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A The Redundancy of Consumption Taxes
Without loss of generality suppose country i ∈ C imposes a full set of tax instruments, while the

rest of the world is passive. Now, consider any arbitrary combination of taxes (indexed by A) that
includes (i) industrial (or domestic production) subsidies, sA

i,k, (ii) domestic consumption taxes, τA
i,k,

(iii) import taxes, tA
ji,k, and (iv) export subsidies, xA

ij,k. This set of tax instruments –which includes
consumption taxes– produces the following wedges between producer and consumer price indexes
for various product varieties:

P̃A
ii,k =

1 + τA
i,k

1 + sA
i,k

Pii,k; P̃A
ji,k = (1 + tA

ji,k)(1 + τA
i,k)Pji,k; P̃A

ij,k =
1

(1 + xA
ij,k)(1 + sA

i,k)
Pij,k; (j ̸= i)

Our claim here is that the same wedges can be replicated without appealing to consumption taxes,
τi,k. This claim can be established by considering an alternative tax schedule, B, which excludes
consumption taxes (i.e., 1 + τB

i,k = 0), but includes the following set of production subsidies, export
subsidies, and import taxes:

1 + sB
i,k =

1 + sA
i,k

1 + τ̄A
i,k

; 1 + tB
ji,k =

(
1 + tA

ji,k

) (
1 + τA

i,k

)
; 1 + xB

ij,k = (1 + xA
ij,k)(1 + τA

i,k)

It is straightforward to see that schedule B can reproduce the same wedge between producer and
consumer prices as the original schedule A (i.e., P̃A

= P̃B). In particular,

P̃B
ii,k =

1
1 + sB

i,k
Pii,k =

1 + τA
i,k

1 + sA
i,k

Pii,k = P̃A
ii

P̃B
ji,k = (1 + tB

ji,k)Pji,k = (1 + tA
ji,k)(1 + τA

i,k)Pji,k = P̃A
ji,k

P̃B
ij,k =

1
(1 + xB

ij,k)(1 + sB
i,k)

Pij,k =
1

(1 + xA
ij,k)(1 + sA

i,k)
Pij,k = P̃A

ij,k.

It also follows trivially that P̃B
nj,k = Pnj,k = P̃A

nj,k if n, j ̸= i, because the rest of the world does not impose

taxes.1 This equivalence indicates that consumption taxes are redundant if the government has access
to the other three sets of instruments. Note that the same can be said about production subsidies.
More specifically, the effect of industry-level production subsidies can be perfectly replicated with
a combination of consumption taxes, import taxes, and export subsidies. However, due to product
differentiation, if two (of the 2(N − 1) + 2) tax instruments are restricted, the replication argument
fails. That is, if both production subsidies and consumption taxes are restricted, export subsidies and
import taxes cannot fully replicate their effect.

1Note that the rest of the world imposing or not imposing taxes, does not matter for the redundancy of consumption
taxes. The above argument can be easily extrapolated to the case where all countries impose arbitrary taxes.
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B Proof of Lemma 1
Consider two policy-wage combinations, T = (s, t, x; w), and T′ = (s′, t′, x′; w′), that differ in

uniform shifters a and ã ∈ R+:
1 + x′i = a (1 + xi) 1 + x′−i = 1 + x−i
1 + t′i = a (1 + ti) 1 + t′−i = 1 + t−i
1 + s′i = (1 + si) /ã 1 + s′−i = 1 + s−i
w′

i = (a/ã)wi w′
−i = w−i

.

Our goal is to prove that (i) if T ∈ F then T′ ∈ F, and (ii) Wn(T) = Wn(T′) for all n ∈ C. To
prove these claims, we appeal to two intermediate lemmas. The first lemma establishes the following:
Suppose equilibrium quantities are identical under policy-wage vectors T and T’ (i.e., Qjn,k(T′) =

Qjn,k(T) for all jn, k ). Then, the implied nominal income and price levels under T and T′ are the
same up to a scale. The second lemma is a standard result from consumer theory: It indicates the
nominal income and price levels implied by the first lemma confirm the original assumption that
Qjn,k(T′) = Qjn,k(T) for all jn, k. Below, we state and prove the first of these lemmas for any a ∈ R+.

Lemma 1. Qjn,k(T′) = Qjn,k(T) for all jn, k =⇒
{

P̃i (T′) = aP̃i (T) ; P̃−i (T′) = P̃−i (T)
Yi (T′) = aYi (T) ; Y−i (T′) = Y−i (T)

Proof. Our goal is to compute nominal income and consumer prices under T and T′ starting from the
assumption that Qjn,k(T′) = Qjn,k(T) for all jn, k. We start our proof with nominal prices: To simplify

the notation, define δjn,k(T) ≡ ρjn,kQj,k(T)
− µk

1+µk . Note that –by assumption– δjn,k(T) = δjn,k(T′) =

δjn,k. First, consider the price of a typical good ji, k imported by i from origin j ̸= i. Using Equations 6
and 7, the consumer price of ji, k under combination T′ can be related to its price under T as follows:

P̃ji,k(T
′) = δji,k

1 + t′ji,k
(1 + x′ji,k)(1 + s′j,k)

w′
j = δji,k

a(1 + tji,k)

(1 + xji,k)(1 + sj,k)
wj = aP̃ji,k(T),

where the third equality follows from the fact that 1 + t′ji,k = a(1 + tji,k), while w′
j = wj, x′ji,k = xji,k,

and s′j,k = sj,k (since wj ∈ w−i, xji,k ∈ x−i, and sj,k ∈ s−i). Second, consider a typical good ii, k that is
produced and consumed locally in country i. The consumer price of ii, k under combination T′ can be
related to its price under T as follows

P̃ii,k(T
′) = δii,k

1
1 + s′i,k

w′
i = δii,k

1
1
ã (1 + si,k)

× a
ã

wi = aP̃ii,k(T),

where the third equality follows from the fact that 1 + s′i,k = (1 + si,k)/ã and w′
i = awi/ã. Third,

consider the price of a typical good ij, k export by i to destination market j ̸= i. The consumer price
of ij, k under combination T′ can be related to its price under T as follows:

P̃ij,k(T
′) = δij,k

1 + t′ij,k
(1 + x′ij,k)(1 + s′i,k)

w′
i = δij,k

1 + tij,k

a(1 + x′ij,k)×
1
ã (1 + s′i,k)

× a
ã

wi = P̃ij,k(T),

where the third equality follows from the fact that 1 + x′ij,k = a(1 + xij,k), 1 + si,k = (1 + s′i,k)/ã, and
w′

i = awi/ã; while t′ij,k = tji,k since tji,k ∈ t−i. Lastly, is follows trivially that P̃jn,k(T′) = P̃jn,k(T) if j
and n ̸= i. Considering that P̃i =

{
P̃ji, P̃ii

}
, the above equations establish that

P̃i
(
T′) = aP̃i (T) , P̃−i

(
T′) = P̃−i (T) .

Next, we turn to our claim about nominal income levels. To simplify the presentation, we hereafter
use X ≡ X(T) and X′ ≡ X(T′) to denote the value of a generic variable X under policy-wage combi-
nations T and T′. Keeping in mind this choice of notation, country i’s nominal income under T′, i.e.,
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Y′
i ≡ Yi(T′) is given by:

Y′
i = w′

i Li + ∑
k

[(
1

1 + s′i,k
− 1

)
P′

ii,kQ′
ii,k

]
+ ∑

k
∑
j ̸=i

(
t′ji,k

(1 + x′ji,k)(1 + s′j,k)
P′

ji,kQ′
ji,k +

[
1

(1 + x′ij,k)(1 + s′i,k)
− 1

]
P′

ij,kQ′
ij,k

)

= w′
i Li + ∑

k

[(
1 − [1 + s′i,k]

)
P̃′

ii,kQ′
ii,k

]
+ ∑

k
∑
j ̸=i

((
1 − 1

1 + t′ji,k

)
P̃′

ji,kQ′
ji,k +

[
1

1 + t′ij,k
−

(1 + x′ij,k)(1 + s′i,k)

1 + t′ij,k

]
P̃′

ij,kQ′
ij,k

)
.

Note that, by assumption, policy-wage combinations T and T′ exhibit the same output schedule, i.e.,
Q′

ii,k = Qii,k, Q′
ji,k = Qji,k, and Q′

ij,k = Qij,k. Also, recall that (T and T’ are constructed such that)
1 + t′ji,k = a(1 + tji,k), 1 + x′ij,k = a(1 + xij,k), 1 + si,k = (1 + s′i,k)/ã, and w′

i = awi/ã, t′ij,k = tji,k.
Considering these relationships and plugging our earlier result that (i) P̃ii,k = aPii,k, (ii) P′

ji,k = aP̃ji,k,
and (iii) P̃′

ij,k = P̃ij,k into the above equation, yields the following expression for Y′
i :

Y′
i =

a
ã

wiLi + ∑
k

[(
1 − 1

ã
(1 + si,k)

)
aP̃ii,kQii,k

]

+ ∑
j,k

[(
1 − 1

a(1 + tji,k)

)
aP̃ji,kQji,k +

[
1

1 + tij,k
−

a(1 + xij,k)× 1
ã (1 + si,k)

1 + tij,k

]
P̃ij,kQij,k

]
.

Appealing to the balanced trade condition, ∑k ∑j ̸=i

(
1

1+tji,k
P̃ji,kQji,k − 1

1+tij,k
P̃ij,kQij,k

)
= 0, and observ-

ing that (1 + si,k)P̃ii,k = Pii,k and
(1+xij,k)(1+si,k)

1+tij,k
P̃ij,k = Pij,k, the above equation reduces to

Y′
i =

a
ã

wiLi + a ∑
k

[
P̃ii,kQii,k + ∑

j ̸=i
P̃ji,kQji,k

]
− a

ã ∑
k

[
Pii,kQii,k + ∑

j ̸=i
Pij,kQij,k

]
.

Invoking the labor market clearing condition, wiLi − ∑k ∑n Pijn,kQin,k = 0, the above equation further
simplifies as follows

Y′
i = a ∑

k

[
P̃ii,kQii,k + ∑

j ̸=i
P̃ji,kQji,k

]
= a [wiLi +Ri] = aYi,

where Ri ≡ Ri(T) denotes country i’s tax revenues under T. To bel clear, the third line, in the above
equation, follows from country i’s balanced budget condition (i.e., total expenditure = total income).
Turning to the rest of the world: The fact that Yn(T′) = Yn(T) for all n ̸= i follows trivially from a
similar line of arguments–hence, establishing our claim about nominal income levels:

Yi
(
T′) = aYi (T) ; Y−i

(
T′) = Y−i (T)

Lemma 1 (proved above) starts from the assumption that Qjn,k(T′) = Qjn,k(T) for all jn, k. Our
next lemma indicates that this assumption is validated by the nominal income and price levels implied
by T and T′. Below, we state this lemma noting that it follows trivially from the Marshallian demand
function, Qji,k = Dji,k(Yi, P̃i), being homogeneous of degree zero.

Lemma 2. ∀a ∈ R+:
{

P̃i (T′) = aP̃i (T)
Yi(T′) = aYi(T)

=⇒ Qji,k(T′) = Qji,k(T) for all ji, k

Together, Lemmas 2 and 1 establish that equilibrium quantities should be indeed identical under
policy-wage combinations T and T′—i.e., Qjn,k(T′) = Qjn,k(T) for all jn, k. Hence, if T ∈ F it follows
immediately that (i) T′ ∈ F, and (ii) Wn(T) = Wn(T′) for all n ∈ C, which is the claim of Lemma 1.

C Nested-Eaton and Kortum (2002) Framework
Here we show that the nested CES import demand function specified by Assumption (A1), can

also arise from within-product specialization à la Eaton and Kortum (2002). To this end, suppose that
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each industry k is comprised of a continuum of homogenous goods indexed by ν. The sub-utility of
the representative consumer in country i with respect to industry k is a log-linear aggregator across
the continuum of goods in that industry:

Qi,k =
∫ 1

0
ln q̃i,k(ν)dν

As in our main model, country j hosts Mj,k firms indexed by ω, with Ωj,k denotes the set of all firms
serving industry k from country j.2 Each firm ω supplies good ν to market i at the following quality-
adjusted price:

p̃ji,k(ν; ω) = p̃ji,k (ω) /φ(ν; ω),

where p̃ji,k (ω) is a nominal price (driven by production costs) that applies to all goods supplied by
firm ω in industry k, while the quality component, φ(ν; ω), is good×firm-specific. Suppose for any
given good ν, firm-specific qualities are drawn independently from the following nested Fréchet joint
distribution:

Fk(φ(ν)) = exp

− N

∑
i=1

 ∑
ω∈Ωi,k

φ(ν; ω)−ϑk


θk
ϑk

 ,

The above distribution generalizes the basic Fréchet distribution in Eaton and Kortum (2002). In
particular, it relaxes the restriction that productivities are perfectly correlated across firms within the
same country. Instead, it allows for sub-national productivity differentiation and also for the degrees
of cross- and sub-national productivity differentiations (ϑk and θk, respectively) to diverge. A spe-
cial case of the distribution where ϑk −→ ∞ corresponds to the standard Eaton and Kortum (2002)
specification.

The above distribution also has deep theoretical roots. The Fisher–Tippett–Gnedenko theorem
states that if ideas are drawn from a (normalized) distribution, in the limit the distribution of the best
draw takes the form of a general extreme value (GEV) distribution, which includes the above Fréchet
distribution as a special case. A special application of this result can be found in Kortum (1997) who
develops an idea-based growth model where the limit distribution of productivities is Fréchet, with
φω,k reflecting the stock of technological knowledge accumulated by firms ω in category k.

Given the vector of effective prices, the representative consumer in county i (who is endowed
with income Yi) maximizes their real consumption of each good, q̃i,k(ν) = ei,kYi/ p̃i,k(ν), by choosing

p̃i,k(ν) = minω

{
p̃ji,k (ω)

}
. That being the case, the consumer’s discrete choice problem for each good

ν can be expressed as:
min

ω
p̃ji,k (ω) /z(ν; ω) ∼ max

ω
ln z(ν; ω)− ln p̃ji,k (ω) .

To determine the share of goods for which firm ω is the most competitive supplier, we can invoke the
theorem of “General Extreme Value.” Specifically, define G(p̃i) as follows

Gk(p̃i) =
N

∑
j=1

 ∑
ω∈Ωj,k

exp(−ϑk ln p̃ji,k (ω))


θk
ϑk

=
N

∑
j=1

 ∑
ω∈Ωj,k

p̃ji,k (ω)−ϑk


θk
ϑk

.

Note that Gk(.) is a continuous and differentiable function of vector p̃i ≡
{

p̃ji,k (ω)
}

and has the
following properties:

i. Gk(.) ≥ 0;

ii. Gk(.) is a homogeneous function of rank θk: Gk(ρp̃i) = ρθk Gk(p̃i) for any ρ ≥ 0;

iii. limp̃ji,k(ω)→∞ Gk(p̃i) = ∞, ∀ω;

iv. the m’th partial derivative of Gk(.) with respect to a generic combination of m variables p̃ji,k (ω),
is non-negative if m is odd and non-positive if m is even.

2The implicit assumption here is that entry is restricted, so that Mj,k is exogenous.
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Manski and McFadden (1981) prove that if Gk(.) satisfies the above conditions, and φ(ν; ω)’s are
drawn from distribution,

Fk(φ(ν)) = exp
(
−Gk(e− lnφ)

)
= exp

−
N

∑
j=1

 ∑
ω∈Ωj,k

φ(ν; ω)−ϑk


θk
ϑk

 ,

then the probability of choosing variety ω (from origin j in industry k) is given by

πji,k(ω) =

( p̃ji,k(ω)

θk

)
∂Gk(p̃i)
∂pji,k(ω)

Gk(p̃i)
=

p̃ji,k (ω) p̃ji,k (ω)ϑk−1
(

∑ω′∈Ωj,k
p̃ji,k (ω

′)−ϑk
) θk

ϑk
−1

∑N
n=1

(
∑ω′∈Ωj,k

p̃ji,k (ω′)−ϑk
) θk

ϑk

.

Rearranging the above equation yields the following expression for probability shares,

πji,k(ω) =

(
p̃ji,k (ω)

P̃ji,k

)−ϑk
(

P̃ji,k

P̃i,k

)−θk

,

where P̃ji,k ≡
[
∑ω′∈Ωj,k

p̃ji,k (ω
′)−ϑk

]−1/ϑk
and P̃i,k ≡

[
∑ P̃−θk

ji,k

]− 1
θk . Given that the probability shares

coincide with the share of goods sourced from firm ω, total sales of firm ω to market i, in industry k
can be calculated as:

p̃ji,k(ω)qji,k(ω) = p̃ji,k(ω)
πji,k(ω)ei,kYi

p̃ji,k(ω)
=

(
p̃ji,k (ω)

P̃ji,k

)−ϑk
(

P̃ji,k

P̃i,k

)−θk

ei,kYi

which is identical to the nested-CES function specified by Assumption (A1), with corresponding sub-
stitution parameters γk − 1 = ϑk and σk − 1 = θk.

D Firm-Selection under Melitz-Pareto
In this appendix, we outline the isomorphism between our baseline model and one that admits

selection effects. In doing so, we borrow heavily from Kucheryavyy, Lyn, and Rodríguez-Clare (2023a)
(KLR, hereafter). We rely on three key assumptions, hereafter:

i. Within-industry demand is governed by the same nested-CES utility function presented under
Assumption (A1). As in the baseline mode, σk and γk respectively denote the upper- and lower-
tier elasticities of substitution.

ii. The firm-level productivity distribution, Gi,k(z), is Pareto with shape parameter, ϑk.

iii. The fixed “marketing” cost is paid in terms of labor in the destination market.

iv. Taxes are applied before the markup, and operate as a cost-shifter.

Following KLR, we also assume that cross-industry utility aggregator is Cobb-Douglas, with ei,k de-
noting the constant share of country i’s expenditure on industry k. Following the derivation in KLR,
we can define the effective supply of production labor in country i as

L̃i =

[
1 − ∑

k
ei,k

(
ϑk − γk + 1

ϑkγk

)]
Li.

The labor market clearing condition is, accordingly, given by ∑ wiLi,k = wi L̃i. With regards to aggre-
gate markup levels, we can appeal to the well-known result that the profit margin in each industry is
constant and given by the following expression:

mark-up ~
∑n Pin,kQin,k

wiLi,k
=

γkϑk
(γk − 1) (ϑk + 1)− ϑk

.
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With regards to aggregate demand functions, we can follow the derivation in Appendix B.2 of KLR
to express demand for national-level variety ji, k as

Qji,k =

(
P̃ji,k

P̃i,k

)−σMelitz
k

Qi,k,

where σMelitz
k ≡ 1 + ϑk

[
1 + ϑk

(
1

σk−1 −
1

γk−1

)]−1
denotes the trade elasticity under firm-selection.

Moreover, we can show that national-level producer price indexes are given by the following formu-
lation:

PMelitz
ij,k =

ϱij,kwi if entry is restricted

ϱ̄′ij,kwiQ
− ϑk

1+ϑk
i,k if entry is free

,

where ϱ̄ij,k and ϱ̄′ij,k are composed of structural parameters that are invariant to policy–this includes

ϑk that regulates firm selection.3 Abstracting from taxes, P̃i,k =
(

∑ P1−σk
ji,k

) 1
1−σk is the CES industry-

level consumer price index that shows up in indirect utility Vi(.). Referring to our earlier result about
constant markup margins, aggregate profits in country i given by

ΠMelitz
i =

∑k ∑j

( γkϑk
(γk−1)(ϑk+1)−ϑk

1+
γkϑk

(γk−1)(ϑk+1)−ϑk

Pij,kQij,k

)
if entry is restricted

0 if entry is free

.

To fixe ideas, recall that we used µk to denote both (1) the scale elasticity under free entry, and (2)
the profit margin under restricted entry in the baseline model. This overlapping choice of notation
was motivated by the observation that in the generalized Krugman model, the scale elasticity (under
free entry) and the profit margin (under restricted entry) are identical and equal to µk =

1
γk−1 . This

equivalence, though, was not used to derive any of our theorems. Instead, it was only invoked to
simplify the presentation of our theorems. Evidently, under the Melitz-Pareto model the equivalence
between the scale elasticity and the profit margin crumbles. Taking note of this nuance, the Melitz-
Pareto model is isomorphic to our baseline model with the following reinterpretation of parameters:

1 + µMelitz
k =

{
1 + 1

ϑk
if entry is free

γkϑk
(γk−1)(ϑk+1)−ϑk

if entry is restricted
; σMelitz

k = 1 +
ϑk

1 + ϑk

(
1

σk−1 −
1

γk−1

) .

The Marshallian demand elasticities in the Melitz-Pareto model are accordingly given by the follow-
ing equations as a function σMelitz

k and expenditure shares:

ε
(ji,k)
ji,k = −1 − (σMelitz

k − 1)
(

1 − λji,k

)
; ε

(ȷi,k)
ji,k = σMelitz

k λȷi,g

In the above expressions, γk and σk can be taken directly from our firm-level demand estimation.
Doing so, identifies the Melitz-Pareto model’s key parameters up to a Pareto shape parameter, ϑk. To
obtain an estimate for ϑk, we can estimate the trade elasticity, σMelitz

k − 1, using macro-level trade data
and standard techniques from the literature. Given the estimated trade elasticities, we can simply
recover ϑk by plugging our micro-level estimates for γk and σk into the expression for σMelitz

k .

D.1 The Case where Taxes are Applied After Markups
Our derivation, above, assumed that taxes are applied before the markup, and act as a cost shifter.

Below, we discuss how relaxing this assumption may affect the arguments listed above. To this end,
we focus on the spacial case where preferences are non-nested. Namely,

non-nested preferences ∼ σk = γk, ∀k ∈ K.
Following the Online Appendix 5 in Costinot and Rodríguez-Clare (2014), the trade elasticity in the
Melitz-Pareto model with non-nested preferences is described by the following formulation:

3Unlike P̃i,k, the national-level indexes, P̃ji,k, are not the same as the CES price indexes defined in the main text, but this
is not problematic from the point of the isomorphism result we are seeking.
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σMelitz
k =

{
1 + ϑk tax applied before markup

σ
σ−1 ϑ tax applied after markup

.

Appealing to the above formulation, we can show that Theorem 1 nests, as a special case, the optimal
tariff formula derived by Demidova and Rodriguez-Clare (2009) for a small open economy in a single-
industry×two-country Melitz-Pareto model. To demonstrate this, drop the industry subscript k and
reduce the global economy into two countries, i.e., C = {i, j}. Noting that 1 − λij = λjj in the two-
country case, we can deduce from the above formulation and Theorem 1 that

1 + t∗ji
1 + x∗ij

= 1 +
1

(σMelitz − 1)λjj
=

1
( σ

σ−1 ϑ − 1)λjj
.

By the Lerner symmetry, export and import taxes are equivalent in the single-industry model.4 Hence,
without loss of generality, we can set x∗ij = 0. Moreover, if country i is a small open economy, then
λjj ≈ 1. Combining these two observations, we can arrive at the familiar-looking optimal tariff for-
mula in Demidova and Rodriguez-Clare (2009):

t∗ji =
σ−1

σ

ϑ − σ−1
σ

∼ small open economy w/ one traded sector.

E Proof of Theorem 1
Our proof proceeds in five steps. The first four steps characterize the optimal tax/subsidy sched-

ule for country i ∈ C under free entry. The last step demonstrates that this characterization can be
extrapolated to the case with restricted entry.

Step #1: Express Equilibrium Variables as function of P̃i and w
Our goal is to characterize optimal policy for country i ∈ C assuming the rest of the world is

passive in their use of taxes: t−i = x−i = s−i = 0. To simplify the proof, we reformulate country i’s
optimal policy problem as one where the government chooses the optimal consumer prices (rather
than the actual taxes) associated with its economy. By construction, country i’s optimal tax schedule
can be recovered from its optimal consumer-to-producer price ratios. The first step in reformulating
the optimal policy problem is to express equilibrium variables (e.g., Qji,k, Yi, etc.) as a function of (1)
the vector of consumer prices associated with economy i, P̃i ≡

{
P̃ii, P̃ji, P̃ij

}
, where

P̃ii ≡
{

Pii,k
}

k; P̃ji ≡
{

Pji,k

}
j ̸=i,k

; P̃ij ≡
{

Pij,k

}
j ̸=i,k

(E.1)

and (2) the vector of national-level wage rates across the world,
w = {w1, ..., wN} .

The following lemma shows that our desired formulation of equilibrium variables follows from (a)
treating P̃i and w as given, and(b) solving a system that satisfies all equilibrium conditions excluding
the labor market clearing condition.

Lemma 3. All equilibrium outcomes (excluding P̃i and w) can be uniquely determined as a function of P̃i ≡{
P̃ii, P̃ji, P̃ij

}
, and w.

Proof. As noted above, the proof follows from solving all equilibrium conditions excluding the equi-
librium expression for consumer prices, P̃ji,k (which are encompassed by P̃i), and the country-specific
balanced trade conditions (which pin down w).5 Stated formally, we need to solve the following
system treating P̃i, and w as given:

4The Lerner symmetry is a special case of the equivalence result presented under Lemma 1. Also, note that the market
equilibrium is efficient in the single industry Krugman model studied by Gros (1987). As such, the optimal industrial
subsidy can be normalized to zero, i.e., s∗i = 0.

5Note that by Walras’ law, the balanced trade condition is equivalent to the labor market clearing condition in each
country.
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[optimal pricing] Pjn,k = ρ̄ji,kwj

[
∑

i
āji,kQji,k

]− µk
1+µk

[optimal consumption] Qjn,k = Djn,k(Yn, P̃1n, ...P̃Nn)

[RoW imposes zero taxes] P̃jn,k = Pjn,k (P̃jn,k /∈ P̃i); Yn = wnLn (n ̸= i)

[Balanced Budget in i] Yi = wiLi +
(
P̃ii − Pii

)
· Qii +

(
P̃ij − Pij

)
· Qij +

(
P̃ji − Pji

)
· Qji,

where “·” denotes the inner product operator for equal-sized vectors (i.e., a · b = ∑n anbn). Since
there is a unique equilibrium, the above system is exactly identified in that it uniquely determines
Pjn,k, Qjn,k, and Yn as a function of P̃i and w .

Following Lemma 3, we can express total income in country i, Yi, as well as the entire demand
schedule in that country as follows:

Yi ≡ Yi(P̃i; w); Qji,k ≡ Qji,k(P̃i; w) = Dji,k
(
Yi(P̃i; w), P̃ii, P̃ji

)
.

Recall that Dji,k(.) denotes the Marshallian demand function facing variety ji, k. Taking note of the
above representation, our main objective is to reformulate country i’s policy problem as one where
the government chooses P̃i (as opposed to directly choosing tax rates). This reformulation, though,
needs to take into account that w is an equilibrium outcome that implicitly depends on the choice of
P̃i. To track this constraint, we define the (P̃i; w) combinations that are feasible as follows.

Definition 1. A policy-wage combination (P̃i; w) is feasible iff given P̃i, the vector of wages, w, satisfies the
balanced trade condition in every country n ∈ C. In particular,

(P̃i; w) ∈ FP ⇐⇒

∑j ̸=n ∑k∈K

[
Pjn,k(P̃i; w)Qjn,k(P̃i; w)− Pnj,k(P̃i; w)Qnj,k(P̃i; w)

]
= 0 if n ̸= i

∑j ̸=n ∑K
k=1

[
Pji,k(P̃i; w)Qjn,k(P̃i; w)− P̃ij,kQnj,k(P̃i; w)

]
= 0 if n = i

.

To elaborate on the above definition: The balanced trade condition for a generic country n ∈ C

can be expresses as ∑j ̸=n,k

[
1

1+tjn,k
P̃nj,kQjn,k − 1

1+tnj,k
P̃nj,kQnj,k

]
. The expression for the balanced trade

condition, above, follows from the assumption that only country i imposes taxes and the rest of the
world is passive. We should emphasize one more time that by Walras’ law the satisfaction of the
balanced trade condition is analogous to the satisfaction of the labor market clearing condition in
each country. Relatedly, take note of the equivalence between FP and F–with the latter being defined
in the main text under Definition (D2). Taking note of these implicit details, we now proceed to
reformulate the optimal policy problem (P1).

Step #2: Reformulate the Optimal Tariff Problem
Before proceeding with the second step of the proof, we formally present our notation for partial

derivatives. We will rely heavily on this choice of notation, especially in the subsequent steps of the
proof where we derive the first-order conditions.

Notation [Partial Derivative] Let f (x1, x2) be a function of two variables, where x2 = g(x1) is possibly
an implicit function of x1. We henceforth use(

∂ f (x1, x2)

∂x1

)
x2

=
∂ f (x1, x̄2)

∂x1

to denote the derivative of f (.) w.r.t. x1, treating x2 = x̄2 as a constant.6
Moving on with Step 2, recall the original formulation of the optimal policy problem (P1) from

Section I:
max

Ti
Wi(Ti; w) s.t. (Ti; w) ∈ F (P1)

6Based on the above notation and the chain rule, the full derivative of f (.) w.r.t. x1 is given by

d f (x1, x2)

dx1
=

(
∂ f (x1, x2)

∂x1

)
x2

+

(
∂ f (x1, x2)

∂x2

)
x2

dg(x1)

dx1
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In the above formulation, Ti ≡ (ti, xi, si) denotes country i’s vector of taxes and F is defined according
to Definition (D2, Section I) and analogously to FP. Our next intermediate result shows that Problem
(P1) can be alternatively cast as one where the government chooses the optimal vector of consumer
prices P̃i associated with its economy. After determining P̃i, the optimal tax vectors, t∗i , x∗i , and s∗i can
be automatically recovered from the optimal consumer-to-producer price ratios.

Lemma 4. Country i’s vector of optimal taxes,
{

t∗i , x∗i , s∗i
}

, can be determined by solving the following problem
instead of (P1):

max
P̃i

Wi(P̃i; w) ≡ Vi(Yi(P̃i; w), P̃i) s.t.
{
(P̃i; w) ∈ FP
w−i = w−i,

(P̃1),

where w−i denotes the vector wages in the rest of the world under the status quo.

Proof. The proof consists of two parts. First, we can verify that there is a one-to-one correspondence
between the optimal choice w.r.t. P̃i ≡

{
P̃∗

ii, P̃∗
ji, P̃∗

ij

}
and T∗

i ≡
{

t∗i , x∗i , s∗i
}

. More specifically, given

information on P̃i (and the accompanying wage vector w∗), we can uniquely recover the optimal
tax/subsidy rates using the following set of equations:

1 + t∗ji,k =
P̃∗

ji,k

Pji,k(P̃i, w∗)
; 1 + x∗ij,k =

Pji,k(P̃i, w∗)/P̃∗
ji,k

Pii,k(P̃i, w∗)/P̃∗
ii,k

; 1 + s∗i,k =
Pii,k(P̃i, w∗)

P̃∗
ii,k

.

The correspondence presented above, indicates an equivalence between choosing P̃i versus choosing
Ti directly. That is,

max
P̃i

Wi(P̃i; w) s.t. (P̃i; w) ∈ FP ∼ max
Ti

Wi(Ti; w) s.t. (Ti; w) ∈ F.

Second, we must rationalize the constraint on foreign wages, w−i = w−i. This constraint in the two-
country case (N = 2) follows directly from Walras’ law. Beyond that, it follows from Walras’ law
and the assumption that cooperative buffers in the rest of the world preserve relative wages between
other countries, i.e., d ln

(
wn/wj

)
= 0 for all n, j ̸= i (see Appendix G for details).7

Step #3. Deriving and Simplifying the System of First-Order Conditions
This step derives and solves the system of first-order necessary conditions (F.O.C.s) associated

with Problem P̃1. This system of F.O.C.s can be formally expressed as follows:

∇P̃Wi(P̃i; w) +∇wWi ·
(

dw
dP̃

)
(P̃i ;w)∈FP

= 0, ∀P̃ ∈ P̃i.

where recall that P̃i =
{

P̃ii, P̃ij, P̃ji
}

includes all consumer price variables associated with economy i.
To elaborate the right-hand side of the above equation consists of two terms, as implied by the chain
rule: The first term accounts for the change in welfare holding w fixed. The second term account for
the change in w w.r.t. P̃ ∈ P̃i in order to satisfy feasibility.

Our characterization of optimal policy employs the dual approach, the presentation of which re-
lies heavily on Marshallian demand elasticities. So, for future reference, we formally define these
elasticities below.

7As noted in Appendix G, the constraint w−i = w−i, holds in some canonical special cases of our framework irrespective
of cooperative wage buffers in the RoW. One can also show that the constraint w−i = w−i is non-binding at the optimum if
trade is bilaterally balanced. In particular, specify country i’s welfare as Wi

(
P̃i, wi, w−i

)
= Vi

(
wi Li +Ri

(
P̃i, wi, w−i

)
, P̃i
)
,

where recall that P̃i ⊂ P̃i. Taking partial derivatives w.r.t. wn ∈ w−i and noting that Yn = wn L̄n, yields
∂Wi(P̃i ,wi ,w−i)

∂wn
=

∂Ri(P̃i ,wi ,w−i)
∂wn

− ∑k

[
Pji,kQji,k

]
+ ∑k

[(
P̃ij,k − Pij,k

)
Qij,kηij,k

]
+ ∑n ̸=i ∑k,g

[(
P̃in,k − Pin,k

)
Qin,kε

(jn,g)
in,k

]
. Now, suppose the gross

trade matrix is bilaterally balanced, ∑k

[
Pji,kQji,k − P̃ij,kQij,k

]
. Then, one can invoke the optimality condition w.r.t. P̃in

(Equation E.21) and appeal to the Slutsky symmetry, ε
(jn,g)
in,k = ejn,gε

(in,k)
jn,g /ein,k and the demand function’s homogeneity of

degree zero property ε
(ij,k)
ij,k + = ηij,k + ∑n,g ̸=i,k e(nj,g)

ij,k to get ∂Wi(.)
∂wn

|P̃i=P̃∗
i
= 0.
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Notation [Marshallian Demand Elasticities] Let Qji,k ≡ Dji,k(Yi, P̃i) denote the Marshallian demand
function facing variety ji, k. This demand function is characterized by the following set of demand elasticities:

ε
(ni,g)
ji,k ≡

∂ lnDji,k(Yi, P̃i)

∂ ln P̃ni,g
∼ price elasticity

ηji,k ≡
∂ lnDji,k(Yi, P̃i)

∂ ln Yi
∼ income elasticity,

where P̃i =
{

P̃1i, P̃2i, ..., P̃Ni
}

corresponds to the entire of vector of consumer prices in market i. Also, recall
from the main text that V(Yi, P̃i) denotes the indirect utility associated with the Marshallian demand function,
Dji,k(Yi, P̃i).

In what follows, we appeal the above definition to characterize the first-order condition w.r.t. each
element of P̃i. We start with country i’s import prices, P̃ji, and then proceed to domestic and export
price instruments, P̃ii, and P̃ij.

Step 3.A: Deriving the F.O.C. w.r.t. Pji,k ∈ P̃i.
Consider the price of import variety ji, k, supplied by origin j–industry k (where j ̸= i). To present

the first-order necessary condition (F.O.C.) w.r.t. the price of ji, k, we use P−ji,k to denote all elements
of P̃i excluding P̃ji,k:

P−ji,k ≡ P̃i − {P̃ji,k} ∼ entire policy vector excluding P̃ji,k

Next, recall that Wi(P̃i; w) ≡ Vi(Yi(P̃i; w), P̃ii, P̃ji) where income, Yi(P̃i; w) = ẁiLi +Ri(P̃i; w), is
dictated by the balanced budget condition. Applying the chain rule to Wi(P̃i; w), the F.O.C. w.r.t. P̃ji,k

(holding the remaining elements of P̃i constant) can be stated as follows: 8

(
dWi(P̃i; w)

d ln P̃ji,k

)
P−ji,k

=

(
∂Wi(P̃i ;w)

∂P̃ji,k

)
w,P−ji,k︷ ︸︸ ︷

∂Vi(Yi, P̃i)

∂ ln P̃ji,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P−ji,k

+

(
∂Wi(P̃i; w)

∂w

)
P̃i

·
(

dw
d ln P̃ji,k

)
P−ji,k

= 0

(E.2)

The first term on the right-hand side of the above equation accounts for the direct welfare effects of
a change in the price of good ji, k (holding Yi and P̃−ji,k ≡ P̃i − {P̃ji,k} constant). The second term
accounts for welfare effects that channel through revenue-generation (holding w and P̃−ji,k constant).
The last term accounts for general equilibrium wage effects. Below, we characterize each of these
elements one-by-one.

