂ ln wi

)
P̃i ,t−i ,w̄−i

,

where recall that “·” denotes the inner product, with Pji ≡
{

P̃ji,k
}

k and P−ii ≡
{

Pji
}

j,i. The last line in

the above equation follows from the fact that the optimal tariff choice entails that P̃−ii − P−ii = τ̄iP−ii.

Likewise, the denominator in Equation 38 can be specified as follows:

(
∂Ti(.)
∂ ln wi

)
P̃i ,t−i ,w̄−i

=

(
∂

∂ ln wi
∑
j,i

[
P̃ji ·Qji − P̃ij ·Qij

])
P̃i ,t−i ,w̄−i

= P−ii ·
(

∂Q−ii

∂ ln wi

)
P̃i ,t−i ,w̄−i

−∑
j,i

[(
∂Pij ·Qij

∂ ln wi

)
P̃i ,t−i ,w̄−i

]
.
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Plugging the above expressions back into Equation 38 yields the following:

τ̄i =
wiLi − Pii ·Qii + τ̄iP−ii ·

(
∂Q−ii
∂ ln wi

)
P̃i ,t−i

P−ii

(
∂Q−ii
∂ ln wi

)
P̃i ,t−i
−∑j,i

[
Pij �Qij ·

(
∂ ln Pij�Qij

∂ ln wi

)
P̃i ,t−i ,w̄−i

] =
−1

∑j,i

[
Xij ·

(
∂ ln Pij�Qij

∂ ln wi

)
P̃i ,t−i ,w̄−i

] (38)

where Xij =
{

χij,k
}

j,k is a vector that denotes the importance of destination j , i in country i’s export.

In particular,

χij,k =
Pij,kQij,k

wiLi − Pii ·Qii
=

Pij,kQij,k

∑,i Pi ·Qi
=

Pij,kQij,k

∑,i ∑K
g=1 Pi,gQi,g

.

The final task that remains is to specify Xij ·
(

∂ ln Pij�Qij
∂ ln wi

)
P̃i ,t−i

, which can be done by appealing to the

Marshallian demand elasticities (as defined earlier under Definition A). In particular, invoking the

properties of the inner and element-wise vector products (· and �) implies that

Xij ·
(

∂ ln Pij �Qij

∂ ln wi

)
P̃i ,t−i ,w̄−i

=
K

∑
k=1

[
χij,k

(
∂ ln Pij,kQij,k

∂ ln wi

)
P̃i ,t−i ,w̄−i

]

=
K

∑
k=1

χij,k

∂ ln Pij,k

∂ ln wi
+

K

∑
g=1

ε
(ij,g)
ij,k

(
∂ ln P̃ij,g

∂ ln wi

)
t−i

+ ηij,k

(
∂ ln Yj

∂ ln wi

)
P̃i ,t−i ,w̄−i

 .

where (in the second line) ∂ ln Pij,k
∂ ln wi

=
(

∂ ln P̃ij,k
∂ ln wi

)
t−i

= 1, given that P̃ij,k = (1 + tij,k)Pij,k = (1 +

tij,k)τ̄ij,k āi,kwi. The term
(

∂ ln Yj
∂ ln wi

)
P̃i ,t−i ,w̄−i

can be characterized by applying the Implicit Function Theo-

rem to, Yj = wjLj + ∑n,j,k
(
tnj,kPnj,kQnj,k

)
, which yields

(
∂ ln Yj

∂ ln wi

)
P̃i ,t−i ,w̄−i

=
∑n,j ∑g

[
tnj,gPnj,gQnj,g

(
1n=i + ∑k ε

(ij,k)
nj,g

)]
Yj −∑k ∑n

(
tnj,kPnj,kQnj,kηnj,k

)
=−

1
1+tj

∑g ∑k Pjj,gQjj,gε
(ij,k)
jj,g

∑k ∑n
(

Pnj,kQnj,k
) =

t̄j

1 + t̄jejj
∑
g

∑
k

(
ejj,gε

(ij,k)
jj,g

)
. (39)

