The Multi-Industry Trade Model with IO Linkages

International Trade (PhD), Spring 2023

Ahmad Lashkaripour
Indiana University

Overview

- This lecture introduces inout-output (IO) linkages into the multi-industry trade model.
- For exposition, we abstract from scale economies (i.e., $\psi_{k}=0, \forall k$)
- Main implications
- IO linkages magnify the gains from trade
- IO linkages amplify the cost of distortive wedges (e.g., markups, tariffs)
- References:
- Costinot \& Rodriguez-Clare (2014, Section 3.4)
- Caliendo \& Parro (2014): application to NAFTA

Environment

- $i, n=1, \ldots, N$ countries supplying differentiated variaties
- $k=1, \ldots, K$ industries
- Perfect competition \longrightarrow no entry-driven scale economies
- Labor is the only primary factor of production.
- Country i is endowed with L_{i} (inelastically-supplied) units of labor.

Environment

- $i, n=1, \ldots, N$ countries supplying differentiated variaties
- $k=1, \ldots, K$ industries
- Perfect competition \longrightarrow no entry-driven scale economies
- Labor is the only primary factor of production.
- Country i is endowed with L_{i} (inelastically-supplied) units of labor.
- Every product variety can be used as either a final consumption good or an intermediate input good.

On Overview of the Product Space

- Product variaties are differentiated by country of origin à la Armington.
- Good in, k (origin $i \times$ destination $n \times$ industry k) can be used as a

1. final consumption good
2. intermediate input for production in various industries

On Overview of the Product Space

- Product variaties are differentiated by country of origin à la Armington.
- Good in, k (origin $i \times$ destination $n \times$ industry k) can be used as a

1. final consumption good
2. intermediate input for production in various industries

- Example: A good sold from Japan (i) to the US (n) in the auto-industry (k) can be used for private consumption or as an input in transportation services.

Armington Demand for Final Goods

The representative consumer in country i has a Cobb-Douglas-CES utility function over goods sourced from different origin countries:

$$
U_{i}\left(\mathbf{C}_{1 i}, \ldots, \mathbf{C}_{N i}\right)=\prod_{k=1}^{K}\left[\sum_{n=1}^{N} C_{n i, k}^{\frac{\sigma_{k}-1}{\sigma_{k}}}\right]^{\frac{\sigma_{k}}{\sigma_{k}-1} \beta_{i, k}}
$$

- ni,k indexes origin $n \times$ destination $i \times$ industry k
- $\sigma_{k} \geq 1$ is the inter-national elasticity of substitution.
- $\beta_{i, k}$ is country i 's (constant) share of final consumption on industry k goods.

Demand for Final Goods

- The representative consumer maximizes utility given prices (P) and net income (Y) :

$$
\begin{equation*}
\max _{\mathbf{C}_{i}} U_{i}\left(\mathbf{C}_{1 i}, \ldots, \mathbf{C}_{N i}\right) \quad \text { s.t. } \quad \sum_{k}^{K} \sum_{n=1}^{N} P_{n i, k} C_{n i, k} \leq Y_{i} \tag{CP}
\end{equation*}
$$

- The CES demand function implied by (CP):

$$
\underbrace{\lambda_{n i, k}^{e} \equiv \frac{P_{n i, k} C_{n i, k}}{\beta_{i, k} Y_{i}}}_{\text {expenditure share }}=\left(\frac{P_{n i, k}}{P_{i, k}^{e}}\right)^{1-\sigma_{k}}, \quad \text { where } \quad \underbrace{P_{i, k}^{e}=\left[\sum_{n=1}^{N} P_{n i, k}^{1-\sigma_{k}}\right]^{\frac{1}{1-\sigma_{k}}}}_{\text {CES price index }}
$$

Supply: Production Function

Production combines labor (L), and intermediate inputs for various industries $\left(I_{g}\right)$:

$$
Q_{i, k} \sim \sum_{n} \tau_{i n, k} Q_{i n, k}=\varphi_{i, k}\left(\frac{L_{i, k}}{1-\alpha_{i, k}}\right)^{1-\alpha_{i, k}} \prod_{g=1}^{K}\left(\frac{I_{i, g}}{\alpha_{i, g k}}\right)^{\alpha_{i, g k}}
$$

- $Q_{i n, k}=C_{i n, k}+l_{\text {in,k }} \quad$ (total output $=$ final goods + intermediate inputs)
- $I_{i, g}$ is a composite CES input consisting of industry g goods

$$
I_{i, g}=\left[I_{1 i, g}^{\frac{\tilde{\sigma} g-1}{\tilde{\sigma} g}}+\ldots+I_{N i, g}^{\frac{\tilde{\sigma} g-1}{\tilde{\sigma} g}}\right]^{\frac{\tilde{\sigma} g}{\tilde{\sigma} g-1}}
$$

- $\alpha_{i, k g}$ is the share of industry g inputs in production $\left(\alpha_{i, k} \equiv \sum_{g} \alpha_{i, g k}\right)$

Supply: Production Function

Production combines labor (L), and intermediate inputs for various industries (I_{g}):

$$
Q_{i, k} \sim \sum_{n} \tau_{i n, k} Q_{i n, k}=\varphi_{i, k}\left(\frac{L_{i, k}}{1-\alpha_{i, k}}\right)^{1-\alpha_{i, k}} \prod_{g=1}^{K}\left(\frac{I_{i, g}}{\alpha_{i, g k}}\right)^{\alpha_{i, g k}}
$$