The term accounting for direct price effects can be simplified by appealing to Roy’s identity,
∂Vi/P̃ji,k
∂Vi/∂Yi

= −Qji,k, which indicates that

[Roy’s identity]
∂Vi(Yi, P̃i)

∂ ln P̃ji,k
= −P̃ji,kQji,k

(
∂Vi
∂Yi

)
. (E.3)

8We can alternatively formulate the above optimization problem using the method of Lagrange multipliers, and by
appealing to Lagrange sufficiency theorem. In that case the objective function can be formulated as follows:

max
P̃i ,Yi

Li(P̃i; w) = Vi(Yi, P̃i) + λy
(
Yi − ẁi Li −Ri(P̃i; w)

)
.

The F.O.C.with respect to Yi entails that λY = ∂Vi(.)
∂Yi

. Hence, the F.O.C. with respect to P̃ji,k ∈ P̃i can be expressed as

dLi(P̃i; w)

d ln P̃ji,k
=

∂Vi(Yi, P̃i)

∂ ln P̃ji,k
+ λy

(
∂(ẁi Li +Ri(P̃i; w))

∂ ln P̃ji,k

)
w,P−ji,k

+

(
∂Li(P̃i; w)

∂w

)
P̃i

·
(

dw
d ln P̃ji,k

)
P−ji,k

= 0,

which is equivalent to the F.O.C. expressed above.
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To characterize
(

∂Yi(P̃i; w)/∂ ln P̃ji,k

)
w,P−ji,k

, note that total income in country i (which dictates total

expenditure) is the sum of wage payments plus tax revenues:9

Yi(P̃i; w) = wiLi + ∑
n ̸=i

[(
P̃ni − Pni

)
· Qni

]
︸ ︷︷ ︸

import tax revenues

+
(
P̃ii − Pii

)
· Qii︸ ︷︷ ︸

production tax revenues

+ ∑
n ̸=i

[(
P̃in − Pin

)
· Qin

]
︸ ︷︷ ︸

export tax revenues

,

Holding w and P̃−ji,k ≡ P̃i −{P̃ji,k} fixed, P̃ji,k has no effect on wage payments:
(

∂ (wiLi) /∂ ln P̃ji,k

)
w,P̃−ji,k

=

0. The effect of P̃ji,k on import tax revenues can be unpacked as follows:

(
∂ ∑n ̸=i

[(
P̃ni − Pni

)
· Qni

]
∂ ln P̃ji,k

)
= P̃ji,kQji,k + ∑

g
∑
n ̸=i

(P̃ni,g − Pni,g
)

Qni,g

(
∂ ln Qni,g

∂ ln P̃ji,k

)
w,P̃−ji,k


− ∑

g
∑
n ̸=i

Pni,gQni,g ∑
ȷ ̸=i

 Pȷi,gQȷi,g

Pni,gQni,g

(
∂ ln Pȷi,g

∂ ln Qni,g

)
w,P̃i

(∂ ln Qni,g

∂ ln P̃ji,k

)
w,P̃−ji,k

 .

(E.4)

The first term in the above expression accounts for the direct, arithmetic effect of P̃ji,k on import tax
revenues. The second term accounts for the change in revenue due to the change in country i’s import
demand schedule as a result of changing P̃ji,k ∈ P̃i. The change in demand can itself be decomposed
into two components:(

∂ ln Qni,g

∂ ln P̃ji,k

)
w,P̃−ji,k

=
∂ lnDni,g(P̃i, Yi)

∂ ln P̃ji,k︸ ︷︷ ︸
price effect

+
∂ lnDni,g(P̃i, Yi)

∂ ln Yi

(
∂ ln Yi

∂ ln P̃ji,k

)
w,P̃−ji,k︸ ︷︷ ︸

income effect

= ε
(ji,k)
ni,g + ηni,g

(
∂ ln Yi

∂ ln P̃ji,k

)
w,P̃−ji,k

,

(E.5)

where ε
(ji,k)
ni,g and ηni,g denote the Marshallian price and income elasticities of demand. The fact that

adjustments to demand quantities depend on
(

∂ ln Yi/∂ ln P̃ji,k

)
w,P̃−ji,k

reflects the circular nature of

our general equilibrium setup. We will not unpack this term for now, as we demonstrate later that
income effects are welfare-neutral at the optimum an need not be explicitly specified.

The last term in Equation E.4, accounts for scale effects: Noting that Pni,g = ϱ̄ni,gwn
[
∑ι τnι,gQnι,g

]− µg
1+µg ,

a change in the export supply of good ni, g (due to a change in P̃ji,k) alters the scale of production in
origin n–industry g and the producer prices associated with that location. Due to cross demand ef-
fects, this change also impacts the producer price of domestic suppliers as well as foreign suppliers
in location ȷ ̸= i outside of n.10 Using the above definition for ωni,g, we can simplify Equation E.4 as

9The operator “·” denotes the inner product of two equal-sized vectors. Also, since we are focused on the free entry
case, for now, the profit-adjusted wage rate is equal to the actual (unadjusted) wage rate, i.e., ẁi = wi.

10To give an example, the producer price of goods supplied by country i in industry g (Pij,g) respond to a reduction in
Qni,g through the following chain of effects:

Qni,g ↓ scale effects (n,g)−−−−−−−−−→ Pnℓ,g ↑ cross-demand effects (ℓ ̸=i)−−−−−−−−−−−−−−−→ Qiℓ,g ↑ scale effects (i,g)−−−−−−−−−→ Pij,g ↓

Stated verbally, a reduction in Qni,g lowers the producer price of origin n–industry g goods in all markets including ℓ ̸= i.
Since consumer prices in location ℓ ̸= i are not regulated by policy, an increase in Pnℓ,g is fully passed onto consumer prices
(provided that n ̸= i), leading to a increase in Qiℓ,g through cross-substitution (or cross-demand) effects. The increase in
Qiℓ,g, in turn, lowers the producer price of goods supplied by origin i–industry g to all markets.
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follows:(
∂ ∑n ̸=i

[(
P̃ni − Pni

)
· Qni

]
∂ ln P̃ji,k

)
w,P̃−ji,k

= P̃ji,kQji,k +∑
g

∑
n ̸=i

P̃ni,g −

1 + ∑
ȷ ̸=i

Pȷi,gQȷi,g

Pni,gQni,g

(
∂ ln Pȷi,g

∂ ln Qni,g

)
w,P̃i

 Pni,g

Qni,g

(
∂ ln Qni,g

∂ ln P̃ji,k

)
w,P̃−ji,k

 .

(E.6)
Moving on, the effect of a change in P̃ji,k on country i’s production and export tax revenues can be
unpacked as(

∂ ∑n
[(

P̃in − Pin
)
· Qin

]
∂ ln P̃ji,k

)
w,P̃−ji,k

= ∑
g

(P̃ii,g − Pii,g
)

Qii,g

(
∂ ln Qii,g

∂ ln P̃ji,k

)
w,P̃−ji,k


−∑

g
∑
n

Pin,gQin,g

( ∂Pin,g

∂ ln Qii,g

)
w,P̃i

(
∂ ln Qii,g

∂ ln P̃ji,k

)
w,P̃−ji,k

+ ∑
ℓ ̸=i

(
∂ ln Pin,g

∂ ln Qℓi,g

)
w,P̃i

(
∂ ln Qℓi,g

∂ ln P̃ji,k

)
w,P̃−ji,k

 .

(E.7)

The first term in the above equation accounts for revenue effects that channel through a change in the
demand for domestic varieties (i.e., ii, g). The second term accounts for scale effects—i.e., a change
in Qii,g alters the scale of production in origin i–industry k, and the producer prices associated with
country i in all export markets. Likewise, the change in the price of competing variaties (e.g., Qℓi,g,
where ℓ ̸= i) affects the scale of production in country i through cross-scale effects—as explained in
Footnote 10. We can simplify the first sum in the second line of the above equation by invoking the
Free Entry condition. In particular,11

∑
n

Pin,gQin,g

(
∂Pin,g

∂ ln Qii,g

)
w,P̃i

 = ∑
n

Pin,gQin,g

Pii,gQii,g

(
∂Pin,g

∂ ln Qii,g

)
w,P̃i

 Pii,gQii,g = (E.9)

= ∑
n

 rin,g

rii,g

(
∂Pin,g

∂ ln Qii,g

)
w,P̃i

 Pii,gQii,g = −
µg

1 + µg
Pii,gQii,g,

where the last line follows from the fact that (a)
(

∂Pin,g
∂ ln Qii,g

)
w,P̃i

= − µg
1+µg

rii,g, and (b) ∑n rin,g = 1. We

can plug the above equation back into Equation E.7 to simplify it as follows:(
∂ ∑n

[(
P̃in − Pin

)
· Qin

]
∂ ln P̃ji,k

)
w,P̃−ji,k

= ∑
g

(P̃ii,g −
[

1 −
µg

1 + µg

]
Pii,g

)
Qii,g

(
∂ ln Qii,g

∂ ln P̃ji,k

)
w,P̃−ji,k

+ ∑
ℓ ̸=i

∑
n,g

Pin,gQin,g

(
∂ ln Pin,g

∂ ln Qℓi,g

)(
∂ ln Qℓi,g

∂ ln P̃ji,k

)
w,P̃−ji,k

 .

(E.10)

Note that
(

∂ ln Qii,g/∂ ln P̃ji,k

)
w,P̃−ji,k

encompasses price and income effects as indicated by Equation

E.5. To keep track of the general equilibrium scale effects in Equations E.6 and E.10, we use ωni,g to

11In particular, note that Pin,g = τin,gPii,g, where by Free Entry, Pii,g = ρ̄ii,gwiQ
− µg

1+µg

i,g , with Qi,g = ∑n āin,gQin,g denoting

country i’s effective output in industry g. Hence, holding w and P̃−ji,k ≡ P̃i − {P̃ji,k} constant, we can show that

∑
n

( ∂ ln Pin,g

∂ ln Qij,g

)
w,P̃−ji,k

rin,g

rij,g

 = ∑
n

( ∂ ln Pii,g

∂ lnQi,g

∂ lnQi,g

∂ ln Qij,g

)
w,P̃−ji,k

rin,g

rij,g

 =
∂ ln Pii,g

∂ lnQi,g
= −

µg

1 + µg
, (E.8)

where the second line follows from the fact that ∂ lnQi,g/∂ ln Qij,g = rij,g, by definition.
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denote the general equilibrium inverse export supply elasticity associated with ni, g’s . Namely,

ωni,g ≡ ∑
ℓ∈C

 Piℓ,gQiℓ,g

Pni,gQni,g

(
∂ ln Piℓ,g

∂ ln Qni,g

)
w,P̃i

+ ∑
j ̸=i

 Pji,gQji,g

Pni,gQni,g

(
∂ ln Pji,g

∂ ln Qni,g

)
w,P̃i


=

1
rni,gρn,g

∑
g

 ẁiLi
ẁnLn

ρi,g

(
∂ ln Pii,g

∂ ln Qni,g

)
w,P̃i

+ ∑
j ̸=i

ẁjLj

ẁnLn
rji,gρj,g

(
∂ ln Pji,g

∂ ln Qni,g

)
w,P̃i

 ∼ export supply elasticity

(E.11)

The second line in the above definition derives from the fact that
(

∂ ln Piℓ,g
∂ ln Qni,g

)
w,P̃i

=
(

∂ ln Pii,g
∂ ln Qni,g

)
w,P̃i

for

all ℓ ∈ C (as the price of origin i’s good sold to different locations differ in only a constant iceberg cost
shifter) and that sales shares for each origin n ∈ C are defined as follows:

rni,g ≡
Pni,gQni,g

∑ι∈C

(
Pnι,gQnι,g

) ∼ good-specific sales share; ρn,g =
∑ι∈C

(
Pnι,gQnι,g

)
ẁnLn

∼ industry-wide sales share.

For now, we do not unpack the supply elasticity, ωni,g. We relegate this task instead to Step #4 of
the proof, where we solve our full system of F.O.C.s. Next, we simplify Equations E.6 and E.10 by
invoking our definition for ωni,g, and combine the resulting expressions to produce the following
equation describing the effect of policy on total tax revenues:(

∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P̃−ji,k

= P̃ji,kQji,k + ∑
g

∑
n ̸=i

[(
P̃ni,g − [1 + ωni,g]Pni,g

)
Qni,gε

(ji,k)
ni,g

]

+ ∑
g

[(
P̃ii,g −

1
1 + µg

Pii,g

)
Qii,gε

(ji,k)
ii,g

]
+ ∆i(P̃i, w)

(
∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P̃−ji,k

.

(E.12)

The uniform term ∆i(P̃i) regulates the net force of (circular) general equilibrium income effects. It
correspondingly depends on the Marshallian income elasticities of demand:

∆i(P̃i; w) ≡ ∑
g

∑
n ̸=i

[(
P̃ni,g − [1 + ωni,g]Pni,g

)
Qni,gηni,g

]
+ ∑

g

[(
P̃ii,g −

1
1 + µg

Pii,g

)
Qii,gηii,g

]
. (E.13)

To characterize the general equilibrium wage effects in the F.O.C. (i.e., the last term on the right-hand
side of Equation E.2), we invoke our earlier result under Lemma 4: By the targeting principle w−i is
welfare neutral at the optimum (i.e., P̃i = P̃i), which implies that(

∂Wi(P̃i; w)

∂w

)
P̃i

·
(

dw
d ln P̃ji,k

)
P̃−ji,k

=

(
∂Wi(P̃i; w)

∂wi

)
w−i ,P̃i

(
dwi

d ln P̃ji,k

)
w−i ,P̃−ji,k

.

That is, we can characterize the term that encompasses wage effects, treating w−i as given. Accord-
ingly, the term

(
dwi/d ln P̃ji,k

)
w−i ,P̃−ji,k

can be calculated by applying the Implicit Function Theorem

to country i’s balanced trade condition,12

[Balanced Trade] Ti
(
P̃i, w

)
≡ ∑

n ̸=i

[
Pni(P̃i; w) · Qni,g(P̃i; w)− P̃ni · Qni,g(P̃i; w)

]
,

while treating w−i = w̄−i as if it were given. This step yields the following equation

12To be clear about the notation, we can write country i’s balanced trade condition without appealing to the inner product

operator as follows: Ti
(
P̃i, w

)
≡ ∑g ∑n ̸=i

(
Pni,g(P̃i, w)Qni,g(P̃i, w)− P̃in,gQin,g(P̃i, w)

)
= 0.
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(
d ln wi

d ln P̃ji,k

)
w−i ,P̃−ji,k

= −
(

∂Ti(P̃i, w)

∂ ln P̃ji,k

)
w,P̃−ji,k

/
(

∂Ti(P̃i, w)

∂ ln wi

)
w̄−i ,P̃i

=

−∑n ̸=i

[
(Pni ⊙ Qni) ·

(
∂ ln Qni
∂ ln P̃ji,k

)
w,P̃−ji,k

+ (Pni ⊙ Qni) ·
(

Ωni ⊙ ∂ ln Qni
∂ ln P̃ji,k

)
w,P̃−ji,k

]
(

∂Ti(P̃i ,w)
∂ ln wi

)
w̄−i ,P̃i

. (E.14)

where Ωni ≡
{

ωni,k
}

k is a vector composed of export supply elasticities (as defined under Equation
E.11) and ⊙ denotes the element-wise product of two equal-sized vectors (i.e., a ⊙ b = [anbn]n). The

second line in the above equation follows from the fact that
(

∂ ln Qin,g(P̃i, w)/∂ ln P̃ji,k

)
w,P̃−ji,k

= 0 if

n ̸= i. That is, if we fix the vector of wages, w, the choice of P̃ji,k has no effect on the demand schedule
in the rest of the world. In other words, the only way the effect of P̃ji,k transmits to foreign markets is
through its effect on w.13 Now, define the importer-wide term, τ̄i, as follows:

τ̄i ≡

(
∂Wi(P̃i ;w)

∂wi

)
w̄−i ,P̃i

(
∂Vi(.)

∂Yi

)−1

(
∂Ti(P̃i, w)/∂ ln wi

)
w̄−i ,P̃i

. (E.15)

Importantly, note that τ̄i does not feature an industry-specific subscript. Combining Equation E.14
with the expression for τ̄i, we can summarize the wage effects in the F.O.C. (Equation E.2) as follows(

∂Wi(P̃i; w)

∂w

)
P̃i

·
(

dw
d ln P̃ji,k

)
P̃−ji,k

=− ∑
g

∑
n ̸=i

[
[1 + ωni,g]τ̄iPni,gQni,gε

(ji,k)
ni,g

]

− ∑
g

∑
n ̸=i

[
[1 + ωni,g]τ̄iPni,gQni,gηni,g

] (∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P̃−ji,k

.

(E.16)

Finally, plugging Equations E.3, E.12, and E.16 back into the F.O.C. (Equation E.2); yields the following
optimality condition w.r.t. to price instrument P̃ji,k ∈ P̃i:

[FOC w.r.t. P̃ji,k] ∑
n ̸=i

∑
g

[(
P̃ni,g

Pni,g
− (1 + τ̄i)(1 + ωni,g)

)
Pni,gQni,gε

(ji,k)
ni,g

]

+ ∑
g

[(
P̃ii,g

Pii,g
− 1

1 + µg

)
Pii,gQii,gε

(ji,k)
ii,g

]
+ ∆̃i(P̃i; w)

(
∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P̃−ji,k

= 0.

(E.17)

The uniform term ∆̃i(.) is defined analogously to ∆i(.), but adjusts for the interaction of general equi-
librium wage and income effects:

∆̃i(P̃i; w) ≡ ∑
g

∑
n ̸=i

[(
P̃ni,g

Pni,g
− (1 + ωni,g)(1 + τ̄i)

)
Pni,gQni,gηni,g

]
+∑

g

[(
P̃ii,g

Pii,g
− 1

1 + µg

)
Pii,gQii,gηii,g

]
.

(E.18)
Before moving forward, a remark on the uniform term τ̄i is in order. We do not unpack this term
because the multiplicity of country i’s optimal tax schedule (per Lemma 1) will render the exact value
assigned to τ̄i as redundant. We will elaborate more on this point when we combine the F.O.C.s w.r.t.
all tax instruments in step #4 of the proof.

13The partial derivative in the numerator of Equation E.14 is subject to the implicit restriction that ∑n Pin,k · Qin,k =
wi Li is held constant. We mechanically ensure this constraints is satisfied by differentiating a reformulated balanced trade

condition, Ti = ∑n ̸=i

[
Pni(P̃i; w) · Qni,g(P̃i; w)− P̃ni · Qni,g(P̃i; w)

]
+
(
∑n Pin,k · Qin,k − wi Li

)
= 0, where the last term in

parenthesis is zero.
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Step 3.B: Deriving the F.O.C. w.r.t. Pii,k ∈ P̃i .
Next, we derive the F.O.C. w.r.t. to a locally produced and locally consumer variety ii, k. Recall

that the objective function can is given by Wi = Vi(Yi(P̃i; w), P̃ii, P̃ji). The F.O.C. w.r.t. P̃ii,k, holding
the remaining elements of P̃i (namely, P−ii,k ≡ P̃i − {P̃ii,k}) constant, can be stated as(

dWi(P̃i; w)

d ln P̃ii,k

)
P−ii,k

=
∂Vi(Yi, P̃i)

∂ ln P̃ii,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(P̃i; w)

∂ ln P̃ii,k

)
w,P−ii,k

+

(
∂Wi(P̃i; w)

∂w

)
P̃i

·
(

dw
d ln P̃ii,k

)
P−ii,k

= 0.

(E.19)
Each element of the right-hand side can be characterized in a manner identical to Step 3.A. Specifically,
the first term can be simplified using Roy’s identity. The second term, which accounts for revenue-
raising effects can be characterized using cross-demand elasticities w.r.t. P̃ii,k instead of P̃ji,k. The same
goes for the last term accounting for general equilibrium wage effects. Repeating the derivations in
Step 3.A, the F.O.C. characterized by Equation E.19 can be unpacked as follows:

[FOC w.r.t. P̃ii,k] ∑
n ̸=i

∑
g

[(
P̃ni,g

Pni,g
− (1 + τ̄i)(1 + ωni,g)

)
Pni,gQni,gε

(ii,k)
ni,g

]

+ ∑
g

[(
P̃ii,g

Pii,g
− 1

1 + µg

)
Pii,gQii,gε

(ii,k)
ii,g

]
+ ∆̃i(P̃i; w)

(
∂Yi(P̃i; w)

∂ ln P̃ii,k

)
w,P−ii,k

= 0,

(E.20)

where the uniform terms, ∆̃i(.), and τ̄i, have the same definition as that introduced under Equations
E.18 and E.15.

Step 3.C: Deriving the F.O.C. w.r.t. Pij,k ∈ P̃i.
Finally, we derive the F.O.C. w.r.t. to export variety ij, k, which is sold to destination j ̸= i in

industry k. Note again that the objective function is given by Wi = Vi(Yi(P̃i; w), P̃ii, P̃ji). The F.O.C.
w.r.t. P̃ij,k, holding the remaining elements of P̃i (namely, P̃−ij,k ≡ P̃i − {P̃ij,k}) constant, can be stated
as(

dWi(P̃i; w)

d ln P̃ij,k

)
P̃−ij,k

=
∂Vi(Yi, P̃i)

∂ ln P̃ij,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P̃−ij,k

+

(
∂Wi(P̃i; w)

∂w

)
P̃i

·
(

dw
d ln P̃ij,k

)
P̃−ij,k

= 0.

(E.21)
The first term as before accounts for the direct effect of a price change on consumer surplus. This
term is trivially equal to zero in this case, since P̃ij,k /∈ P̃i. That is, since ij, k is not part of the domestic
consumption bundle, raising its price has no direct effect on consumer surplus in country i:

P̃ij,k /∈ P̃i =⇒ ∂Vi(Yi, P̃i)

∂ ln P̃ij,k
= 0. (E.22)

The second term in Equation E.21 accounts for the revenue-raising effects of a change in P̃ij,k ∈ P̃i. To
unpack this term note that total income (or expenditure) in country i is dictated by the sum of wage
payments and tax revenues:

Yi(P̃i; w) = wiLi + ∑
n ̸=i

[(
P̃ni − Pni

)
· Qni

]
+
(
P̃ii − Pii

)
· Qii + ∑

n ̸=i

[(
P̃in − Pin

)
· Qin

]
,

Hence, holding wages w constant, the change in country i’s income amounts to the change in import,
domestic, and export tax revenues. The effect on import tax revenues can be unpacked as follows:(

∂ ∑n ̸=i
[(

P̃ni − Pni
)
· Qni

]
∂ ln P̃ij,k

)
w,P̃−ij,k

=∑
g

∑
n ̸=i

(P̃ni,g − Pni,g
)

Qni,g

(
∂ ln Qni,g

∂ ln P̃ij,k

)
w,P̃−ij,k


− ∑

g
∑
n ̸=i

Pni,gQni,gωnj,g

(
∂ ln Qnj,g

∂ ln P̃ij,k

)
w,P̃−ij,k

 . (E.23)
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where ωnj,g is the export supply elasticity as defined by E.11. The first term on the right-hand side
accounts for general equilibrium income effects: Specifically, a change in P̃ij,k can raise country i’s
income Yi through higher tax revenues, and alter the entire demand schedule, Qni,g = Dni,g(P̃i, Yi),
in the local market. The second term accounts for scale effects: To elaborate, a change in P̃ij,k distorts
origin i’s export supply schedule in market j ∈ C. This change alters the scale of production and the
producer prices associated with origin n–industry g that serves market j (this includes Pni,g which is
associated with economy i). It also changes the scale of production and producer prices from foreign
suppliers through cross-demand effects. These changes in international producer prices, impacts
country i’s terms-of-trade by changing its import tax revenues. Also, note that since the rest of the
world (including country j) is passive in terms of taxation, their income is pinned to their wage rate
and vector w. Hence,

(
∂Yj/∂ ln P̃ij,k

)
w,P̃−ij,k

= 0, which implies that
(

∂ ln Qnj,g/∂ ln P̃ij,k

)
w,P̃−ij,k

=

∂ lnDnj,g(Ȳj, P̃j)/∂ ln P̃ij,k = ε
(ij,k)
nj,g . Likewise, since P̃ij,k /∈ P̃i, its only effect on the demand schedule

in the local market i is through general equilibrium income effects. Putting these results together, we
can posit that (

∂ ln Qnι,g

∂ ln P̃ij,k

)
w,P̃−ij,k

=


ε
(ij,k)
nj,g if ι = j

ηni,g

(
∂ ln Yi

∂ ln P̃ij,k

)
w,P̃−ij,k

if ι = i
.

Considering the above expressions and noting our earlier definition for ωni,g under Equation E.11,
Equation E.23 can be simplified as(

∂ ∑n ̸=i
[(

P̃ni − Pni
)
· Qni

]
∂ ln P̃ij,k

)
w,P̃−ij,k

= −∑
g

∑
n ̸=i

[
ωnj,gPni,gQni,gε

(ij,k)
nj,g

]
+ ∑

g
∑
n ̸=i

[(
P̃ni,g − [1 + ωni,g]Pni,g

)
Qni,gηni,g

] ( ∂ ln Yi

∂ ln P̃ij,k

)
w,P̃−ij,k

= −∑
g

∑
n ̸=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∑

g
∑
n ̸=i

[(
P̃ni,g − [1 + ωni,g]Pni,g

)
Qni,gηni,g

] ( ∂ ln Yi

∂ ln P̃ij,k

)
w,P̃−ij,k

.

(E.24)

The last line in the above equation follows from (1) the definition of ω, which entails that ωnj,grni,g =
ωni,grnj,g, and (2) the fact that rni,g/rnj,g = Pni,gQni,g/Pnj,gQnj,g, since the markup is uniform across
output sold to different destinations in the same industry.

The effect of P̃ij,k on country i’s production and export tax revenues can be unpacked as follows:14(
∂

∂ ln P̃ij,k
∑
n

[(
P̃in − Pin

)
· Qin

])
w,P̃−ij,k

= ∑
g

(P̃ii,g − Pii,g
)

Qii,g

(
∂ ln Qii,g

∂ ln P̃ij,k

)
w,P̃−ij,k


+ P̃ij,kQij,k + ∑

g

(P̃ij,g − Pij,g
)

Qij,g

(
∂ ln Qij,g

∂ ln P̃ij,k

)
w,P̃−ij,k

− ∑
g

∑
n

Pin,gQin,g

(
∂Pin,g

∂ ln Qij,g

)
w,P̃i

(
∂ ln Qij,g

∂ ln P̃ij,k

)
w,P̃−ij,k

 .

(E.25)

The first term (in the 1st line) represents the effect on domestic tax revenues that channel through
general equilibrium income effects. The second term on the right-hand side (P̃ij,kQij,k) represents the
direct, arithmetic effect of P̃ij,k on export tax revenues. The third term represents revenue effects that
channel through a change in the demand for all varieties sold to destination j (i.e., ij, g). The last term
accounts for scale effects—i.e., a change in Qij,g alters the scale of production in origin i–industry g,
and modifies all the producer prices associated with that industry. As noted in Step 3.A, the last term
in Equation E.25 can be simplified using the free-entry condition, which entails that (See Equation E.9):

∑
n∈C

Pin,gQin,g

(
∂Pin,g

∂ ln Qij,g

)
w,P̃i

 = −
µg

1 + µg
Pij,gQij,g,

14∑n
[(

P̃in − Pin
)
· Qin

]
=
(
P̃ii − Pii

)
· Qii,g + ∑n ̸=i

[(
P̃in − Pin

)
· Qin

]
is the sum of domestic and export tax revenues.
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Also, recall from our earlier discussion that since country j ̸= i collects no tax revenues by assumption,(
∂Yj/∂ ln P̃ij,k

)
w,P̃−ij,k

= 0, which implies that
(

∂ ln Qnj,g/∂ ln P̃ij,k

)
w,P̃−ij,k

= ∂ lnDnj,g(Ȳj, P̃j)/∂ ln P̃ij,k =

ε
(ij,k)
nj,g . Plugging these expressions back into Equation E.25 simplifies it as(

∂

∂ ln P̃ij,k
∑
n

[(
P̃in − Pin

)
· Qin

])
w,P̃−ij,k

= P̃ij,kQij,k + ∑
g

[(
P̃ij,g − [1 −

µg

1 + µg
]Pij,g

)
Qij,gε

(ij,k)
ij,g

]

+ ∑
g

[(
P̃ii,g −

1
1 + µg

Pii,g

)
Qii,gηii,g

](
∂ ln Yi

∂ ln P̃ij,k

)
w,P̃−ij,k

.

(E.26)

Combining Equations E.24 and E.26, we can express the sum of tax revenue-related effects as(
∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P̃−ij,k

= P̃ij,kQij,k+∑
g

[(
P̃ij,g − [1 −

µg

1 + µg
]Pij,g

)
Qij,gε

(ij,k)
ij,g

]

−∑
g

∑
n ̸=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∆i(P̃i; w)

(
∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P̃−ij,k

,

(E.27)

where ∆i(.) encompasses the terms accounting for circular income effects and is given by Equation
E.13. No we turn to characterizing the general equilibrium wage effects in the F.O.C.—namely, the last
term on the right-hand side of Equation E.2. To this end, we invoke our observation based on the tar-

geting principle (as stated under Lemma 4) that
(

∂Wi(.)
∂w

)
P̃i
·
(

dw
d ln P̃ij,k

)
P̃−ij,k

=
(

∂Wi(.)
∂wi

)
w−i ,P̃i

(
dwi

d ln P̃ij,k

)
w−i ,P̃−ij,k

.

The term
(

dwi
d ln P̃ji,k

)
w−i ,P̃−ji,k

can be calculated by applying the Implicit Function Theorem to country

i’s balanced trade condition,

[Balanced Trade] Ti
(
P̃i, w

)
≡ ∑

n ̸=i

[
Pni(P̃i; w) · Qni,g(P̃i; w)− P̃ni · Qni,g(P̃i; w)

]
,

while treating w−i = w̄−i as given. This application yields the following equation (Notation: Ωnj ≡{
ωnj,k

}
k

is a vector composed of export supply elasticities, while ⊙ and · denotes the element-wise
and inner products of two equal-sized vectors):(

d ln wi

d ln P̃ij,k

)
w−i ,P̃−ij,k

= −
(

∂Ti(P̃i, w)

∂ ln P̃ij,k

)
w,P̃−ij,k

/
(

∂Ti(P̃i, w)

∂ ln wi

)
w̄−i ,P̃i

=

−P̃ij,kQij,k −
(

P̃ij ⊙ Qij

)
·
(

∂ ln Qij

∂ ln P̃ij,k

)
w,P̃−ij,k

+ ∑n ̸=i

[
(Pni ⊙ Qni) ·

(
∂ ln Qni
∂ ln P̃ij,k

+ Ωnj ⊙
∂ ln Qnj

∂ ln P̃ij,k

)
w,P̃−ij,k

]
(

∂Ti(P̃i ,w)
∂ ln wi

)
w̄−i ,P̃i

(E.28)

The numerator in the second line of the above equation is composed of three terms: The first term
accounts for the arithmetic effect of P̃ji,k on country i’s trade balance. The second term account for
own- and cross-price effects that are specific to market j—the market to which good ij, k is being
exported. The last term accounts for scale effects: Specifically, a change in P̃ij,k interacts with the
balanced trade condition by modifying the producer of a generic good ni, g imported from origin i–
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industry g. As before, define the uniform importer-wide term, τ̄i, as follows

τ̄i ≡

(
∂Wi(P̃i ;w)

∂wi

)
w̄−i ,P̃i

(
∂Vi(.)

∂Yi

)−1

(
∂Ti(P̃i, w)/∂ ln wi

)
w̄−i ,P̃i

. (E.29)

Combining Equation E.28 with the expression for τ̄i, we can summarize the wage effects in the F.O.C.
(Equation E.2) as follows:(

∂Wi(.)
∂w

)
P̃i

·
(

dw
d ln P̃ij,k

)
P̃−ij,k

= τ̄i P̃ij,kQij,k + ∑
g

[
τ̄i P̃ij,gQij,gε

(ij,k)
ij,g

]

−∑
g

∑
n ̸=i

[
τ̄iωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
− ∑

g
∑
n ̸=i

[
[1 + ωni,g]τ̄iPni,gQni,gηni,g

] (∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P̃−ij,k

. (E.30)

Finally, plugging Equations E.22, E.27, and E.30 back into the F.O.C. (Equation E.21); and dividing
all the expressions by (1 + τ̄i) yields the following optimality condition w.r.t. to price instrument
P̃ij,k ∈ P̃i:

[FOC w.r.t. P̃ij,k] P̃ij,kQij,k+∑
g

[(
1 − 1

(1 + τ̄i)(1 + µg)

Pij,g

P̃ij,g

)
P̃ij,gQij,gε

(ij,k)
ij,g

]

−∑
g

∑
n ̸=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∆̃i(P̃i, w)

(
∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P̃−ij,k

= 0,

(E.31)

where ∆̃i(.) is defined as in Equation E.18. Also, we are not unpacking the term τ̄i, for the same
reasons discussed under Step 3.A.

Step #4: Solving the System of F.O.C.s and Establishing Uniqueness
To determine the optimal tax schedule we need to collect the each of first order conditions and

simultaneously solve them under one system. For the ease of reference, we will restate the F.O.C.
w.r.t. to each element of P̃i below. Following Equations E.17 and E.20, the F.O.C. w.r.t. P̃ℓi,k ∈ P̃i
(where ℓ = i or ℓ = j ̸= i) is given by the following equation:

(1) ∑
n ̸=i

∑
g

[(
1 − (1 + τ̄i)(1 + ωni,g)

Pni,g

P̃ni,g

)
eni,gε

(ℓi,k)
ni,g

]
+

∑
g

[(
1 − 1

1 + µg

Pii,g

P̃ii,g

)
eii,gε

(ℓi,k)
ii,g

]
+∆̃i(P̃i; w)

(
∂ ln Yi(P̃i; w)

∂ ln P̃ℓi,k

)
w,P−ℓi,k

= 0.

where eni,g = P̃ni,gQni,g/Yi denotes the (unconditional) expenditure share on good ni, g. Likewise,
dividing Equation E.31 by P̃ij,kQij,k, the F.O.C. w.r.t. export price P̃ij,k ∈ P̃i is given by the following
equation:

(2) 1 + ∑
g

[(
1 − 1

(1 + µg)(1 + τ̄i)

Pij,g

P̃ij,g

)
eij,g

eij,k
ε
(ij,k)
ij,g

]

− ∑
n ̸=i

∑
g

[
ωni,g

enj,g

eij,k
ε
(ij,k)
nj,g

]
+∆̃i(P̃i, w)

Yi
Yj

(
∂ ln Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P̃−ij,k

= 0.

To set the stage for what follows, let us emphasize four points:

(1) In accordance with the tax-neutrality result presented under Lemma 1, the optimal policy sched-
ule is unique only up-to two arbitrary tax shifters.15 That is, there are multiple optimal policy

15To be clear, the pseudo-uniqueness of the optimal policy formula is different from the uniqueness of the optimal policy
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schedules that are welfare-equivalent but differ in the average level assigned to domestic and
trade taxes—we come back to this point when finalizing our optimal policy formulas.