The second line of the above derivation follows from two observations: (1) country j’s optimal tariff

choice entails that tnj,g = tj, and (2) since the Marshallian demand is homogeneous of degree zero,

the following two properties ought to hold:

∑
n,j

∑
g

[
(1 + tnj,g)Pnj,gQnj,g

(
1n,g=i,k + ε

(ij,k)
nj,g

)]
= −∑

g,k

[
Pjj,gQjj,gε

(ij,k)
jj,g

]
[Cournot aggregation]

∑
n

∑
g

[
(1 + tnj,g)Pnj,gQnj,gηnj,g

]
= Yj [Pigou aggregation]

Plugging Expression 39 back into Equation 38 and assuming homothetic preferences (i.e., ηij,k = 1 for

all ij, k), we can produce the following expression for τ̄i:

t∗i = τ̄i =
−1

∑j,i

[
χ∗ij ·

(
IK + E∗ij +

t̄j
1+t̄jejj

Ẽ(ij)∗
jj

)
1K

] , (40)
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where Eij ∼ E(ij)
ij ≡

[
ε
(ij,g)
ij,k

]
k,g

and Ẽ(ij)
jj ≡

[
ejj,kε

(ij,g)
jj,k

]
k,g

are K × K matrixes of actual and expenditure-

adjusted demand elasticities (as defined in Section 2). The superscript “∗” indicates that a variable is

evaluated in the (counterfactual) equilibrium in which t∗i is applied.

A.1 The Cobb-Douglas-CES Case.

Suppose preferences have a Cobb-Douglas-CES parameterization:

Ui(Q1i, ..., QNi) =
K

∏
k=1

(
N

∑
j=1

ς̄ ji,kQρk
ji,k

) ei,k
ρk

;

where ς ji,k ∈ R+ is a constant taste shifter. Consistent with our earlier definition in Section 2, ei,k

denotes the expenditure share on industry k. Also, let λ denote the within-industry expenditure share

as defined in Section 2:

λji,k =
P̃ji,kQji,k

∑N
n=1 P̃ni,kQni,k

=
P̃ji,kQji,k

ei,kYi
=

eji,k

ei,k
.

The Cobb-Douglas-CES demand structure implies that

ε ij,k = −1− εk(1− λij,k); ε
(ij,k)
nj,k = εkλij,k; ε

(nj,g)
ij,k = 0.

where εk ≡ ρk
1−ρk

. Plugging these elasticity values into Equation 40, yields the following equation for

t∗i = τ̄i:

t∗i =
1

∑k ∑j,i

(
χ∗ij,kεk

[
(1− λ∗ij,k) +

tjλ
∗
jj,kej,k

1+tjλ
∗
jj

λ∗ij,k

]) =
1

∑k ∑j,i

(
χ∗ij,kεk

[
1−

(
1−

tjλ
∗
jj,kej,k

1+tjλ
∗
jj

)
λ∗ij,k

]) ,

where λjj = ∑k λjj,kej,k denotes destination j’s overall expenditure share on domestic varieties.

B Welfare Approximation

Formulate all equilibrium variables as a function of P̃i and w, as described in Appendix A. The feasible

vector of wages, w, solves the following system of labor market clearing conditions:
F1(P̃i, t−i; w) ≡ w1 L̄1 −∑N

`=1
[
P1`(w1) ·Q1`(P̃i, t−i; w)

]
= 0

...

FN(P̃i, t−i; w) ≡ wN L̄N −∑N
`=1
[
PN`(wN) ·QN`(P̃i, t−i; w)

]
= 0

(41)

Also, note that by Walras’ law one equation is redundant so we can assign one element of w as the

numeraire:
N

∑
n=1

Fn(P̃i, t−i; w) = 0. [Walras’ Law]
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To characterize the term dw/dP̃ji,k in the F.O.C., we can apply the Implicit Function Theorem to the

above system as follows (P̃−ji,k ≡ P̃i −
{

P̃ji,k
}

):

d ln w
d ln P̃ji,k

= −
(

∂F
∂ ln w

)−1

P̃i ,t−i

(
∂F

∂ ln P̃ji,k

)
P̃−ji,k ,t−i ,w

.