- $Q_{i n, k}=C_{i n, k}+l_{\text {in,k }} \quad$ (total output $=$ final goods + intermediate inputs)
- $I_{i, g}$ is a composite CES input consisting of industry g goods
- $\alpha_{i, k g}$ is the share of industry g inputs in production $\left(\alpha_{i, k} \equiv \sum_{g} \alpha_{i, g k}\right)$

$$
\text { Key assumption: } \tilde{\sigma}_{k}=\sigma_{k} \longrightarrow P_{i, k}^{g}=P_{i, k}^{e}, \quad \lambda_{i n, k}^{g}=\lambda_{i n, k}^{e}
$$

Supply: Prices and Input Expenditure

- Perfect competition + cost minimization imply

$$
P_{i n, k}=\frac{\tau_{i n, k}}{\varphi_{i, k}} w_{i}^{1-\alpha_{i, k}} \prod_{g=1}^{K} P_{i, g}^{\alpha_{i, g k}}
$$

- Total expenditure on intermediate inputs from industry g

$$
E_{i, g}^{g} \equiv P_{i, g} I_{i, g}=\sum_{k=1}^{K} \alpha_{i, g k} R_{i, k}
$$

where $R_{i, k}$ is gross revenue collected by origin i-industry k :

$$
R_{i, k}=\sum_{n=1}^{N} P_{i n, k} Q_{i n, k} \sim P_{i i, k} Q_{i, k}
$$

A Summary of Aggregate Demand and Supply

- Share of expenditure on variety in, k (final + intermediate)

$$
\lambda_{i n, k}=\frac{P_{i n, k}^{1-\sigma_{k}}}{\sum_{j=1}^{N} P_{j n, k}^{1-\sigma_{k}}}
$$

A Summary of Aggregate Demand and Supply

- Share of expenditure on variety in, k (final + intermediate)

$$
\lambda_{i n, k}=\frac{P_{i n, k}^{1-\sigma_{k}}}{\sum_{j=1}^{N} P_{j n, k}^{1-\sigma_{k}}} \sim \frac{P_{i n, k}^{-\epsilon_{k}}}{\sum_{j=1}^{N} P_{j n, k}^{-\epsilon_{k}}}
$$

A Summary of Aggregate Demand and Supply

- Share of expenditure on variety in, k (final + intermediate)

$$
\lambda_{i n, k}=\frac{P_{i n, k}^{1-\sigma_{k}}}{\sum_{j=1}^{N} P_{j n, k}^{1-\sigma_{k}}} \sim \frac{P_{i n, k}^{-\epsilon_{k}}}{\sum_{j=1}^{N} P_{j n, k}^{-\epsilon_{k}}}
$$

- Country i's gross revenue from industry k sales:

$$
R_{i, k}=\sum_{n=1}^{N} \lambda_{i n, k} E_{n, k}
$$

- Country n's goiss expenditure on industry k goods

$$
E_{n, k}=\underbrace{\beta_{n, k} Y_{n}}_{\text {final goods }}+E_{n, k}^{\mathscr{Q}}
$$

A Summary of Aggregate Demand and Supply

- Share of expenditure on variety in, k (final + intermediate)

$$
\lambda_{i n, k}=\frac{P_{i n, k}^{1-\sigma_{k}}}{\sum_{j=1}^{N} P_{j n, k}^{1-\sigma_{k}}} \sim \frac{P_{i n, k}^{-\epsilon_{k}}}{\sum_{j=1}^{N} P_{j n, k}^{-\epsilon_{k}}}
$$

- Country i's gross revenue from industry k sales:

$$
R_{i, k}=\sum_{n=1}^{N} \lambda_{i n, k} E_{n, k}
$$

- Country n's goiss expenditure on industry k goods

$$
E_{n, k}=\beta_{n, k} w_{n} L_{n}+\sum_{g=1}^{K}\left(\alpha_{n, k g} R_{n, g}\right)
$$

General Equilibrium

For a given choice of parameters, equilibrium consists of price indexes, $\mathbf{P} \equiv\left\{P_{i, k}\right\}$, wage rates, $\mathbf{w} \equiv\left\{w_{i}\right\}$, and industry-level gross expenditure and sales, $\left\{E_{i, k}, R_{i, k}\right\}_{i, k}$, such that

$$
\begin{cases}P_{i, k}=\sum_{n=1}^{N}\left[P_{n i, k}\left(w_{n}, \mathbf{P}_{n}\right)^{-\epsilon_{k}}\right]^{-\frac{1}{\epsilon_{k}}} & (\forall i, k) \\ R_{i, k}=\sum_{n=1}^{N} \lambda_{i n, k}(\mathbf{w}, \mathbf{P}) E_{n, k} & (\forall i, k) \\ E_{i, k}=\beta_{i, k} w_{i} L_{i}+\sum_{g=1}^{K}\left(\alpha_{i, k g} R_{i, g}\right) & (\forall i, k) \\ w_{i} L_{i}=\sum_{k=1}^{K}\left(1-\alpha_{i, k}\right) R_{i, k} & (\forall i)\end{cases}
$$

where variety-specific prices and expenditure shares are

$$
\begin{cases}P_{i n, k}\left(w_{i}, \mathbf{P}_{i}\right)=\frac{\tau_{i n, k}}{\varphi_{i, k}} w_{i}^{1-\alpha_{i, k}} \prod_{g=1}^{K} P_{i, g}^{\alpha_{i, g k}} & (\forall i, k) \\ \lambda_{i n, k}(\mathbf{w}, \mathbf{P})=\frac{P_{i n, k}\left(w_{i}, \mathbf{P}_{i}\right)^{-\epsilon_{k}}}{\sum_{j=1}^{N} P_{j i, k}\left(w_{j}, \mathbf{P}_{j}\right)^{-\epsilon_{k}}} & (\forall i, j, k)\end{cases}
$$