(2) The system of F.O.C.s labeled (1) can be solved independently of (2) to recover the optimal export-
and import-side price wedges.

(3) The trivial solution to system (1) satisfies ∆̃i(P̃i; w) = 0. Moreover, we can invoke Lemma 1 to
show that if there exists an optimal policy schedule for which ∆̃i(P̃i; w) ̸= 0, that policy choice
is welfare-equivalent to another that satisfies ∆̃i(P̃i; w) = 0—see Appendix E.1 for an formal
proof. These two observations together affirm that we can identify the full set of (welfare-
equivalent) optimal policy schedules by setting ∆̃i(P̃i; w) = 0 in the F.O.C.s. This particular
proposition can be alternatively stated as an envelope-type result: If the government is afforded
sufficient policy instruments, the system of F.O.C.s can be derived and solved as if the Marshal-
lian demand functions were income inelastic.

(4) We focus on interior solutions that do not assign a prohibitive price to any good (i.e., eni,g > 0,
∀ ni, g). Since prohibitive prices exclude goods from the system of F.O.C.s., one may worry that
a non-interior solution that prohibits some goods but satisfies the necessary first-order condi-
tions w.r.t. the other goods is optimal. Appendix E.2 rules out the optimality of prohibitive
taxes/prices by appealing to the Inada conditions, which is standard in the literature.

All in all, these points indicate that System (1) can be solved independent of (2) and by restricting
attention to interior solutions that satisfy ∆̃i(P̃i; w) = 0. Doing so leads us to a unique trivial solution
from which we can infer the remaining optimal tax schedules—all of which deliver the same welfare
outcome. To establish this claim, set ∆̃i(.) = 0 and express System (1) in matrix notation as follows:


e1i,1ε

(1i,1)
1i,1 · · · eNi,ε

(1i,1)
Ni,1 · · · e1i,Kε

(1i,1)
1i,K · · · eNi,Kε

(1i,1)
Ni,K

...
. . . . . .

...
e1i,1ε

(Ni,K)
1i,1 · · · eNi,ε

(Ni,K)
Ni,1 · · · e1i,Kε

(Ni,K)
1i,K · · · eNi,Kε

(Ni,K)
Ni,K


︸ ︷︷ ︸

Ẽi



1 − (1 + ω1i,k)(1 + τ̄i)
P1i,1
P̃⋆

1i,k
...

1 − 1
1+µk

Pii,k
P̃⋆

ii,k
...

1 − (1 + ωNi,k)(1 + τ̄i)
PNi,k
P̃⋆

Ni,k


k

= 0.

To prove that the above equation exhibits a unique, trivial solution it suffices to show that the expenditure-
adjusted elasticity matrix, Ei =

[
eji,kε

(ni,g)
ji,k

]
jk,ng

is non-singular. The following intermediate lemma

establishes this result using the primitive properties of Marshallian demand functions.

Lemma 5. The NK × NK matrix Ẽi ≡
[
eji,kε

(ni,g)
ji,k

]
jk,ng

is non-singular.

Proof. We can appeal to Proposition 2.E.2 in Mas-Colell, Whinston, Green, et al. (1995), which indi-
cates that the Marshallian demand function satisfies eji,k =| eji,kε

(ji,k)
ji,k | −∑n,g ̸=j,k | eni,gε

(ji,k)
ni,g |—a prop-

erty often referred to as Cournot aggregation. Since eji,k > 0 (as we have ruled out prohibitive prices),
Cournot aggregation ensures the matrix Ẽi is strictly diagonally dominant. The Lèvy-Desplanques
Theorem (Horn and Johnson (2012)), accordingly, ensures that Ẽi is non-singular. The lower bound on
det(Ẽi) follows trivially from Gerschgorin’s circle theorem. Specifically, following Ostrowski (1952),

| det
(

Ẽi

)
|≥ ∏

j∈C

∏
k∈K

∣∣∣eji,kε
(ji,k)
ji,k

∣∣∣− ∑
(n,g) ̸=(j,k)

∣∣∣eni,gε
(ji,k)
ni,g

∣∣∣
 = ∏

j∈C

∏
k∈K

eji,k > 0.

equilibrium. Establishing the latter is a daunting task well beyond the scope of this paper (see Kucheryavyy et al. (2023a)).
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Appealing to above lemma, it is immediate that the unique solution to the above matrix equation
is indeed the trivial solution, given by:

P̃∗
ji,k

Pji,1
= (1 + ωji,k)(1 + τ̄i);

P̃∗
ii,k

Pii,k
=

1
1 + µk

. (E.32)

It is straightforward to check that the above solution constitutes a global maximum by contradiction.
To present the logic: Since limP̃i→∞ Wi(P̃i, w) → 0, the above solution identifies a vector of consumer
prices at home, P̃∗

i ∈ P̃i, that yields a strictly higher welfare level than prohibitive prices. As such,
P̃i cannot constitute a global minimum. Lastly, it is straightforward to see that if the domestic price
elements in P̃i satisfy E.32, then

∆̃i(P̃i; w) ≡ ∑
g

∑
n ̸=i

[(
P̃∗

ni,g

Pni,g
− (1 + ωni,g)(1 + τ̄i)

)
Pni,gQni,gηni,g

]
+∑

g

[(
P̃∗

ii,g

Pii,g
− 1

1 + µg

)
Pii,gQii,gηii,g

]
= 0.

That is, the term accounting for general equilibrium income effects amounts to zero in the neighbor-
hood of the optimum, as if demand functions were income inelastic (i.e., ηni,g = ηii,g = 0) Capitalizing
on this result, we can proceed to solving System (2), knowing that ∆̃i(P̃i, w) = 0. To this end, let us
economize on the notation by defining X as follows:

Xij,k ≡
1

(1 + µg)(1 + τ̄i)

Pij,g

P̃ij,g
.

Invoking this minor switch of notation, the F.O.C. specified by System (2) implies the following opti-
mality condition:

1 + ∑
g

(1 −Xij,g
) eij,gε

(ij,k)
ij,g

eij,k

− ∑
n ̸=i

∑
g

ωni,g
enj,gε

(ij,k)
nj,g

eij,k

 = 0. (E.33)

To simplify the above expression we will appeal to the Cournot aggregation property–a well-known
primitive property of Marshallian demand as discussed earlier (see Mas-Colell et al. (1995)):

[Cournot aggregation] 1 + ∑
g

[
eij,g

eij,k
ε
(ij,k)
ij,g

]
= − ∑

n ̸=i
∑
g

[
enj,g

eij,k
ε
(ij,k)
nj,g

]
.

Next, combine the above expression with Equation E.33, while noting that by Slutsky’s equation
enj,g
eij,k

ε
(ij,k)
nj,g = ε

(nj,g)
ij,k if ηni,g = 1 for all ni, g. Performing these steps yields the following:

−∑
g

[
Xij,gε

(ij,g)
ij,k

]
− ∑

n ̸=i
∑
g

[
(1 + ωni,g)ε

(nj,g)
ij,k

]
= 0 ∀(ij, k).

We can rewrite the above equation in matrix algebra as follows:

−EijXij − E(−ij)
ij

(
1(N−1)K + Ωi

)
= 0, (E.34)

where Xij ≡
[
Xij,k

]
k

is a K × 1 vector. The K × K matrix Eij ∼ E(ij)
ij ≡

[
ε
(ij,g)
ij,k

]
encompasses the own-

and cross-price elasticities between the different varieties sold by origin i to market j—see Definition
(D1). Analogously, E(−ij)

ij ≡
[
ε
(nj,g)
ij,k

]
k,n ̸=i,g

is a K × (N − 1)K matrix summarizing the cross-price elas-

ticity of market j’s demand between varieties sold by origin i and all other (non-i) origin countries.
Ωi ≡

[
ωni,g

]
n,g is a (N − 1)K × 1 vector of all import good-specific inverse supply elasticities. To invert

the above system we need to establish that Eij is non-singular, which is done under the following
lemma.

Lemma 6. The K × K matrix Eij ≡
[
ε
(ij,g)
ij,k

]
k,g

is non-singular.

Proof. The proof proceeds similar to Lemma 6: The Marshallian demand function’s homogeneity of
degree zero implies that | ε

(ij,k)
ij,k |= ηij,k + ∑n,g ̸=i,k | ε

(nj,g)
ij,k |. Based on this property, since ηij,k > 0,
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the matrix Eij is strictly diagonally dominant. The Lèvy-Desplanques Theorem (Horn and Johnson
(2012)), therefore, ensures that Eij is non-singular.

Following the above lemma we can invert the system specified by Equation E.34 to obtain the
optimal level of Xij =

[
Xij,k

]
k
:

X∗
ij = −E−1

ij E(−ij)
ij

(
1(N−1)K + Ωi

)
. (E.35)

Next, there remains the task of recovering the optimal tax/subsidy rates from the optimal price
wedges implies by Equations E.32 and E.35. Noting the following relationship between taxes/subsidies
and price wedges,

1 + t∗ji,k =
P̃ji,k

Pji,k
; 1 + s∗i,k =

Pii,k

P̃∗
ii,k

; 1 + xij,k =
Pij,k/P̃∗

ij,k

Pii,k/P̃∗
ii,k

;

country i’s unilaterally optimal tax schedule can be expressed as follows:
[domestic subsidy] 1 + s∗i,k = 1 + µk

[import tariff] 1 + t∗ji,k = (1 + ωji,k)(1 + τ̄i)

[export subsidy] 1 + x∗ij = −E−1
ij E(−ij)

ij (1 + t∗i ) . (E.36)

The last step is to invoke the multiplicity of optimal tax schedules as indicated by Lemma 1. Doing
so indicates that the uniform term τ̄i is redundant and need not be unpacked. To elaborate, Lemma 1
indicates that any policy schedule that includes an import tax equal to (1 + t̄i ∈ R+)

1 + tji,k = (1 + ωji,k)(1 + τ̄i)(1 + t̄i)

is also optimal, since it delivers an identical level of welfare to the original optimal policy schedule
specified by E.36. As such, the exact value assigned to τ̄i is redundant for a welfare standpoint. This
is why we did not unpack the term τ̄i earlier in Step #3. Lemma 1 indicates that there is another
dimension of multiplicity, whereby any uniform shift in domestic production subsidies (paired with
a proportional adjustment to wi) preserves the equilibrium. Considering these points, the optimal
policy schedule (after accounting for all dimensions of multiplicity) is given by:

[domestic subsidy] 1 + s∗i,k = (1 + µk)(1 + s̄i)

[import tariff] 1 + t∗ji,k = (1 + ωji,k)(1 + t̄i)

[export subsidy] 1 + x∗ij = −E−1
ij E(−ij)

ij (1 + t∗i ) ,

where 1 + s̄i = 1 + t̄i ∈ R+ are arbitrary tax shifters. What remains is a formal characterization of the
good-specific supply elasticity, ωji,k, which is presented below.

Characterizing the (Inverse) Export Supply Elasticity, ωji,k. To fix ideas, it is helpful to repeat the
definition of the export supply elasticity presented earlier:

ωji,k ≡
1

rji,kρj,k
∑
g

 ẁiLi
ẁjLj

ρi,g

(
∂ ln Pii,g

∂ ln Qji,k

)
w,P̃i

+ ∑
n ̸=i

ẁnLn

ẁjLj
rni,gρn,g

(
∂ ln Pni,g

∂ ln Qji,k

)
w,P̃i

 , (E.37)

where rni,g = Pni,gQni,g/ ∑ι∈C

(
Pnι,gQnι,g

)
and ρn,g = ∑ι∈C

(
Pnι,gQnι,g

)
/ẁnLn respectively denote the

good ni, g-specific and industry-wide sales shares associated with origin n ∈ C. Also, note that the
producer price of good ni, g under free entry is given by Pni,g = τni,gPnn,g, where

Pnn,g = ϱ̄nn,gwn ∑
ι∈C

[
τnι,gQnι,g

]− µg
1+µg ∀(n, g)
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To characterize ωji,k, we need to characterize
(

∂ ln Pni,g
∂ ln Qji,k

)
w,Ti

=
(

∂ ln Pii,g
∂ ln Qji,k

)
w,Ti

for each origin n–industry

g. To this end we can apply the Implicit Function Theorem to the following function:

Fni,g(Q1i,g, ..., QNi,g, P11,g, ..., PNN,g) = Pnn,g − ϱ̄nn,gwn

τni,gQni,g + ∑
ℓ ̸=i

τnℓ,gQnℓ,g(τ−iℓ ⊙ P−i︸ ︷︷ ︸
P̃−iℓ

)


− µg

1+µg

= 0.

where τ−in ⊙ P−i ∼
{

τȷn,gPȷȷ,g
}

ȷ ̸=i,g denotes the vector of consumer prices in market n ̸= i from all
origins aside from i. The above function implicitly characterizes the producer prices in each origin j–
industry g as a function of export supply levels to market i (i.e., Q1i,g, ..., QNi,g). Importantly, the above
function treats both P̄i and w as given, as all elements of P̄i are chosen directly the by the government
in i. Accordingly, the function Qnι,g(.) on the right-hand side derives from the Marshallian demand
function,

Qjn,g(τ−in ⊙ P−i︸ ︷︷ ︸
P̃−in

) = Dnι,g(P̃−in, P̃in, wnLn︸ ︷︷ ︸
Yn

),

treating P̃in ∈ P̃i and wn ∈ w as given. This function accounts for the fact that any change in the
producer price of varieties associated with origin n–industry g will affect the consumer prices and the
demand schedule in all market excluding i. The reason is that prices in international markets (ex-
cluding i) are not directly pinned down by the choice, P̃i. For the sake of presentation, abstract from
cross-industry demand effects. Applying the Implicit Function Theorem to the system of equations
specified by Fni,k (. ), yields the following:
(

∂ ln P11,k
∂ ln Q1i,k

)
w,P̃i

· · ·
(

∂P11,k
∂ ln QNi,k

)
w,P̃i

...
. . .

...(
∂ ln PNN,k
∂ ln Q1i,k

)
w,P̃i

· · ·
(

∂PNN,k
∂ ln QNi,k

)
w,P̃i

 = −


∂F1i,k(.)
∂ ln P11,k

· · · ∂F1i,k(.)
∂ ln PNN,k

...
. . .

...
∂FNi,k(.)
∂ ln P11,k

· · · ∂FNi,k(.)
∂ ln PNN,k


−1

︸ ︷︷ ︸
Ai


∂F1i,k(.)
∂ ln Q1i,k

· · · ∂F1i,k(.)
∂ ln QNi,k

...
. . .

...
∂FNi,k(.)
∂ ln Q1i,k

· · · ∂FNi,k(.)
∂ ln QNi,k

 .

(E.38)
The elements of the matrixes on the right-hand side of the above equation are given by

∂Fni,k (. )
∂ ln Pjj,k

= 1j=n + 1j ̸=i ×
µk

1 + µk
∑
ι ̸=i

rnι,kε
(jι,k)
nι,k ;

∂Fni,k (. )
∂ ln Qji,k

= 1j=n
µk

1 + µk
rji,k.

Notice that the off-diagonal elements of Ai are near-zero (i.e., rnι,kε
(jι,k)
nι,k ∝ rnι,kλjι,k ≈ 0 if n ̸= j ̸= ι).

So, we can apply the method proposed by Wu, Yin, Vosoughi, Studer, Cavallaro, and Dick (2013) to
characterize A−1

i to a first-order approximation around rjι,k ≈ λjι,k ≈ 0 (for j ̸= ι). This procedure is
detailed in Appendix E.3 and yields the following expression based on the matrix Equation E.38:

(
∂ ln Pnn,k

∂ ln Qji,k

)
w,P̃i

≈


− µk

1+µk
rni,k

1+
µk

1+µk
∑ι ̸=i rnι,kε

(nι,k)
nι,k

n = j
µk

1+µk
rji,k

1+
µk

1+µk
∑ι ̸=i rnι,kε

(nι,k)
nι,k

(
µk

1+µk
∑ι ̸=i rnι,kε

(jι,k)
nι,k

)
n ̸= j

Plugging the above expression back into the definition specified by Equation E.37, while noting that
rni,k × rji,k ≈ 0 if j ̸= i and n ̸= i, yields the following approximation for the export supply elasticity:

ωji,k ≈
− µk

1+µk
rji,k

1 + µk
1+µk

∑ι ̸=i rjι,kε jι,k

[
1 − µk

1 + µk

wiLi
wjLj

∑
n ̸=i

ρi,krin,k

ρj,krji,k
ε
(jn,k)
in,k

]
.

For the sake of clarity, note that wi = ẁi under free entry—so, we can replace wi with ẁi everywhere in
the above approximation. Figure E.1 illustrates the goodness of our approximated ωji,k using a rather
conservative numerical example. We simulate a two-country×two-industry economy in which trade
is relatively open and the tax-imposing country is relatively large compared to the rest of the world.
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Figure E.1: The efficacy of the approximated ωji,k at predicting gains from policy
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Note: the above simulation is based on a two country–two industry model with the following specifications: (2)
σ1 = σ2 = 5, (2) µ1 = 0.25 and µ2 = 0.5µ1; (3) expenditure shares are assigned the following values λ21,1 = 0.6,
λ12,1 = 0.25/δ, λ21,2 = 0.25; λ12,2 = 0.4/ρ where ρ is relative size.

We compute the actual gains from optimal policy for the tax-imposing country i, and compare them
to gains implied by (1) our approximated ωji,k as well (2) the small open economy approximation,
ωji,k ≈ 0. Evidently, our approximated value for ωji,k yields indistinguishable results relative to
approximation-free benchmark.16

Step #5. Extending the Derivation to the Restrict Entry Case
Equipped with a full characterization of optimal policy under free entry, we now switch attention

to the case of restricted entry. The main difference between the two cases is in how producer prices
vary with export supply: Under restricted entry, holding w = {ẁn} fixed, contacting the export
supply of good ni, g affects the producer prices associated with origin n through a uniform reduction
in the average markup µn. Namely,

Pni,g = ϱ̄′ni,g
1 + µk
1 + µn

ẁn =⇒
(

∂ ln Pni,g

∂ ln Qni,g

)
w,P̃i

= −
(

∂ ln(1 + µn)

∂ ln Qni,g

)
w,P̃i

,

where economy n’s (endogenously-determined) average profit margin is given by

1 + µn =
∑ι∈C ∑k∈K [Pnι,kQnι,k]

∑ι∈C ∑k∈K

[
1

1+µk
Pnι,kQnι,k

] .

Another difference is that non-tax-revenue income in country i is the sum of wage payments plus
profits. Stated formally, total income in country i can be specified as follows (notation: the operator
“·” denotes the inner product of two equal-sized vectors):

Yi(P̃i; w) = (1 + µi)wiLi︸ ︷︷ ︸
ẁi Li

+ ∑
n ̸=i

[(
P̃ni − Pni

)
· Qni

]
+
(
P̃ii − Pii

)
· Qii + ∑

n ̸=i

[(
P̃in − Pin

)
· Qin

]
, (E.39)

In the above formulation, ẁiLi = (1 + µi)wiLi, stands for the sum of wage payments plus profits.

16To be clear, the above approximation is only intended for the quantitative applications. It should not be viewed as
a limitation of our theory. The optimal tax formula derived earlier in combination with Equation E.38 deliver an exact
theoretical specification for the first-best optimal policy schedule.
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With the background information provided above, we can recycle our earlier derivations from the
free entry case to characterize the F.O.C. w.r.t. each price instrument in P̃i.

First-Order Condition w.r.t. P̃ji,k and P̃ii,k ∈ P̃i. To fix ideas, recall from Step #3 of the proof that the
F.O.C. w.r.t. P̃ji,k ∈ P̃i (where possibly j = i) is given by(

dWi(P̃i; w)

d ln P̃ji,k

)
P̃−ji,k

=
∂Vi(Yi, P̃i)

∂ ln P̃ji,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P̃−ji,k

+

(
∂Wi(P̃i; w)

∂w

)
P̃i

·
(

dw
d ln P̃ji,k

)
P̃−ji,k

= 0.

(E.40)
As before, P̃−ji,k ≡ P̃i −

{
P̃ji,k

}
denotes the vector of country i’s price instruments excluding P̃ji,k.

Each term on the right-hand can be unpacked as in the free entry case, with one difference: holding
w constant, a change in good ji, k’s export supply affects the entire vector of prices from origin j.
Specifically, noting that Pji,g = ϱ̄′ji,g

1+µg
1+µj

wj, indicates that(
∂ ln Pji,g

∂ ln Qji,k

)
w,P̃i

= −
(

∂ ln(1 + µj)

∂ ln Qji,k

)
w,P̃i

∀g ∈ K.

Noting this distinction, we now repeat the steps present earlier to unpack each term on the right-
hand side of Equation E.40. By Roy’s identity, the first term on the right-hand side can be unpacked
as follows:

∂Vi(Yi, P̃i)

∂ ln P̃ji,k
= −P̃ji,kQji,k

(
∂Vi
∂Yi

)
.

Recall that the second term on the right-hand side of Equation E.40 accounts for the revenue-raising
effects of policy. Specifically, taking note of Equation E.39, the effect on import tax revenues can be
unpacked as follows:(

∂ ∑n ̸=i
(
P̃ni − Pni

)
· Qni

∂ ln P̃ji,k

)
w,P̃−ji,k

= P̃ji,kQji,k + ∑
g

∑
n ̸=i

(P̃ni,g − Pni,g
)

Qni,g

(
∂ ln Qni,g

∂ ln P̃ji,k

)
w,P̃−ji,k


− ∑

g∈K

∑
n ̸=i

Pni,gQni,g ∑
s∈K

∑
ȷ ̸=i

Pȷi,sQȷi,s

Pni,gQni,g

(
∂Pȷi,s

∂ ln Qni,g

)
w,P̃i

+ ∑
ℓ∈C

Piℓ,sQiℓ,s

Piℓ,gQiℓ,g

(
∂Piℓ,s

∂ ln Qni,g

)
w,P̃i

(∂ ln Qni,g

∂ ln P̃ji,k

)
w,P̃−ji,k

 .

(E.41)

As in the free entry case,
(

∂ ln Qni,g/∂ ln P̃ji,k

)
w,P̃−ji,k

encompasses demand adjustments that channel

through both price and income effects—see Equation E.5. We can simplify the last term on the right-
hand side of above equation, by appealing to our definition of the export supply elasticity:

ωni,g ≡ ∑
ℓ∈C

 Piℓ,gQiℓ,g

Pni,gQni,g

(
∂ ln Piℓ,g

∂ ln Qni,g

)
w,P̃i

+ ∑
j ̸=i

 Pji,gQji,g

Pni,gQni,g

(
∂ ln Pji,g

∂ ln Qni,g

)
w,P̃i


=

1
rni,gρn,g

∑
g

 ẁiLi
ẁnLn

ρi,g

(
∂ ln (1 + µi)

∂ ln Qni,g

)
w,P̃i

+ ∑
j ̸=i

ẁjLj

ẁnLn
rji,gρj,g

(
∂ ln (1 + µn)

∂ ln Qni,g

)
w,P̃i

 (E.42)

The second line indicates our focus on the restricted entry case, wherein
(

∂ ln Pni,g
∂ ln Qji,k

)
w,P̃i

=
(

∂ ln(1+µn)
∂ ln Qji,k

)
w,P̃i

for all g. That is, holding w constant, producer prices from each origin change equal-proportionally
across all industries with the aggregate profit margin, 1+ µi. Plugging the above expression back into
Equation E.41 yields the following expression that summarizes the (conditional) effect of policy on
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import tax revenues:(
∂ ∑n ̸=i

[(
P̃ni − Pni

)
· Qni

]
∂ ln P̃ji,k

)
w,P̃−ji,k

= P̃ji,kQji,k +∑
g

∑
n ̸=i

(P̃ni,g − [1 + ωni,g]Pni,g
)

Qni,g

(
∂ ln Qni,g

∂ ln P̃ji,k

)
w,P̃−ji,k

 .

(E.43)
The effect of policy on export and domestic tax revenues can be unpacked as in Equation E.7, which
was derived earlier for the free entry case. To simplify this equation under restricted entry, we can
use the following observation:

∑
n

Pin,gQin,g

(
∂Pin,g

∂ ln Qii,g

)
w,P̃i

 = − ∑
s∈K

∑
n∈C

Pin,sQin,s

Pii,gQii,g

(
∂ ln(1 + µi)

∂ ln Qii,g

)
w,P̃i

 Pii,gQii,g =

= ∑
s∈K

∑
n∈C

[
rin,sρi,s

rii,gρi,g

(
µi − µg

1 + µg
rii,gρi,g

)]
Pii,gQii,g = −

(
1 −

1 + µi
1 + µg

)
Pii,gQii,g,

To explain, the second line on the above equation follows from that fact that all prices associated with
economy i are included in the set P̃i. So, holding P̃i and wages w constant, the policy-induced change
in Qii,g has only a direct arithmetic effect on country i’s aggregate profit margin, i.e.,

(
∂ ln(1+µi)
∂ ln Qii,g

)
w,P̃i

=

µi−µg
1+µg

rii,gρi,g.17 Plugging the above equation back into Equation E.7 yields the following equation
describing the (conditional) effects of policy on export and domestic tax revenues:(

∂

∂ ln P̃ji,k

{
∑
n

[(
P̃in − Pin

)
· Qin

]})
w,P̃−ji,k

= ∑
g

(P̃ii,g −
1 + µi
1 + µg

Pii,g

)
Qii,g

(
∂ ln Qii,g

∂ ln P̃ji,k

)
w,P̃−ji,k

 .

(E.44)
Recall that

(
∂ ln Qni,g/∂ ln P̃ji,k

)
w,P̃−ji,k

, in the above equations, encompasses price- and income-related

demand adjustments—see Equation E.5. Taking note of this detail, we can combine Equations E.43
and E.44 to arrive at the following expression that summarizes the (conditional) effect of raising P̃ji,k
on country i’s tax revenues:(

∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P̃−ji,k

=P̃ji,kQji,k + ∑
g

∑
n ̸=i

[(
P̃ni,g − [1 + ωni,g]Pni,g

)
Qni,gε

(ji,k)
ni,g

]

+ ∑
g

[(
P̃ii,g −

1 + µi
1 + µg

Pii,g

)
Qii,gε

(ji,k)
ii,g

]
+ ∆i(P̃i; w)

(
∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P̃−ji,k

,

where ∆i(.), as before, encapsulated the circular income effects. The expression for ∆i(.) is specified
analogously to Equation E.13 with two amendments: (1) ωni,g is redefined according to E.42; and (2)
1/(1 + µg) replaced with (1 + µi)/(1 + µg).18 Next, we unpack the last term on the right-hand side
of Equation E.40, which accounts for general equilibrium wage effects. Repeating the steps presented

17Note that this argument does not extend to the aggregate profit margin in other countries. Changing the export supply
of say good ji, k with policy has a circular effect on origin j’s profit margin, µj, which occurs because the prices associated
with economy j ̸= i are not pegged to P̃i. Specifically, a change in Qji,k affects the entire vector of origin j’s prices outside of
market i. This change in prices affects the industrial composition of origin j’s output and µj in a circular fashion.

18To be more specific, ∆i(.) is described by the following equation:

∆i(P̃i; w) ≡ ∑
g

∑
n ̸=i

[(
P̃ni,g − [1 + ωni,g]Pni,g

)
Qni,gηni,g

]
+ ∑

g

[(
P̃ii,g −

1 + µi
1 + µg

Pii,g

)
Qii,gηii,g

]
,

where µi > 0 and ωni,g is given by Equation E.42 for the case of restricted entry.
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for the free entry case, while noting the differences discussed above, yields the following:(
∂Wi(P̃i; w)

∂w

)
P̃i

·
(

dw
d ln P̃ji,k

)
P̃−ji,k

=− ∑
g

∑
n ̸=i

[
τ̄i
(
1 + ωni,g

)
Pni,gQni,gε

(ji,k)
ni,g

]
,

− ∑
g

∑
n ̸=i

[
τ̄i
(
1 + ωni,g

)
Pni,gQni,gηni,g

] (∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P̃−ji,k

where τ̄i is given by E.15. Note that the above expression differs from the analogous expression
derived under free entry in the economic forces that regulate export supply elasticity, ωni,g. Under re-
stricted entry, the export supply elasticity governs the change in aggregate profit margins in response
to distortions to export supply. Combining the various terms on the right-hand side of Equation E.40,
yields the following simplified representation of the F.O.C. w.r.t. P̃ji,k ∈ P̃i under restricted entry:

∑
n ̸=i

∑
g

[(
P̃ni,g

Pni,g
− (1 + τ̄i)

)
Pni,gQni,gε

(ji,k)
ni,g

]

+ ∑
g

[(
P̃ii,g

Pii,g
− 1 + µi

1 + µg

)
Pii,gQii,gε

(ji,k)
ii,g

]
+ ∆̃i(P̃i; w)

(
∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P̃−ji,k

= 0.

The uniform term ∆̃i(.) is described by Equation E.18, but with ωni,g redefined according to E.42 and
1/(1 + µg) replaced with (1 + µi)/(1 + µg).

First-Order Condition w.r.t. P̃ij,k (j ̸= i). Now consider the F.O.C. w.r.t. the price of a generic export
good ij, k (where j ̸= i). Recall from Step #3 that the F.O.C. w.r.t. P̃ij,k ∈ P̃i is given by(

dWi(P̃i; w)

d ln P̃ij,k

)
P̃−ij,k

=
∂Vi(Yi, P̃i)

∂ ln P̃ij,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P̃−ij,k

+

(
∂Wi(P̃i; w)

∂w

)
P̃i

·
(

dw
d ln P̃ij,k

)
P̃−ij,k

= 0.

(E.45)
where P̃−ij,k ≡ P̃i −

{
P̃ij,k

}
denotes the vector of country i’s price instruments excluding P̃ij,k. Build-

ing on our previous discussion, each term on the right-hand side is characterized by the same for-
mulas derived in Step #3, with two qualification: (1) The formulation assigned to ωni,g should be
revised to account for restricted entry (see Equation 10), (2) all equations should be adjusted to admit
a non-zero µj, as is required by restricted entry (see Equation 5).

Without repeating all the details from Step 3, we can unpack the terms on the right-hand side of
Equation E.45 as follows: Since P̃ij,k /∈ P̃i is not part of the domestic consumer price index, ∂Vi(Yi, P̃i)/∂ ln P̃ji,k =
0. The second-term on the right-hand side of Equation E.45 is given by:(

∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P̃−ij,k

= P̃ij,kQij,k+∑
g

[(
P̃ij,g − [1 −

µg

1 + µg
]Pij,g

)
Qij,gε

(ij,k)
ij,g

]

−∑
g

∑
n ̸=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∆i(P̃i; w)

(
∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P̃−ij,k

,

where ωni,g is defined as in Equation E.42, while ∆i(.) is given by Equation E.13, with the necessary
adjustments described earlier.The last term on the right-hand side of Equation E.45 , which accounts
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for general equilibrium wage effects, can be unpacked as(
∂Wi(.)

∂w

)
P̃i

·
(

dw
d ln P̃ij,k

)
P̃−ij,k

= τ̄i P̃ij,kQij,k + ∑
g

[
τ̄i P̃ij,gQij,gε

(ij,k)
ij,g

]

−∑
g

∑
n ̸=i

[
τ̄iωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
− ∑

g
∑
n ̸=i

[
[1 + ωni,g]τ̄iPni,gQni,gηni,g

] (∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P̃−ij,k

.

where τ̄i is given by E.15. To be clear, the above formula differs from the one derived under free entry
in only how ωni,g is defined—see Equation E.42. Combining the various terms on the right-hand side
of Equation E.45, yields the following simplified representation of the F.O.C. w.r.t. P̃ij,k ∈ P̃i:

P̃ij,kQij,k+ ∑
g∈K

[(
1 − 1 + µi

(1 + τ̄i)(1 + µg)

Pij,g

P̃ij,g

)
P̃ij,gQij,gε

(ij,k)
ij,g

]

∑
g∈K

∑
n ̸=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∆̃i(P̃i, w)

(
∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P̃−ij,k

= 0,

The uniform term ∆̃i(.) is described by Equation E.18, but with ωni,g redefined according to Equation
E.42 and 1/(1 + µg) replaced with (1 + µi)/(1 + µg).

Solving the system of F.O.C. Given the tight correspondence between the F.O.C.s derived under
the restricted and free entry cases, we can repeat the arguments as in step #4 to solve the system of
F.O.C.s and establish the uniqueness of the resulting solution. Doing so yield the following formula
for optimal taxes/subsidies under restricted entry:

[domestic subsidy] 1 + s∗i,k = (1 + µk)/(1 + µi)

[import tariff] 1 + t∗ji,k = (1 + ωji,k)(1 + τ̄i)

[export subsidy] 1 + x∗ij = −E−1
ij E(−ij)

ij (1 + t∗i ) .

Recall from Lemma 1 that there are two degrees of multiplicity associated with optimal policy sched-
ule. As a result, we need not to unpack the uniform terms τ̄i and µi. Instead, for any arbitrary choice of
tax shifters 1+ s̄i and 1+ t̄i ∈ R+, the following tax/subsidy schedule represents an optimal solution:

[domestic subsidy] 1 + s∗i,k = (1 + µk)(1 + s̄i)

[import tariff] 1 + t∗ji,k = (1 + ωji,k)(1 + t̄i)

[export subsidy] 1 + x∗ij = −E−1
ij E(−ij)

ij (1 + t∗i ) .

The above formula is identical to that derived under free entry, with one qualification. The (inverse)
export supply elasticity ωji,k has a different interpretation under restricted entry, and is given by E.42.
So, to conclude the proof, we characterize ωji,k under restricted entry next.

Characterizing the (Inverse) Export Supply Elasticity. Following Equation E.42, the inverse of the
export supply elasticity under restricted entry is defined as

ωji,k =
−1

rji,kρj,k

 ẁiLi
ẁjLj

(
∂ ln(1 + µi)

∂ ln Qji,k

)
w,P̃i

+ ∑
n ̸=i

∑
g

(
ẁnLn

ẁjLj
rni,gρn,g

)(
∂ ln(1 + µn)

∂ ln Qji,k

)
w,P̃i

 , (E.46)

where the second line follows from the fact that Pni,s = ϱ̄′ni,s
1+µs
1+µn

ẁn, which implies that
(

∂ ln Pni,s
∂ ln Qni,g

)
w,P̃i

=

−
(

∂ ln(1+µn)
∂ ln Qni,g

)
w,P̃i

. To unpack the above equation, note that (for a given P̃i and w) the aggregate profit
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margin implicitly solves the following equation:

Fni(µ, Qni) = (1 + µn)−
Pni(µn) · Qni + ∑ι ̸=i Pnι(µn) · Qnι(µ−i)

1
1+µ ⊙ Pni(µn) · Qni + ∑ι ̸=i

1
1+µ ⊙ Pnι(µn) · Qnι(µ−i)︸ ︷︷ ︸

gni(µn,Qni)

= 0.

As before, ⊙ and · respectively denote the inner and element-wise products of equal-sized vectors (i.e.,
a · b = ∑n anbn and a⊙ b = [anbn]n), while with a slight abuse of notation, 1

1+µ ≡
[

1
1+µk

]
k
. The vector

Qni represents the export supply of goods from origin n ̸= i to market i (which is fully determined by
P̃i and w). Outside of market i, consumer prices are not directly pegged to P̃i. So, holding ẁn ∈ w and
P̃iι ∈ P̃i constant, a change in µi affects the producer and consumer price of goods supplied by origin
n to any market ι ̸= i. Accordingly, Qnι(µ−i) ≡

{
Qnι,k(µ−i)

}
k in the above equation is determined by

the Marshallian demand function (treating ẁn ∈ w and P̃iι ∈ P̃i as given):

Qnι,k(µ−i) = Dnι,k(ẁιLι, P̃iι, P̃−iι(µ−i))

Taking note of this detail, we can compute
(
∂ ln(1 + µn)/∂ ln Qni,g

)
w,P̃i

by applying the Implicit Func-
tion Theorem to the system of equations specified by Fni(µ, Qni). Namely,

∂ ln(1+µ1)
∂ ln Q1i

· · · ∂(1+µ1)
∂ ln QNi

...
. . .