Taking partial derivatives from System 41 w.r.t. w holding P̃i fixed, yields

(
∂F

∂ ln w

)
P̃i ,t−i

=


∂F1

∂ ln w1

∂F1
∂ ln w2

· · · ∂F1
∂ ln wN

∂F2
∂ ln w1

∂F2
∂ ln w2

· · · ∂F2
∂ ln wN

...
. . . . . .

...
∂FN

∂ ln w1

∂FN
∂ ln w2

· · · ∂FN
∂ ln wN

 =


1−∑k,g r11,k

(
η11,k + ε

(11,g)
11,k

)
· · · −∑k,g r1N,k

(
η1N,k + ε

(NN,g)
1N,k

)
1−∑k,g r21,k

(
η21,k + ε

(11,g)
21,k

)
· · · −∑k,g r2N,k

(
η2N,k + ε

(NN,g)
2N,k

)
...

. . .
...

1−∑k,g rN1,k

(
ηN1,k + ε

(11,g)
N1,k

)
· · · −∑k,g rNN,k

(
ηNN,k + ε

(NN,g)
NN,k

)

 .

Define Ψni ≡ ∑k [rni,k (1 + εk(λii,k − 1n=i))]. Under Cobb-Douglas-CES preferences, the above matrix
assumes the following parameterization:

(
∂F

∂ ln w

)
P̃i ,t−i

= I−


Ψ11 Ψ12 · · · Ψ1N

Ψ21 Ψ22 · · · Ψ2N
...

. . . . . .
...

ΨN1 ΨN2 · · · ΨNN

 = I−


∑k [r11,k (1 + εk[λ11,k − 1])] · · · ∑k [r1N,k (1 + εkλNN,k)]

...
. . .

...

∑k [rN1,k (1 + εkλ11,k)] · · · ∑k [rNN,kεk(1 + εk[λNN,k − 1])]


︸                                                                                                     ︷︷                                                                                                     ︸

Λ

Noting that rij,kεk(1− λjj,k)� 1 if j , i, we can produce the following approximation:44

(
∂F

∂ ln w

)−1

P̃i ,t−i

= (I−Λ)−1 = I + Λ + Λ2 + · · · ≈

I +
∞

∑
β=1

diag
(

Ψβ
nn

)
n
= diag

(
[1−Ψnn]

−1
)

n
.

The above equation indicates that
(

∂F
∂ ln w

)
P̃i ,t−i

is nearly diagonal with smaller-than-unity diagonal

elements. Henceforth, assign wj as the numeraire. The derivative of F−j (i.e., F excluding row j) w.r.t.

P̃ji,k holding w and P̃−ji,k ≡ P̃i −
{

P̃ji,k
}

fixed is given by:

(
∂F−j

∂ ln P̃ji,k

)
P̃−ji,k ,t−i ,w

=



∂F1(.)
∂ ln P̃ji,k
∂F2(.)

∂ ln P̃ji,k
...

∂FN(.)
∂ ln P̃ji,k

 =


∑g r1i,gε

(ji,k)
1i,g

∑g r2i,gε
(ji,k)
2i,g

...

∑g rNi,gε
(ji,k)
Ni,g

 Cobb-Douglas-CES
−−−−−−−−−−−−−→

=



r1i
...

rj−1i

rj+1i
...

rNi


λji,kεk

44The last line follows from the fact that for a ∈ R+, ∑∞
β=1 (−a)β = − a

1+a . Similarly, for a ∈ (0, 1), ∑∞
β=1 aβ =

a
1+a .
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Given that (i) λji,krni ≈ 0 if n and j , i, and (ii)
(

∂F
∂ ln w

)
P̃i ,t−i

is nearly diagonal with smaller-than-unity

diagonal elements, it immediately follows that

d ln w−i

d ln P̃ji,k
=

(
∂F−j

∂ ln w−i

)−1

P̃i ,t−i

(
∂F−j

∂ ln P̃ji,k

)
P̃−ji,k ,t−i ,w

≈



r1i
1−Ψ11

...
rj−1i

1−Ψj−1j−1
rj+1i

1−Ψj+1j+1
...