Growth Accounting: Open Economy with IO Linkages

- We want to characterize the welfare effects of a technical shock to aggregate productivity, $\left\{\mathrm{d} \ln \varphi_{i, k}\right\}_{i, k}$, and iceberg trade costs $\left\{\mathrm{d} \ln \tau_{i n, k}\right\}_{i, n, k}$.
- For homothetic preferences (in general) the welfare effects can be specified as

$$
\mathrm{d} \ln W_{i}=\mathrm{d} \ln Y_{i}-\sum_{k=1}^{K} \sum_{n=1}^{N} \lambda_{n i, k}^{e} \beta_{i, k} \mathrm{~d} \ln P_{n i, k}
$$

Growth Accounting: Open Economy with IO Linkages

- We want to characterize the welfare effects of a technical shock to aggregate productivity, $\left\{\mathrm{d} \ln \varphi_{i, k}\right\}_{i, k}$, and iceberg trade costs $\left\{\mathrm{d} \ln \tau_{i n, k}\right\}_{i, n, k}$.
- For homothetic preferences (in general) the welfare effects can be specified as

$$
\mathrm{d} \ln W_{i}=\mathrm{d} \ln Y_{i}-\sum_{k=1}^{K} \sum_{n=1}^{N} \lambda_{n i, k} \beta_{i, k} \mathrm{~d} \ln P_{n i, k}
$$

Growth Accounting: Open Economy with IO Linkages

- We want to characterize the welfare effects of a technical shock to aggregate productivity, $\left\{\mathrm{d} \ln \varphi_{i, k}\right\}_{i, k}$, and iceberg trade costs $\left\{\mathrm{d} \ln \tau_{i n, k}\right\}_{i, n, k}$.
- For homothetic preferences (in general) the welfare effects can be specified as

$$
\mathrm{d} \ln W_{i}=\mathrm{d} \ln Y_{i}-\sum_{k=1}^{K} \sum_{n=1}^{N} \lambda_{n i, k} \beta_{i, k} \mathrm{~d} \ln P_{n i, k}
$$

- We can simplify the above expression by appealing to the CES demand structure:

$$
\mathrm{d} \ln \lambda_{n i, k}-\mathrm{d} \ln \lambda_{i i, k}=-\epsilon_{k}\left(\mathrm{~d} \ln P_{n i, k}-\mathrm{d} \ln P_{i i, k}\right)
$$

Growth Accounting: Open Economy with IO Linkages

- We want to characterize the welfare effects of a technical shock to aggregate productivity, $\left\{\mathrm{d} \ln \varphi_{i, k}\right\}_{i, k}$, and iceberg trade costs $\left\{\mathrm{d} \ln \tau_{i n, k}\right\}_{i, n, k}$.
- For homothetic preferences (in general) the welfare effects can be specified as

$$
\mathrm{d} \ln W_{i}=\mathrm{d} \ln Y_{i}-\sum_{k=1}^{K} \sum_{n=1}^{N} \lambda_{n i, k} \beta_{i, k} \mathrm{~d} \ln P_{n i, k}
$$

- We can simplify the above expression by appealing to the CES demand structure:

$$
\mathrm{d} \ln P_{n i, k}=\mathrm{d} \ln P_{i i, k}-\frac{1}{\epsilon_{k}}\left(\mathrm{~d} \ln \lambda_{n i, k}-\mathrm{d} \ln \lambda_{i i, k}\right)
$$

Growth Accounting: Open Economy with IO Linkages

- We want to characterize the welfare effects of a technical shock to aggregate productivity, $\left\{\mathrm{d} \ln \varphi_{i, k}\right\}_{i, k}$, and iceberg trade costs $\left\{\mathrm{d} \ln \tau_{i n, k}\right\}_{i, n, k}$.
- For homothetic preferences (in general) the welfare effects can be specified as

$$
\mathrm{d} \ln W_{i}=\mathrm{d} \ln Y_{i}-\sum_{k=1}^{K} \sum_{n=1}^{N} \lambda_{n i, k} \beta_{i, k} \mathrm{~d} \ln P_{n i, k}
$$

- We can simplify the above expression by appealing to the CES demand structure: ${ }^{1}$

$$
\mathrm{d} \ln P_{n i, k}=\mathrm{d} \ln P_{i i, k}-\frac{1}{\epsilon_{k}}\left(\mathrm{~d} \ln \lambda_{n i, k}-\mathrm{d} \ln \lambda_{i i, k}\right)
$$

${ }^{1}$ CES preferences ensure that $\epsilon_{k} \equiv \frac{\partial \ln \left(\lambda_{n i, k} / \lambda_{i, k}\right)}{\partial \ln \left(P_{n i, k} / P_{i, k}\right)}$ is a constant parameter. The above equation, however, holds non-parametrically if we treat ϵ_{k} as a local (and possibly variable) elasticity.

Growth Accounting: Open Economy with IO Linkages

- Plugging our earlier expression for $\mathrm{d} \ln P_{n i, k}$ into the welfare equation yields

$$
\begin{aligned}
\mathrm{d} \ln W_{i} & =\mathrm{d} \ln Y_{i}-\sum_{k=1}^{K} \sum_{n=1}^{N} \beta_{i, k} \lambda_{n i, k} \mathrm{~d} \ln P_{n i, k} \\
& =\mathrm{d} \ln Y_{i}-\sum_{k} \beta_{i, k} \mathrm{~d} \ln P_{i i, k}+\sum_{k} \sum_{n}\left[\frac{1}{\epsilon_{k}} \beta_{i, k} \lambda_{n i, k}\left(\mathrm{~d} \ln \lambda_{n i, k}-\mathrm{d} \ln \lambda_{i i, k}\right)\right]
\end{aligned}
$$