...
∂ ln(1+µN)

∂ ln Q1i
· · · ∂(1+µN)

∂ ln QNi

 = −


∂F1i(.)

∂ ln(1+µ1)
· · · ∂F1i(.)

∂ ln(1+µN)
...

. . .
...

∂FNi(.)
∂ ln(1+µ1)

· · · ∂FNi(.)
∂ ln(1+µN)


−1 

∂F1i
∂ ln Q1i

· · · ∂F1i
∂ ln QNi

...
. . .

...
∂FNi

∂ ln Q1i
· · · ∂FNi

∂ ln QNi

 .

(E.47)
Next, we characterize the elements of the matrixes on the right-hand side of the above equation.

Considering that Fni(µ, Qni) = (1 + µn)− gni(µ, Qni), we can unpack the elements of
[

∂Fni(.)
∂ ln(1+µj)

]
n,j

as

follows. Using vector algebra we can show that if n ̸= i, then

∂gni(µ, Qni)

∂ ln(1 + µn)
=

−Pni(µn) · Qni − ∑ι ̸=i [Pnι(µn) · Qnι(µn)]

1
1+µ ⊙ Pni(µn) · Qni + ∑ι ̸=i

[
1

1+µ ⊙ Pnι(µn) · Qnι(µn)
]

︸ ︷︷ ︸
−(1+µn)

+
−∑ι ̸=i [Pnι(µn) · Qnι(µn)⊙ εnι]

1
1+µ ⊙ Pni(µn) · Qni + ∑ι ̸=i

[
1

1+µ ⊙ Pnι(µn) · Qnι(µn)
]

︸ ︷︷ ︸
−(1+µn)∑ι [rnι ·εnι ]

− (1 + µn)


− 1

1+µ ⊙ Pni(µn) · Qni − ∑ι ̸=i

[
1

1+µ ⊙ Pnι(µn) · Qnι(µn)
]

1
1+µ ⊙ Pni(µn) · Qni + ∑ι ̸=i

[
1

1+µ ⊙ Pnι(µn) · Qnι(µn)
]

︸ ︷︷ ︸
−1

−
∑ι ̸=i

[
1

1+µ ⊙ Pnι(µn) · Qnι(µn)⊙ εnι

]
1

1+µ ⊙ Pni(µn) · Qni + ∑ι ̸=i

[
1

1+µ ⊙ Pnι(µn) · Qnι(µn)
]

︸ ︷︷ ︸
(1+µn)∑ι

[
1

1+µ ⊙rnι ·εnι

]


.

where εni ≡
[
ε
(ni,g)
ni,g

]
g

is a K × 1 vector of own-price elasticities of demand. rni ≡
[
rni,gρn,g

]
g is a

K × 1 vector of sales shares. The above derivation appeals to the definition of sales shares, whereby
rni,kρn,k =

Pni,kQni,k
∑j ∑g Pnj,gQnj,g

. Likewise, for any n and ℓ ̸= i, we can

∂gni(µ, Qni)

∂ ln(1 + µℓ)
=

−∑ι ̸=i

[
Pnι(µn) · Qnι(µn)⊙ ε

(ℓι)
nι

]
+ (1 + µn)∑ι ̸=i

[
1

1+µ ⊙ Pnι(µn) · Qnι(µn)⊙ ε
(ℓι)
nι

]
1

1+µ ⊙ Pni(µn) · Qni + ∑ι ̸=i

[
1

1+µ ⊙ Pnι(µn) · Qnι(µn)
] .

Combining the above two equations we can characterizes each element of the matrix
[

∂Fni(.)
∂ ln(1+µℓ)

]
n,ℓ

as

follows:
∂Fni(µ, Qni)

∂ ln(1 + µℓ)
= (1 + µn)

[
1ℓ=n + 1ℓ ̸=i ∑

k
∑
ι ̸=i

[(
1 − 1 + µn

1 + µk

)
rnι,kρn,kε

(ℓι,k)
nι,k

]]
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The elements of the matrix
[

∂Fni
∂ ln Qℓi

]
n,ℓ

can be unpacked with a similar logic. Specifically, if n ̸= ℓ then
∂Fni

∂ ln Qℓi
= 0. Otherwise, for any n ∈ C we can derive the following expression:

∂gni(µ, Qni)

∂ ln Qni,k
=

Pni,kQni,k
1

1+µ ⊙ Pni(µn) · Qni + ∑ι ̸=i

[
1

1+µ ⊙ Pnι(µn) · Qnι(µn)
]

︸ ︷︷ ︸
(1+µn)rni,kρn,k

−
(1 + µn)

1
1+µk

Pni,kQni,k

1
1+µ ⊙ Pni(µn) · Qni + ∑ι ̸=i

[
1

1+µ ⊙ Pnι(µn) · Qnι(µn)
]

︸ ︷︷ ︸
(1+µn)

1+µn
1+µk

rni,kρn,k

,

which, in turn, characterizes every element of matrix
[

∂Fni
∂ ln Qℓi

]
n,ℓ

as follows:

∂Fni(µ, Qni)

∂ ln Qℓi,k
= 1ℓ=n(1 + µn)

[(
1 −

1 + µn
1 + µk

)
rni,kρn,k

]
.

As in the free entry case, the off-diagonal elements of Ãi ≡
[

∂Fni(.)
∂ ln(1+µj)

]
n,j

are near zero. So, we can

once again invoke the first-order approximation proposed by Wu et al. (2013) to characterize Ã−1
i .

Doing so and plugging the implied values of ∂ ln(1+µn)
∂ ln Qji

back into Equation E.46, implies the following
approximation for the export supply elasticity under restricted entry:

ωni,g ≈
−
(

1 − 1+µn
1+µg

)
∑k rni,kρn,k

1 + ∑k ∑ι ̸=i

[
1 +

(
1 − 1+µn

1+µk

)
rnι,kρn,kεnι,k

] .

E.1 Redundancy of Solutions for which ∆i ̸= 0
To finalize the proof, we appeal to the multiplicity of optimal taxes to show the following: If there

exists an optimal tax vector for which ∆̃i ̸= 0, that tax vector can be recovered from an equivalent
optimal tax vector that satisfies ∆̃i = 0. This can be shown building on two intermediate points:
First, following Lemma 1, if T∗

i =
{

t∗ji,k, x∗ij,k, s∗i,k
}

is an optimal policy choice, then policy TE
i (a) ={

tEji,k (a) , xEij,k (a) , sEii,k (a)
}

is also optimal for any a ∈ R, where

1+ tEji,k (a) =
(

1 + t∗ji,k
)
(1 + a)−1 ; 1+ xEij,k (a) =

(
1 + x∗ij,k

)
(1 + a) ; 1+ sEi,k (a) =

(
1 + s∗i,k

)
(1 + a)−1 .

Second, the aggregate term ∆̃i, specified below in terms of taxes, appears identically in the F.O.C.s
associated with every policy instrument:

∆̃i = ∑
g

∑
n ̸=i

[(
1 −

(
1 + ωni,g

)
(1 + τ̄i)

1 + tni,g

)
eni,gηni,g

]
+ ∑

g

[(
1 −

1 + si,g

1 + µg

)
eii,gηii,g

]
.

Suppose there exists an optimal policy choice, T∗
i for which ∆̃∗

i ̸= 0. Analogously, let ∆̃E
i (a) denote

the aggregate term collecting income effects under the equivalent policy choice, TE
i (a)—with ∆̃∗

i =

∆̃E
i (1), by construction. In particular,

∆̃E
i (a) = ∑

g
∑
n ̸=i

1 −
(
1 + ωni,g

)
(1 + τ̄i)

(1 + a)
(

1 + t∗ni,g

)
 eni,gηni,g

+ ∑
g

[(
1 −

1 + si,g(
1 + µg

)
(1 + a)

)
eii,gηii,g

]
,

where all equilibrium variables are evaluated at TE
i (a). Based on Lemma 1, all variables in the above

equation (e.g., eni,g, ωni,g, ηni,g, etc.) are independent of a—since varying a preserves real equilibrium
outcomes based on Lemma 1. Considering this, it should be the case that

lim
a→−1

∆̃E
i (a) < 0; lim

a→∞
∆̃E

i (a) > 0.
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So, following the Intermediate Value Theorem, there exists an a ∈ (−1, ∞) such that ∆̃E
i (a) = 0. That

is, if we suspect there to be an optimal policy T∗
i satisfying ∆̃∗

i ̸= 0, that policy can be recovered by
re-scaling an optimal policy, TE

i (a), that is welfare-equivalent to T∗
i but satisfies ∆̃E

i (a) = 0.

E.2 Non-Optimality of Prohibitive Taxes
Since prohibitive taxes exclude goods from the system of F.O.C.s, we must prove that a tax sched-

ule that prohibits say good ji, k but satisfies the F.O.C.s w.r.t. all other goods is not optimal. We prove
this point separately for taxes applied to domestically-consumed goods and taxes applied to export
goods.

Prohibitive tax on domestically-consumed good ji, k—We first provide a generic proof starting from
the first principles to communicate the logic behind the non-optimality of prohibitive taxes. Then, we
provide an alternative proof invoking the system of F.O.C.s derived earlier. To articulate our generic
proof, suppose without loss of generality that good ii, k is the good not subjected to a prohibitive tax.
Utility maximization entails that ∂Ui (Qi) /∂Qji,k = λL

i P̃ji,k for all ji, k, where λL
i is the Lagrange mul-

tiplier associated with the representative consumer’s budget constraint (P̃i · Qi ≤ Yi). Assuming that
Ui (.) satisfies the Inada conditions, utility maximization implies that the marginal utility associated
with good ji, k at the prohibitive price is infinitely large; and so is the marginal rate of substitution
between goods ji, k and ii, k:

lim
P̃ji,k
P̃ii,k

→∞

∂Ui/∂Qji,k

∂Ui/∂Qii,k
= ∞.

Let Fk
(
Qi; P̃i, P̃−i

)
= 0 denote the transformation frontier for country i, which reflects country i’s

production possibility frontier (PPF) augmented for its ability to transform exports to imports subject
to balanced trade. Following Dixit and Norman (1980), the relative marginal rate of transformation,
∂Fi/∂Qii,k
∂Fi/Qji,k

, is finite if the utility and production functions satisfy the Inada conditions and Qii,k is strictly
positive—which is the case since good ii, k is not subjected to a prohibitive price. As a result,

P̃ji,k

P̃ii,k
→ ∞ =⇒

∂Ui/∂Qji,k

∂Ui/∂Qii,k
>

∂Fi/∂Qii,k

∂Fi/Qji,k
,

indicating that (when P̃ji,k = ∞, Qji,k = 0) the marginal rate of substitution between Qji,k and Qii,k
exceeds the marginal rate of transformation. Hence, welfare (Ui ∼ Wi) can be improved by increasing
the consumption of good ji, k relative to ii, k, which entails lowering the price of ji, k from its pro-
hibitive level. Prohibitive taxes, as such, cannot be optimal unless the scale or substitution elasticities
are unbounded. This result echoes the Grinols-Wong theorem that a piecemeal reduction in prohibitive
tariffs is welfare improving (see Feenstra (2015, P. 198)). The logic is that a prohibitively-taxed good
exhibits an infinitely large marginal utility. So, the gains from restoring its consumption dominate the
possible efficiency loss from cross-substitution and a lower scale-of-production on other goods.

The above point can be alternatively proven by appealing to the F.O.C.s specified by Equation E.17.
Suppose all prices other than P̃ji,k are set to their non-prohibitive optimal level. let P̃

∗
i =

{
Pji,k, P̃∗

−ji,k

}
denote the policy vector representing this choice of prices. Following Equation E.17, the marginal
welfare effects of adjusting P̃ji,k in the neighborhood of P̃

∗
i is

∂Wi

∂ ln P̃ji,k
|
P̃
∗
i
=

(
P̃ji,k

Pji,k
− (1 + τ̄i)

(
1 + ωji,k

))
Pni,gQni,g

ε
(ji,k)
ji,k + ηji,k

(
∂Yi

∂ ln P̃ji,k

)
w,P̃−ji,k

 .

Notice that ε
(ji,k)
ji,k < 0 and ηji,k > 0, since the demand function is assumed to be well-behaved. Also,

the tax revenues from good ji, k (namely,Tji,k) approach zero from above as P̃ji,k → ∞. Hence, for
sufficiently large values of P̃ji,k, it must be the case that(

∂ ln Yi

∂ ln P̃ji,k

)
w,P̃−ji,k

=

(
∂ ln Tji,k

∂ ln P̃ji,k

)
w,P̃−ji,k

< 0.
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The above equation, correspondingly, implies that ∂Wi
∂ ln P̃ji,k

|
P̃
∗
i

is negative when the tax rate on good

ji, k is sufficiently large (or nearly-prohibitive):
P̃ji,k

Pji,k
≫ (1 + τ̄i)

(
1 + ωji,k

)
=⇒ ∂Wi

∂ ln P̃ji,k
|
P̃
∗
i
< 0.

The above result reveals that lowering P̃ji,k/Pji,k starting from a prohibitive price/tax rate will im-
prove welfare (Wi)—asserting that a prohibitive tax, which excludes good ji, k from the system of
F.O.C.s, cannot be optimal. The same logic can be applied to show that a prohibitive tax on two-or-
more goods is not optimal either.

Prohibitive tax on export good ij, k—The price of export good, ij, k, does not explicitly enter the rep-
resentative consumer’s indirect utility function, Vi

(
Yi, P̃i

)
. So, given the government’s choice w.r.t.

P̃i ⊂ P̃i, the choice of P̃ij,k ∈ P̃iinfluences welfare solely through its effect on tax revenues, which
contribute to income, Yi. Under a prohibitive export tax rate, i.e., P̃ij,k = ∞, the export tax revenues
associated with good ij, k are trivially zero, i.e., Tij,k = 0. Lowering P̃ij,k from its prohibitive level
elevates Tij,k to a positive value and, thus, raises total tax revenues, Ti.19 Lowering P̃ij,k from its
prohibitive level, thus, raises income and thereby welfare given that ∂Vi (.) /∂Yi > 0. This chain of
arguments asserts that prohibitive export taxes cannot be optimal since they yield the lowest possible
tax revenue—resonating with the conventional Laffer curve argument. The same point can be demon-
strated using the F.O.C.s specified by Equation E.31. In particular, suppose all prices other than P̃ij,k
are set to their non-prohibitive optimal level. Equation E.31 indicates that the marginal welfare effect
of lowering P̃ij,k is strictly positive if the initial value assigned to P̃ij,k is arbitrarily large.

E.3 Approximate Export Supply Elasticity: Derivation Details
This appendix provides a detailed derivation of our approximate export supply elasticity formula.

Our derivation, recall, relies on the approximate matrix inversion technique developed by Wu et al.
(2013). Note that the inverse export supply elasticity (when country i is the tax-imposing authority)
is

ωji,k ≡
1

rji,kρj,k
∑

g∈K

wiLi
wjLj

ρi,g

(
∂ ln Pii,g

∂ ln Qji,k

)
w,P̃i

+ ∑
n ̸=i

wnLn

wjLj
rni,gρn,g

(
∂ ln Pni,g

∂ ln Qji,k

)
w,P̃i

 , (E.48)

where each of the price derivative
(

∂ ln Pni,g
∂ ln Qji,k

)
w,P̃i

can be characterized using the following system:
(

∂ ln P11,k
∂ ln Q1i,k

)
w,P̃i

· · ·
(

∂P11,k
∂ ln QNi,k

)
w,P̃i

...
. . .

...(
∂ ln PNN,k
∂ ln Q1i,k

)
w,P̃i

· · ·
(

∂PNN,k
∂ ln QNi,k

)
w,P̃i

 = −A−1
i Ci, (E.49)

where, from Appendix X, Ai and Ci are square matrixes whose elements are

(Ai)ι,ȷ = 1ȷ=ι + 1ȷ ̸=i
µk

1 + µk
∑
n ̸=i

[
rιn,kε

(ȷn,k)
ιn,k

]
; (Ci)ι,ȷ = 1ȷ=ι

µk
1 + µk

rιi,k.

Our goal is to apply Wu et al.’s (2013) approach to derive a first-order approximation for Ai, which

is then used to compute
(

∂ ln Pni,g
∂ ln Qji,k

)
w,P̃i

and ωji,k. For this, decompose Ai into its diagonal, Di, and

off-diagonal, Ei, such that
Ai = Di + Ei.

The elements of the diagonal matrix associated with Ai are given by

(Di)ι,ι = 1 + 1ι ̸=i
µk

1 + µk
∑
n ̸=i

[rιn,kε ιn,k] .

19Beyond the Cobb-Douglas case, lowering the price of good ij, k can alter the revenue raised from other goods through
cross-demand effects. But total revenue always increase, in response, given Cournot aggregation.

32



The elements of the off-diagonal matrix associated with Ai are, correspondingly,

(Ei)ι,j =

{
0 if (ι = i) ∨ (ι = ȷ)

µk
1+µk

∑n ̸=i

(
rιn,kε

(ȷn,k)
ιn,k

)
if (ι ̸= i) ∧ (ι ̸= ȷ)

.

Following Wu et al. (2013), if the off-diagonal elements of Ai are small, we can appeal to the Neumann
Series to approximate the inverse of A1as

A−1
i ≈ D−1

i − D−1
i EiD−1

i .
Based on the above equation, each element of the inverse of Ai can be written (approximately) in
closed-form in terms of the diagonal and off-diagonal elements of Ai:

A−1
i ≈


1

(Di)11

(
1 − (Ei)11

(Di)11

)
−(Ei)12

(Di)11(Di)22
· · · −(Ei)1N

(Di)11(Di)NN
−(Ei)21

(Di)22(Di)11

1
(Di)22

(
1 − (Ei)22

(Di)22

)
· · · −(Ei)2N

(Di)22(Di)NN
...

...
. . .

...
−(Ei)N1

(Di)NN(Di)11

−(Ei)N2
(Di)NN(Di)22

· · · 1
(Di)NN

(
1 − (Ei)NN

(Di)NN

)

 .

Invoking the above approximation, Equation E.49 yields the following approximation for
(

∂ ln Pιι,k
∂ ln Qȷi,k

)
w,P̃i

:

(
∂ ln Pιι,k

∂ ln Qȷi,k

)
w,P̃i

≈


µk

1+µk
rȷi,k

1+1ι ̸=i×
µk

1+µk
∑n ̸=i(rιn,kε ιn,k)

if ι = ȷ

µk
1+µk

∑n ̸=i

[
rιn,kε

(ȷn,k)
ιn,k

](
µk

1+µk
rȷi,k

)
(

1+
µk

1+µk
∑n ̸=i rȷn,kε ȷn,k

)(
1+1ι ̸=i×

µk
1+µk

∑n ̸=i rιn,kε ιn,k

) if ι ̸= j

Plugging the price derivatives specified above into Equation E.48, while noting that rni,k × rji,k ≈ 0 if
j ̸= i and n ̸= i, yields our approximation for the export supply elasticity:

ωji,k ≈
− µk

1+µk
rji,k

1 + µk
1+µk

∑ι ̸=i rjι,kε jι,k

[
1 − µk

1 + µk

wiLi
wjLj

∑
n ̸=i

ρi,krin,k

ρj,krji,k
ε
(jn,k)
in,k

]
.

E.4 Unilaterally Optimal Policy Net of ToT Considerations
Suppose we redo the entire proof under one restriction: Country i treats the entire vector of in-

ternational prices as given. This includes (a) all consumer prices, P̃−i =
{

P̃nj,k

}
j ̸=i

, unassociated

with domestic consumers and (b) all producer prices, P−i ≡
{

Pnj,k

}
n ̸=i

, unassociated with domestic

firms. The idea here is that government presumes that cannot manipulate the consumer, P̃ij,k, of ex-
port goods. Nor can it influence the producer price, Pji,k, of import (or non-imported foreign) goods.
Going back to the derivations presented above, we can solve this new terms-of-trade-blind problem
by discarding the F.O.C.s relating to export prices (which amounts to setting P̃ij,k = Pij,k), and set-
ting the inverse export supply elasticity to zero everywhere. Performing these alterations yields the
following formula for optimal taxes:

[domestic subsidy] 1 + s∗i,k = (1 + µk)/(1 + µi)

[import tariff] 1 + t∗ji,k = 1 + τ̄i

[export subsidy] 1 + x∗ij = 1 + τ̄i.

Normalizing the tax-shifters to zero (i.e., τ̄i = µi = 0) yields the cooperative optimal tax structures
consisting of zero trade taxes and Pigouvian industrial subsidies. So, if welfare-maximizing gov-
ernments were (i) blind to terms-of-trade gains from policy and (ii) granted a complete vector of
domestic policy instruments, they would adopt the cooperative policy choice. This point can be re-
stated as follows: When welfare-maximizing governments have sufficient policy instruments at their
disposal, their non-cooperative choice only inflicts a terms-of-trade externality on partners. So, the
sole purpose of shallow trade agreements is to remedy the terms-of-trade externality. This result is a
strict generalization of Bagwell and Staiger (2001, 2004). Notice a shallow agreement cannot resolve the
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problem of policy implementation, which is highlighted in Section III and quantified in Section VI.

F Efficient Policy from a Global Standpoint
The central planner seeks to maximize a weighted sum of national-level welfare using two sets of

policy instruments. (1) A vector of good-specific taxes which grants them the ability to set consumers
prices, P̃, in every location. (2) A vector of inter-country lump-sum transfers, which enables them to
control the share of each country’s income from global income. Accordingly, the planner’s choice of
inter-country transfers is summarized by α = {αi}i, where αi denotes country i’s share from global
income (Y = ∑i,n,k P̃ni,kQni,k) after transfers.

Recall that country i’s welfare is summarized by the indirect utility function, Wi ∼ Vi
(
Ỹi, P̃i

)
,

where country i’s income under the planner’s choice of policy is Ỹi = αiY. Considering this choice of
notation, the global planner’s problem can be formulated as

max
P̃,α

∑
i

δi ln Vi
(
αiY, P̃i

)︸ ︷︷ ︸
Wi

,

where δi denotes the Pareto weight assigned to country i. Notice that Yi (the equilibrium income
raised by country i) does not explicitly appear in the objective function since the planner can obtain
any desired vector of national-level incomes,

{
Ỹi
}

i ∼ {αiY}i, with an appropriate choice of transfers
subject to ∑i Ỹi = Y, where Y is the sum of equilibrium wage payments and tax revenues across all
countries.20 Namely,

Y (P; w, Y) = ∑
n

wnLn + ∑
i,n

∑
k

(
P̃ni,k − Pni,k

)
Qni,k (P; Y) ,

where P ≡
{

P̃, α
}

denotes the complete set of policy instruments available to the central planner
and Qni,k (P; Y) = Dni,k

(
P̃i, αiY

)
with P̃i ⊂ P̃.21 Following the logic presented in Section I, we can

specify the planner’s objective function, W (P; w, Y) = ∑i δi ln Wi (P; w, Y), as an explicit function of
policy, P, wages, w, and global income, Y—noting that w and Y are feasible if they satisfy equilibrium
conditions given P. The first-order condition w.r.t. price instrument, P̃ji,g ∈ P̃ ⊂ P, can be written as

∂W (P; w, Y)
∂ ln P̃ji,g

= ∑
n

[
δn

(
∂ ln Vn (.)

∂ ln Ỹn

)
∂ ln Y

∂ ln P̃ji,g

]
+ δi

∂ ln Vi (.)
∂ ln P̃ji,g

= 0. (F.1)

where the right-hand side uses the fact that Ỹn = αnY, implying that ∂ ln Ỹn
∂ ln P̃ji,g

= ∂ ln Y
∂ ln P̃ji,g

since αn is

a policy choice. Borrowing from our earlier derivation leading to the proof of Theorem 1, we can
specify the change in global income in response to P̃ji,k as

∂ ln Y (P; w, Y)
∂ ln P̃ji,g

=
1
Y

{
∂Y (.)

∂ ln P̃ji,g
+ ∑

n

[
∂Y (.)
∂ ln wn

d ln wn

dlnP̃ji,g

]
+

∂Y (.)
∂ ln Y

d ln Y
dlnP̃ji,g

}

=
1
Y

{
P̃ji,gQji,g + ∑

n
∑
k

([
P̃ni,k −

1
1 + µk

Pni,k

]
Qni,kε

ji,k
ni,k

)

+ ∑
n

([
wnLn − ∑

ι,k
Pnι,kQnι,k

]
dlnwn

dlnP̃ji,g

)
+ ∑

n,ι
∑
k

([
P̃ni,k −

1
1 + µk

Pni,k

]
Qni,kηni,k

)
d ln Y

dlnP̃ji,g

}
,

(F.2)

where notice that the first term in the second line is zero given the labor market clearing condition,
wnLn = ∑ι,k Pnι,kQnι,k. Appealing to Roy’s identity we can formulate the mechanical consumption

20To put it differently, the planner’s problem (as we specify it) separates the issue of restoring production efficiency from
inter-national redistribution. The former objective is attained with the proper choice of P̃; the latter is attained with the
proper choice of α—a point we discuss more later.

21The notation Y = Y (P; w, Y) makes explicit the circular nature of income effects in general equilibrium.
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loss from raising P̃ji,k as

δi
∂ ln Vi (.)
∂ ln P̃ji,g

= − δi

Ỹi
P̃ji,gQji,g

∂ ln Vi (.)
∂ ln Yi

|Yi=Ỹi
, (F.3)

where note that Ỹi = αiY by the definition of αi, which is the country i’s optimal share of global
income given lump-sum transfers. Combining Equations F.1-F.3, and dividing by the final expression
by ∑n δn

∂ ln Vn
∂ ln Yn

> 0 yields the following F.O.C. with respect to price instrument P̃ji,k:1 − 1
αi

δi
∂ ln Vi
∂ ln Yi

∑n δn
∂ ln Vn
∂ ln Yn

 P̃ji,kQji,k + ∑
n

∑
k

([
1 − 1

1 + µk

Pni,k

P̃ni,k

]
P̃ni,kQni,kε

(ji,k)
ni,k

)

+∑
n,ι

∑
k

([
1 − 1

1 + µk

Pnι,k

P̃nι,k

]
P̃nι,kQnι,kηnι,k

)
d ln Y

dlnP̃ji,g
= 0. (F.4)

Optimal Policy Implementation—Next, we specify the taxes that deliver the optimal consumer-to-
producer price wedges. We also specify the optimal income shares, which implicitly determine the
optimal international lump-sum transfers. The trivial solution to Equation F.4 involves price wedges
equal to P̃ni,k/Pni,k = 1/ (1 + µk) and income shares that ensure the term in the first parenthesis to
zero. The optimal price wedges, notice, are trade blind, indicating the optimal price wedges can be
implemented with production subsidies alone. Appealing to this basic point, the production tax and
transfers that satisfy the system of F.O.C.s consist of zero trade taxes, production subsidies that are
proportional to the industry-level scale elasticities, and lump-sum transfers such that each country’s
share of global income reflects its Pareto weight and marginal utility from income. Stated formally,

1 + s⋆i,k =
P⋆

ni,k

P̃⋆
ni,k

= 1 + µk; x⋆ij,k = t⋆ji,k = 0; α⋆i =
δi

∂ ln Vi
∂ ln Yi

∑n δn
∂ ln Vn
∂ ln Yn

.

The Logic Behind Efficient Policy Formulas—The notion of optimal policy in our framework (as in
much of the trade policy literature) is formulated to deliver the first-best outcome from the planner’s
standpoint. The planner, in particular, is afforded sufficient policy instruments to achieve both pro-
duction efficiency and their desired level of redistribution. Production subsidies that restore marginal
cost pricing are used to achieve production efficiency, while efficient lump-sum transfers are used to
attain redistributive objectives based on Pareto weights. To elucidate this point, suppose lump-sum
transfers where unavailable. Then, implementing the efficient tax schedule T⋆ = (t⋆, x⋆, s⋆) without
transfers would deliver a Kaldor-Hicks (Kaldor (1939); Hicks (1939)) improvement but not necessarily
a Pareto improvement. Still, the resulting equilibrium would be Hicks-optimal and, therefore, Pareto
efficient. To ensure Pareto improvements (relative to Laissez-Faire) without lump-sum transfers, the
optimal policy must also include non-zero trade taxes that redistribute the welfare gains from restor-
ing marginal cost pricing across countries. But when efficient lump-sum transfers are available, the
planner avoids redistribution via trade taxes as they undermine production efficiency.

Efficient Policy vs. Cooperative Tariffs—It is important to distinguish between efficient policies and
cooperative tariffs of the sort examined by Ossa (2014) and Lashkaripour (2021). Efficient policies de-
liver the global planner’s first-best outcome. Cooperative tariffs, on the other hand, maximize global
welfare in second-best scenarios, where efficient production subsidies and transfers are unavailable.
More formally, cooperative tariffs are given by

t⋆⋆ = arg max ∑
i

δi log Wi (t) s.t.
{

s = 0
αi,k = Yi (t) /Y (t)

So, t⋆⋆, by design, mimics the first-best (or efficient) subsidies and transfers to deliver the second-
best.22 In other words, cooperative tariffs seek to improve allocative efficiency by restricting trade
(and thus global output) in low-µ industries. They also seek to redistribute inter-nationally, taking

22As we argue shortly, cooperative tariffs also internalize political economy pressures if any. Put together, these points
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into account the Pareto weights in the planner’s objective function or the bargaining weights in the
Nash bargaining formulation of the same problem.23

Efficient Policy Under Political Economy Considerations—Our baseline model and the efficient policies
implied by it abstract from political economy considerations. What if governments assign different
political weights to say profits collected from different industries? In that case, efficient production
subsidies should take into account not only the industry-level scale elasticity (or markup) but also
its political weight. We can, moreover, refer to the discussion in Section IV to specify the politically-
adjusted efficient policy. Recall, in particular, that the political economy model is isomorphic to an
augmented version of our baseline model wherein markups are politically-adjusted and given by
µP

i,k = µk
πi,k−(1−πi,k)µk

, where πi,k is the political economy weight assigned by the planner to profits

collected from industry k in origin i. The efficient production subsidy, accordingly, becomes s⋆i,k = µP
i,k.

G Internal Cooperation in the Rest of the World
When characterizing country i’s unilaterally optimal policy, we treat the rest of the world as inter-

nally cooperative. Our notion of cooperation is based on the WTO’s core principles: reciprocity and
non-discrimination (see Bagwell and Staiger (2004)). The principle of reciprocity entails that cooper-
ative countries maintain the balance of market access concessions internally. In our model, where
labor is the sole factor of production, any change in relative market access is equivalent to a change in
relative wages (see Footnote 25). Hence, to maintain the balance of concessions, cooperative countries
must adopt policy buffers that neutralize relative wage disruptions among each other. Otherwise, the
subset of countries whose relative wage improves in response to country i’s policy reap terms-of-trade
(or market access) gains at the expense of others whose relative wage deteriorates.

To formalize these arguments, we first specify the change in country n’s welfare in response to
country i’s policy, {d ln (1 + xi) , d ln (1 + ti) , d ln (1 + si)}. Suppose consumer preferences in coun-
try n ̸= i are homothetic. Appealing to Roy’s identity, the welfare impacts of country i’s policy
shock on country n’s welfare, can be expresses as d ln Wn = d ln Yn − ∑j λjn,ken,kd ln P̃jn,k. Next, we
characterize d ln Yn focusing on restricted entry for expositional purposes. Nominal income in coun-
try i is the sum of wage income adjusted for profit payments—namely,Yn = (1 + µn)wnLn, where
µn = ∑k µkρn,k is the employment-weighted average markup in country n.24 Taking full derivatives
from the expression for Yn, yields

d ln Yn = d ln

(
∑
k
(1 + µk) ρn,k

)
+ d ln wn = ∑

k

[
ρn,k ·

(
1 + µk
1 + µn

)
d ln ρn,k

]
+ dlnwn,

where d ln ρn,k and d ln wn respectively denote the change in country n’s employments shares and
wage rate in response to country i’s tax policy. To economize on the notation let Eρ [.] and Covρ (.)
denote cross-industry mean and covariance operators with weights,

{
ρi,k
}

. As a matter of accounting,
∑k ρn,kd ln ρn,k ∼ Eρ [dln ρn,k] = 0, indicating that the first term in the last line of the above equation
can be specified as

∑
k

[
ρn,k ·

(
1 + µk
1 + µn

)
d ln ρn,k

]
∼ Covρ

(
1 + µk
1 + µn

, dln ρn,k

)
.

echo Ossa’ (2016) verbal argument that second-best cooperative tariffs pursue three objectives: First, they seek to improve
allocative efficiency by mimicking efficient production subsidies. Second, they seek to redistribute welfare inter-nationally
based on Pareto or bargaining weights. Third, they seek to promote politically-organized industries. Though, they are not
the first-best instrument for reaching either objective.

23Correspondingly, if the baseline economy is efficient, there exists a set of Pareto/bargaining weights (δ) for which
t⋆⋆ = 0 —see e.g., the analytic formula for t⋆⋆ in Lashkaripour (2021).

24Recall for Section I, that µn ≡
∑k,j

µk
1+µk

Pnj,kQnj,k

∑k,j
1

1+µk
Pnj,kQnj,k

. Noting that wnLn,k = 1
1+µk

Pnj,kQnj,k, we can rewrite µn as

µn =
∑k,j

µk
1+µk

Pnj,kQnj,k

∑k,j
1

1+µk
Pnj,kQnj,k

= ∑
k,j

µk
Ln,k
Ln

∼ ∑
k,j

µkρn,k,

where ρn,k ≡ Ln,k/Ln is the employment share assocaited with industry k in country n.

36



Next, we specify the welfare effects due to changes in consumer prices. The change in good-specific
consumers prices for goods originating from j ̸= i is determined by the underlying wage change, i.e.,
d ln P̃jn,k = d ln wj for all j ̸= i. The change in consumers prices for goods originating from country i is
the sum of the direct tax change and the indirect wage effects, i.e. d ln P̃in,k = d ln wi + d ln (1 + xin,k).
Putting the pieces together, we can write the change in country n’s welfare in response to country i’s
non-cooperative policy as

d ln Wn = Covρ

(
1 + µk
1 + µn

, dln ρn,k

)
+ (1 − λii)dlnwn

− ∑
j ̸=i,n

∑
k

(
λjn,ken,kdln wj

)
− ∑

k
(λin,ken,k [d ln wi + d ln (1 + xin,k)]) .

We can rearrange the above equation and decompose the various welfare terms as

d ln Wn = −

Terms-of-Trade vis-a-vis Country i︷ ︸︸ ︷(
λind ln (wi/wn) + ∑

k
λni,ken,kd ln (1 + xin,k)

)

+ Covρ

(
1 + µk
1 + µn

, dln ρn,k

)
︸ ︷︷ ︸

Allocative Efficiency

− ∑
j ̸=i

[
λjndln

(
wj/wn

)]
︸ ︷︷ ︸

Terms-of-Trade vis-a-vis RoW

, (G.1)

where λjn ≡ ∑k λji,ken,k denotes aggregate expenditure shares.25 Following Baqaee and Farhi (2017),
Allocative Efficiency effects are defined as the welfare change net of Hulten (1978) in response to policy
shocks that do not raise revenues for closed-economy n. The remaining terms are, by design, terms of
trade (ToT) effects. Theses can be divided into changes in ToT vis-à-vis country i and changes to ToT
vis-à-vis the rest of the world, with which country n maintains cooperation.