rNi
1−ΨNN


λji,kεk,

where w−i denotes the wage vector w excluding element i (and also element j which is assigned

as the numeraire). Next, we can show that ∂Wi
∂ ln w−i

· d ln w−i
ln P̃ji,k

= ∑n,i Pni ·Qni
d ln wn
ln P̃ji,k

and ∂Wi
∂ ln wi

d ln wi
ln P̃ji,k

=

∑n,i P̃ni ·Qni
d ln wi
ln P̃ji,k

(refer to Appendix A for details on the latter). Hence, assuming a uniform tariff,

tni,k = t̄i, per optimality conditions, we can conclude that

∂Wi
∂ ln w−i

· d ln w−i
ln P̃ji,k

∂Wi
∂ ln wi

dln wi
d ln P̃ji,k

≈
∑n,i ∑k

[
λni,kei,k
1+tni,k

rni
1−Ψnn

]
(1− λii)rii/(1−Ψii)

=
1−Ψii

1−Ψ−ii

r̄−ii

rii

1
1 + t̄i

.

where 1 − Ψ−ii ≡
∑n,i

[
λni

rni
r̄−ii

1
1−Ψnn

]
1−λii

and r̄−ii = ∑n,i (λnirni) /(1 − λii), with the latter denoting the

average contribution of market i to a foreign country’s total revenue noting that ∑n,i λni,
1−λii

= 1. It is

straightforward to verify that 1
1+t̄i

r̄−ii
rii
≈ 0 based on actual data. For the median country in the 2014

WIOD sample, r̄−ii/rii ≈ 0.001.

C Accounting for Political Economy Weights

In this appendix, I demonstrate how the methodology developed in this paper can accommodate

political economy pressures. To this end, consider a variation of the multi-industry Krugman model

from Section 3.1, in which preferences have a Cobb-Douglas-CES parametrization as in Equation 10.

Following Ossa (2014), suppose that policy makers maximize a politically-weighted welfare function

that internalizes political economy pressures or lobbying efforts by industries (à la Grossman and

Helpman (1994)). In particular, the government in country i maximizes

Wi = Wi =
Yi

P̃i
+ ∑

k,j
(θi,k − 1)

µkwiLi,k

P̃i
= ∑

k

[
θi,k

µkwiLi,k

P̃i
+ ∑

j

tji,kPji,kQji,k

P̃i

]
.

The weight θi,k corresponds to the political economy weight assigned to industry k and P̃i is the Cobb-

Douglas-CES consumer price index, P̃i = ∏k

(
∑j P̃−εk

ji,k

)−ei,k/εk
. Also, suppose that θi,k’s are normalized

such that ∑k (θi,k) /K =1. It is immediate from the proof presented in Online Appendix A, that country
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i’s unilaterally optimal tariff schedule is given by

1 + t∗i,k =

1 +
1

∑g ∑j,i

(
χ∗ij,gεg

[
1− (1− δj,g)λij,g

])
 1 + εkλ∗ii,k

1 + µ̄Pi
µPi,k

εkλ∗ii,k

,

where µPi,k and µ̄Pi are political economy-weighted industry-level and average markups:

µPi,k = θi,kµk, µ̄Pi =
∑K

k=1 ∑N
j=1 θi,kµkPij,kQij,k

∑K
k=1 ∑N

j=1 Pij,kQij,k
. (42)

Without political economy considerations (i.e., θi,k = 1) we are back to the basic Krugman model, since

µPi,k = µk. To evaluate the politically-adjusted optimal tariff formula, we need to estimate the political

economy weights using data on non-cooperative tariffs à la Ossa (2014). After estimating the θi,k’s,

we can simply compute the political economy-adjusted Nash tariffs and the welfare losses associated

with them, using the following variation of Proposition 4. Aside from markups requiring adjustment

to account for political pressures, the following system is identical to that specified under Proposition

4. It involves NK + 2N independent equations and unknowns.

Proposition 7. If preferences are described by functional form 10 and {θi,k} describes the political economy

weights in each country, then the Nash tariffs, {t∗i,k}, and their effect on wages, {ŵi}, and total income, {Ŷi},
can be solved as a solution to the following system:

1 + t∗i,k =

[
1 + 1

∑j,i ∑k

(
χ∗ij,kεk

[
1−(1−δ∗j,k)λ̂ij,kλij,k

])
]

1+εkλ̂ii,kλii,k

1+
µ̄Pi

θi,kµk
εkλ̂ii,kλii,k

[optimal tariff]

χ∗ij,k =

1
1+t∗j

λ̂ij,kλij,kej,kYjŶj

∑,i ∑g
1

1+t∗
λ̂i,kλi,ke,kYŶ

; δ∗j,k ≡
t∗j,kλ̂jj,kλjj,kej,k

1+∑k t∗j,kλ̂jj,kλjj,kej,k
[export shares and δ]

λ̂ji,k =
[( ̂1+tji,k)ŵj]

−εk

∑N
n=1

(
λni,k[( ̂1+tni,k)ŵn]

−εk
) ; ̂1 + tji,k =

1+t∗i,k
1+t̄ji,k

[expenditure shares]

ŵiwiLi = ∑k ∑j

[
1

µk(1+t∗j,k)
λ̂ij,kλij,kej,kŶjYj

]
[wage income]

µ̄Pi = ∑k ∑j

[
θi,k

(1+t∗j,k)
λ̂ij,kλij,kej,kŶjYj

]
/ŵiwiLi [average markup]

ŶiYi = ˆ̄µiµ̄iŵiwiLi + ∑k ∑j,i

(
t∗i,k

1+t∗i,k
λ̂ji,kλji,kei,kŶiYi

)
[income = sales + tax revenue]

,

Moreover, solving the above system requires information on only (i) observable shares, λji,k and ei,k, (ii) national

output, Yi = wiLi; (iii) industry-level trade elasticity and markup levels, εk, and µk; and (iii) political economy

weights, θi,k.

Capitalizing on the above results, let me discuss how political economy considerations may alter

the estimated cost of a tariff war. Recall that in the absence of political economy considerations, Nash

tariffs will restrict trade relatively more in high-µ industries. As such, Nash tariffs shrink output in

high-µ industries below their already sub-optimal level, dragging the global economy further away

from its efficiency frontier. Now, suppose countries assign a greater political economy weight to high-
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µ industries, which amounts to

∂θi,k/∂µk > 0.

In that case, political economy considerations will restrict trade and output in high-µ industries in

excess of what is implied by the non-political baseline. Politically-adjusted Nash tariffs will be, there-

fore, more distortionary than the non-political Nash tariffs. The cost of a global tariff war would be

also greater, as a result. To the contrary, suppose countries assign a lower political economy weight to

high-µ industries, which amounts to

∂θi,k/∂µk < 0.

In this case, political economy considerations countervail the profit-shifting incentives that motivate

trade restriction in high-µ industries. As a result, politically-adjusted Nash tariffs will detrimental to

allocative efficiency than non-political Nash tariffs. Accordingly, the cost of a global tariff war would

be smaller under political economy pressures. Presumably, in practice, high-profit-margin industries

are better positioned to lobby for protection. So, it is highly possible that we are dealing with the

former case. If so, my main analysis provides a lower bound for the cost of a full-fledged global tariff

war.

D Computing Nash Tariffs without Approximation

This appendix derives sufficient statistics formulas for Nash tariffs without the approximation speci-

fied by Equation 9. First, I appeal to the result established by Beshkar and Lashkaripour (2020), which

states that the country i’s optimal (or Nash) tariff is uniform across industries, i.e., t∗ji,k = t∗ji,g for all j, k,

and g. This result reduces the task of solving the Nash tariffs from a problem involving N(N− 1)K tar-

iffs rates to one that involves only (N− 1)N tariff rates. As before, we can formulate the optimal tariff

problem as one where the government in country i chooses an N × 1 vector of (origin-specific) prices

in the local economy, P̃i = {P̃ji}, to maximize welfare given t−i and subject to feasibility constraints:

max
P̃i

Wi(P̃i, t−i; w) ≡ Vi(Yi(P̃i, t−i; w), P̃i) s.t. (P̃i, t−i; w) ∈ F (P1′)

Analogous to our previous definition, the feasible set F encompasses any triplet (P̃i, t−i; w) such that

given P̃i and t−i, the wage vector w satisfies the labor market clearing condition in every country:
F1(P̃i, t−i; w) ≡ w1 L̄1 −∑N

`=1
[
P1`(w1) ·Q1`(P̃i, t−i; w)

]
= 0

...