Growth Accounting: Open Economy with IO Linkages

- Plugging our earlier expression for $\mathrm{d} \ln P_{n i, k}$ into the welfare equation yields

$$
\begin{aligned}
\mathrm{d} \ln W_{i} & =\mathrm{d} \ln Y_{i}-\sum_{k=1}^{K} \sum_{n=1}^{N} \beta_{i, k} \lambda_{n i, k} \mathrm{~d} \ln P_{n i, k} \\
& =\mathrm{d} \ln Y_{i}-\sum_{k} \beta_{i, k} \mathrm{~d} \ln P_{i i, k}+\sum_{k} \sum_{n}\left[\frac{1}{\epsilon_{k}} \beta_{i, k} \lambda_{n i, k}\left(\mathrm{~d} \ln \lambda_{n i, k}-\mathrm{d} \ln \lambda_{i i, k}\right)\right]
\end{aligned}
$$

- Appealing to adding up constraints, $\left\{\begin{array}{l}\sum_{n} \lambda_{n i, k} \mathrm{~d} \ln \lambda_{n i, k}=0 \\ \sum_{n} \lambda_{n i, k}=1\end{array}\right.$, the last line yields

$$
\mathrm{d} \ln W_{i}=\mathrm{d} \ln Y_{i}-\sum_{k}\left[\beta_{i, k}\left(\mathrm{~d} \ln P_{i i, k}-\frac{1}{\epsilon_{k}} \mathrm{~d} \ln \lambda_{i i, k}\right)\right]
$$

Growth Accounting: Open Economy with IO Linkages

- Since $P_{i i, k}=\varphi_{i, k}^{-1} w_{i}^{1-\alpha_{i, k}} \prod_{g=1}^{K} P_{i, g}^{\alpha_{i, g k}}$, we can specify the change in domestic prices as

$$
\begin{aligned}
\mathrm{d} \ln P_{i i, k} & =-\mathrm{d} \ln \varphi_{i, k}+\left(1-\alpha_{i, k}\right) \mathrm{d} \ln w_{i}+\sum_{g} \alpha_{i, g k} \mathrm{~d} \ln P_{i, g} \\
& =-\mathrm{d} \ln \varphi_{i, k}+\left(1-\alpha_{i, k}\right) \mathrm{d} \ln w_{i}+\sum_{g} \sum_{n} \alpha_{i, g k} \lambda_{n i, g} \mathrm{~d} \ln P_{n i, g}
\end{aligned}
$$

[^0]
Growth Accounting: Open Economy with IO Linkages

- Since $P_{i i, k}=\varphi_{i, k}^{-1} w_{i}^{1-\alpha_{i, k}} \prod_{g=1}^{K} P_{i, g}^{\alpha_{i, g k}}$, we can specify the change in domestic prices as

$$
\begin{aligned}
\mathrm{d} \ln P_{i i, k} & =-\mathrm{d} \ln \varphi_{i, k}+\left(1-\alpha_{i, k}\right) \mathrm{d} \ln w_{i}+\sum_{g} \alpha_{i, g k} \mathrm{~d} \ln P_{i, g} \\
& =-\mathrm{d} \ln \varphi_{i, k}+\left(1-\alpha_{i, k}\right) \mathrm{d} \ln w_{i}+\sum_{g} \sum_{n} \alpha_{i, g k} \lambda_{n i, g} \mathrm{~d} \ln P_{n i, g}
\end{aligned}
$$

- CES demand implies $\mathrm{d} \ln P_{n i, k}=\mathrm{d} \ln P_{i i, k}-\frac{1}{\epsilon_{k}}\left(\mathrm{~d} \ln \lambda_{i n, k}-\mathrm{d} \ln \lambda_{i i, k}\right)$, which when plugged into the above equation delivers (similar to the previous slide)

$$
\mathrm{d} \ln P_{i i, k}=-\mathrm{d} \ln \varphi_{i, k}+\left(1-\alpha_{i, k}\right) \mathrm{d} \ln w_{i}+\sum_{g} \alpha_{i, g k}\left(\mathrm{~d} \ln P_{i i, g}+\frac{1}{\epsilon_{g}} \mathrm{~d} \ln \lambda_{i i, g}\right)
$$

[^1]
Growth Accounting: Open Economy with IO Linkages

- Since $P_{i i, k}=\varphi_{i, k}^{-1} w_{i}^{1-\alpha_{i, k}} \prod_{g=1}^{K} P_{i, g}^{\alpha_{i, g k}}$, we can specify the change in domestic prices as

$$
\begin{aligned}
\mathrm{d} \ln P_{i i, k} & =-\mathrm{d} \ln \varphi_{i, k}+\left(1-\alpha_{i, k}\right) \mathrm{d} \ln w_{i}+\sum_{g} \alpha_{i, g k} \mathrm{~d} \ln P_{i, g} \\
& =-\mathrm{d} \ln \varphi_{i, k}+\left(1-\alpha_{i, k}\right) \mathrm{d} \ln w_{i}+\sum_{g} \sum_{n} \alpha_{i, g k} \lambda_{n i, g} \mathrm{~d} \ln P_{n i, g}
\end{aligned}
$$

- CES demand implies $\mathrm{d} \ln P_{n i, k}=\mathrm{d} \ln P_{i i, k}-\frac{1}{\epsilon_{k}}\left(\mathrm{~d} \ln \lambda_{i n, k}-\mathrm{d} \ln \lambda_{i i, k}\right)$, which when plugged into the above equation delivers (similar to the previous slide)

$$
\mathrm{d} \ln P_{i i, k}=\underbrace{-\mathrm{d} \ln \varphi_{i, k}+\left(1-\alpha_{i, k}\right) \mathrm{d} \ln w_{i}}_{B_{i, k}}+\sum_{g} \alpha_{i, g k}\left(\mathrm{~d} \ln P_{i i, g}+\frac{1}{\epsilon_{g}} \mathrm{~d} \ln \lambda_{i i, g}\right)
$$