Extraterritorial Terms of Trade Effects—Following Equation G.1, country i’s non-cooperative policy
can disrupt country n’s ToT and balance of concessions vis-à-vis countries other than i. Consider
country j ̸= i who is cooperative with country n. If d ln

(
wj/wn

)
< 0, country n’s ToT improves

relative to j in response to country i’s policy. Or stated differently, the bilateral balance of market
access concessions tilts in favor of country n, which violates reciprocity. We call these “Extraterritorial
Terms of Trade Effects,” as they disrupt the ToT and balance of concessions between countries in the rest
of the world. To restore reciprocity—one of WTO’s core principles—the rest of the world must exert
wage buffers that neutralize the extraterritorial ToT effects associated with country i’s policy.

Neutralizing Extraterritorial ToT Effects with Cooperative Wage Buffers—The rest of the world can
institute cooperative wage buffers to neutralize the extraterritorial ToT effects associated with country
i’s policy, ensuring that ∆ ln

(
wj/wn

)
= 0 for all n, j ̸= i. Ideally, these policies must satisfy WTO’s

non-discrimination principle and be efficient, which effectively rules out trade tax measures. A policy
option that satisfies these requirements is a wage tax-cum-subsidy that is either revenue-neutral or
financed via an efficient lump-sum tax on residents of all countries outside of i. To elaborate, let
w∗

n denote the wage rate in country n after the implementation of country i’s optimal policy, P̃i, if

25We can re-formulate the above decomposition in the spirit of Arkolakis, Costinot, and Rodriguez-Clare (2012), to clarify
that market access is fully-determined by relative wages. In particular, appealing to the CES demand system whereby

d ln
(

P̃jn,k/P̃nn,k

)
= 1

1−σk
d ln

(
λjn,k/λnn,k

)
, we can alternatively express the welfare effects of an external shock to economy

n as

d ln Wn = dlnYn − ∑
k

[
ei,kd ln P̃nn,k

]
+ ∑

j,k

[
ei,k

1 − σk
λjn,kd ln

(
λjn,k

λnn,k

)]

= Covρ

(
1 + µk
1 + µn

, dln ρn,k

)
+ ∑

k

[
ei,k

1 − σk
dln λii,k

]
,

where the last line follows from the adding up constraint, ∑j λjn,kd ln λji,k = 0. Notice that λii,k, by definition, summarizes
an open economy’s market access. Comparing the above representation to Equation G.1 indicates that the change in market
access can be alternatively summarized by changes to relative wages.
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no policy buffers were in place. The country-specific wage subsidy, τ ≡ {τw
n }n ̸=i, is allotted such

that τw
n /τw

j < 1 if w∗
n/w∗

j < wn/wj—to the point that the post-subsidy effective relative wage rates
(w∗

n (τ) /w∗
j (τ)) remains equal to their status-quo level. Namely, w∗

n/w∗
j = wn/wj for all n, j ̸= i.

Treating the RoW as Internally Cooperative vs. Merely Passive—Treating the rest of the world as
cooperative or passive is, after all, a theoretical formality since for all practical purposes, country
i’s good-specific taxes have little-to-no effect on aggregate relative wages in the rest of the world.
We demonstrate this point numerically in Appendix H using multiple simulations of our model—
including some where country i is large. But even in theory, one can envision many settings in which
the rest of the world being cooperative or passive is immaterial. Let us provide one such example.
Suppose there is a traded homogeneous sector, k0, operating under constant-returns to scale technolo-
gies (i.e., σk0 ≈ γk0 → ∞). Moreover, assume that sector k0 has a strictly positive employment share,
i.e., ρn,k0 > 0, in every country n (with the possible exception of i). Assuming that en,k0 is sufficiently
large such that ρ̂n,k0 ̸= 0 in response to country i’s policy, ensures that wn/wn′ remains constant for
all n, n′ ̸= i—even if the rest of the world is passive.26 Notice that this is a strictly weaker version of
the common assumption adopted by Fajgelbaum, Grossman, and Helpman (2011) and Ossa (2011),
among others. In particular, these studies assume that neither country i’s nor the rest of the world’s
employment in the homogeneous sector reduces to zero in response to country i’s policy (i.e., ρ̂i,k0 ̸= 0
and ρ̂n,k0 ̸= 0, ∀n ̸= i). Our example, in contrast, only requires that the rest of the world’s employ-
ment in the homogeneous sector does not collapse to zero.

H Numerical Examination of Optimal Policy Formulas
This appendix illustrates the accuracy and speed of our theoretical optimal policy formulas by

benchmarking against results obtained from numerical optimization. We, more specifically, demon-
strate two points. First, our formulas often outperform numerical optimization as they identify an
optimal policy schedule that is strictly superior to that specified by standard numerical optimization
routines. The improved accuracy is especially notable when analyzing a global economy with many
countries. Second, our theoretical formulas are orders of magnitude faster than numerical optimiza-
tion at detecting optimal policy.

We must underscore two points to set the stage for our numerical analysis. First, throughout this
section, we use our approximate formula for the inverse export supply elasticity. Second, we treat
the rest of the world as passive rather than internally cooperative. As such, our numerical analysis
reveals two additional points. First, that our approximation of the export supply elasticity exhibits
great numerical precision. Second, treating the rest of the world as internally cooperative vs. passive
is virtually inconsequential. Since individual policy instruments have negligible impacts on relative
wages in the rest of the world, our optimal policy formulas retain accuracy even if the rest of the
world is passive—even if the tax-imposing country is relatively large.

Details of Numerical Simulation—We examine three hypothetical economies with N = 2, 5, and
20 countries, each containing S = 10 industries. We assume that preferences across industries are
Cobb-Douglas, with ei,k denoting the Cobb-Douglas weight on industry k in country i. To compute
the optimal policy, we need to assign values to the following vector of parameters/endowments,
Θ =

{
µk, σk, ei,k, Li

}
i,k. The information relating to other parameters is implicit in the value assigned

to the matrix of bilateral expenditure shares and national income levels, X =
{

λij,k, Yi

}
i,j,k

. We nor-

malize Yi = 100 for all countries and randomly draw the remaining parameters/variables from a
uniform distribution using the RAND function in MATLAB. We repeat this 50-time for each case,
resulting in 150 simulations of the global economy under randomly-selected parameters. For each
choice of parameters, we numerically solve for the optimal policy equilibrium using (a) our theoret-
ical formulas relying on the optimization-free approach described under Proposition 1 in Section 7
and (b) using numerical optimization relying on the MPEC approach described in Ossa (2014). The
latter is the standard approach when theoretical formulas are unavailable, so we benchmark our for-
mulas’ numerical accuracy and speed against it. Our implementation of MPEC, as in Ossa (2014), uses
MATLAB’s standard optimization routine, FMINCON.

26To elaborate, the price of the homogeneous good k0 must be equalized across origins. Let an,k0 denote the constant unit
labor requirement for producing good k0 in origin n. Price equalization entails that wn/wn′ = an′ ,k0 /an,k0 , which is constant.
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Accuracy of Theoretical Formulas
Figure H.1 compares the welfare gains implied by our optimal policy formulas to those obtained

from numerical optimization (MPEC). Each dot corresponds to one of our 150 simulations. A dot lying
on the 45-degree line in Figure H.1 indicates that our theoretical formulas identify the same optimal
policy schedule numerical optimization. Dots lying above the 45-degree line correspond to simula-
tions where our theoretical formulas (Theorem 1) outperform numerical optimization (MPEC)—that
is, they identify an optimal policy schedule that strictly dominates in terms of implied welfare gains,
which is the policy objective. The reverse is true for dots below the 45-degree line. Keep in mind that
the simulations in Figure H.1 use our approximation of the export supply elasticity and treat the rest
of the world as passive—each of which can possibly compromise the performance of our theoretical
formulas relative to numerical optimization.

Figure H.1: Gains from optimal policy: theoretical formula vs. numerical optimization
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Note: This figure reports results from 150 simulations in which parameters are randomly sampled for three cases of our
model—namely, N = 2, 5, 10, with K = 10. The y-axis reports the pre-cent welfare gains predicted by our optimal policy
formulas (Theorem 1) in a simulated model. The x-axis reports reports the welfare gains obtained from numerical optimiza-
tion conducted using MATLAB’s FMINCON routine.

Figure H.1 reveals that the prediction of our theory is virtually identical to numerical optimization
in most cases. On several occasions, our theoretical formulas outperform numerical optimization by
a non-trivial margin. These are more frequent when we simulate a global economy consisting of more
countries. We summarize this point more clearly in Figure H.2. We divide simulation outcomes into
three categories:

i. [Orange] Simulations where our theoretical formulas and numerical optimization (MPEC) pre-

dicted comparable gains from optimal policy, i.e.,

∣∣∣∆Wtheory
i −∆WMPEC

i

∣∣∣
min

{
∆Wtheory

i ,∆WMPEC
i

} ≤ 0.0025.
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Figure H.2: Performance of theoretical formulas vs. numerical optimization (MPEC)
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Note: This figure summarizes results from 150 simulations with randomly-sampled parameters. The yellow bars represent
the frequency of simulations where our optimal policy formulas and MPEC (numerical optimization) predict welfare gains
that are within 0.25% of one another in terms of magnitude. The blue bars represent the frequency of simulations where
our optimal policy formulas predict welfare gains that at least 0.25% greater than those implied by numerical optimization
(MPEC). The grey bars represents the frequency of simulations where our optimal policy formulas predict welfare gains that
at least 0.25% greater than those implied by numerical optimization (MPEC).

ii. [Blue] Simulations where our theoretical formulas outperform numerical optimization (MPEC)
by at least 0.25%, i.e., ∆Wtheory

i > 1.0025 × ∆WMPEC
i .

iii. [Grey] Simulations where numerical optimization (MPEC) outperforms our theoretical formulas
by at least 0.25%, i.e., ∆WMPEC

i > 1.0025 × ∆Wtheory
i .

A clear takeaway is that –for all practical purposes– our theoretical formulas either deliver compara-
ble accuracy or outperform numerical optimizations. Numerical optimization exhibits great accuracy
when dealing with only two countries. With 20 countries, however, our theoretical formulas outper-
form numerical optimization by at least 0.25% in more than thirty percent of the simulations. This
improvement is noteworthy in practice, as we are often interested in cases where country i imple-
ments trade policy in relation to tens if not hundreds of trading partners. In these cases, numerical
optimization must identify an optimal vector of policies consisting of hundreds and thousands of
free-moving policy instruments—which can compromise accuracy depending on the properties of
the underlying objective function.

Why does numerical optimization become less accurate with many countries?—Figure H.1 reveals that,
when dealing with many countries, our theoretical formulas occasionally outperform numerical op-
timization by a non-trivial margin. The reason is that with many countries and free-moving tax in-
struments, numerical optimization may detect a near-prohibitive good-specific tax rate that is non-
optimal but artificially satisfies the first-order conditions to a good approximation. Even though nu-
merical optimization identifies the appropriate policy vis-à-vis most goods in these cases, it fails with
respect to one or more goods for which it converges to a high and non-optimal tax rate. One can per-
haps navigate this pitfall by setting bounds on feasible tax choices, but it is unclear what these bounds
should be without theory. Relatedly, Figure H.2 suggests that our approximated optimal policy formu-
las occasionally underperform numerical optimization when dealing with two countries. This is a
mere reflection of our export-supply-elasticity-approximation error, which can be non-trivial when
country i is excessively large relative to the rest of the world. To elaborate, our simulation assigns the
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Figure H.3: Improvement in computation speed from using theoretical formulas
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Note: The figure compares the per-cent increase in computation speed when using our optimal policy formulas over numer-
ical optimization. Each bar represents the average increase over 50 simulations with randomly-sampled parameters.

same size to all countries. Correspondingly, country i is similar in size to the entire rest of the world
in the simulation with two countries—thereby, the possibly large approximation error.27

The RoW being Internally Cooperative or Passive is Immaterial—When performing numerical opti-
mization, we purposely treat the rest of the world as passive—i.e., we do not restrict relative wages to
remain constant in the rest of the world. Yet our optimal policy formulas (which treat the rest of the
world as internally cooperative) deliver predictions that are virtually identical to those obtained from
numerical optimization (which treats the rest of the world as passive)—even though the tax-imposing
country is large relative to the rest of the world in our simulations. These outcomes all but corrob-
orate our previous assertion that the rest of the world being passive vs. cooperative is a theoretical
formality and virtually immaterial from a quantitative standpoint.

Computational Speed of Theoretical Formulas
Figure H.3 reveals that our theoretical formulas deliver orders of magnitude improvements in

computation speed relative to numerical optimization (MPEC). Let ttheory denote the time it takes to
compute the optimal policy equilibrium with the aid of our theoretical formulas. Correspondingly,
let tMPEC denote the computational time required to run numerical optimization. The y-axis in Figure
H.3 corresponds to 100 ×

(
tMPEC/tthoery), which is the per-cent improvement in computation speed

when using our theoretical formulas over numerical optimization. Our theory delivers a more than
20-fold improvement in speed with two countries, and a more than 60-fold improvement with 20
countries. The gains will be, accordingly, greater in real-world scenarios involving many countries
(like those examined in Section 7). The improvement in computation speed is especially crucial when
determining the Nash equilibrium of a non-cooperative policy game, wherein each country’s optimal
policy must be solved iteratively as a function of others’ policies. We perform such an analysis in
Section 7, where it takes us a few minutes to identify the Nash equilibrium versus many hours if we
had relied on numerical optimization.

I Proof of Theorem 2
The proof of Theorem 2 has the same basic foundation as Theorem 1. We reformulate the optimal

policy problem, expressing equilibrium variables (e.g., Qji,k, Yi, etc.) as a function of (1) the vector of

27To be clear, in the two-country case, the rest of the world being passive (rather than internally cooperative) is irrelevant
and our approximation of the export supply elasticity is the only source of numerical error.
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consumer prices associated with economy i, excluding P̃ii, i.e., P̃i ≡
{

P̃ji, P̃ij
}

;28 and (2) the vector of
national-level wage rates all over the world, w = {w1, ..., wN}. To implement this reformulation of
equilibrium variables, we need to solve the following system treating P̃i, and w as given:

[optimal pricing] Pjn,k = ρ̄ji,kwj

[optimal consumption] Qjn,k = Djn,k(Yn, P̃1n, ...P̃Nn)

[RoW imposes zero taxes] P̃jn,k = Pjn,k (P̃jn,k /∈ P̃i); Yn =

wn Ln+Πn︷ ︸︸ ︷
(1 + µn)wnLn (n ̸= i)

[Balanced Budget in i] Yi = (1 + µi)wiLi +
(
P̃ij − Pij

)
· Qij +

(
P̃ji − Pji

)
· Qji

[avg. profit margin in j] 1 + µj =
∑n∈C

[
Pjn · Qjn

]
∑n∈C

[
Pjn ·

(
Qjn ⊘ (1 + µ)

)]
where “·” denotes the inner product operator for vectors of equal size. “⊘” denotes element-wise di-
vision of equal-sized vectors, with µ ≡ {µk}k. Since there is a unique equilibrium, the above system is
exactly identified in that it uniquely determines Pjn,k(P̃i; w), Qjn,k(P̃i; w), Yn(P̃i; w), and µi(P̃i; w) as
a function of P̃i and w . Appealing to the above reformulation of the equilibrium, we can reformulate
the original optimal policy problem (P2) as follows.

Lemma 7. Country i’s vector of second-best trade taxes,
{

t∗∗i , x∗∗i
}

, can be determined by solving the following
problem:

max
P̃i

Wi(P̃i; w) ≡ Vi(Yi(P̃i; w), P̃i) s.t. (P̃i; w) ∈ FP (P̃2),

where the feasibility constraint is satisfied if, given P̃i , the wage vector w satisfies balanced trade in each
country:

(P̃i; w) ∈ FP ⇐⇒

∑j ̸=n ∑k∈K

[
Pjn,k(P̃i; w)Qjn,k(P̃i; w)− Pnj,k(P̃i; w)Qnj,k(P̃i; w)

]
= 0 if n ̸= i

∑j ̸=n ∑K
k=1

[
Pji,k(P̃i; w)Qjn,k(P̃i; w)− P̃ij,kQnj,k(P̃i; w)

]
= 0 if n = i

.

The system of F.O.C.’s underlying Problem (P̃2) can be expressed as follows:

∇P̃Wi(P̃i; w) +∇wWi ·
(

dw
dP̃

)
(P̃i ;w)∈FP

= 0, ∀P̃ ∈ P̃i =
{

P̃ji, P̃ij
}

.

In what follows we characterize and simplify the system of F.O.C., building heavily on the results
presented in Appendix E.

Deriving the First-Order Condition w.r.t. P̃ji

Consider the consumer price index P̃ji,k ∈ P̃i associated with a good imported by i from origin
j–industry k. The F.O.C. w.r.t. this price instrument can be stated as follows:(

dWi(P̃i; w)

d ln P̃ji,k

)
P̃−ji,k

=
∂Vi(Yi, P̃i)

∂ ln P̃ji,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P̃−ji,k

+

(
∂Wi(P̃i; w)

∂w

)
P̃i

·
(

dw
d ln P̃ji,k

)
P̃−ji,k

= 0,

(I.1)
where P̃−ji,k ≡ P̃i −

{
P̃ji,k

}
denotes the vector of price instruments excluding P̃ji,k. The above equa-

tion is similar to what we characterized in Appendix E under restricted entry, with two distinctions:
First, country i’s government does not control the price of domestically produced and domestically
consumed varieties, i.e., P̃ii /∈ P̃i. Second, country i’s income does not include domestic tax revenues:

Yi = (1 + µi)wiLi +
(
P̃ij − Pij

)
· Qij +

(
P̃ji − Pji

)
· Qji.

28Recall that vectors P̃ji ≡
{

P̃ji,k

}
j ̸=i,k

and P̃ij ≡
{

P̃ij,k

}
j ̸=i,k

encompass only the export/import prices linked to economy

i.
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Taking note of these two differences, we can build on the derivation in Appendix E to simplify Equa-
tion I.1. By Roy’s identity, the first term on the right-hand side of Equation I.1 can be stated as

∂Vi(Yi, P̃i)

∂ ln P̃ji,k
= −P̃ji,kQji,k

(
∂Vi
∂Yi

)
.

Without repeating the derivations, the second term on the right-hand side of Equation I.1 reduces to(
∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P̃−ji,k

=P̃ji,kQji,k + ∑
g

∑
n ̸=i

[(
P̃ni,g − (1 + ωni,g)Pni,g

)
Qni,gε

(ji,k)
ni,g

]

∑
g

[(
1 −

1 + µi
1 + µg

)
Pii,gQii,gε

(ji,k)
ii,g

]
+ ∆′

i(P̃i, w)

(
∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P̃−ji,k

where ∆′
i(P̃i; w) is a uniform term (without industry subscripts) and is given by

∆′
i(P̃i; w) ≡ ∑

g
∑
n ̸=i

[(
P̃ni,g − (1 + ωni,g)Pni,g

)
Qni,gηni,g

]
+ ∑

g

[(
1 − 1 + µi

1 + µg

)
Pii,gQii,gηii,g

]
. (I.2)

To be clear, the above expressions can be derived by repeating the steps in Appendix E, while drop-
ping domestic tax revenues from the expression for income Yi. Likewise, the third term on the right-
hand side of Equation I.1 can be stated as(

∂Wi(.)
∂w

)
P̃i

·
(

dw
d ln P̃ij,k

)
P̃−ij,k

= −∑
g

∑
n ̸=i

[
(1 + ωni,g)τ̄iPni,gQni,gε

(ji,k)
ni,g

]
−∑

g
∑
n ̸=i

[
(1 + ωni,g)τ̄iPni,gQni,gηni,g

] (∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P̃−ji,k

,

where τ̄i is given by J.1. Combining the above equations the F.O.C. specified by Equation I.1 can be
simplified as

∑
n ̸=i

∑
g

[(
P̃ni,g

Pni,g
− (1 + τ̄i)(1 + ωni,g)

)
Pni,gQni,gε

(ji,k)
ni,g

]

+ ∑
g

[(
1 −

1 + µi
1 + µg

)
Pii,gQii,gε

(ji,k)
ii,g

]
+ ∆̃′

i(P̃i, w)

(
∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P̃−ji,k

= 0, (I.3)

where ∆̃′
i(P̃i; w) is specified analogously to ∆′

i(P̃i, w), but features an adjustment for general equilib-
rium wage effects:

∆̃′
i(P̃i; w) ≡ ∑

g
∑
n ̸=i

[(
P̃ni,g − (1 + τ̄i)(1 + ωni,g)Pni,g

)
Qni,gηni,g

]
+ ∑

g

[(
1 −

1 + µi
1 + µg

)
Pii,gQii,gηii,g

]
. (I.4)

Deriving the First-Order Condition w.r.t. P̃ij

Now, consider the consumer price index P̃ij,k ∈ P̃i associated with a good exported by i from
destination j–industry k. The F.O.C. w.r.t. this price instrument can be stated as follows:(

dWi(P̃i; w)

d ln P̃ij,k

)
P̃−ij,k

=
∂Vi(Yi, P̃i)

∂ ln P̃ij,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P̃−ij,k

+

(
∂Wi(P̃i; w)

∂w

)
P̃i

·
(

dw
d ln P̃ij,k

)
P̃−ij,k

= 0.

(I.5)
where P̃−ij,k ≡ P̃i −

{
P̃ij,k

}
denotes the vector of price instruments excluding P̃ij,k. As with the

previous subsection, The above equation is similar to what we characterized in Appendix E, with two
distinctions: First, country i’s government does not control the price of domestically produced and
domestically consumed varieties, i.e., P̃ii /∈ P̃i. Second, country i’s income does not include domestic
tax revenues. Noting these two distinctions, we can borrow from the derivation in Appendix E to
simplify Equation I.5.

Namely, since P̃ij,k /∈ P̃i is not part of the domestic consumer price index in i, ∂Vi(Yi, P̃i)/∂ ln P̃ji,k =
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0. So, the first term on the right-hand side of Equation I.5 collapses to zero. Without repeating the
derivations from Appendix E, the second term on the right-hand side of Equation I.5 reduces to(

∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P̃−ij,k

=P̃ij,kQij,k + ∑
g

[(
P̃ij,g −

1 + µi
1 + µg

Pij,g

)
Qij,gε

(ij,k)
ij,g

]
− ∑

g
∑
n ̸=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∆′

i(P̃i; w)

(
∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P̃−ij,k

,

where ∆′
i(P̃i; w) is a uniform term without industry subscripts, as defined by Equation I.2. To elab-

orate, the above expression can be derived by repeating the steps in Appendix E, while dropping
domestic tax revenues from the expression for income Yi. Likewise, the third term on the right-hand
side of Equation I.5 can be stated as(

∂Wi(P̃i; w)

∂w

)
P̃i

·
(

dw
d ln P̃ij,k

)
P̃−ij,k

= τ̄i P̃ij,kQij,k + ∑
g

[
τ̄i P̃ij,gQij,gε

(ij,k)
ij,g

]

−∑
g

∑
n ̸=i

[
τ̄iωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
− ∑

g
∑
n ̸=i

[
[1 + ωni,g]τ̄iPni,gQni,gηni,g

] (∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P̃−ij,k

,

where τ̄i is given by J.1. Combining the above equations the F.O.C. specified by Equation I.5 can be
simplified as

P̃ij,kQij,k+ ∑
g∈K

[(
1 −

1 + µi
(1 + τ̄i)(1 + µg)

Pij,g

P̃ij,g

)
P̃ij,gQij,gε

(ij,k)
ij,g

]

∑
g∈K

∑
n ̸=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∆̃′

i(P̃i, w)

(
∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P̃−ij,k

= 0, (I.6)

where ∆̃′
i(P̃i; w) is given by Equation I.4.

Solving the System of First-Order Conditions
First, note that we can solve the system specified by Equation I.3 independent of I.6. To solve the

system of Equations I.3, we can rely on the intermediate observation that if(
1 −

1 + µi
1 + µ

)
⊙ Pii ⊙ Qii · ε

(ji,k)
ii + ∑

n ̸=i

[(
P̃ni − (1 + τ̄i)(1 + Ωni)⊙ Pni

)
⊙ Qni · ε

(ji,k)
ni

]
= 0, (I.7)

then, to a first-order approximation around µk ≈ µi, ∆̃′
i(µ) ≈ 0. So, the optimal choice of P̃∗∗

ji (and
the implied tariff vector) can be determined by solving Equation I.7 instead of I.3.29 Before moving
forward, though, let us clarify the vector notation used to express Equation I.7. The vector operators
“·” and “⊙” are respectively the inner product and element-wise product operators. The K × 1 vector
1+µi
1+µ =

[
1+µi
1+µk

]
k

is composed of industry-level The K × 1 vectors P̃ni =
{

P̃ni,k
}

k and Qni =
{

Qni,k
}

k
encompass the consumer price and quantity associated with all of country i’s import goods for origin
n ̸= i. Analogously, ε

(ji,k)
ni =

{
ε
(ji,k)
ni,g

}
g

encompasses the elasticity of demand for each the goods

imported from n w.r.t. the price of ji, k.
We simplify Equation I.7 in three steps: First, by noting that P̃ii = Pii and appealing to Cournot’s

aggregation, ∑ȷ∈C

[
P̃ȷi ⊙ Qȷi · ε

(ji,k)
ȷi

]
= −P̃ji,kQji,k, we can rewrite Equation I.7 as

1 + µi
1 + µ

⊙ P̃ii ⊙ Qii · ε
(ji,k)
ii + (1 + τ̄i) ∑

n ̸=i

[
(1 + Ωni)⊙ Pni ⊙ Qni · ε

(ji,k)
ni

]
+ P̃ji,kQji,k = 0. (I.8)

Second, we invoke the Slutsky Equation,30 to rewrite the first two term in the above equation. Specifi-

29Note that Equation I.7 is essentially I.3 with ∆̃′
i(.) set to zero.

30Recalling that eji,k = P̃ji,kQji,k/Yi denotes the share of expenditure on ji, k, the Slutsky equation can be formally stated
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cally, taking note that

ηii,g = ηji,k = 1 Slutsky Equation
−−−−−−−−−−−→

P̃ni,gQni,gε
(ji,k)
ni,g = P̃ji,kQji,kε

(ni,g)
ji,k .

We can reduces the F.O.C. described under Equation I.8 to

1 + ∑
g

[
1 + µg

1 + µi
ε
(ii,g)
ji,k

]
+ (1 + τ̄i)∑

g
∑
n ̸=i

[
(1 + ωni,g)

Pni,g

P̃ni,g
ε
(ni,g)
ji,k

]
= 0. (I.9)

Lastly, we use the Marshallian demand function’s homogeneity of degree zero property, whereby ηji,k +

∑ȷ,g ε
(ȷi,g)
ji,k = 1 + ∑ȷ,g ε

(ȷi,g)
ji,k = 0. Invoking this property we rewrite Equation I.9 as follows

∑
g

[(
1 −

1 + µg

1 + µi

)
ε
(ii,g)
ji,k

]
+ ∑

g
∑
n ̸=i

[(
1 − (1 + τ̄i)(1 + ωni,g)

Pni,g

P̃ni,g

)
ε
(ni,g)
ji,k

]
= 0.

The above equation, which should hold for all ji, k ̸= ii, k specifies a system of FOCS that can be
expressed in matrix no notation as

ε
(ii,1)
1i,1 · · · ε

(ii,1)
Ni,K

...
. . .

...
ε
(ii,K)
1i,1 · · · ε

(ii,K)
Ni,K


︸ ︷︷ ︸

E(ii)
−ii


1 − µ1

µi
...

1 − µK
µi

+


ε
(1i,1)
1i,1 · · · ε

(1i,1)
i−1i,k ε

(1i,1)
i+1i,k · · · ε

(1i,1)
Ni,K

...
. . . . . .

...
ε
(Ni,K)
1i,1 · · · ε

(Ni,K)
i−1i,k ε

(Ni,K)
i+1i,k · · · ε

(Ni,K)
Ni,K


︸ ︷︷ ︸

E−ii


1 − (1 + τ̄i)(1 + ωni,g)

P1i,1
P̃1i,1

...
1 − (1 + τ̄i)(1 + ωni,g)

PNi,K
P̃Ni,K

 = 0.

(I.10)

Following the proof of Lemma 6 from Appendix E, we can easily show the matrix E(ii)
−ii is invertible. We

can, thus, invert the system specified by Equation I.10 to produce the following formula for optimal
import price wedges:[

(1 + τ̄i)(1 + ωji,k)
Pji,k

P̃∗∗
ji,k

]
j,k

= 1 + E−1
−ii E(ii)

−ii

[
1 − 1 + µk

1 + µi

]
k

, (I.11)

where, to be clear, E−ii ≡
[
E(ji)

ni

]
j,n ̸=i

and Ẽ(ii)
−ii ≡

[
E(ii)

ni

]
n ̸=i

are respectively (N − 1)K × (N − 1)K and

(N − 1)K × K matrixes of demand elasticities. Note that the optimal choice w.r.t. P̃ji, ensures that
∆̃′

i(.) ≈ 0. Hence, the system of F.O.C. specified by Equation I.6, transforms to the exact same system
we solved in Appendix E. Without repeating the details of our prior derivation, the optimal export
price wedges are given by[

Pij,k

P̃∗∗
ij,k

(1 + τ̄i)
−1

]
j,k

= E−1
ij E(−ij)

ij

(
1(N−1)K + Ω−ii

)
, (I.12)

where 1(N−1)K is a N(K − 1)× 1 column vector of ones; Ω−ii =
[
Ωni,g

]
n ̸=i,g is a N(K − 1)× 1 vector of

(inverse) export supply elasticities; and E(−ij)
ij and Eij have the same description as in Appendix E. The

“∗∗” notation is used to highlight the fact that we are solving for second-best price wedges. Next, we
can recover the optimal (second-best) import tax and export subsidy rates from the optimal (second-
best) price wedges implies by Equations I.11 and I.12. Specifically, noting the following relationships,

1 + t∗∗ji,k =
P̃∗∗

ji,k

Pji,k
; 1 + x∗∗ij,k =

Pij,k

P̃∗∗
ij,k

;

as
[Slutsky equation] eii,gε

(ji,k)
ii,g + eji,keii,gηii,g = eji,kε

(ii,g)
ji,k + eii,geji,kηji,k.
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country i’s unilaterally second-best trade tax schedule can be expressed as follows:

[import tariff] 1 + t∗∗ij = (1 + τ̄i)
(
1 + Ωji

)
⊘
(

1 + E−1
−ii E(ii)

−ii

[
1 − 1 + µk

1 + µi

]
k

)
[export subsidy] 1 + x∗∗ij = −(1 + τ̄i)

(
E−1

ij E(−ij)
ij (1 + Ω−ii)

)
⊙
[

1 + µk
1 + µi

]
k

.

To conclude the proof we can invoke the multiplicity of the optimal trade tax schedules (Lemma
1). As in Theorem 1, this feature indicates that the value assigned to τ̄i is redundant. In particular,
following Lemma 1, we can multiply (1 + τ̄i) in the above equation with any non-negative tax shifter
1 + t̄i ∈ R+, and maintain optimality. That being the case, the exact value assigned to τ̄i is redundant
and the following describes all possible optimal tax schedules:aa

[import tariff] 1 + t∗∗ij = (1 + t̄i)
(
1 + Ωji

)
⊘
(

1 + E−1
−ii E(ii)

−ii

[
1 − 1 + µk

1 + µi

]
k

)
[export subsidy] 1 + x∗∗ij = −(1 + t̄i)

(
E−1

ij E(−ij)
ij (1 + Ω−ii)

)
⊙
[

1 + µk
1 + µi

]
k

.

J Proof of Theorem 3
Theorem 3 concerns the second-best case where the government in i can choose only P̃ji, which

is the vector of import prices (i.e., P̃i =
{

P̃ji
}

). To prove this theorem we capitalize on two results
from Appendix I: First, the F.O.C. derived w.r.t. P̃ji,k ∈ P̃ji does not change with the unavailability
of P̃ij from the government’s policy set P̃i. Hence, the F.O.C. w.r.t. P̃ji,k is described by Equation I.3
even if P̃ij,k /∈ P̃i. Second, recall from Appendix that we were able to solve the system specified by I.3
independent of the F.O.C. w.r.t. P̃ij. Invoking these two observations, the formula for optimal tariff in
the case studied by Theorem 3 is given by I.11:

1 + t∗∗∗ji = (1 + τ̄i)
(
1 + Ωji

)
⊘
(

1 + E−1
−ii E(ii)

−ii

[
1 − 1 + µk

1 + µi

]
k

)
.

Unlike Theorem 2, through, τ̄i is no longer redundant. Since export taxes (or equivalently P̃ij) are
excluded from the government’s policy set, we can no longer invoke the multiplicity implied by
Lemma 1. Instead, we have to formally characterize, τ̄i, starting from its definition:

τ̄i ≡

(
∂Wi(.)
∂ ln wi

)
P̃i ,w−i

(
∂Vi(.)

∂Yi

)−1

(
∂Ti(P̃i, w)/∂ ln wi

)
P̃i ,w−i

. (J.1)

Also, recall that Wi(P̃i; w) = Vi(Yi(P̃i; w), P̃ii, P̃ji), where P̃ji ∼ P̃−ii ≡
{

P̃ji,k

}
j ̸=i,k

while income

equals wage payments, plus profits, plus import tax revenues: Yi = (1 + µi)wiLi +
(
P̃ji − Pji

)
· Qji.

Borrowing from the results in Appendixes E and I, the numerator in Equation J.1 can be unpacked as
follows:(

∂Wi(.)
∂ ln wi

)
P̃i ,w−i

(
∂Vi
∂Yi

)−1
=

(
∂Yi

∂ ln wi

)
P̃i ,w−i

+

(
∂Vi
∂Yi

)−1 ∂Vi(Yi,, P̃i)

∂ ln P̃ii
· ∂ ln P̃ii

∂ ln wi

= µiwi Li +

(
∂µi

∂ ln wi

)
P̃i ,w−i

wi Li +
(
P̃−ii − P−ii

)
·
(

∂Q−ii
∂ ln wi

)
P̃i ,w−i

− Pii · Qii

= ∑
n ̸=i

[Pin · Qin] +

(
1 −

µi
µ

)
⊙ Pii ·

(
∂Qii

∂ ln wi

)
P̃i ,w−i

+
(
P̃ii − P−ii

)
·
(

∂Q−ii
∂ ln wi

)
P̃i ,w−i

. (J.2)

To be clear about the notation, µi
µ ≡

[
µi
µk

]
k

, while ⊙ and · respectively denote inner and element-wise
products of equal-sized vectors, i.e., a · b = ∑n anbn and a ⊙ b = [anbn]n. Next, we move on to

characterizing the denominator of Equation J.1. Noting that T(P̃i, w) ≡ ∑j ̸=i

[
Pji · Qji − Pij · Qij

]
, we
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can borrow from the results in Appendixes E and I to unpack the aforementioned term as follows:

(
∂Ti(.)
∂ ln wi

)
P̃i ,w−i

=

 ∂

∂ ln wi
∑
j ̸=i

[
Pji · Qji − Pij · Qij

]
P̃i ,w−i

= P−ii ·
(

∂Q−ii
∂ ln wi

)
P̃i ,w−i

− ∑
j ̸=i

[(
∂Pij · Qij

∂ ln wi

)
P̃i ,w−i

]
. (J.3)

Plugging Equations J.2 and J.3 back into the expression for τ̄i yields the following:

τ̄i =
∑n ̸=i [Pin · Qin] +

(
1 − µi

µ

)
⊙ Pii ·

(
∂Qii

∂ ln wi

)
P̃i ,w−i

+
(
P̃ii − P−ii

)
·
(

∂Q−ii
∂ ln wi

)
P̃i ,w−i

P−ii

(
∂Q−ii
∂ ln wi

)
P̃i ,w−i

− ∑j ̸=i

[(
∂Pij·Qij
∂ ln wi

)
P̃i ,w−i

] . (J.4)

We can further simplify the above expression by invoking the F.O.C. described by Equation I.8. This
equation indicates that the following relationship ought to hold at the optimum P̃i = P̃∗∗∗

i :

∑
j ̸=i

∑
k

(1 − µi
µ

)
⊙ Pii ·

(
∂Qii

∂ ln P̃ji,k

)
P̃∗∗∗

i ,w−i

+
(
P̃−ii − (1 + τ̄i)P−ii

)
·
(

∂Q−ii

∂ ln P̃ji,k

)
P̃∗∗∗

i ,w−i

 = 0.