FN(P̃i, t−i; w) ≡ wN L̄N −∑N
`=1
[
PN`(wN) ·QN`(P̃i, t−i; w)

]
= 0

(LMC)

When adopting the above formulation, one may be concerned that producer prices, Pji,k’s, are

industry-specific. So, under a uniform (origin-specific) optimal price choice, the ratio P̃ji/Pji.k will

not be uniform and neither will the implied optimal tariff. But this not an issue if we invoke the
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isomorphism between quality and productivity. Specifically, we can make Pji,k = Pji uniform across

industries by adjusting the ji-specific demand shifter (i.e., quality) in the utility function in a way

that preserves the equilibrium. Keeping this technical trick in mind, we can proceed to solving Prob-

lem (P1’). Capitalizing on the calculations proceeding Equation 35 in Appendix A, we can show that

Problem (P1’) is governed by the following F.O.C. w.r.t. P̃ji:

∑
n,i

[(
P̃ni − Pni

)
�Qni · ε

(ji,k)
ni

]
+

(
∂Wi

∂ ln w

)
P̃i

· d ln w
d ln P̃ji,k

= 0.

The “·” and “�” operators, as before, denote the inner and element-wise product of equally-sized

vectors: a · b = ∑i aibi and a � b = [aibi]i. The implicit assumption in the above formulation is

that cross-industry demand effects are zero due to the Cobb-Douglas assumption. By Walras’ we can

normalize on element of w to one. Designating wi as the normalize wage rate (i.e., wi = 1) and noting

that P̃ji/Pji = 1 + tji, the above equation reduces to

∑
n,i

[(
1− 1

1 + tni

)
P̃ni �Qni · ε

(ji,k)
ni

]
+

(
∂Wi

∂ ln w−i

)
P̃i

· d ln w−i

d ln P̃ji
= 0.

Based on the problem’s setup, it is immediate that
(

∂Wi
∂ ln wn

)
P̃i

= −P̃ni ·Qni. Plugging this value into

the above equation and rearranging yields the following optimality condition:

∑
n,i

∑
k

P̃ni,kQni,k

1− 1
1 + tni

1 +
1

ε
(ji,k)
ni,k

d ln wn

d ln P̃ji

 ε
(ji,k)
ni,k

 = 0

To economize on the notation, let ∆i
jn ≡ d ln wn/d ln P̃ji reflect the extent to which a tariff on origin j’s

goods affects origin n’s wage wn. Capitalizing on this choice of notation, the first-order condition with

respect to tji (or P̃ji) can be expressed as

∑
n,i

∑
k

eni,k

1− 1
1 + tni

1 +
∆jn

i

ε
(ji,k)
ni,k

 ε
(ji,k)
ni,k

 = 0.

Writing the above system in matrix algebra and inverting the resulting system yields the following

formula for unilaterally optimal response tariffs:[
1

1 + t∗ni

]
=
[(

∆i∗
jn + ε

(ji)∗
ni

)
· e∗ni

]−1

n,i,j,i

[
ε
(ji)∗
ni · e

∗
ni

]
n,i,j,i

1N−1. (43)

The invertibility of
[(

∆i
jn + ε

(ji)
ni

)
· eni

]
n,i,j,i

can be proven in manner akin to that presented under

Lemma 4 in Appendix A. To elaborate on the above formula, Equation 43 characterizes a vector of

optimal response tariffs or each country i as a function of observable expenditure shares, reduced-

form demand elasticities, and ∆i
jn’s. Next, I show that the matrix [∆i

jn]n,i,j,i can be also calculated as

a function of only observables and reduced-form demand elasticities. To this end, apply the Implicit