[^2]
Growth Accounting: Open Economy with IO Linkages

- Since $P_{i i, k}=\varphi_{i, k}^{-1} w_{i}^{1-\alpha_{i, k}} \prod_{g=1}^{K} P_{i, g}^{\alpha_{i, g k}}$, we can specify the change in domestic prices as

$$
\begin{aligned}
\mathrm{d} \ln P_{i i, k} & =-\mathrm{d} \ln \varphi_{i, k}+\left(1-\alpha_{i, k}\right) \mathrm{d} \ln w_{i}+\sum_{g} \alpha_{i, g k} \mathrm{~d} \ln P_{i, g} \\
& =-\mathrm{d} \ln \varphi_{i, k}+\left(1-\alpha_{i, k}\right) \mathrm{d} \ln w_{i}+\sum_{g} \sum_{n} \alpha_{i, g k} \lambda_{n i, g} \mathrm{~d} \ln P_{n i, g}
\end{aligned}
$$

- CES demand implies $\mathrm{d} \ln P_{n i, k}=\mathrm{d} \ln P_{i i, k}-\frac{1}{\epsilon_{k}}\left(\mathrm{~d} \ln \lambda_{i n, k}-\mathrm{d} \ln \lambda_{i i, k}\right)$, which when plugged into the above equation delivers (similar to the previous slide)

$$
\mathrm{d} \ln P_{i i, k}=\underbrace{-\mathrm{d} \ln \varphi_{i, k}+\left(1-\alpha_{i, k}\right) \mathrm{d} \ln w_{i}}_{B_{i, k}}+\sum_{g} \alpha_{i, g k}\left(\mathrm{~d} \ln P_{i i, g}+\frac{1}{\epsilon_{g}} \mathrm{~d} \ln \lambda_{i i, g}\right)
$$

- The above equation can be represented in matrix form as $\left(\Lambda_{i i, g} \sim \frac{1}{\epsilon_{g}} \mathrm{~d} \ln \lambda_{i i, g}\right)$

$$
\mathrm{d} \ln \mathbf{P}_{i j}=\mathbf{B}_{i}+\mathbf{A}_{i}^{\top}\left(\mathrm{d} \ln \mathbf{P}_{i j}+\boldsymbol{\Lambda}_{i i}\right)
$$

[^3]
Growth Accounting: Open Economy with IO Linkages

- Since $P_{i i, k}=\varphi_{i, k}^{-1} w_{i}^{1-\alpha_{i, k}} \prod_{g=1}^{K} P_{i, g}^{\alpha_{i, g k}}$, we can specify the change in domestic prices as ${ }^{2}$

$$
\begin{aligned}
\mathrm{d} \ln P_{i i, k} & =-\mathrm{d} \ln \varphi_{i, k}+\left(1-\alpha_{i, k}\right) \mathrm{d} \ln w_{i}+\sum_{g} \alpha_{i, g k} \mathrm{~d} \ln P_{i, g} \\
& =-\mathrm{d} \ln \varphi_{i, k}+\left(1-\alpha_{i, k}\right) \mathrm{d} \ln w_{i}+\sum_{g} \sum_{n} \alpha_{i, g k} \lambda_{n i, g} \mathrm{~d} \ln P_{n i, g}
\end{aligned}
$$

- CES demand implies $\mathrm{d} \ln P_{n i, k}=\mathrm{d} \ln P_{i i, k}-\frac{1}{\epsilon_{k}}\left(\mathrm{~d} \ln \lambda_{i n, k}-\mathrm{d} \ln \lambda_{i i, k}\right)$, which when plugged into the above equation delivers (similar to the previous slide)

$$
\mathrm{d} \ln P_{i i, k}=\underbrace{-\mathrm{d} \ln \varphi_{i, k}+\left(1-\alpha_{i, k}\right) \mathrm{d} \ln w_{i}}_{B_{i, k}}+\sum_{g} \alpha_{i, g k}\left(\mathrm{~d} \ln P_{i i, g}+\frac{1}{\epsilon_{g}} \mathrm{~d} \ln \lambda_{i i, g}\right)
$$

- The above equation can be represented in matrix form as $\left(\Lambda_{i i, g} \sim \frac{1}{\epsilon_{g}} \mathrm{~d} \ln \lambda_{i i, g}\right)$

$$
\mathrm{d} \ln \mathbf{P}_{i i}=\left(\mathbf{I}-\mathbf{A}_{i}^{\top}\right)^{-1} \mathbf{B}_{i}-\left(\mathbf{I}-\mathbf{A}_{i}^{\top}\right)^{-1} \mathbf{A}_{i}^{\top} \boldsymbol{\Lambda}_{i i}
$$

[^4]
Growth Accounting: Open Economy with IO Linkages

- Denote by $\tilde{\mathbf{A}}_{i}=\left(\mathbf{I}-\mathbf{A}_{i}\right)^{-1}$ the Leontief inverse, with $\tilde{\alpha}_{i, k g}$ denoting entry (k, g) of $\tilde{\mathbf{A}}_{i}$.
- We use two properties of the Leontief inverse:

$$
\tilde{\mathbf{A}}_{i}^{\top}=\left(\mathbf{I}-\mathbf{A}_{i}^{\top}\right)^{-1} \quad\left(\mathbf{I}-\mathbf{A}_{i}^{\top}\right)^{-1} \mathbf{A}_{i}^{\top}=\tilde{\mathbf{A}}^{\top}-\mathbf{I}
$$