Now, we will rearrange and simplify the above relationship in such a way that will help us simply
Equation J.4. To this, we invoke the property that the Marshallain demand function is homogeneous

of degree zero. Combining this property with the fact that ∂ ln Yi
∂ ln wi

≈ ∂ ln P̃ii,k
∂ ln wi

= 1, we can simplify the
above as follows:(

1 − µi
µ

)
⊙ Pii ·

(
∂Qii

∂ ln wi

)
P̃i ,w−i

+
(
P̃ii − (1 + τ̄i)P−ii

)
·
(

∂Q−ii
∂ ln wi

)
P̃i ,w−i

= 0.

Using the above equation, we can cancel out the mirroring expressions in the numerator and denom-
inator of Equation J.4. Doing so reduces and simplifies the expression for τ̄i to the following:

τ̄i =
−∑n ̸=i (Pin · Qin)

∑j ̸=i

[(
∂Pij·Qij
∂ ln wi

)
P̃i ,w−i

] =
−1

∑j ̸=i
[
Xij ·

(
IK + Eij

)
1K
] . (J.5)

The K × 1 vector Xij =
[
χij,k

]
k

is compose of export shares, which are defined as χij,k ≡ Pij,kQij,k
∑n ̸=i Pin·Qin

.
To provide some intuition, the denominator of the above equation corresponds to the elasticity of
international demand for origin i’s labor. As such, τ̄i can be interpreted as country i’s optimal markup
on its wage rate in international (non-i) markets.

K Optimal Policy under IO Linkages (Theorem 4)
We first present a formal description of equilibrium under input-output (IO) linkages. We use the

C superscript to denote final consumption goods and the I superscript to denote intermediate inputs.
To given an example: QC

ji,k denotes the quantity of a “final” goods associated with origin j–destination
i–industry k, while QI

ji,k denotes the quantity of an “intermediate” goods associated with origin j–
destination i–industry k. Without loss of generality, we assume that good ji, k exhibits the same price
irrespective of whether it is used as a final good or an intermediate input good: P̃ji,k ∼ P̃C

ji,k = P̃I
ji,k.

On the production side, we impose no restrictions on how intermediate inputs are aggregated in
the production process. We, however, assume that the share of labor in production is constant and
equal to 1 − ᾱi,k for each origin i–industry k. To track the demand for inputs, we use Yi,k to denote the
gross revenue associated with origin i–industry k. Correspondingly, ᾱi,kYi,k denotes origin i–industry
k’s total expenditure on intermediate inputs.

Marshallian Demand under IO Linkages
We suppose that overall demand for good ji, k, which is the sum of final good demand based

on utility maximization and input demand based on cost minimization, is given by the following
demand function

Qji,k = QI
ji,k + QC

ji,k = Dji,k(Ei, P̃i),
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where Ei = Yi + ∑g ᾱi,gYi,g denotes market i’s total expenditure on final and intermediate input

goods. To make the notation consistent with our previous derivations, we use ε
(ni,g)
ji,k and ηji,k to de-

note the price and income elasticities associated with the IO-augmented Marshallian demand function
Dji,k(Ei, P̃i).

General Equilibrium under IO Linkages
As in the baseline model, we express all equilibrium outcomes (except for wages) as a function of

global taxes (x, t, and s), treating wages w ≡ {wi}i as given. This formulation derives from solving a
system that imposes all equilibrium conditions aside from the labor market clearing conditions. We
formally outline this formulation below.

Notation. For a given vector of taxes and wages T = (t, x, s; w), equilibrium outcomes Yi(T), Yi,k(T),
Pji,k(T), P̃ji,k(T), Qji,k(T) are determined such that (i) producer prices are characterized by 13; (ii) con-
sumer prices are given by 7; (iii) Consumption and input demand choices are given by Dji,k(Ei, P̃i),
where Ei = Yi + ∑g ᾱi,gYi,g; (iv) net income (which dictates total final good expenditure by country
i) equals wage payments plus tax revenues: Yi = wiLi +Ri,31 where Ri are described by 8 and (v)
gross industry-level revenues are given by Yi,g = ∑n Pin,kQin,k.

As in the baseline model, w is itself an equilibrium outcome. So, a vector T = (t, x, s; w) is feasible
insofar as w is the equilibrium wage, consistent with t, x, and s. So, to fix ideas we define the set of
feasible policy–wage vectors as follows.

Definition (D2-IO). The set of feasible policy–wage vectors, F, consists of any vector T = (t, x, s; w)
where w satisfies the labor market clearing condition in every country, given t, x, and s:

F =

{
T = (t, x, s; w) | wiLi = ∑

j
∑
k

Qzij,k(T)− ∑
j

∑
k

PI
ji,k(T)Q

I
ji,k(T); ∀i ∈ C

}
.

Before moving on to the proof, two important details are in order: First, we can easily verify that
the labor market clearing condition specified by Definition D2-IO is equivalent to the balanced trade
condition. Second, under IO linkages, the choice w.r.t. taxes (or equivalently P̃i ≡

{
P̃ii, P̃ji, P̃ij

}
) may

affect the entire vector of producer prices,
{

Pnj,k

}
, through its effect on input prices. To track these

IO-related effects, let α
j,g
i,k denotes the (possibly variable) cost share of intermediate inputs from origin

j× industry g used in the output of origin i× industry k. By Shepherd’s Lemma, the direct effect of
raising input price P̃I

ji,g on the producer price Pij,k can be expressed as follows:

[Shepherd’s Lemma]

(
∂ ln Pij,k(P̃i; w)

∂ ln P̃I
ji,g

)
P−ji,g,w

= α
j,g
i,k . ∀(ȷ, j, i ∈ C); ∀(g, k ∈ K).

We use the Shepherd’s Lemma in combination with our dual approach (from Appendix E) to charac-
terize the optimal policy schedule for each country i. Recall that the optimal policy problem in our
dual approach is reformulated as

max
P̃i

Wi(P̃i; w) ≡ Vi(Yi(P̃i; w), P̃i) s.t. (P̃i; w) ∈ FP,

where P̃i ≡
{

P̃ii, P̃ji, P̃ij
}

denotes the vector of consumer prices directly linked to economy i. The
feasible set FP is defined analogously to F. Below, we derive and solve the system of F.O.C. associated
with the above problem, building on the results introduced earlier under Appendix E.

Tax Neutrality under IO Linkages
Our baseline characterization of optimal policy relied on the tax neutrality result presented under

Lemma 1. An analogous (but slightly different) neutrality result holds under IO linkages. To present
this result, we use operatorC (.), which configures a uniform tax-shifter depending on whether the

31Note that net profits are equal top zero (i.e., Πi = 0) as we are focusing on the case of free entry.
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taxed item is used for final consumption or intermediate input use. In particular, for an arbitrary
tax-shifter, ã ∈ R+, C (ã) = ã if the taxed item is a final good and C (ã) = 1 otherwise.

Lemma 8. [Tax Neutrality under IO Linkages] For any a and ã ∈ R+ (i) if T = (1+ ti, t−i,1+ xi, x−i, 1+
si, s−i; ẁi, w−i) ∈ F, then T′ = (a(1 + ti)/C (ã), t−i, a(1 + xi)/C (ã), x−i, (1 + si)C (ã), s−i; aẁi, w−i) ∈
F. Moreover, (ii) welfare is preserved under T and T′: Wn(T) = Wn(T′) for all n ∈ C.

The above lemma is akin to Lemma 1, but differs in one basic detail. The neutrality of uniform
trade tax adjustments (i.e., the Lerner Symmetry) holds in the IO model without qualification. The
neutrality of uniform domestic tax adjustments holds the consumption side but not on the production
side. More specifically, a uniform increase in consumption taxes is welfare-neutral in the IO model.
Accordingly, the tax adjustments that apply via C (ã) are constructed to mimic a uniform consumption
tax hike. With the above background, we are now ready to derive and solve the system of F.O.C.s that
determine optimal policy under IO linkages.

Step #1: Deriving the F.O.C. w.r.t. P̃ji,k and P̃ii,k ∈ P̃i

First, we derive the F.O.C. w.r.t. to import variety ji, k, supplied by origin j–industry k. Given that
Wi = Vi(Yi(P̃i; w), P̃C

ii , P̃C
ji), the F.O.C. w.r.t. P̃ji,k ∼ P̃I

ji,k ∼ P̃C
ji,k, holding P̃−ji,k ≡ P̃i − {P̃ji,k} constant,

can be stated as(
∂Wi

∂ ln P̃ji,k

)
P̃−ji,k

=
∂Vi(Yi, P̃C

i )

∂ ln P̃ji,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P̃−ji,k

+

(
∂Wi(P̃i, w)

∂w

)
P̃i

·
(

dw
d ln P̃ji,k

)
P̃−ji,k

= 0.

(K.1)
The right-hand side of the above equation can be characterized similar to Appendix E, with two
distinctions: First, total demand for good ji, k is the sum of consumption plus input demand: Qji,k =

QC
ji,k + QI

ji,k. So, we have to distinguish between welfare effects that channel through consumption
and those that channel through input demand. Second, we need to account for the effect of a change
in input price P̃ji,k ∼ P̃I

ji,k on the producer prices associated with economy i. To this end, we can
invoke Shepherd’s Lemma, which implies that(

∂ ln Pij,k(P̃i; w)

∂ ln P̃I
ji,g

)
P−ji,g,w

= α
j,g
i,k . ∀ȷ, j, i ∈ C; g, k ∈ K.

Considering the above caveats, we can proceed as in Appendix E. By Roy’s identity, the first term on
the right-hand side of the F.O.C. (Equation K.1) can be stated as

∂Vi(Yi, P̃C
i )

∂ ln P̃ji,k
= −P̃ji,kQC

ji,k

(
∂Vi
∂Yi

)
.

Next, consider the second term on the right-hand side of Equation K.1, which accounts for income
effects. Recall that total income in country i equals the sum of wage payments plus import, production
and export tax revenues:

Yi(P̃i; w) = wiLi + ∑
n ̸=i

[(
P̃ni − Pni

)
· Qni

]
+
(
P̃ii − Pii

)
· Qii + ∑

n ̸=i

[(
P̃in − Pin

)
· Qin

]
.

The effect of P̃ji,k on import tax revenues can be derived and express exactly as in Appendix E:(
∂ ∑n ̸=i

[(
P̃ni − Pni

)
· Qni

]
∂ ln P̃ji,k

)
w,P̃−ji,k

= P̃ji,kQji,k +∑
g

∑
n ̸=i

(P̃ni,g − [1 + ωni,g]Pni,g
)

Qni,g

(
∂ ln Qni,g

∂ ln P̃ji,k

)
w,P̃−ji,k


(K.2)

The logic is that holding the vector of wages w and country i’s export prices P̃ij ∈ P̃i fixed, a change
in P̃ji,k has not effect on the producer price of imports Pji through the input-output network.

The effect of a change in P̃ji,k on country i’s production and export tax revenues can be formulated
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as(
∂

∂ ln P̃ji,k

{(
P̃ii − Pii

)
· Qii,g + ∑

n ̸=i

[(
P̃in − Pin

)
· Qin

]})
w,P̃−ji,k

=∑
g

(P̃ii,g − Pii,g
)

Qii,g

(
∂ ln Qii,g

∂ ln P̃ji,k

)
w,P̃−ji,k

+ ∑
g

∑
n

Pin,gQin,g

( ∂Pin,g

∂ ln Qii,g

)
w,P̃i

(
∂ ln Qii,g

∂ ln P̃ji,k

)
w,P̃−ji,k

+

(
∂ ln Pin,g

∂ ln P̃I
ji,k

)
w,P̃−ji,k

 ,

(K.3)

The above expression differs from Equation K.4 (in Appendix E) in the last term on the second line.
This term accounts for the effect of raising input price P̃ji,k ∼ P̃I

ji,k on the producer prices associated
with economy i. As explained above, we can appeal to Shephard’s lemma to simplify this extra term
as

∑
g∈K

∑
n∈C

Pin,gQin,g

(
∂ ln Pin,g

∂ ln P̃I
ji,k

)
P̃−ji,k,w

 = − ∑
g∈K

∑
n∈C

(
Qin,gPin,gα

j,k
i,g

)
= −P̃ji,kQI

ji,k.

Plugging the above expression back into Equation K.3 and redoing the derivations covered in Ap-
pendix E, yields the following expression for the effect of P̃ji,k on country i’s production and export
tax revenues:(

∂

∂ ln P̃ji,k

{
∑
n

[(
P̃in − Pin

)
· Qin

]})
w,P̃−ji,k

= −P̃ji,kQI
ji,k + ∑

g

(P̃ii,g −
[

1 −
µg

1 + µg

])
Pii,gQii,g

(
∂ ln Qii,g

∂ ln P̃ji,k

)
w,P̃−ji,k

 .

(K.4)

where recall that
(

∂ ln Qii,g/∂ ln P̃ji,k

)
w,P̃−ji,k

encompasses price and income effects à la Equation E.5

in Appendix E. Combining Equations K.2 and K.4, and noting that P̃ji,kQji,k − P̃ji,kQI
ji,k = P̃ji,kQC

ji,k
yields the following expression that summarizes all the revenue-related welfare effects in the F.O.C.:(

∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P̃−ji,k

= P̃ji,kQC
ji,k + ∑

g
∑
n ̸=i

[(
P̃ni,g − [1 + ωni,g]Pni,g

)
Qni,gε

(ji,k)
ni,g

]

+ ∑
g

[(
P̃ii,g −

1
1 + µg

Pii,g

)
Qii,gε

(ji,k)
ii,g

]
+ ∆i(P̃i, w)

(
∂Ei(P̃i; w)

∂ ln P̃ji,k

)
w,P̃−ji,k

. (K.5)

The uniform term ∆i(.) accounts for circular income effects and is given by Equation E.13 in Appendix
E. Finally, the last term on the right-hand side of Equation K.1, which accounts for general equilibrium
wage effects, can be specified in the same exact way as in Appendix E:(

∂Wi(P̃i, w)

∂w

)
P̃i

·
(

dw
d ln P̃ji,k

)
P̃−ji,k

= −τ̄i ∑
g

∑
n ̸=i

Pni,gQni,g

(
∂ ln Qii,g

∂ ln P̃ji,k

)
w,P̃−ji,k

 ,

where τ̄i is given by Equation E.15 in Appendix E. Combining the above expressions, the F.O.C. spec-
ified by Equation K.1 reduced to

[FOC w.r.t. P̃ji,k] ∑
n ̸=i

∑
g

[(
P̃ni,g

Pni,g
− (1 + τ̄i)(1 + ωni,g)

)
Pni,gQni,gε

(ji,k)
ni,g

]

+ ∑
g

[(
P̃ii,g

Pii,g
− 1

1 + µg

)
Pii,gQii,gε

(ji,k)
ii,g

]
+ ∆̃i(P̃i, w)

(
∂Ei(P̃i; w)

∂ ln P̃ji,k

)
w,P̃−ji,k

= 0,

(K.6)

where ∆̃i(.) is given by Equation E.18 in Appendix E. Note that the above equation has an identical
representation to the F.O.C. in the baseline model. The intuition is that holding country i’s export
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prices P̃ij ∈ P̃i fixed, the choice w.r.t. P̃ji,k has no first-order effect on country i’s terms-of-trade
channels through the input-output network. If good ji, k is used as an input in export good in, g, any
possible terms-of-trade gains from taxing P̃ji,k will be internalized by the optimal choice w.r.t. P̃in,g.
Furthermore, it is easy to check that Equation K.6 characterizes the F.O.C. w.r.t. P̃ii,k ∈ P̃i as long as
we replace ji, k with ii, k everywhere in that equation. Finally, as in Appendix E, we do not unpack
the uniform term τ̄i because the multiplicity of country i’s optimal tax schedule will render the exact
value assigned to τ̄i redundant.

Step #2: Deriving the F.O.C. w.r.t. Pij,k ∈ P̃i

Consider export variety ij, k, which is sold to destination j ̸= i in industry k. Noting that Wi =

Vi(Yi(P̃i; w), P̃C
ii , P̃C

ji), the F.O.C. w.r.t. P̃ij,k, holding P̃−ij,k ≡ P̃i − {P̃ij,k} constant, can be stated as(
∂Wi

∂ ln P̃ij,k

)
P̃−ij,k

=
∂Vi(Yi, P̃i)

∂ ln P̃ij,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P̃−ij,k

+

(
∂Wi(P̃i, w)

∂w

)
P̃i

·
(

dw
d ln P̃ij,k

)
P̃−ij,k

= 0.

(K.7)
The first term as before accounts for direct price effects. This term is trivially equal to zero since
P̃ij,k /∈ P̃i. That is, since ij, k is not part of the domestic consumption bundle, raising its price has no
direct effect on consumer surplus in country i:

P̃ij,k /∈ P̃i =⇒ ∂Vi(Yi, P̃i)

∂ ln P̃ij,k
= 0. (K.8)

The second term in Equation K.7 accounts for welfare effects that channel through tax revenues.
Specifically, Holding wages w fixed, the change in country i’s income amounts to the change in
import, domestic, and export tax revenues. The effect on import tax revenues can be expressed as
follows:(

∂ ∑n ̸=i
[(

P̃ni − Pni
)
· Qni

]
∂ ln P̃ij,k

)
w,P̃−ij,k

= ∑
g

∑
n ̸=i

(P̃ni,g − Pni,g
)

Qni,g

(
∂ ln Qni,g

∂ ln P̃ij,k

)
w,P̃−ij,k


− ∑

g
∑
n ̸=i

Pni,gQni,g

( ∂Pni,g

∂ ln Qnj,g

)
w,P̃i

(
∂ ln Qnj,g

∂ ln P̃ij,k

)
w,P̃−ij,k

+

(
∂ ln Pni,g

∂ ln P̃I
ij,k

)
w,P̃−ij,k

 .

(K.9)

The above equation differs from Equation E.23 in Appendix E in only the last term on the second line.
This term accounts for that fact that raising the price of input good ij, k can affect the entire vector of
producer prices in the rest of the world through input-output networks. Given Shephard’s lemma we
can simplify this term by noting that

Λij,k ≡ ∑
n ̸=i

∑
g∈K

Pni,gQni,g

(
∂Pni,g

∂P̃I
ij,k

)
w,P̃−ij,k

 /P̃ij,kQij,k

denotes the share of the export value associated with good ij, k that is reimported back into economy
i. Plugging the above expression back into K.9 and repeating the derivation performed in Appendix
E, yields the following:(

∂ ∑n ̸=i
[(

P̃ni − Pni
)
· Qni

]
∂ ln P̃ij,k

)
w,P̃−ij,k

=− Λij,kP̃ij,kQij,k − ∑
g

∑
n ̸=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]

+ ∑
g

∑
n ̸=i

[(
P̃ni,g − [1 + ωni,g]Pni,g

)
Qni,gηni,g

] ( ∂ ln Ei

∂ ln P̃ij,k

)
w,P̃−ij,k

.

(K.10)

51



Repeating the derivation in Appendix E, the effect of a change in P̃ij,k on country i’s production and
export tax revenues can be formulated as(

∂

∂ ln P̃ij,k
∑
n

[(
P̃in − Pin

)
· Qin

])
w,P̃−ij,k

= P̃ij,kQij,k + ∑
g

[(
P̃ij,g − [1 −

µg

1 + µg
]Pij,g

)
Qij,gε

(ij,k)
ij,g

]

+ ∑
g

[(
P̃ii,g −

1
1 + µg

Pii,g

)
Qii,gηii,g

](
∂ ln Ei

∂ ln P̃ij,k

)
w,P̃−ij,k

.

(K.11)

To be clear, holding P̃ji,k ∈ P̃i fixed, a change in P̃ij,k has no effect on the input price faced by firm

located in i. That is,
(

∂Pni,g/∂P̃I
ij,k

)
w,P̃−ij,k

= 0. This point explains why the above expression is rather

identical to that derived in Appendix E. Combining Equations K.10 and K.7, we can express the sum
of all tax-revenue-related terms as(

∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P̃−ij,k

=
(

1 − Λij,k

)
P̃ij,kQij,k+∑

g

[(
P̃ij,g − [1 −

µg

1 + µg
]Pij,g

)
Qij,gε

(ij,k)
ij,g

]

−∑
g

∑
n ̸=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∆i(P̃i, w)

(
∂Ei(P̃i; w)

∂ ln P̃ij,k

)
w,P̃−ij,k

,

(K.12)

where ∆i(.) encompasses the terms accounting for circular income effects and is given by Equation
E.13. Taking note of the already-discussed distinctions between the present and baseline models
and repeating the derivations performed earlier in Appendix E, the last term in right-hand side of
Equation K.7) can be formulated as(

∂Wi(.)
∂w

)
P̃i

·
(

dw
d ln P̃ij,k

)
P̃−ij,k

= τ̄i(1 − Λij,k)P̃ij,kQij,k + ∑
g

[
τ̄i P̃ij,gQij,gε

(ij,k)
ij,g

]

−∑
g

∑
n ̸=i

[
τ̄iωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
− ∑

g
∑
n ̸=i

[
[1 + ωni,g]τ̄iPni,gQni,gηni,g

] (∂Ei(P̃i; w)

∂ ln P̃ij,k

)
w,P̃−ij,k

. (K.13)

Finally, plugging Equations K.8, K.12, and K.13 back into the F.O.C. (Equation K.7); and dividing by
(1 + τ̄i) yields the following optimality condition w.r.t. to price instrument P̃ij,k:

[FOC w.r.t. P̃ij,k] (1 − Λij,k)P̃ij,kQij,k+∑
g

[(
1 − 1

(1 + τ̄i)(1 + µg)

Pij,g

P̃ij,g

)
P̃ij,gQij,gε

(ij,k)
ij,g

]

−∑
g

∑
n ̸=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∆̃i(P̃i, w)

(
∂Ei(P̃i; w)

∂ ln P̃ij,k

)
w,P̃−ij,k

= 0,

(K.14)

where ∆̃i(.) is defined as in Equation E.18. Also, we are not unpacking the term τ̄i, for the same
reasons discussed earlier.

Step #3: Solving the System of F.O.C.s and Establishing Uniqueness
To determine the optimal tax schedule we need to collect the system of first order conditions and

simultaneously solve them under one system. For the ease of reference, we will restate the F.O.C. w.r.t.
to each element of P̃i below. Following Equation K.6, the F.O.C. w.r.t. P̃ℓi,k (where ℓ = i or ℓ = j ̸= i),
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can be expressed as

(1) ∑
n ̸=i

∑
g

[(
1 − (1 + τ̄i)(1 + ωni,g)

Pni,g

P̃ni,g

)
eni,gε

(ℓi,k)
ni,g

]
+

∑
g

[(
1 − 1

1 + µg

Pii,g

P̃ii,g

)
eii,gε

(ℓi,k)
ii,g

]
+∆̃i(P̃i, w)

(
∂ ln Ei(P̃i; w)

∂ ln P̃ℓi,k

)
w,P−ℓi,k

= 0.

where eni,g = P̃ni,gQni,g/Yi denotes the expenditure share on good ni, g. Following Equation K.14, the
F.O.C. w.r.t. export price P̃ij,k is given by

(2) 1 − Λij,k + ∑
g

[(
1 − 1

(1 + µg)(1 + τ̄i)

Pij,g

P̃ij,g

)
eij,g

eij,k
ε
(ij,k)
ij,g

]

− ∑
n ̸=i

∑
g

[
ωni,g

enj,g

eij,k
ε
(ij,k)
nj,g

]
+∆̃i(P̃i, w)

Ei
Ej

(
∂ ln Ei(P̃i; w)

∂ ln P̃ij,k

)
w,P̃−ij,k

= 0.

First, note that the system of F.O.C.s (1) Appealing to above lemma, it immediately follows that the
unique solution to the above equation is the trivial solution given by:

P̃∗
ji,k

Pji,1
= (1 + ωji,k)(1 + τ̄i);

P̃∗
ii,k

Pii,k
=

1
1 + µg

. (K.15)

With the aid of the above result, we can proceed to solving System (2), knowing that ∆̃i(P̃
∗
i , w) = 0.

To this end, let us economize on the notation by defining

χij,k ≡
1

(1 + µg)(1 + τ̄i)

Pij,g

P̃ij,g
.

Appealing to this choice of notation the F.O.C. specified by System (2) implies the following optimality
condition:

1 − Λij,k + ∑
g

(1 − χij,g
) eij,gε

(ij,k)
ij,g

eij,k

− ∑
n ̸=i

∑
g

ωni,g
enj,gε

(ij,k)
nj,g

eij,k

 = 0. (K.16)

To simplify the above expression we will use a well-know result from consumer theory, namely, the
Cournot aggregation, which implies:

[Cournot aggregation] 1 + ∑
g

[
eij,g

eij,k
ε
(ij,k)
ij,g

]
= − ∑

n ̸=i
∑
g

[
enj,g

eij,k
ε
(ij,k)
nj,g

]
.

Combining the above expression with Equation K.16 and noting that by Slutsky’s equation
enj,g
eij,k

ε
(ij,k)
nj,g =

ε
(nj,g)
ij,k (if ηni,g = 1 for all ni, g), yields the following:

−∑
g

[
χij,gε

(ij,g)
ij,k

]
− ∑

n ̸=i
∑
g

[
(1 + ωni,g)ε

(nj,g)
ij,k

]
= 0 ∀(ij, k).

We can formulate the above equation in matrix algebra as

−EijXij − E(−ij)
ij

(
1(N−1)K + Ωi

)
− Λij = 0, (K.17)

where Xij ≡
[
χij,k

]
k

and Λij ≡
[
Λij,k

]
k

are K × 1 vectors. The K × K matrix Eij ∼ E(ij)
ij ≡

[
ε
(ij,g)
ij,k

]
encompasses the own- and cross-price elasticities between the different varieties sold by origin i to
market j. Analogously, E(−ij)

ij ≡
[
ε
(nj,g)
ij,k

]
k,n ̸=i,g

is a K × (N − 1)K matrix of cross-price elasticities

between varieties sold by i and by all other origin countries in market j. Ωi ≡
[
ωni,g

]
n,g is a (N −

1)K × 1 vector of inverse export supply elasticities associated with domestic market i. To invert the
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system specified by Equation K.17 we can use our result (from Appendix E) that Eij is non-singular,

which yields the following formulation for X∗
ij =

[
χ∗

ij,k

]
k
:

X∗
ij = −E−1

ij

[
E(−ij)

ij

(
1(N−1)K + Ωi

)
+ Λij

]
. (K.18)

Now, we can recover the optimal tax/subsidy rates from the optimal price wedges implies by Equa-
tions K.15 and K.18. Specifically, noting that

1 + t∗ji,k =
P̃ji,k

Pji,k
; 1 + s∗i,k =

P̃∗
ii,k

Pii,k
; 1 + xij,k =

P̃∗
ij,k/Pij,k

P̃∗
ii,k/Pii,k

;

country i’s unilaterally optimal tax schedule can be expressed as follows:
[domestic subsidy] 1 + s∗i,k = 1 + µk

[import tariff] 1 + t∗ji,k = (1 + ωji,k)(1 + τ̄i)

[export subsidy] 1 + x∗ij = −E−1
ij

[
E(−ij)

ij (1 + Ωi) + Λij

]
(1 + τ̄i).

The last step, is to invoke the multiplicity of optimal tax schedules provided by Lemma 9. Given the
multiplicity of optimal import tax and export subsidies, the uniform trade tax-shifter, τ̄i, is redun-
dant. Following Lemma 1, any tax schedule that satisfies 1 + t̃∗ji,k =

(
1 + t∗ji,k

)
1+t̄i
1+τ̄i

and 1 + x̃∗ij,k =(
1 + x∗ij,k

)
1+t̄i
1+τ̄i

, and where 1 + t̄i ∈ R+, is also optimal. As such the exact value assigned to τ̄i is
redundant. This explains why we did not unpack the term τ̄i in Step #3. There is also another di-
mension of multiplicity whereby any uniform shift in final good production subsidies (paired with a
proportional adjustments final good import tariffs and export subsidies) preserves the equilibrium.
Accounting for both dimensions of multiplicity, the optimal policy schedule is given by:

[domestic subsidy] 1 + s∗i,k = (1 + µk) (1 + s̄C
i )

−1

[import tax] 1 + t∗ji,k = (1 + ωji,k) (1 + t̄i) (1 + s̄C
i )

[export subsidy] 1 + x∗ij = −E−1
ij

[
E(−ij)

ij (1 + t∗i ) + Λij(1 + t̄i)(1 + s̄C
i )
]

,

where s̄C
i is an arbitrary tax shifter that assumes a positive value if the taxed item is a final good and

zero otherwise. Also, recall that the elements of Λij ≡
[
Λij,k

]
k

correspond to the fraction of good ij, k
that is reimported via the IO network.

L Tension Between Allocative Efficiency and ToT
This appendix provides a formal proof for two intermediate claims that motivate the conjectures

in presented in Section III.

Claim #1: If Cov (σk, µk) < 0 , piecemeal trade policy interventions that seek to improve the terms-of-
trade (relative to Laissez-Faire) worsen misallocation and vice versa.

Claim #2: If Cov (σk, µk) < 0, a unilateral implementation of efficient industrial subsidies in country
i (without reciprocity by partners) worsens the terms-of-trade.

Proof of Claim #1. Suppose country i is initially in an equilibrium where the government has
implemented a uniform (possibly zero) import tariff or export tax. If existing taxes are zero then
the economy is essentially operating under Laissez-Faire. Our goal is to prove the following: If
Cov (µk, σk) < 0, then any adjustment to trade policy that seeks to improve allocative efficiency (rel-
ative to the baseline equilibrium) worsens country i’s terms of trade (ToT) and vice versa. Since a
uniform import tariff is equivalent to a uniform export tax by the Lerner symmetry, we can without
loss of generality focus on the case where the initial trade policy consists of a (possibly zero) uniform
export tax. We first present our proof for the case of restricted entry, but extend it later to account for
free entry. To economize on the notation, we hereafter use 1 + x̃ ∼ (1 + x)−1 to denote the export tax
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counterpart of export subsidy, x.32

Welfare Accounting under Piecemeal Policy Change—As an intermediate step, we first characterize the
change in welfare in response to a piecemeal trade policy change, decomposing the welfare impacts
into changes in allocative efficiency and terms of trade. When preferences are homothetic, the change
in country i’s welfare in response to an adjustment to export taxes,

{
d ln (1 + x̃i,k)

}
k, is the sum of

corresponding income and price effects.33 Namely,

d ln Wi = d ln Yi − ∑
k

∑
n

λni,kei,kdlnP̃ni,k. (L.1)

To formalize the tension between allocative efficiency and terms of trade succinctly, suppose that
country i is sufficiently small so that its piecemeal trade policy reform has a negligible impact on
relative wages and labor allocations in the rest of the world. In that case, d ln P̃ii,k = d ln wi and
dlnP̃ni,k ≈ 0 for all n ̸= i. Under theses assumptions, the price effects in Equation L.1 reduce to
∑k ∑n λni,kei,kdlnP̃ni,k = λiid ln wi, where λii ≡ ∑k λii,kei,k denotes the aggregate domestic expenditure
share in country i. Next we characterize income effects, dln Yi. For this, note that nominal income
in country i is the sum of wage income, profits, and net revenues associated with export tax. In
particular,

Yi = ∑
k
[(1 + µk) ρi,k]wiLi + ∑

n ̸=i
∑
k
[x̃i,kPin,kQin,k] ,

where x̃i,k is the export tax on industry k goods, which is uniform in the baseline equilibrium (i.e.,
x̃i,k = x̄i) but is subsequently adjusted to improve allocative efficiency. Taking full derivatives of the
above expression yields

d ln Yi =
(

1 − πX
i

) [
d ln

(
∑
k
(1 + µk) ρi,k

)
+ d ln wi

]

+ πX
i ∑

n ̸=i
∑
k

[
x̄iPin,kQin,k

∑n′,k′ x̄iPin′,k′Qin′,k′

(
∂ ln Pin,k

∂ ln wi
d ln wi +

∂ ln Qin,k

∂ ln P̃in,k
dln (1 + x̃i,k)

)]
,

where πX
i ≡ ∑n ̸=i ∑k [x̃i,kPin,kQin,k] /Yi denotes the share of export tax revenues in total revenues.

One can immediately verify that the change in the (employment-weighted) aggregate profit margin
is

d ln

(
∑
k
(1 + µk) ρi,k

)
= ∑

k

[
ρi,k ·

(
1 + µk
1 + µi

)
d ln ρi,k

]
,

where µi ≡ ∑k [µkρi,k], recall, is our short-hand notation for the aggregate profit margin in country i.
Notice that ∂ ln Pin,k/∂ ln wi = 1 under restricted entry and ∂ ln Qin,k/∂ ln P̃in,k = −σk, since country i
is a small open economy. Invoking these points, we can simplify the expression for d ln Yi as

d ln Yi = d ln wi +
(

1 − πX
i

)
∑
k

[
ρi,k ·

(
1 + µk
1 + µi

)
d ln ρi,k

]
− πX

i ∑
k
[χi,k · σk d ln (1 + x̃i,k)] , (L.2)

where χi,k ≡ Pin,kQin,k/ ∑n′,k′
[
Pin′,k′Qin′,k′

]
denotes the share of industry k goods in country i’s export

revenues. To economize on the notation we henceforth use Eω [.] and Covω (.) to denote the cross-
industry mean and covariance with weights,

{
ωi,k

}
k, that satisfy ∑k ωi,k = 1. Considering this choice

of notation, suppose the piecemeal trade policy reform is mean-preserving—i.e., Eχ [dln(1 + x̃i,k)] ∼
∑k [χi,kd ln (1 + x̃i,k)] = 0. To put it verbally, the tax reform raises export taxes on some industries and
lowers it on others, while preserving the sales-weighted average export tax rate. Under this presup-
position, the last term in the above equation amounts to the covariance between σk and dln (1 + x̃i,k).

32Note that a positive export tax is akin to an negative export subsidy and vice versa—i.e., x < 0 =⇒ x̃ > 0.
33To be clear, we assume that the baseline export tax policy does not discriminate between destination markets, with xi,k

denoting the export tax applied to all export good in industry k.
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In particular,

∑
k
[χi,k · σkd ln (1 + x̃i,k)] ∼ Eχ [σkd ln (1 + x̃i,k)]

= Eχ [σkd ln (1 + x̃i,k)]− Eχ [σk] · Eχ [d ln (1 + x̃i,k)]︸ ︷︷ ︸
=0

∼ Covχ (σk , d ln (1 + x̃i,k)) .

As a matter of accounting, ∑k ρi,kdln ρi,k = 0, so the same logic implies that the second term on the
right-hand side of Equation L.2 is also the covariance between the change in industry-level employ-
ment share, d ln ρi,k, and the industry-level markup (relative to the mean):

∑
k

[
ρi,k

(
1 + µk
1 + µi

)
d ln ρi,k

]
∼ Covρ

(
1 + µk
1 + µi

, d ln ρi,k

)
.