Function Theorem to the system of national labor market clearing conditions (LMC). Doing so as
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explained in Appendix B, delivers the following expression ∆i ≡
[
∆i

jn

]
n,i,j,i

∆i = −
(

∂F
∂ ln w−i

)−1

P̃i ,t−i

(
∂F

∂ ln P̃−ii

)
t−i ,w

= − (I−Λi)
−1
[
rni · ε

(ji)
ni

]
n,i,j,i

, (44)

where Λi has the following formulation under Cobb-Douglas-CES preferences (see Appendix B):

Λi =


∑k [r11,k (1 + εk[λ11,k − 1])] · · · ∑k [r1N,k (1 + εkλNN,k)]

...
. . .

...

∑k [rN1,k (1 + εkλ11,k)] · · · ∑k [rNN,kεk(1 + εk[λNN,k − 1])]

 .

Imposing the Cobb-Douglas-CES preferences characterized by Equation 10, the reduced-form demand

elasticities in Equations 43 and 44 are given by ε
(ji,k)
ni,k = −1{j = n} (εk + 1) + εkλji,k. Hence, Equa-

tions 43 and 44, together, provide a sufficient statistics characterization of Nash tariffs as a function of

reduced-form demand elasticities; observable expenditure shares; and observable revenue shares. So,

as in the baseline case, we can use the exact hat-algebra notation to jointly solve (a) the Nash tariffs

specified by Equation 43 and (b) the equilibrium conditions. Doing so involves solving the following

system features N(N − 1) + 2N independent equation and N(N − 1) + 2N independent unknowns,

namely, t∗ ≡ {t∗ji} , ŵ ≡ {ŵi}, and Ŷ ≡ {Ŷi}:

[
1

1+t∗ni

]
=
[(

∆i∗
jn + ε

(ji)∗
ni

)
· e∗ni

]−1

n,i,j,i

[
ε
(ji)∗
ni · e∗ni

]
n,i,j,i

1N−1

ε
(ji)∗
ni = −1{j = n} (ε + 1) + ε� λ̂ji � λji,

r∗ni =
ŶiYi

(1+t∗ni)ŵnwn Ln
λ̂ni � λni � ei, e∗ni = λ̂ni � λni � ei

∆i∗ = (I−Λi)
−1
[
r∗ni · ε

(ji)
ni

]
n,i,j,i

; Λi ≡
[
r∗nj · ε�

[
1 +

(
λ̂jj � λjj − 1(n=j)

)]]
n,i,j,i

λ̂ji,k =
[( ̂1+tji,k)ŵj]

−εk

∑N
n=1

(
λni,k[( ̂1+tni,k)ŵn]

−εk
) ; ̂1 + tji,k =

1+t∗ji
1+t̄ji,k

ŵiwiLi = ∑k ∑j

[
1

1+t∗ij
λ̂ij,kλij,kej,kŶjYj

]
ŶiYi = ŵiwiLi + ∑k ∑j,i

(
t∗ji

1+t∗ji
λ̂ji,kλji,kei,kŶiYi

)

.

To clarify the notation, λni = [λni,k]k, ei = [ei,k]k, and ε = [εk]k are K × 1 column vectors. Comput-

ing the Nash tariffs using the above system is more efficient than the standard iterative optimization

procedure, but more computationally involved than the baseline approach presented in Section 2. My

objective here is to compare my baseline results to the approximation-free results obtained from solv-

ing the above system of equations. Given this objective, I aggregate the 2014 WIOD sample into the

10 largest countries plus an aggregate of the rest of the world. By doing so, I am essentially focusing

on the set of countries for which my welfare approximation is most suspect.

The computed Nash tariffs under the approximation-free approach are displayed in Figure 6.

When interpreting this graph, note that in the Ricardian model, Nash tariffs are always uniform across

industries but may vary across exporters if a country trades excessively with another partner. If my as-

sumption that rji,k/rii,k ≈ 0 for j , i is credible, then the Nash tariffs should be approximately uniform
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Figure 6: Nash tariffs computed using the approximation-free formulas.
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Note: Each dot corresponds to the Nash tariff applied on an individual export partner. The tariff-imposing
countries reported on the x-axis are the largest countries in the 2014 WIOD sample, excluding EU members.

across the board. Based on Figure 6 this is indeed the case.