- Appealing to these properties, our previously-derived expression for $d \ln \mathbf{P}_{i j}$ implies

$$
\begin{equation*}
\mathrm{d} \ln P_{i i, k}=\sum_{g}\left[\tilde{\alpha}_{i, g k}\left(-\mathrm{d} \ln \varphi_{i, g}+\left(1-\alpha_{i, g}\right) \mathrm{d} \ln w_{i}+\frac{1}{\epsilon_{g}} \mathrm{~d} \ln \lambda_{i i, g}\right)\right]-\frac{1}{\epsilon_{k}} \mathrm{~d} \ln \lambda_{i i, k} \tag{*}
\end{equation*}
$$

Growth Accounting: Open Economy with IO Linkages

- Denote by $\tilde{\mathbf{A}}_{i}=\left(\mathbf{I}-\mathbf{A}_{i}\right)^{-1}$ the Leontief inverse, with $\tilde{\alpha}_{i, k g}$ denoting entry (k, g) of $\tilde{\mathbf{A}}_{i}$.
- We use two properties of the Leontief inverse:

$$
\tilde{\mathbf{A}}_{i}^{\top}=\left(\mathbf{I}-\mathbf{A}_{i}^{\top}\right)^{-1} \quad\left(\mathbf{1}-\mathbf{A}_{i}^{\top}\right)^{-1} \mathbf{A}_{i}^{\top}=\tilde{\mathbf{A}}^{\top}-\mathbf{I}
$$

- Appealing to these properties, our previously-derived expression for $\operatorname{d} \ln \mathbf{P}_{i i}$ implies

$$
\begin{equation*}
\mathrm{d} \ln P_{i i, k}=\sum_{g}\left[\tilde{\alpha}_{i, g k}\left(-\mathrm{d} \ln \varphi_{i, g}+\left(1-\alpha_{i, g}\right) \mathrm{d} \ln w_{i}+\frac{1}{\epsilon_{g}} \mathrm{~d} \ln \lambda_{i, g}\right)\right]-\frac{1}{\epsilon_{k}} \mathrm{~d} \ln \lambda_{i i, k} \tag{*}
\end{equation*}
$$

- Note: absent IO linkages $\longrightarrow \mathrm{d} \ln P_{i i, k}=-\mathrm{d} \ln \varphi_{i, k}+\mathrm{d} \ln w_{i}$

Growth Accounting: Open Economy with IO Linkages

$$
-Y_{i}=w_{i} L_{i} \xrightarrow{\mathrm{~d} \ln L_{i}=0} \mathrm{~d} \ln Y_{i}=\mathrm{d} \ln w_{i} \quad(* *)
$$

- Plugging Equations $(*) \&(* *)$ into our earlier expression for $\mathrm{dln} W_{i}$, yields

$$
\mathrm{d} \ln W_{i}=\mathrm{d} \ln Y_{i}-\sum_{k}\left[\beta_{i, k}\left(\mathrm{~d} \ln P_{i i, k}+\frac{1}{\epsilon_{k}} \mathrm{~d} \ln \lambda_{i i, k}\right)\right]
$$

Growth Accounting: Open Economy with IO Linkages

- $Y_{i}=w_{i} L_{i} \xrightarrow{\mathrm{~d} \ln L_{i}=0} \mathrm{~d} \ln Y_{i}=\mathrm{d} \ln w_{i} \quad(* *)$
- Plugging Equations $(*) \&(* *)$ into our earlier expression for $\mathrm{dln} W_{i}$, yields

$$
\mathrm{d} \ln W_{i}=\mathrm{d} \ln w_{i}-\sum_{k}\left[\beta_{i, k} \sum_{g} \tilde{\alpha}_{i, g k}\left(-\mathrm{d} \ln \varphi_{i, g}+\left(1-\alpha_{i, g}\right) \mathrm{d} \ln w_{i}+\frac{1}{\epsilon_{g}} \mathrm{~d} \ln \lambda_{i i, g}\right)\right]
$$

Growth Accounting: Open Economy with IO Linkages

- $Y_{i}=w_{i} L_{i} \xrightarrow{\mathrm{~d} \ln L_{i}=0} \mathrm{~d} \ln Y_{i}=\mathrm{d} \ln w_{i} \quad(* *)$
- Plugging Equations $(*) \&(* *)$ into our earlier expression for $\mathrm{d} \ln W_{i}$, yields

$$
\mathrm{d} \ln W_{i}=\left(1-\sum_{g, k}\left(1-\alpha_{i, g}\right) \tilde{\alpha}_{i, g k} \beta_{i, k}\right) \mathrm{d} \ln w_{i}-\sum_{k}\left[\beta_{i, k} \sum_{g} \tilde{\alpha}_{i, g k}\left(-\mathrm{d} \ln \varphi_{i, g}+\frac{1}{\epsilon_{g}} \mathrm{~d} \ln \lambda_{i i, g}\right)\right]
$$

Growth Accounting: Open Economy with IO Linkages

- $Y_{i}=w_{i} L_{i} \xrightarrow{\mathrm{~d} \ln L_{i}=0} \mathrm{~d} \ln Y_{i}=\mathrm{d} \ln w_{i} \quad(* *)$
- Plugging Equations $(*) \&(* *)$ into our earlier expression for $\mathrm{d} \ln W_{i}$, yields

$$
\mathrm{d} \ln W_{i}=\underbrace{\left(1-\sum_{g, k}\left(1-\alpha_{i, g}\right) \tilde{\alpha}_{i, g k} \beta_{i, k}\right)}_{=0} \mathrm{~d} \ln w_{i}-\sum_{k}\left[\beta_{i, k} \sum_{g} \tilde{\alpha}_{i, g k}\left(-\mathrm{d} \ln \varphi_{i, g}+\frac{1}{\epsilon_{g}} \mathrm{~d} \ln \lambda_{i i, g}\right)\right]
$$