Substituting for the above expressions in Equation L.2 and plugging the simplified expression for
d ln Yi back into our original welfare formula (Equation L.1) delivers,

d ln Wi =
(

1 − πX
i

)
Covρ

(
1 + µk
1 + µi

, d ln ρi,k

)
︸ ︷︷ ︸

Allocative Efficiency

+

Terms of Trade︷ ︸︸ ︷[
−πX

i Covχ (σk, d ln (1 + x̃i,k)) + (1 − λii)d ln wi

]
,

(L.3)
echoing the welfare decomposition provided by Baqaee and Farhi (2019) and Atkin and Donaldson
(2021). To offer intuition for this choice of decomposition, the term labeled Allocative Efficiency is analo-
gous to the deviation form Hulten’s (1978) formula in an inefficient closed economy. More specifically
suppose country i was a closed economy hit with a labor productivity shock, d ln Ai,k. Following the
same steps as above, the welfare impact of this shock can be decomposed as

d ln Wclosed
i =

Hulten︷ ︸︸ ︷
∑ [ρi,kdln Ai,k] + Covρ

(
1 + µk
1 + µi

, d ln ρi,k

)
,

where the deviation from Hulten (1978) reflects changes to allocative efficiency. Likewise, Terms of
Trade effects in Equation L.3 are analogous to deviations from Hulten (1978) if country i were open to
trade but efficient. In accordance with this logic, the Terms of Trade effects in Equation L.3 disappear if
Country i is closed, in which case πX

i = 1 − λii = 0. Relatedly, Allocative Efficiency effects disappear
if the economy is efficient, in which case (1 + µk) / (1 + µi) = 1.

Tension between Allocative Efficiency & Terms of Trade—An export policy shock,
{

d ln (1 + x̃i,k)
}

k,
that seeks to improve allocative efficiency must reallocate workers from low- to high-µ industries so
that Covρ

(
1+µk
1+µi

, d ln ρi,k

)
> 0. If demand is elastic and well-behaved, this type of reallocation requires

that industry-level export tax reductions to be positively correlated with markups, i.e., Covχ

(
1+µk
1+µi

, d ln (1 + x̃i,k)
)
<

0. Accordingly, if Cov (σk, µk) < 0, the export tax changes will be positively correlated with the trade
elasticity, Covχ (σk, d ln (1 + x̃i,k)) > 0. As such, an export tax reform that improves Allocative Effi-
ciency (relative to the status quo) worsens the Terms of Trade through the term Covχ (σk, d ln (1 + x̃i,k)).
Now, consider the remaining Terms of Trade term that accounts for general equilibrium wage effects.
Considering that Covχ (σk, d ln (1 + x̃i,k)) > 0, the desired export tax alteration consists of raising
taxes in high-trade elasticity industries (where export sales are more-sensitive to tax hikes) paired with
an proportional tax reduction in low-trade elasticity industries (where export sales are less-responsive
to tax cuts). This alternation will, by design, lower overall export sales by country i—resonating with
the conventional Ramsey rule. The reduction in export sales will in turn deflate demand for country
i’s labor and its wage rate relative to rest of the world (i.e., d ln wi < 0 ). That is, the second Terms
of Trade term is also negative when the export tax reform attempts to improve Allocative Efficiency
relative to the status quo. To take stock: Suppose Cov (σk, µk) < 0 and country i is initially in a equi-
librium involving uniform (or zero) export/import taxes. In that case, improving Allocative Efficiency
via piecemeal trade policy adjustments,

{
d ln (1 + x̃i,k)

}
, coincides with a worsening of the terms of
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trade.

Second-Best Trade Policies are Industry-Blind in Krugman (1980)—When preferences are Cobb-Douglas
across industries, country i’s second-best trade policy is given by (see Section II):

[2nd-best import tariff] 1 + t∗∗ji,k =
1 + (σk − 1) λii,k

1 + 1+µi
1+µk

(σk − 1) λii,k

(
1 + ωji,k

)
(1 + t̄i)

[2nd-best export subsidy] 1 + x∗∗ij,k =
1 + µk
1 + µi

 (σk − 1)
(

1 − λij,k

)
1 + (σk − 1)

(
1 − λij,k

)
 (1 + t̄i) ,

where t̄i us a uniform trade tax shifter that accounts for the multiplicity of optimal policy schedules
(see Lemma 1). Following Alvarez and Lucas (2007), if country i is a small open economy, then
λij,k = λii,k = ωji,k → 0. Moreover, if we assume that the firm- and country-level degrees of market
power are identical à la Krugman (1980), we have 1 + µk =

σk
σk−1 . Consolidating these two points, we

get the following formula for the 2nd-best trade policy of a small open economy in the multi-industry
Krugman (1980) model:

1 + t∗∗ji,k = 1 + t̄i; 1 + x∗∗ij,k =
σk

σk − 1

(
σk − 1

σk

)
1 + t̄i
1 + µi

= (1 + t̄i)

(
1 − 1

σi

)
,

where 1
σi

= ∑k ρi,k
1
σk

is the sales-weighted average (inverse) trade elasticity. Evidently, the opti-
mal 2nd-best trade policy consists of a uniform import tariff or export subsidy, which is blind to
inter-industry misallocation and industry-level export market power. The logic is that any attempt
at exploiting industry-level export market power exacerbates inter-industry misallocation and vice
versa—leaving the government with no choice but to abandon these targeted policy aspirations. This
consideration leads to industry-blind optimal trade taxes that solely manipulate the relative aggregate
wage (wi/w−i) in country i’s favor, with minimal reshuffling of resources across industries.

Proof of Claim #2. Suppose country i is initially operating under Laissez-Faire. The government
has, moreover, agreed (under a shallow treaty) to limit itself to the efficient or cooperative policy
choice specified in Section II. Our goal is to show that a unilateral implementation of efficient in-
dustrial subsidies by country i (without reciprocity by partners) causes a deterioration of country i’s
terms of trade (ToT) and even immiserizing growth. To this end, we build on the welfare accounting
formulas derived earlier. In particular, the welfare impacts of unilateral markup-correcting subsidies
by country i (i.e., si = µ) can be written as

∆Wi =
∫ µ

si=0
d ln Wi,

where the change in welfare in response to modest industrial policy adjustments can, as earlier, be
decomposed as

d ln Wi =
(

1 − πS
i

)
Covρ

(
1 + µk
1 + µi

, d ln ρi,k

)
︸ ︷︷ ︸

Allocative Efficiency

+

Terms of Trade︷ ︸︸ ︷[
−πS

i Covχ (σk, d ln (1 + si,k)) + (1 − λii)d ln wi

]
.

The above equation can be derived analogously to Equation L.3, with πS
i denoting the share of pro-

duction tax (or subsidy) revenues that are collected from foreign consumers. Intuitively, the fraction
of tax revenues collected from domestic consumers deliver income gains that are exactly offset by the
corresponding loss from price increases. Hence, the domestically-borne fraction of the tax revenue
does not contribute to welfare changes, d ln Wi, beyond general equilibrium impacts on inter-industry
labor allocation and wages.

Considering this background, we can specify the sign of the Allocative Efficiency and Terms of Trade
effects (in the above equation) in response to markup/scale-correcting subsidies. The efficient pol-
icy (si,k = 0 → s′i,k = µk) subsidizes output in high-µ industries, relocates labor from the rest of the

economy to these industries, and thereby improves allocative efficiency, i.e., Covρ

(
1+µk
1+µi

, d ln ρi,k

)
.
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But following the logic presented earlier: If Cov (σk, µk) < 0, it is the case that along the path of restor-
ing marginal cost pricing, Covχ (σk, d ln (1 + si,k)) > 0 and d ln wi < 0—both of which contribute to a
deterioration of the ToT. In some cases, like the numerical example presented in Section ??, the deterio-
ration of the ToT is larger than the corresponding allocative efficiency gains—leading to immiserizing
growth in country i.

Adverse Firm-Delocation Effects when Country i is Large—When country i is excessively large, a uni-
lateral adoption of corrective industrial policies worsens its ToT through an additional channel: firm-

delocation effects. To make this point, let υi,k ≡ (1−λii,k)ei,k
(1−λii)

denote the import share pertaining to
industry k. Suppose without loss of generality that Eυ [µk] = 0—since following Lemma 1, we can
recalibrate the level of markups and wages in the rest of the world without changing welfare. Our
welfare decomposition, in that case, takes the following form, internalizing the effect of country i’s
policy on entry and labor shares in the rest of the world:

d ln Wi =
(

1 − πS
i

)
Covρ

(
1 + µk
1 + µi

, d ln ρi,k

)
+

− πS
i Covχ (σk, d ln (1 + si,k)) + (1 − λii) [d ln wi + Covυ (µk, dlnρ−i,k)] .

Country i’s corrective subsidies, by design, relocate labor to high-µk industries in the local economy,
but have the opposite effect on labor allocation in the rest of the world. Put formally, Covρ

(
1+µk
1+µi

, d ln ρi,k

)
>

0, while Covυ (µk, dlnρ−i,k) < 0. Improving allocative efficiency with corrective subsidies, therefore,
worsens the ToT through an additional term Covυ (µk, dlnρ−i,k), which represents firm-delocation ef-
fects. The logic is that promoting output and entry in high-µ domestic industries, diminishes output
and entry in high-µ foreign industries—hence, the term firm-delocation. The reduction in foreign firm-
level varieties inflates the price of imports P−ii,k ∝ M−µk

−i,k , thereby worsening country i’s ToT.

M Optimal Import Tariff under IO Linkages: Simple Case
This appendix elucidates the result that optimal–import–tariff–formulas–are–IO-blind using a sim-

pler case of our model without scale economies or markups (i.e., µk = 0 for all k). To this end, we
re-derive the first-order conditions associated with the (1st-best) optimal policy problem for this spe-
cial case, focusing specifically on optimal import taxes. The optimal policy problem can be specified
as

max
P̃i

Wi
(
P̃i, w

)
≡ Vi

(
Yi, P̃i

)
,

where P̃i ≡
{

P̃ni, P̃ii
}

n ̸=i, P̃i ≡
{

P̃i, P̃in
}

n ̸=i, and income is the sum of wage income and taxes rev-
enues:

Yi = wiLi + ∑
n ̸=i

[(
P̃ni − Pni

)
· Qni

]
+ ∑

ℓ

[(
P̃iℓ − Piℓ

)
· Qiℓ

]
.

With IO linkages, producer prices in the rest of the world depend on the after-export-tax price of
intermediate inputs supplied by country i. Likewise, producer prices in country i depend on the
after-import-tax price of intermediate inputs sourced from abroad. Namely,

Pni ∼ Pni

(
w,
{

P̃iℓ
}

n ̸=i

)
Piℓ ∼ Piℓ

(
wi,
{

P̃ni
}

n

)
.

The solution to optimal policy problem identifies a vector of optimal after-tax prices, P̃∗
i , which im-

plicitly determine the optimal tax rates. For instance, the optimal choice w.r.t. tax-inclusive import

prices (P̃∗
ji,k ∈ P̃∗

i ) implicitly determines the optimal import tariff as 1+ t∗ji,k ≡
P̃∗

ji,k
Pji,k

for all (ji, k). Invok-

ing our wage neutrality result, the optimal (after-tax) price of goods imported from country j (P̃ji,k ∈ P̃i)
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satisfies the following first-order condition:34

∂Wi
(
P̃i, w

)
∂ ln P̃ji,k

=
∂Vi
(
Yi, P̃i

)
∂ ln P̃ji,k

+
∂Vi
(
Yi, P̃i

)
∂Yi

∂Yi
(
P̃i, w

)
∂ ln P̃ji,k

=
∂Vi
(
Yi, P̃i

)
∂ ln P̃ji,k

+
∂Vi
(
Yi, P̃i

)
∂Yi

{
P̃ji,kQji,k + ∑

n

[(
P̃ni − Pni

)
.

∂Qni

∂ ln P̃ji,k

]
− ∑

ℓ

[
∂Piℓ

∂ ln P̃ji,k
· Qiℓ

]}
= 0

We can simplify the above equation by appealing to Roy’s identity and Shephard’s lemma, whereby

[Roy’s identity]
∂Vi
(
Yi, P̃i

)
∂ ln P̃ji,k

= −P̃ji,kQC
ji,k

[Shephard’s lemma] ∑
ℓ

∂Piℓ

∂ ln P̃ji,k
· Qiℓ = P̃ji,kQI

ji,k.

Recall that QC
ji,k and QI

ji,k denote final good and intermediate input quantities which, together, deter-

mine total quantity, Qji,k = QC
ji,k + QI

ji,k. Plugging the above envelope identities into the first-order
condition derived earlier, yields

∂Wi
(
P̃i, w

)
∂ ln P̃ji,k

= ∑
n

[(
P̃ni − Pni

)
.

∂Qni

∂ ln P̃ji,k

]
= 0,

the solution to which implies P̃∗
ni = Pni (∀ n), indicating that optimal tariffs,1 + t∗ni,k ≡ P̃∗

ni,k/Pni,k, are
either zero (or uniform based on the Lerner symmetry) and, thus, blind to input-output linkages. The
logic is that, fixing export prices at their optimal level, P̃∗

iℓ ∈ P̃i, import tariffs do not influence prices
in the rest of the world via input output linkages. More formally,

∂Pni
(
P̃i, w

)
∂P̃ji,k

∼
(

∂Pni

∂P̃ji,k

)
{P̃iℓ}ℓ ̸=i ,w

= 0 (∀ n, j ̸= i) .

This logic, however, holds only if export tax-cum-subsidies are part of the government’s policy ar-
tillery. To see this, consider the 2nd-best case where the government can only set import taxes and is
unable to control the export prices via direct export policy measures. In that case, an import tariff on
inputs is partially passed onto export prices via the IO network, influencing producer prices in the
rest of the world. In particular,

P̃in /∈ P̃i =⇒
∂Pni

(
P̃i, w

)
∂P̃ji,k

̸= 0.

Accordingly, the first-order condition w.r.t. P̃ji,k ∈ P̃i must be updated to account for tariff-reexportation,
delivering

∂Wi
(
P̃i, w

)
∂ ln P̃ji,k

=
∂Vi
(
Yi, P̃i

)
∂ ln P̃ji,k

+
∂Vi
(
Yi, P̃i

)
∂Yi

∂Yi
(
P̃i, w

)
∂ ln P̃ji,k

=
∂Vi
(
Yi, P̃i

)
∂ ln P̃ji,k

+
∂Vi
(
Yi, P̃i

)
∂Yi

P̃ji,kQji,k + ∑
n ̸=i

(P̃ni − Pni
)

.
∂Qni

∂ ln P̃ji,k
− ∂Pni

∂ ln P̃ji,k
· Qni︸ ︷︷ ︸

tariff re-exportation

− ∑
ℓ

[
∂Piℓ

∂ ln P̃ji,k
· Qiℓ

] = 0.

34One can verify wage neutrality in this particular setting as follows: First, note that when the government can control
the after-tax price of all domestically-produced goods, wage perturbations are welfare-neutral conditional on domestic

demand quantities. Namely,
(

∂Wi
∂ ln wi

)
Qi

= wi Li − ∑ℓ,k
∂ ln Piℓ,k

ln wi
Piℓ,kQiℓ,k = 0, where the last equality follows from Shephard’s

lemma. Second, policy-led wage perturbations can influence welfare by raising income and modifying the domestic demand
schedule,Qi ≡

{
Qni,k

}
n,k; but these effects are already encompassed by the term ∂Qni

∂ ln P̃ji,k
. And as our following derivation

reveals, these wage-driven income effects turn our to be redundant in the neighborhood of the optimal policy solution, P̃∗
i .
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Simplifying the updated first-order condition using Roys identity and Shephard’s lemma, yields

∑
n ̸=i

[(
P̃ni − Pni

)
.

∂Qni

∂ ln P̃ji,k
− ∂Pni

∂ ln P̃ji,k
· Qni

]
= 0,

indicating that 2nd-best optimal tariffs (1 + t∗ni,k ≡ P̃∗
ni,k/Pni,k) are non-uniform, with the optimal tar-

iff formula explicitly depending on input-output shares in the rest of the world through the term
∂Pni/∂ ln P̃ji,k. The logic can be explained as follows echoing our previous claim: Absent the gov-
ernment’s ability to set export taxes/subsidies, import tariffs on intermediate inputs are (partially)
passed onto prices in the rest of world via input-output connections, acting as an indirect export tax.
The optimal tariff formula, thus, internalizes the ToT benefits of these indirect export taxation effects.
However, when the government can directly apply export taxes/subsidies, any such benefits are al-
ready internalize by the optimal export tax-cum-subsidy choice, rendering the optimal tariff formula
IO-blind.
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N Data Appendix
N.1 Transaction-level Colombian import data from DATAMYNE INC

DATAMYNE Inc provides transaction-level trade records from 43 countries including United States,
Latin America, Asia and several European Union Member States (website: datamyne.com). Their
data is obtained from customs authorities and government agencies. Access to the transaction-level
Colombian trade data was purchased from DATAMYNE INC. in May 2014. The data were available for
manual online download in segments of 5,000 observations per download. Our final dataset covers
the universe of import transactions during 2007-2013 and contains more than 17 million observations.
The data include detailed information about each transaction, such as the Harmonized System 10-
digit product category (HS10), country of origin, importing and exporting firm IDs, quantity, f.o.b.
(free on board), and c.i.f. (customs, insurance, and freight) transaction values, freight, insurance, and
value-added tax in US dollars. As a unique feature, our data reports the identities of all foreign firms
exporting to Colombia. This feature allows us to define import varieties as firm-product combinations
rather than country-product combinations, which is the standard approach. HS product codes were
updated by the Colombian Statistical Agency (DANE) during the 2007-2013 time period, and we
use correlational tables by DANE to match product codes over time (DANE (Colombian Statistical
Agency), 2017). Table N.1 reports a summary of basic trade statistics in the DATAMYNE data.

Table N.1: Summary Statistics of the Colombian Import Data.

Year
Statistic 2007 2008 2009 2010 2011 2012 2013

F.O.B. value (billion dollars) 30.69 37.25 31.17 38.47 52.00 55.74 56.90
C.I.F. value
F.O.B. value 1.08 1.07 1.05 1.06 1.05 1.05 1.05
C.I.F. + tax value

F.O.B. value 1.28 1.26 1.24 1.26 1.22 1.22 1.20

No. of exporting countries 210 219 213 216 213 221 224

No. of imported varieties 483,286 480,363 457,000 509,524 594,918 633,008 649,561

Notes: Tax value includes import tariff and value-added tax (VAT). The number of varieties corresponds to the number of
country-firm-product combination imported by Colombia in a given year.

N.2 Cleaning data on the identity/name of exporting firms in DATAMYNE INC

Utilizing the information on the identity of the foreign exporting firm is a critical part of our em-
pirical exercise. Unfortunately, the names of the exporting firms in our dataset are not standardized.
As a result, there are instances when the same firm is recorded differently due to using or not using the
abbreviations, capital and lower-case letters, spaces, dots, other special characters, etc. To standardize
the names of the exporting firms, we used the following procedure.

i. We deleted all observations with the missing exporting names and/or zero trade values.

ii. We capitalized firms names and their contact information (which is either email or phone num-
ber of the firm).

iii. We eliminated abbreviation “LLC,” spaces, parentheses, and other special characters (. , ; / @ ‘
} - & “) from the firms names.

iv. We eliminated all characters specified in 3. above and a few others (# : FAX) from the contact
information.

v. We dropped observations without contact information (such as, "NOTIENE", "NOREPORTA",
"NOREGISTRA," etc.), with non-existent phone numbers (e.g., “0000000000”, “1234567890”,
“1”), and with six phone numbers which are used for multiple firms with different names
(3218151311, 3218151297, 6676266, 44443866, 3058712865, 3055935515).
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vi. Next, we kept only up to first 12 characters in the firm’s name and up to first 12 characters in the
firm’s contact information (which is either email or phone number). In our empirics, we treat
all transaction with the same updated name and contact information as coming from the same
firm.

vii. We also analyzed all observations with the same contact information, but slightly different name
spelling. We only focused on the cases in which there are up to three different variants of the
firm name. For these cases, we calculated the Levenshtein distance in the names, which is the
smallest number of edits required to match one name to another. We treat all export observa-
tions as coming from the same firm if the contact phone number (or email) is the same and the
Levenshtein distance is four or less.

N.3 Daily exchange rate data
The database on the exchange rate between different international currencies with the Colombian

Peso and the US dollar was complied by manually downloading historical daily exchange rate data
from the BANK OF CANADA web portal (Bank of Canada (2017)). The underlying data is sourced
from REFINITIV (formerly THOMSON REUTERS). Around 2017, the BANK OF CANADA discontinued
publishing daily exchange rates for a wide set of countries. But the historical rates relevant to this
project can be downloaded via Bank of Canada’s legacy exchange rate portal.

N.4 Penn World Tables
We use PENN WORLD TABLES 9.1 (Feenstra, Inklaar, and Timmer (2021)) to obtains data on na-

tional accounts and in particular real GDP for year 2011 to construct Figure S.1. This data is in the
public domain and can be downloaded via the Groningen Growth and Development Centre web
portal (https://www.rug.nl/ggdc/productivity/pwt/?lang=en).

N.5 Exporter Dynamics Database
The Export Dynamics Database (EDD by World Bank, 2016) is based on firm-level customs data

covering the universe of export transactions provided by customs agencies from 59 countries (Fer-
nandes, Freund, and Pierola (2016)). For each country, the raw firm-level customs data contains an-
nual export flows (in current values) disaggregated by firm, destination and Harmonized System
(HS) 6-digit product. This data can be downloaded from the World Bank micro-data web portal
(https://doi.org/10.48529/agcr-yt74) subject to a agreeing to the terms of use.

N.6 World Input-Output Database (WIOD)
These World Input-Output Database contains data on sector-country flows of goods and services

for the year 2014. Our analysis uses the World Input-Output Database 2016 Release (WIOD (2021);
Timmer, Dietzenbacher, Los, Stehrer, and De Vries (2015)). The data are in the public domain and can
be accessed via the Groningen Growth and Development Centre s web portal: https://www.rug.
nl/ggdc/valuechain/wiod/?lang=en. We supplement the WIOD data with tariff data, which
are compiled and matched to WIOD entries by closely following the guidelines in Kucheryavyy et al.
(2023a; 2023b). The concordance between the HS product codes and ISIC rev 3. sector codes are from
the World Integrated Trade Solutions (WITS) by the World Bank.

O Illustrative Example for our Instrumental Variable
This section presents an example to elucidate the logic behind our shift-share instrument, pre-

sented in Section V. The example compares two major U.S. firms that dominate exports to Colombia
in product code HS8431490000 (PARTS AND ATTACHMENTS OTHER FOR DERRICKS). We have chosen
this product code because it features two of the biggest exporters to Colombia: "CATERPILLAR" and
"MACHINERY CORPORATION OF AMERICA."

The left panel of Figure O.1 shows the year-over-year change in the Peso-to-Dollar exchange rate
for each month in 2008. The right panel plots monthly export shares for "CATERPILLAR" and "MA-
CHINERY CORPORATION OF AMERICA" of HS8431490000. Notice that export patterns from "CATER-
PILLAR" and "MACHINERY CORPORATION OF AMERICA" are markedly different. The former exports
primarily in the first half of the fiscal year, while the latter exports primarily in the second half. The
prices charged by these two firms are, thus, differentially affected by aggregate exchange rate shocks.
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Figure O.1: Monthly export shares and exposure to aggregate exchange rate shocks
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Notes: The left panel reports the year-over-year change in the Peso-to-Dollar exchange rate for each month in 2009. The
right panel reports monthly export sales shares for the two largest US firms serving product code HS8431490000—namely,
Caterpillar and Machinery Corp. of America.

P Robustness Checks: Import Demand Estimation
This appendix reports three robustness checks that we described in Section V. The first check

addresses the possibility that firms set prices in forward-looking manner. To restate the issue, when
there are lags in inventory clearances, firms’ optimal pricing decisions may be forward-looking. If
true, such price-setting behaviors can violate assumption (a1). To address this concern, we reconstruct
our shift-share instrument using 4 lags instead of 1. If inventories clear in at most 4 years, we can
deduce that pricing decisions do not internalize expected demand shocks beyond the 4 year mark. As
a result, E

[
p̃jkt−4(ω, m)∆ ln φωjkt

]
= 0, and this more-stringent instrument will satisfy the exclusion

restriction. The top panel in Figure P.1 compares the estimated σk and µk under the new and baseline
estimations. Evidently, the ordering and magnitude of the estimated elasticities is rather preserved
across industries. More importantly, the new estimation retains the negative correlation between σk
and µk, which is the key assumption in Proposition 1.

The second check addresses the possibility that, in the presence of cross-inventory effects, ∆ ln φωjkt
may encompass omitted variables that concern firms’ dynamic inventory management decisions.
These decisions internalize exchange rate movements, which may violate the identifying assump-
tion (a2), i.e., E

[
∆ ln Ejt(m)∆ ln φωjkt

]
̸= 0. To address this concern, we reestimate the firm-level

import demand function while directly controlling for changes on the annual exchange rate. In that
case, E

[
zjk,t(ω) ∆ ln φωjkt | ∆ ln Ejt

]
, and the exclusion restriction will be satisfied insofar as dynamic

demand optimization is a concern. The middle panel in Figure P.1 compares the estimated σk and
µkunder the new and baseline estimations. Evidently, the ordering and magnitude of the estimated
elasticities is rather preserved across industries. More importantly, the new estimation retains the
negative correlation between σk and µk, which is a crucial statistic for the welfare impacts of policy.

The third check addresses large multi-product firms that export multiple product varieties to
Colombia in a given year. Suppose a multi-product firm ω exports many products including prod-
ucts k and g to Colombia in year t. If demand shock are correlated across the varieties supplied by
this firm (i.e., E

[
∆ ln φωjkt ∆ ln φωjgt

]
̸= 0), Assumption (a2) may be violated despite each variety’s

market share being infinitesimally small. To address this issue, we reestimate the firm-level import
demand function on a restricted sample that drops excessively large firms with a within-national mar-
ket share that exceeds 0.1%. The bottom panel in Figure P.1 compares the estimated σk and µkunder
the new and baseline estimations. Evidently, the ordering and magnitude of the estimated elastici-
ties is rather preserved across industries. More importantly, the new estimation retains the negative
correlation between σk and µk, which is a crucial statistic for the welfare impacts of policy.
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Figure P.1: Robustness checks to address challenges to the identification of σk and µk

0

2

4

6

8

10

A
lt

er
n

at
iv

e 
Es

ti
m

at
io

n

0 2 4 6 8
Baseline Estimation

σk-1

.5

1

1.5

2

A
lt

er
n

at
iv

e 
Es

ti
m

at
io

n

.5 1 1.5 2
Baseline Estimation

μk

Constructing IV using 4th Lags 

0

2

4

6

8

A
lt

er
n

at
iv

e 
Es

ti
m

at
io

n

0 2 4 6 8
Baseline Estimation

σk-1

.5

1

1.5

2

A
lt

er
n

at
iv

e 
Es

ti
m

at
io

n

.5 1 1.5 2
Baseline Estimation

μk

Controlling for Changes in Annual Exchange Rate

0

2

4

6

8

A
lt

er
n

at
iv

e 
Es

ti
m

at
io

n

0 2 4 6 8
Baseline Estimation

σk-1

.5

1

1.5

2

A
lt

er
n

at
iv

e 
Es

ti
m

at
io

n

.5 1 1.5 2
Baseline Estimation

μk

Dropping Large Mullti-Product Firms

64



Q Estimating the Import Demand Function in Levels
Our preferred estimates for µk and σk are obtained by estimating a firm-level import demand

function in first-differences—see Section V. The first-difference approach for estimating elasticities
in this context can be traced back to the seminal work of Feenstra (1994) and Broda and Weinstein
(2006)—although both studies rely on country-level rather than firm-level data. Another body of lit-
erature estimates the trade elasticity by fitting a country-level import demand function in log-levels,
while controlling for appropriate fixed effects (e.g., Hummels, Lugovskyy, and Skiba (2009); Caliendo
and Parro; Shapiro (2016)).

Recently, Boehm, Levchenko, and Pandalai-Nayar (2020) have outlined the advantages and disad-
vantages of each approach: On the one hand, the first-difference approach performs better at handling
the identification challenge poised by endogenous policy choices and omitted variable bias. On the
other hand, the first difference estimator—at least when applied to country-level data—may not nec-
essarily identify the long-run elasticity, which is the desired target for static trade models.

These issues pose a lesser problem for our firm-level estimation. We articulate this claim in two
steps. First, we detail the long- versus short-run dilemma identified by Boehm et al. (2020), and explain
why the same dilemma does not necessarily plague our firm-level estimation. Second, we establish
our claim empirically by re-estimating our firm-level import demand function in levels. This exer-
cise encouragingly confirms that our estimation in levels yields very similar results to our baseline
estimation in differences.

The dilemma facing country-level estimations. Country level trade flows—which are traditionally
used to estimate the trade elasticity—can be decomposed as follows:

X̃ji,k = Nji,k p̃ji,kqji,k

where X̃ji,k denotes gross sales corresponding to origin j–destination i–industry k; p̃ji,kqji,k denotes aver-
age sales per firm (i.e., the intensive margin) and Nji,k denotes the total mass of firms associated with
transaction ji, k (i.e., the extensive margin). Accordingly, the long-run trade elasticity is composed of
an extensive and an intensive margin component:

trade elasticity ∼
∂ ln X̃ji,k

∂ ln(1 + tji,k)
=

∂ ln Nji,k

∂ ln(1 + tji,k)︸ ︷︷ ︸
εn

+
∂ ln p̃ji,kqji

∂ ln(1 + tji,k)︸ ︷︷ ︸
εx

.

The issue raised by Boehm et al. (2020) concerns the fact that researchers do not separately observe
Nji,k and p̃ji,kqji,k in country-level datasets. A standard solution to this limitation is to assume away
firm-selection (i.e., set Nji,k = Nj,k). Under this assumption, one can recover the trade elasticity by
estimating an import demand function that controls for Nj,k with origin-industry fixed effects. Crudely
speaking, this solution is analogous to omitting the extensive margin component, i.e., setting εn = 0.

In practice, however, Nji,k may feature a bilateral element that accounts for firm-selection and
which varies with the bilateral tariff rate—even after we control for a full set of origin and destination
fixed effects. As noted above, traditional techniques that estimate the import demand function in
levels with origin/destination fixed effects, are unable to account for the bilateral nature of Nji,k. As
such, traditional log-level estimators often suffer from an omitted variable bias.

Boehm et al. (2020) argue that we can overcome the omitted variable bias by estimating the
country-level import demand function in differences rather than levels. Under this approach, how-
ever, one must employ long differences (over a sufficiently long time horizon) to credibly estimate
the extensive margin component, εn. Nonetheless, the long-difference estimator may still fall short if
tariff changes occur unevenly over the time-differencing horizon. In such cases, a correction must be
applied to the estimated trade elasticity to account for lumpy longitudinal tariff changes.

Importantly, these limitations do not plague our firm-level estimation. We directly observe firm-
level sales and need not to infer changes in Nji,k from changes in country level trade flows. Our
data explicitly encompasses information on Nji,k and our identification strategy relies on the cross-
sectional variation in firm-level variables within importer–HS10 product–year cells. With this level of
disaggregation, our estimation is closer in spirit to the Industrial Organization literature on markup
estimation. This literature routinely uses first difference estimators to recover markups (see, for ex-
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ample, equations 17-19 and related discussion in De Loecker and Warzynski (2012)). These markups
estimates have been routinely used to discipline steady state models in the Macroeconomics literature
(e.g., Baqaee and Farhi (2020b)).

Re-estimating our firm-level import demand function in levels. Above, we presented a concep-
tual argument that (compared to traditional country-level estimations) firm-level estimations should
yield relatively similar results whether the import demand is estimated in levels or in first differences—
provided that appropriate instruments are employed to adequately handle reverse causality. To illus-
trate the same point empirically, we re-estimate our firm-level import demand function in levels with
two-ways fixed effects. We then compare the two-ways-fixed-effects estimates for µk = 1

γk−1 and σk with
our baseline estimates. The estimating equation in log-levels can be expressed as follows:

ln x̃j,kt(ω) = (1 − σk) ln p̃j,kt (ω) +

[
1 − σk − 1

γk − 1

]
ln λj,kt (ω) + Dkt︸︷︷︸

HS10-year FE

+ φjk(ω)︸ ︷︷ ︸
HS10-firm FE

+ φωjkt. (Q.1)

Recall that x̃ ≡ p̃q denotes gross firm-level sales value; p̃ denotes the consumer price which includes
taxes and tariffs; λj,kt(ω) denotes the within-origin j×product k expenditure share on firm-level variety
ω; Dkt accounts for product–year fixed effects, while φjk(ω) accounts for product-firm-origin fixed
effects. The above equation differs from our baseline estimating equation in that the firm-product
fixed effect, φjk(ω), is not differenced out. Instead the equation is estimated in levels.

As in the baseline case, we estimate the Equation (Q.1) using a 2SLS estimator. To this end, we
modify our original shift-share instrument to make it consistent with the fixed-effects estimation,
which is conducted in levels. The new instrument is calculated as follows

źj,kt(ω) =
12

∑
m=1

sj,kt−1 (ω, m) ln Ejt (m)

where sj,kt−1 (ω, m) denotes the lagged share of Month m sales in firm ω’s total annual export sales.
Ejt(m), as before, denotes the exchange rate (between Origin j’s currency and the Colombian Peso)
in Month m of the current year. The other instrumental variables are adjusted accordingly, to be
consistent with our estimation that is conducted in levels rather than in differences.

The estimation results are reported in Table Q.1. The estimated values for σk and µk = 1
γk

−
1 are encouragingly similar to the baseline (first-differences) estimates. Most importantly, the new
estimation quasi-maintains the ranking of industries in terms of the underlying degree of national-
level market power (σk) and firm-level market power. Later, in Appendix Y, we recalculate the gains
from optimal policy using the newly-estimated µk’s and σk’s. Encouragingly, the implied gains are
starkly similar to those implied by our baseline estimates.

R Comparison of Scale Elasticity Estimation Techniques
This appendix overviews the various approaches to scale elasticity estimation, offering some

perspective on the advantages of our indirect estimation technique. To provide a fair description
of the existing techniques, we use an extended theoretical framework that accommodates (i) scale
economies due to love-for-variety à la Krugman (1980), (ii) scale economies due to Marshallian exter-
nalities, and (iii) diseconomies of scale due to quasi-fixed factors of production. To this end, we begin
this appendix by introducing a richer firm-level production function that accommodates Marshallian
externalities and quasi-fixed inputs.

General Production Function—Firm ω located in origin i–industry k employs labor (L) and quasi-
fixed inputs (F) using the following production function:

qi,k (ω) = φi,k (ω)
(

Li,k (ω)1−βi,k Fi,k (ω)βi,k
)
× Lψk

i,k .