Next, I compare the welfare losses implied by the baseline approach to those implied by the

approximation-free approach. The comparison is displayed in Figure 7. Once again it is clear that

the two approaches deliver indistinguishable predictions. Albeit, with different degrees of compu-

tational efficiency: on my personal computer, for instance, the baseline approach produced output

more than 100-times faster than the approximation-free approach, which itself converged more than

15-times faster than standard optimization-based approach.

Before concluding this appendix, let me reflect more on the computational speed of the sufficient

statistics methodology relative to the standard iterative method. On the same computing device, my

proposed methodology reduces computation time from multiple hours or even days to a few seconds.

Moreover, based on my experience, when smaller countries are included in the analysis, the standard

methodology (based on the FMINCON solver in MATLAB) becomes increasingly sensitive to the choice

of initial values. My purposed methodology, however, is not susceptible to this problem as it does

not involve a numerical optimization and also imposes theory-driven uniformity constraints on Nash

tariffs. Finally, another word caution is that when I implemented the standard methodology using the

FMINCON solver in MATLAB, I obtained output that did not actually correspond to a global optimum

in some instances. I noticed this by cross-checking the output from FMINCON with that implied by my

analytic formulas and comparing the objective function’s values. This is not a criticism of the standard

iterative methodology per-se, but more so a word caution regarding the use of the FMINCON solver.
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Figure 7: % Loss in real GDP from a tariff war
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Baseline Approach

E List of Industries in Quantitative Analysis

Table 4 reports the list of industries in the quantitative analysis performed in Section 5. To elabo-

rate on this list, the WIOD reports trade and production data across 56 industries, of which 34 are

service-related. To estimate the industry-level trade elasticities, I group the WIOD industries into 16

industrial categories. For each industrial category, the trade elasticity is estimated using the Caliendo

and Parro (2015) methodology, with specific details provided in Online Appendix G. Unfortunately,

for the “Mining” and “Metal” industries, my adoption of Caliendo and Parro (2015) does not render

meaningful estimates for the trade elasticity. Presumably, this is due to the main exporters in these two

industries being WTO members in 2014, which leads to a lack of sufficient variation in discriminatory

tariffs. As such, I assign Caliendo and Parro’s (2015) estimated value to these two industries. I nor-

malize the trade elasticity in service-related industries to ε = 4, following the convention in Costinot

and Rodríguez-Clare (2014). My quantitative results are, however, not sensitive to this normalization

choice, as there is little-to-no foreign trade in service-related industries.
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Table 4: List of industries and estimated trade elasticities.

Number Description
trade elasticity

εk
std. err. N

1
Crop and animal production, hunting

0.69 0.12 11,440Forestry and logging
Fishing and aquaculture

2 Mining and Quarrying 13.53 3.67 ...
3 Food, Beverages and Tobacco 0.47 0.13 11,440
4 Textiles, Wearing Apparel and Leather 3.33 0.53 11,480
5 Wood and Products of Wood and Cork 5.73 0.93 11,326

6
Paper and Paper Products

8.50 1.52 11,440
Printing and Reproduction of Recorded Media

7 Coke, Refined Petroleum and Nuclear Fuel 14.94 2.05 8,798

8
Chemicals and Chemical Products

0.92 0.96 11,440
Basic Pharmaceutical Products

9 Rubber and Plastics 1.69 0.78 11,480
10 Other Non-Metallic Mineral 1.47 0.89 11,440

11
Basic Metals

3.28 1.23 ...
Fabricated Metal Products

12
Computer, Electronic and Optical Products

3.44 1.07 11,480
Electrical Equipment

13 Machinery and Equipment n.e.c 3.64 1.45 11,480

14
Motor Vehicles, Trailers and Semi-Trailers

1.38 0.46 11,480
Other Transport Equipment

15 Furniture; other Manufacturing 1.64 0.60 11,480

16
All Service-Related Industries

4 ... ...
(WIOD Industry No. 23-56)
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