Growth Accounting: Open Economy with IO Linkages

$-Y_{i}=w_{i} L_{i} \xrightarrow{\mathrm{~d} \ln L_{i}=0} \mathrm{~d} \ln Y_{i}=\mathrm{d} \ln w_{i} \quad(* *)$

- Plugging Equations $(*) \&(* *)$ into our earlier expression for $\mathrm{d} \ln W_{i}$, yields

$$
\mathrm{d} \ln W_{i}=\underbrace{\left(1-\sum_{g, k}\left(1-\alpha_{i, g}\right) \tilde{\alpha}_{i, g k} \beta_{i, k}\right)}_{=0} \mathrm{~d} \ln w_{i}-\sum_{k}\left[\beta_{i, k} \sum_{g} \tilde{\alpha}_{i, g k}\left(-\mathrm{d} \ln \varphi_{i, g}+\frac{1}{\epsilon_{g}} \mathrm{~d} \ln \lambda_{i i, g}\right)\right]
$$

Proposition 1: Consider a small shock to productivity, $\mathrm{d} \ln \varphi$, and trade $\operatorname{costs}, \mathrm{d} \ln \tau$. The resulting welfare impact is

$$
\mathrm{d} \ln W_{i}=\sum_{g} \sum_{k}\left[\beta_{i, k} \tilde{\alpha}_{i, g k} \mathrm{~d} \ln \varphi_{i, g}\right]-\sum_{g} \sum_{k}\left[\beta_{i, k} \tilde{\alpha}_{i, k g} \frac{1}{\epsilon_{g}} \mathrm{~d} \ln \lambda_{i i, g}\right]
$$

where $\tilde{\alpha}_{i, g k}$ is entry (k, g) of the Leontief inverse and $\beta_{i, k}$ is the share of consumption expenditure on industry k goods.

Taking Stock

- The formulas derived for $\mathrm{d} \ln W_{i}$ hold non-parametrically as long as preferences are homothetic and stable and production is constant-returns to scale.
- The CES and Cobb-Douglas parameterization allows us to use these local formulas to calculate the impacts of a large change in trade costs.

Taking Stock

- The formulas derived for $\mathrm{d} \ln W_{i}$ hold non-parametrically as long as preferences are homothetic and stable and production is constant-returns to scale.
- The CES and Cobb-Douglas parameterization allows us to use these local formulas to calculate the impacts of a large change in trade costs.
- For a closed economy the formula we derived reduces to Hulten (1978). In particular, setting $\mathrm{d} \ln \lambda_{i i, k}=0$, yields $\mathrm{d} \ln W_{i}=\sum_{g} \sum_{k} \beta_{i, k} \tilde{\alpha}_{i, g k} \mathrm{~d} \ln \varphi_{i, g}$, which considering that $\sum_{k} \beta_{i, k} \tilde{\alpha}_{i, g k}=\frac{P_{i, g} Q_{i, g}}{Y_{i}}$, deliver Hulten's formula:

$$
\operatorname{dln} W_{i}=\sum_{g} \underbrace{\frac{P_{i i, g} Q_{i i, g}}{Y_{i}}}_{\text {Domar weight }} \mathrm{d} \ln \varphi_{i, g}
$$

The Gains From Trade under IO Linkages

- Define the gains from trade as the ex-post gains from trade openness relative to autarky ($\tau=\infty$)

$$
\mathrm{GT}_{i} \equiv \frac{W_{i}-W_{i}^{A}}{W_{i}}=1-\exp \left(-\int_{\tau}^{\infty} \mathrm{d} \ln W_{i}\right)
$$

- Per Proposition 1, we can specify $\mathrm{d} \ln W_{i}$ in response to $\mathrm{d} \ln \tau($ setting $\mathrm{d} \ln \varphi=0$) as

$$
\mathrm{d} \ln W_{i}=\sum_{g} \sum_{k}\left[\beta_{i, k} \tilde{\alpha}_{i, k g} \frac{1}{\epsilon_{g}} \mathrm{~d} \ln \lambda_{i i, g}\right]
$$

where $\tilde{\alpha}_{i, g k}$ are entries of the Leontief inverse and $\beta_{i, k}$ are consumption shares.

The Gains From Trade under IO Linkages

- Plugging $\mathrm{d} \ln W_{i}$ into the expression for GT_{i} and noting that transitioning to autarky amounts to raising $\lambda_{i i, k}$ from its factual level to $\lambda_{i i . k}^{A}=1$, delivers

$$
\begin{aligned}
\mathrm{GT}_{i} & =1-\exp \left(-\int_{\lambda_{i i, g}}^{1} \sum_{k, g} \beta_{i, k} \tilde{\alpha}_{i, k g} \frac{1}{\epsilon_{g}} \mathrm{~d} \ln \lambda_{i i, g}\right) \\
& 1-\exp \left(-\sum_{k, g}\left[\beta_{i, k} \tilde{\alpha}_{i, k g} \frac{1}{\epsilon_{g}} \int_{\lambda_{i i, g}}^{1} \mathrm{~d} \ln \lambda_{i i, g}\right]\right) \\
& =1-\exp \left(\sum_{k, g}\left[\beta_{i, k} \tilde{\alpha}_{i, k g} \frac{1}{\epsilon_{g}}\right] \ln \lambda_{i i, g}\right)=1-\prod_{k} \prod_{g} \lambda_{i i, g}^{\frac{\tilde{\alpha}_{i, k g}}{\epsilon g} \beta_{i, k}}
\end{aligned}
$$

Directions for Computing the Gains from Trade under IO Linkages

- Step 1: compile industry-level data for domestic expenditure shares, $\left\{\lambda_{i i, k}\right\}_{k}$, consumption shares, $\left\{\beta_{i, k}\right\}_{k}$, and trade elasticities, $\left\{\epsilon_{g}\right\}_{g} .^{3}$
- Step 2: use the national-level I-O matrix, $\boldsymbol{A}_{i} \equiv\left[\alpha_{i, g k}\right]_{k, g}$, to compute the element of the Leontief inverse:

$$
\left[\tilde{\alpha}_{i, g k}\right]_{k, g}=\left(\boldsymbol{I}-\mathbf{A}_{i}\right)^{-1}
$$

- Step 3: plug data points obtained in Steps 1 and 2 into the gains from trade formula:

$$
G T_{i}=1-\prod_{k=1}^{K} \prod_{g=1}^{K} \lambda_{i i, g}^{\frac{\tilde{\alpha}_{i, k g}}{\epsilon_{g}} \beta_{i, k}}
$$

[^5]
The Gains from Trade are Amplified by IO Linkages

	\% GT	
	w/o IO Linakges	w/ IO Linakges
Ireland	8%	37.1%
Belgium	7.8%	54.6%
Germany	4.5%	21.6%
China	2.6%	11.5%
U.S.	1.8%	8.3%

Source: Costinot \& Rodriguez-Clare (2014) based on data from the 2008 WIOD, which cover 16 industries.

Performing Counterfactuals using Exact Hat-Algebra

- Consider a possibly large shock to trade costs: $\left\{\hat{\tau}_{i n, k}\right\}_{i, n}$
- The equilibrium responses, $\left\{\hat{Y}_{i}, \hat{P}_{i, k}, \hat{R}_{i, k}, \hat{E}_{i, k}\right\}$ can be obtained by solving the following system:

$$
\begin{cases}\hat{P}_{i, k}=\left[\sum_{n=1}^{N} \lambda_{n i, k}\left(\hat{P}_{n i, k}\right)^{-\epsilon_{k}}\right]^{-\frac{1}{\epsilon_{k}}} & \forall(i, k) \\ \hat{R}_{i, k} R_{i, k}=\sum_{n=1}^{N} \hat{\lambda}_{i n, k} \lambda_{i n, k} \hat{E}_{n, k} E_{n, k} & \forall(i, k) \\ \hat{E}_{i, k} E_{i, k}=\beta_{i, k} \hat{Y}_{i} Y_{i}+\sum_{g=1}^{K}\left(\alpha_{i, k g} \hat{R}_{i, g} R_{i, g}\right) & \forall(i, k) \\ \hat{Y}_{i} Y_{i}=\sum_{k=1}^{K}\left(1-\alpha_{i, k}\right) \hat{R}_{i, k} R_{i, k} & \forall i\end{cases}
$$

where the non-highlighted variables are data and $\hat{P}_{n i, k}$ and $\hat{\lambda}_{n i, k}$ are given by

$$
\hat{P}_{n i, k}=\hat{\tau}_{n i, k}\left(\hat{Y}_{n}\right)^{1-\alpha_{i, k}} \prod_{g=1}^{K}\left(\hat{P}_{n, g}\right)^{\alpha_{i, g k}} \quad \hat{\lambda}_{n i, k}=\left(\hat{P}_{n i, k} / \hat{P}_{i, k}\right)^{-\epsilon_{k}}
$$

Measuring Welfare Effects

- Given the obtained solution $\left\{\hat{Y}_{i}, \hat{P}_{i, k}\right\}_{i}$, we can calculate the change in welfare as

$$
\% \Delta W_{i}=100 \times\left(\frac{\hat{Y}_{i}}{\hat{P}_{i}}-1\right) \quad \hat{P}_{i}=\prod_{n=1}^{N}\left(\hat{P}_{i, k}\right)^{\beta_{i, k}}
$$

Measuring Welfare Effects

- Given the obtained solution $\left\{\hat{Y}_{i}, \hat{P}_{i, k}\right\}_{i}$, we can calculate the change in welfare as

$$
\% \Delta W_{i}=100 \times\left(\frac{\hat{Y}_{i}}{\hat{P}_{i}}-1\right) \quad \hat{P}_{i}=\prod_{n=1}^{N}\left(\hat{P}_{i, k}\right)^{\beta_{i, k}}
$$

- A similar approach can be applied to compute the impact of tariff reduction (albeit one must update the previous system to accommodate tariff revenues)
- Notable Application: Calinedo \& Parro (2015) perform the note analysis to compute the welfare impacts of NAFTA-related tariff cuts:

$$
\Delta W_{\mathrm{MEX}}=1.31 \% \quad \Delta W_{\mathrm{CAN}}=-0.06 \% \quad \Delta W_{\mathrm{USA}}=0.08 \%
$$

[^0]: ${ }^{2}$ The expression for $\mathrm{d} \ln P_{i i, k}$ holds also non-parametrically following Shephard's lemma.

[^1]: ${ }^{2}$ The expression for $\mathrm{d} \ln P_{i i, k}$ holds also non-parametrically following Shephard's lemma.

[^2]: ${ }^{2}$ The expression for $\mathrm{d} \ln P_{i i, k}$ holds also non-parametrically following Shephard's lemma.

[^3]: ${ }^{2}$ The expression for $\mathrm{d} \ln P_{i i, k}$ holds also non-parametrically following Shephard's lemma.

[^4]: ${ }^{2}$ The expression for $\mathrm{d} \ln P_{i i, k}$ holds also non-parametrically following Shephard's lemma.

[^5]: ${ }^{3}$ The WIOD is the standard source for this type of data.