Quasi-fixed inputs (Fi,k (ω)) correspond to land, physical capital, or industry-specific human capital,
the supply of which is fixed at the industry-level, i.e., ∑ω Fi,k (ω) = Fi,k. The last term in the pro-
duction function accounts for Marshallian externalities, whereby the TFP of firm ω increases with
industry-wide employment, Li,k, at a constant elasticity ψk.
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Table Q.1: Two-ways fixed effects estimation results

Estimated Parameter

Sector ISIC4 codes σk − 1 σk−1
γk−1 µk Obs. Weak

Ident. Test

Agriculture & Mining 100-1499 4.563 0.698 0.153 10,762 3.07
(1.739) (0.132) (0.089)

Food 1500-1699 2.476 0.927 0.374 17,594 5.01
(0.818) (0.050) (0.284)

Textiles, Leather & Footwear 1700-1999 3.256 0.685 0.210 110,925 59.94
(0.297) (0.023) (0.024)

Wood 2000-2099 2.093 0.893 0.427 5,282 2.12
( 1.812) ( 0.200) ( 3.541)

Paper 2100-2299 7.858 0.895 0.114 35,058 2.00
(3.953) (0.154) (0.177)

Petroleum 2300-2399 2.080 1.028 0.494 3,675 1.53
(0.342) (0.081) (1.584)

Chemicals 2400-2499 4.738 0.913 0.193 127,946 29.71
(0.496) (0.031) (0.071)

Rubber & Plastic 2500-2599 4.025 0.664 0.165 101,730 9.95
(0.791) (0.062) (0.045)

Minerals 2600-2699 3.390 0.681 0.201 173,432 20.03
(0.453) (0.036) (0.035)Basic & Fabricated Metals 2700-2899

Machinery 2900-3099 4.402 0.710 0.161 257,788 19.88
( 0.662) ( 0.044) ( 0.034)

Electrical & Optical Equipment 3100-3399 0.756 0.609 0.806 246,597 19.25
( 0.221) ( 0.015) ( 0.238)

Transport Equipment 3400-3599 2.156 0.514 0.238 147,772 11.37
(0.462) (0.032) (0.053)N.E.C. & Recycling 3600-3800

Notes. Estimation results of Equation (16). Standard errors in parentheses. The estimation is conducted with HS10 product-
year fixed effects. All standard errors are simultaneously clustered by product-year and by origin-product, which is akin to
the correction proposed by Adao, Kolesár, and Morales (2019). The weak identification test statistics is the F statistics from
the Kleibergen-Paap Wald test for weak identification of all instrumented variables. The test for over-identification is not
reported due to the pitfalls of the standard over-identification Sargan-Hansen J test in the multi-dimensional large datasets
pointed by Angrist, Imbens, and Rubin (1996).

Aggregation of Firm-Level Prices into Industry-Level Prices Indexes—Cost-minimization and profit-

maximization imply that firm ω sets a price equal to pin,k (ω) =
(

γk
γk−1

) dij,k
φi,k(ω)

w1−βk
i υ

βk
i,k Lψk

i,k . Variable
υi,k denotes the unit price of the quasi-fixed input in industry k, which per cost minimization satisfies
υi,k = 1−βk

βk

wi Li,k
Fi,k

. Supposing that preferences have a nested-CES parameterization (per Assumption

A1), we can use the logic in Section I to aggregate firm-level prices into industry-level price indexes
subject to free entry (Mi,k = Li,k/γk f e

k ). Doing so yields the following producer price index for goods
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associated with origin i–destination n–industry k,

Pin,k =

(
γk

γk − 1

)
τin,k

φi,k
wi L

−
(

1
γk−1+ψk

)
+βk

i,k , (R.1)

where φi encompasses constant parameters including (average) firm productivity. Our baseline Krug-
man model is a special case of this equation, in which ψk = βk = 0. Though, as we argue shortly, our
estimation of the scale elasticity is insensitive to βk = 0. Based on Equation R.1, the scale of employ-
ment, Li,k, affects producer prices through increasing-returns to scale (i.e., Jacobian (love-for-variety)
+ Marshallian externalities) and decreasing returns to scale due to quasi-fixed inputs. More specif-
ically, ∂ ln Pin,k/∂ ln Li,k = −

(
1

γk−1 + ψk

)
+ βk, where the sub-elasticity

(
1

γk−1 + ψk

)
accounts for

increasing-returns to scale that disrupt allocative efficiency, while βk accounts for decreasing-returns
to scale that do not undermine allocative efficiency given equilibrium constraints. Hence, for policy
analysis, it is crucial to separately identify the former sub-elasticity from the latter—as the degree of
allocative inefficiency depends solely on the sub-elasticity

(
1

γk−1 + ψk

)
. The following remark for-

malizes this point.

Remark 1. For policy evaluation, it is useful to separately identify 1
γk−1 + ψk from βk. The logic is that if

1
γk−1 + ψk = 0, the market equilibrium is constrained-efficient irrespective of βk, and there is no scope for
improving allocative efficiency with policy. Correspondingly, the corrective gains from policy depend on the
following notion of scale elasticity that differs from the reduced-form elasticity, ∂ ln Pin,k

∂ ln Li,k
:

µk = (γk − 1)−1︸ ︷︷ ︸
Jacobian (love-for-variety)

+ ψk︸ ︷︷ ︸
Marshallian

∼ scale elasticity

The above remark is an immediate corollary of the First Welfare Theorem. In particular, letting
γk → ∞ and ψk = 0, our theoretical model reduces to a simple Arrow-Debreu model to which
the fundamental welfare theorems apply. Our emphasis on µk ̸= ∂ ln Pin,k/∂ ln Li,k, as we elaborate
shortly, speaks to one of the possible techniques for scale elasticity estimation, which infers µk from
the reduced-form elasticity, ln Pin,k/∂ ln Li,k.

Section III unveiled another consideration when estimating scale elasticities. We, in particular,
argued that the cross-industry covariance between the scale elasticity (µk) and the trade elasticity (σk)
is a crucial determinant of policy outcomes in open economies. Hence, it is advantageous to estimate
these elasticities in a manner that ascertains mutual consistency.

Remark 2. Policy outcomes in open economies depend on the cross-industry covariance between the scale and
trade elasticities, i.e., Cov (µk, σk). So, for policy evaluation, it is advantageous to jointly estimate µk and σk in
a way that ascertains mutual consistency.

Taking these remarks into consideration, we describe three techniques for estimating scale elas-
ticities and identify their advantages and disadvantages. We begin with the indirect (demand-based)
estimation technique developed in Section V of this paper.

Technique 1: Firm-Level Demand Estimation (Indirect)
Firm-level demand estimation can identify the scale elasticity, insofar as scale effects are driven by

love-for-variety à la Krugman (1980). Demand estimation can also simultaneously identify the trade
elasticity, σk, which is advantageous considering Remark 2. To unpack these points, let us revert to our
generalized Krugman model for a moment while retaining the assumption that production exhibits
diseconomies of scale (i.e., βi,k > 0). In this setting, which widely used for trade policy analysis, the
scale and trade elasticities become

µk =
1

γk − 1
∼ scale elasticity; σk ∼ trade elasticity.

The reason we can infer µk from demand parameters is that the scale elasticity in Krugman (1980)
reflects the extent of love-for-variety—the social benefits of which are not internalized by firms’ entry
decisions. Recall from Section I (Assumption A1) that the nested-CES demand function facing firm ω
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can be written in terms of sales (x̃ ≡ p̃ × q) as follows

x̃ni,k (ω) = ξni,k (ω)

(
p̃ni,k (ω)

P̃ni,k

)1−γk
(

P̃ni,k

Pi,k

)1−σk

Yi,k.

One immediately notices that estimating the above function simultaneously determines the scale elas-
ticity (µk = 1/ (γk − 1)) and the trade elasticity (σk). To perform the estimation, we take inspiration
from Berry (1994) and rearrange and log-linearize the above demand function to obtain our estimating
equation:

ln x̃ni,k (ω) = (1 − σk) ln p̃i,k (ω) +

(
1 − σk − 1

γk − 1

)
lnλni,k (ω) + Di,k + εin,k (ω) ,

where λni,k (ω) =
x̃in,k(ω)

∑ω′ x̃in,k(ω′) is firm ω’s observed conditional market share within nest (in, k); Di,k

account for importer-industry fixed effects; and the demand residual εin,k (ω) encompasses good-
specific demand-shifters and measurement error. Our identification of the demand function relies
on a shift-share instrument that constitutes a firm-specific cost- or supply shifter—see Section V for
specific details.

Advantages and Disadvantages of Technique 1—One advantage of our the indirect (demand-based)
estimation technique is that it simultaneously identifies σk and µk—which is useful for policy eval-
uation following Remark 2. Moreover, our indirect estimation technique is robust to the presence
of diseconomies of scale, as measured by βk. Our estimation technique is not merely limited to the
Krugman (1980) model either, and can also identify the scale elasticity in the more general Melitz
(2003)-Pareto setting (see Appendixes D and R.1). A clear limitation of our approach is that it does
not directly leverage scale-related moments, making it unable to identify Marshallian externalities, as
measured by ψk.

Technique 2: National Labor Content Supply Estimation (direct)
The genesis of this technique is the observation that the producer price index, Pin,k, can be regarded

as the of price of country i’s labor services in destination n. Under this interpretation, the product of
the trade and scale elasticity can be recovered from the labor content supply elasticity, ∂ ln Pin,k

∂ ln Li,k
, insofar

as production involves no quasi-fixed inputs (βk = 0). As for the actual estimation, the trick is that
even though aggregate price indexes (Pin,k) are unobserved, they can be proxied by aggregate sales.
To sketch out the logic, let X̃in,k = P̃in,kQin,k denote gross sales which satisfy the gravity equation in
our framework. In particular,

1
1 − σk

ln X̃in,k =

(
1

γk − 1
+ ψk − βk

)
ln Li,k + Di,k + Dn,k + ϕij,k,

where Di,k and Dn,k are labor-size-adjusted exporter and importer fixed effects and ϕin,k is the bilateral
resistance term. Suppose Di,k = D̃i + D̃k + εA

i,k and ϕin,k = ϕin + ϕnk + εB
in,k, where εA and εB are mean-

zero. Appealing to the above equation and noting that 1
γk−1 + ψk = µk, we can produce the following

equation relating gross industry-level sales to employment size,
1

1 − σk
ln ∑

n
X̃in,k = (µk − βk) ln Li,k + Dk + Di + εi,k, (R.2)

where Di ≡ D̃i + ln ∑n (exp (ϕin)) and Dk ≡ D̃k + ln ∑n [exp (ϕnk)] are country and industry fixed
effects, while the error term, εi,k, collects εA

i,k (production cost shifters) and εB
in,k’s (trade cost shifters).

Notice that εi,k is akin to a supply shock here, but this interpretation rests on the implicit assumption
that bilateral resistance terms have no demand-driven component. Importantly, the left-hand side
variable in Equation R.2 can be regarded a proxy for the price of country i’s labor services in industry
k. To elucidate this connection, note that ∑n X̃in,k = P1−σk

ii,k ∑n

[
τni,kdni,k

(
P̃σk−1

n,k

)
Yn,k

]
where τni,k col-

lects all tax instruments associated with triplet in, k. It then follows that 1
1−σk

ln ∑n X̃in,k ∼ Pii,k + δn,k,

where δn,k ≡ ∑n

[
τni,kdni,k

(
P̃σk−1

n,k

)
Yn,k

]
can be broken down into components that are absorbed by

Dk, Di, and εi,k. Putting the pieces together, Equation R.2 can be regarded as a supply function for
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country i’s labor services, with εi,k representing idiosyncratic supply shocks.
One can utilize macro-level sales and employment data to estimate the following combination of

parameters based on Equation R.2:

∂ ln ∑n X̃in,k

∂ ln Li,k
∼ (µk − βk) (σk − 1)

Identification in this case relies on plausibly exogenous demand-shifters that are orthogonal to εi,k—
see Bartelme, Costinot, Donaldson, and Rodriguez-Clare (2019) for one such application. The product
of the trade and scale elasticity can be, subsequently, recovered from (µk − βk) (σk − 1) insofar as pro-
duction involves no quasi-fixed inputs, i.e., βk = 0. To isolate the scale elasticity (µk) from the trade
elasticity (σk − 1), one must additionally rely on externally-estimated values for the trade elasticities.

Advantages and Disadvantages of Technique 2—This technique can detect Marshallian externalities
as it directly leverages scale-related moments. This is a notable advantage, but comes with certain
limitations, at least in the context of policy evaluation. Technique 2 cannot separately identify the
scale elasticity, µk, from βik—which, following Remark 1, can be problematic for certain applications.
Another possible drawback is Technique 2’s inability to isolate the scale elasticity from the trade elas-
ticity. This technique instead recovers the product of the two elasticities, and is mute about the sign
of Cov (µkσk), which Following Remark 2 is an important statistic for trade policy evaluation in open
economies.

Technique 3: Production Function Estimation
This technique is an augmentation of the standard production function estimation technique. Sup-

pose we posses firm-level data on real output, qi,k (ω), and input quantities, Xi,k (ω) =
{

Li,k (ω) , Fi,k (ω) , ...
}

.
We can, then, estimate the following log-linear production function, which includes industry-level
employment as an additional covariate to identify the Marshallian component of the scale elasticity,
ψk:

ln qi,k (ω) = βk · ln Xi,k (ω) + ψk ln Li,k + εi,k (ω) .

The residual term εi,k (ω), in this specification, encompasses idiosyncratic firm productivity shifters
and measurement error. The above function can be all but impossible to estimate at scale given the
scarcity of firm-level data on real input and output quantities. To bypass this challenge, existing ap-
plications of the production function technique often estimate an aggregate version of the above equa-
tion that regresses industry-wide output, Qi,k = ∑ω qi,k (ω), on input quantities, Xi,k = ∑ω Xi,k (ω)—

see e.g., Basu and Fernald (1997). The scale elasticity is then recovered as µk = ∑ f

(
β f ,k

)
− 1, where

f indexes production inputs. Under this approach, Qi,k and Xi,k are calculated by deflating nominal
sales and cost data using price indexes calculated by statistical agencies. The identification challenges
relating to production function estimation of this sort are well-documented in the literature, so we
refer readers to Ackerberg, Caves, and Frazer (2015) for a comprehensive synthesis of these issues.

Advantages and Disadvantages of Technique 3—The production function technique can detect Mar-
shallian externalities, similar to Technique 2. It is also robust to the presence of quasi-fixed inputs,
like Technique 1. Despite these appealing properties, the production function technique exhibits cru-
cial limitations given its reliance on externally-constructed price indexes. This approach can credibly
identify the scale elasticity, µk, only if the price indexes constructed by statistical agencies have ad-
equately accounted for product quality and love-for-variety—which is often not the case. Another
disadvantage of this approach is that it relies on domestic production data, meaning that the same
data cannot be used to identify the trade elasticity (σk − 1). Instead, one must rely on completely dif-
ferent data to estimate (σk − 1), which can compromise mutual consistency as emphasized by Remark
2.

R.1 Love-for-Variety: Krugman vs. Melitz
As discussed earlier, the demand parameters, γk, fully determine the markups and scale elas-

ticities in our baseline Krugman model (i.e., µk = 1
γk−1 ). Section I also noted that the relationship

between demand parameters and markups/scale elasticities is amended in richer environments. One
such canonical case is the Melitz-Pareto model where firms incur a fixed overhead cost to serve indi-
vidual markets. Following Appendix D, the markup and scale elasticities in this environment depend
on the shape of the Pareto firm-level productivity distribution, ϑk, in addition to demand parameter,
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γk. In particular,

[Melitz-Pareto Model] µRE
k =

γkϑk
(γk − 1) (ϑk + 1)− ϑk

− 1 ∼ markup µFE
k =

1
ϑk

∼ scale elasticity

To provide some intuition, the adjusted markup, γkϑk
(γk−1)(ϑk+1)−ϑk

, corresponds to the gross markup,
γk

γk−1 , net of fixed cost payments. From a policy standpoint, the fraction of the markup paid to cover
fixed costs is not a source of misallocation. In fact, if fixed cost payments consume the entire gross
markup, the market equilibrium will be constrained efficient. We present a quantitative analysis of
the Melitz-Pareto model in Appendix Y, elaborating more on the model’s implications. Below, we
discuss other settings in which the markup and scale elasticity values depend on factors other than
the demand parameter γk.

R.2 Markups under Alternative Market Conducts
Our analysis thus far assumed that firms compete under monopolistic competition. Beyond this

case, markups depend not only on demand parameters but also the conduct parameter. The markup
associated with goods from origin i–industry k is, in particular, given by

µi,k = υi,k ×
γk

γk − 1
,

where υi,k denotes the conduct parameter. Following Weyl and Fabinger (2013),(1) υi,k = 1 under
monopolistic or Bertrand competition, (2) υi,k = 0 under perfect competition,35 and (3) υi,k = 1/Ni,k
under Cournot competition. In the spirit of Berry, Levinsohn, and Pakes (1995) and Berry (1994), our
main analysis recovered markups from demand parameters by setting υi,k = 1. We also discussed, in
detail, how our optimal policy results change if we were to assume perfect or Bertrand competition
instead.

Below, we discuss how our quantitative results may be be impacted by Cournot competition.
The crucial takeaway from our baseline markup estimation was that trade elasticities and markups
are negatively correlated across industries. This pattern may weaken or even reverse if the number
of firms,Ni,k, is systematically correlated with γk. We investigate this possibility, using the World
Bank’s EXPORTER DYNAMICS DATABASE (EDD) described in Fernandes et al. (2016). The publicly-
available version of the EDD features data on firm-level exports provided by customs agencies from
60 countries for the 1997–2013 period. One of these datapoints is the number of exporters per origin
and HS6 product code, from which we can infer Ni,k. Using this information, we update our baseline
markup estimates as, µi,k = 1

Ni,k
× γk

γk−1 to make them compatible with Cournot competition. We
then regress the our estimated trade elasticity (σk − 1) on the Cournot-compatible markup values to
investigate wether the negative correlation is persevered.

The results reported in Table R.1 indicate that the negative relationship between the trade elastic-
ities and firm-level markups are robust to relaxing the monopolistic competition assumption with
Cournot competition. The negative relationship becomes slightly weaker but remains significant
and strong, nonetheless. Note once more, this structural relationship is the crucial driving force be-
hind our quantitative findings that center around immiserizing growth. As detailed in Section III, if
Covk (σk, µi,k) < 0, non-cooperative second-best trade policies are ineffective at correcting misallo-
cation in domestic industries and cooperative domestic policies trigger immiserizing growth unless
they are internationally coordinated.

R.3 Scale Elasticities under Arbitrary Love-for-Variety
In our baseline Krugman model, there is a one-to-one link between the degree of firm-level market

power and the love-for-variety in each industry. Baqaee and Farhi (2020a) demonstrate that this link
has deep root, beyond CES models. This tight link, however, can be broken by introducing arbitrary
love-for-variety into the CES demand aggregator à la Benassy (1996). In particular, suppose the sub-
national CES aggregator in industry k is adjusted as follows:

Qji,k =

(
Nςk

j,k ×
∫

ω∈Ωj,k

φji,k(ω)
1

γk qji,k (ω)
γk−1

γk dω

) γk
γk−1

.

35Likewise, under Bertrand competition with homogeneous sub-products, υi,k = 0.
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Table R.1: The tension between ToT and sectoral misallocation under Cournot competition

dependent: trade elasticity (σk − 1)

µi,k =
1

Ni,k
× γk

γk−1 -0.138∗∗∗ -0.138∗∗∗ -0.279∗∗∗

(0.0111) (0.0111) (0.0157)

Year fixed effects No Yes Yes
Origin fixed effects No No Yes
Observations 3,221 3,221 3,221

Note: This paper relationship between the firm-level markup under Cournot competition, 1
Ni,k

× γk
γk−1 , and the

trade elasticity, σk − 1. Data for Ni,k are from the World Bank’s Exporter Dynamics Database. Parameters σk
and γk are from the demand estimation conducted in Section V, where k denotes a WIOD industry. *** denotes
significant at the 1\% level.

Parameter ςk regulates the love-for-variety as measured by the number of firm-level varieties, Nj,k.
The above CES aggregator coincides with our baseline CES aggregator if ςk = 0. It is straightforward
to check that firm-level markups are unaffected by ςk, as individual firms treat Nj,k as given when
setting their prices. The scale elasticity, however, should be adjusted as follows:

[Krugman+Benassy] µk =
1

γk − 1
∼ markup 1+ψk =

(
1 +

1
γk − 1

)
(1 + ςk) ∼ scale leasticity

The optimal domestic subsidy in this case is 1 + s⋆k =
(

1 + 1
γk−1

)
(1 + ςk), and the gains from restor-

ing efficiency are, accordingly, amplified. Notice, markup heterogeneity is no longer necessary to
justify policy intervention. The heterogeneity in ςk is sufficient, which echos Epifani and Gancia’s
(2011) findings in a single-sector economy.

Estimating the love-for-variety parameter, ςk, with sales and price data is, however, challenging.
In our firm-level estimation, Nςk

j,k will appear as an origin-and-industry-specific demand shifter and
will be absorbed by our extensive set of fixed effects. Estimating ςk with national-level sales and price
data faces the same complications as external economies of scale. In particular, one cannot purge
elasticity, ςk, from the diseconomies of scale elasticity without explicit data on quasi-fixed factors of
production. As detailed in Section V.E, the latter elasticity does not contribute to inefficiency and must
be excluded from the optimal Pigouvian subsidy.

S Examining the Plausibility of Estimates
In this Appendix we examine the plausibility of our estimated parameters from a different angle.

We show that when our estimated parameters are plugged into a workhorse trade model, they resolve
the income-size elasticity puzzle. This puzzle, as noted by Ramondo, Rodríguez-Clare, and Saborío-
Rodríguez (2016), concerns the fact that a large class of quantitative trade models—including Krug-
man (1980), Eaton and Kortum (2001), and Melitz (2003)—predict a counterfactually high income-
size elasticity (i.e., the elasticity at which real per capita income increases with population size). One
straightforward remedy for this counterfactual prediction is introducing domestic trade frictions into
the aforementioned models. This treatment, however, is only a partial remedy. As shown by Ra-
mondo et al. (2016), even after controlling for direct measures of internal trade frictions, the predicted
income-size elasticity remains counterfactually strong.

To test macro-level predictions, we first produce economically-representative estimates for σk and
µk. We do so by pooling data across all manufacturing and non-manufacturing industries and esti-
mating Equation 16 on theses two pooled samples.The estimation results are reported in Table S.1,
and imply that σ ≈ 3.8 and σ−1

γ−1 ≈ 0.66 across manufacturing industries. For the sake of comparison,
the same table also reports estimates produced using the standard OLS estimator.

To understand the income-size elasticity puzzle, consider a single-industry version of the model
presented in Section I. Such a model implies the following expression relating country i’s real income
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Table S.1: Pooled estimation results

Manufacturing Non-Manufacturing

Variable (log) 2SLS OLS 2SLS OLS

Price, 1 − σ -2.766*** 0.203*** -5.540*** 0.102***
(0.186) (0.004) (0.706) (0.007)

Within-national share, 1 − µ(σ − 1) 0.340*** 0.816*** 0.167*** 0.804***
(0.010) (0.002) (0.033) (0.010)

Weak Identification Test 259.91 ... 28.83 ...
Under-Identification P-value 0.00 ... 0.00 ...
Within-R2 ... 0.78 ... 0.73
N of Product-Year Groups 21,416 8,903
Observations 1,130,742 204,828

Notes: *** denotes significant at the 1% level. The Estimating Equation is (16). Standard errors in brackets are robust to
clustering within product-year. The estimation is conducted with HS10 product-year fixed effects. The reported R2 in
the OLS specifications correspond to within-group goodness of fit. Weak identification test statistics is the F statistics
from the Kleibergen-Paap Wald test for weak identification of all instrumented variables. The p-value of the under-
identification test of instrumented variables is based on the Kleibergen-Paap LM test. The test for over-identification is
not reported due to the pitfalls of the standard over-identification Sargan-Hansen J test in the multi-dimensional large
datasets pointed by Angrist et al. (1996).

per worker or TFP (Wi = wi/Pi) to its structural efficiency, Ai, population size, Li, trade-to-GDP ratio,
λii, and a measure of internal trade frictions, τii:

Wi = γ Ai Lµ
i λ

− 1
σ−1

ii τ−1
ii . (S.1)

The standard Krugman model assumes extreme love-of-variety (or extreme scale economies), which
implies µ = 1/(σ − 1) and precludes internal trade frictions, which results in τii = 1. Given these two
assumptions, we can compute the real income per worker predicted by the standard Krugman model
and contrast it to actual data for a cross-section of countries.

For this exercise, we use data on the trade-to-GDP ratio, real GDP per worker, and population size
for 116 countries from the PENN WORLD TABLES in the year 2011. Given our micro-estimated trade
elasticity, σ − 1, and plugging τii = 1 as well as µ = 1/(σ − 1) into Equation S.1, we can compute
the real income per worker predicted by the Krugman model. Figure S.1 (top panel) reports these
predicted values and contrasts them to factual values. Clearly, there is a sizable discrepancy between
the income-size elasticity predicted by the standard Krugman model (0.36, standard error 0.03) and
the factual elasticity (-0.04, standard error 0.06). To gain intuition, note that small countries import
a higher share of their GDP (i.e., posses a lower λii), which partially mitigates their size disadvan-
tage. However, even after accounting for observable levels of trade openness, the scale economies
underlying the Krugman model are so strong that they lead to a counterfactually high income-size
elasticity.

One solution to the income-size elasticity puzzle is introducing internal trade frictions into the
Krugman model (i.e., relaxing the τii = 1 assumption). Ramondo et al. (2016) perform this task using
direct measures of domestic trade frictions. Their calibration is suggestive of τii ∝ L0.17

i . Plugging
this implicit relationship into Equation S.1 and using data on population size and trade openness,
we compute the model-predicted real income per worker and contrast it with actual data in Figure
S.1 (middle panel). Expectedly, accounting for internal frictions shrinks the income-size elasticity.
However, as pointed out by Ramondo et al. (2016), the income-size elasticity remains puzzlingly
large.

We ask if our micro-estimated scale elasticity can help resolve the remaining income-size elasticity
puzzle. To this end, in Equation S.1, we set the scale elasticity to µ = α/(σ − 1) where α is set to
0.65 as implied by our micro-level estimation. Then, using data on population size and trade-to-GDP
ratios, we compute the real income per capita predicted by a model that features both domestic trade
frictions and adjusted scale economies. Figure S.1 plots these predicted values, indicating that this

73



adjustment indeed resolves the income-size elasticity puzzle. In particular, the income-size elasticity
predicted by the Krugman model with adjusted scale economies is statistically insignificant (0.02,
standard error 0.03), aligning very closely with the factual elasticity.

T Mapping Second-Best Tax Formulas to Data
In this appendix, we present an analog to Proposition 1, but for second-best trade taxes under

restricted entry (as specified by Theorem 2). As in Section VI, we assume that preferences have a CES-
Cobb-Douglas parametrization. We use the “∗∗” superscript indicates that a variable is being evalu-
ated in the counterfactual second-best optimal policy equilibrium. We assume hereafter that countries
do not apply domestic subsidies in the factual equilibrium, i.e., sn,k = 0 for all n ∈ C. Using the
hat-algebra notation and the expression of the good-specific supply elasticity, ωji,k (Equation 10), we
can write the second-best tax formulas in changes as follows:

[optimal import tax] 1 + t∗∗ji,k =
1 + (σk − 1)λ̂ii,kλii,k

1 + 1+µ∗
i

1+µk
(σk − 1)λ̂ii,kλii,k

(
1 + ω∗∗

ji,k

)

[optimal export subsidy] 1 + x∗∗ij,k =
(σk − 1)∑n ̸=i

[
(1 + ω∗∗

ni,g)λ̂nj,kλnj,k

]
1 + (σk − 1)(1 − λ̂ij,kλij,k)

(
1 + µk
1 + µ∗∗

i

)
,

[change in taxes] 1̂ + si,k = 1; 1̂ + tji,k =
1 + t∗∗ji,k

1 + tji,k
; ̂1 + xij,k =

1 + x∗∗ij,k

1 + xij,k
. (T.1)

Since the rest of the world is passive in their use of taxes, 1̂ + sn,k = ̂1 + tjn,k = ̂1 + xnj,k = 1 for
all n ̸= i. To determine the change in expenditure shares, λ̂ji,k, we need to determine the change in
consumer price indexes. Invoking the CES structure of within-industry demand, we can express the
change in market i–industry k’s consumer price index as

[price indexes] ˆ̃Pi,k =
N

∑
n=1

λni,k

[
̂1 + tni,k

̂1 + xni,k
ŵn

]1−σk
 1

1−σk

. (T.2)

Given ˆ̃Pi,k, we can calculate the change in expenditure shares λ̂ji,k and revenue shares r̂ji,k as

[expenditure shares] λ̂ji,k =

[
1̂ + tji,k

̂1 + xji,k
ŵj

]1−σk

ˆ̃Pσk−1
i,k

[revenue shares] r̂ji,k =

( ̂1 + xji,k

1̂ + tji,k
λ̂ji,kŶi

)(
N

∑
n=1

̂1 + xjn,k

̂1 + tjn,k
λ̂jn,kŶn

)−1

. (T.3)

The change in wage rates, ŵi, and labor shares, ρ̂i,k, are dictated by the labor market clearing (LMC)
condition, which ensures that industry-level sales match wage payments:

[LMC] (1 + µ∗∗
i )ŵiwiLi = ∑

j∈C

∑
k∈K

[
1 + x∗∗ji,k

1 + t∗∗ji,k
λ̂ij,kλij,kej,kŶjYj

]
. (T.4)

where the output-weighted average markup in the counterfactual equilibrium is given by

1 + µ∗∗
i =

∑j∈C ∑k∈K

[
1+x∗∗ji,k
1+t∗∗ji,k

λ̂ij,kλij,kej,kŶjYj

]
∑j∈C ∑k∈K

[
1+x∗∗ji,k

(1+µk)(1+t∗∗ji,k)
λ̂ij,kλij,kej,kŶjYj

] . (T.5)
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Figure S.1: Resolving the income-size elasticity puzzle
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The change in national expenditure, Ŷi, is governed by the balanced budget (BB) condition, which
ensures that total expenditure matches total income from wage payments and tax revenues:

[BB] ŶiYi = +(1 + µ∗∗
i )ŵiwiLi + ∑

j ̸=i
∑
k

(
t∗∗ji,k

1 + t∗∗ji,k
λji,kλ̂ji,kei,kŶiYi +

1 − (1 + x∗∗ij,k)

1 + t∗∗ij,k
λij,kλ̂ij,kej,kŶjYj

)
. (T.6)

Equations T.1-T.6 represent a system of 2N + NK + 2(N − 1)K independent equations and unknowns.
The independent unknowns are, namely, ŵi (N unknowns), Ŷi (N unknowns), ρ̂i,k (NK unknowns),
1̂ + tji,k ((N − 1)K unknowns), and ̂1 + xij,k ((N − 1)K unknowns). Solving the aforementioned system
is possible with information on observable data points, D, and estimable parameters, Θ ≡ {µk, σk}.
Once we solve this system, the welfare consequences of country i’s optimal policy are also fully de-
termined. The following proposition outlines this result.

Proposition 1. Suppose we have data on observable shares, national accounts, and applied taxes, D=
{

λji,k, rji,k, ei,k, Yi, wiLi, xij,k, tji,k

}
j,i,k

,

and information on structural parameters, Θ ≡ {µk, σk}. We can determine the economic consequences of
country i’s second-best optimal policy by calculating X =

{
Ŷi, ŵi, ρ̂i,k, 1̂ + tji,k, ̂1 + xij,k

}
as the solution to

the system of Equations T.1-T.6. After solving for X, we can fully determine the welfare consequence of country
i’s optimal policy as

Ŵn = Ŷn/ ∏
k∈K

ˆ̃Pen,k
n,k , (∀n ∈ C)

where ˆ̃Pn,k can be computed as function of X and data, D, using Equation T.2.

U Additional Details about the World Input-Output Database
This appendix presents additional details about the World Input-Output Database analyzed in

Section VI. Table U.1 describes our aggregation of WIOD industries into 16 industries. To summarize
the information in this table, we aggregate the ’Agriculture’ and Mining’ industries into one non-
manufacturing industry. We also follow Costinot and Rodríguez-Clare (2014) in two details: First, we
aggregate the ’Textile’ and ’Leather’ industries into one industry. Second, we lump all service-related
industries together treating them as one semi-non-tradable sector.

Following Proposition 1 in Section VI, we need data on observable shares, national accounts, and
applied taxes (D =

{
λji,k, rji,k, ei,k, ρi,k, Yi, wiLi, xij,k, tji,k, si,k

}
j,i,k

) to compute the gains from policy.

The WIOD reports data on trade values, Xji,k ≡ Pji,kQji,k, for each origin j–destination i–industry
k. The aggregated version of the data covers N = 33 countries (including the rest of the world)
and K = 16 industries. Below, we describe how each element in D is computed based on Xji,k and
our estimated values for µk. Assuming that countries impose no taxes under the status-quo, we can
compute national income and the wage bill in each country i as follows:

Yi =
K

∑
k=1

N

∑
n=1

Xni,k; wiLi =

{
∑K

k=1 ∑N
n=1 Xin,k if entry is free

∑K
k=1 ∑N

n=1
1

1+µk
Xin,k if entry is restricted

Next, we can compute the within-industry and industry-level expenditure shares for each market i
based on the following calculations:

λji,k =
Xji,k

∑N
n=1 Xni,k

; ei,k =
∑N

n=1 Xni,k

∑g ∑N
n=1 Xni,g

=
∑N

n=1 Xni,k

Yi
.

Lastly, we can compute the within-industry revenue share and the industry-level labor share in each
country using the following equations:

rin,k =
Xin,k

∑N
n=1 Xin,g

; ρi,k =
∑N

n=1 Xin,k

∑K
g=1 ∑N

n=1 Xin,g
.
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Table U.1: List of industries in the World Input-Output Database

WIOD Sector Sector’s Description Trade Ealsticity Scale Ealsticity

1 Agriculture, Hunting, Forestry and Fishing 6.227 0.143

2 Mining and Quarrying 6.227 0.143

3 Food, Beverages and Tobacco 2.303 0.393

4
Textiles and Textile Products

3.359 0.224
Leather and Footwear

5 Wood and Products of Wood and Cork 3.896 0.229

6 Pulp, Paper, Paper , Printing and Publishing 2.646 0.320

7 Coke, Refined Petroleum and Nuclear Fuel 0.397 1.758

8 Chemicals and Chemical Products 3.966 0.232

9 Rubber and Plastics 5.157 0.140

10 Other Non-Metallic Mineral 5.283 0.167

11 Basic Metals and Fabricated Metal 3.004 0.209

12 Machinery, Nec 7.750 0.120

13 Electrical and Optical Equipment 1.235 0.552

14 Transport Equipment 2.805 0.129

15 Manufacturing, Nec; Recycling 6.169 0.152

16

Electricity, Gas and Water Supply

11 0

Construction

Sale, Maintenance and Repair of Motor Vehicles and Motorcycles;
Retail Sale of Fuel

Wholesale Trade and Commission Trade, Except of Motor Vehicles
and Motorcycles

Retail Trade, Except of Motor Vehicles and Motorcycles; Repair of
Household Goods

Hotels and Restaurants

Inland Transport

Water Transport

Air Transport

Other Supporting and Auxiliary Transport Activities; Activities of
Travel Agencies

Post and Telecommunications

Financial Intermediation

Real Estate Activities

Renting of M&Eq and Other Business Activities

Education

Health and Social Work

Public Admin and Defence; Compulsory Social Security

Other Community, Social and Personal Services

Private Households with Employed Persons
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V Quantitative Analysis with Exact Formulas
Our optimization-free quantitative approach in Section VI relied on approximate formulas for the

export supply elasticity. The same analysis, however, can also be conducted with exact formulas. In
this appendix, we demonstrate this point and show that both approaches deliver virtually identical
output. Though, our suggested approximation saves computation time to a notable degree.

As a starting point, we appeal to our exact formula for the (general equilibrium) export supply
elasticity,36

ωji,k ≡
1

rji,kρj,k

wiLi
wjLj

ρi,k

(
∂ ln Pii,k

∂ ln Qji,k

)
w,Y,P̃i

+ ∑
n ̸=i

wnLn

wjLj
rni,ρn,k

(
∂ ln Pni,k

∂ ln Qji,k

)
w,Y,P̃i

 .

As detailed in Appendix,
(

∂ ln Pii,k
∂ ln Qji,k

)
w,Y,P̃i

is a partial derivate holding constant the vector of wages,

income, and “consumer” prices associated with economy i. The matrix consisting of these par-
tial derivatives can be evaluated by inverting a system of equations as specified by Equation E.38.
Namely,
(

∂ ln P11,k
∂ ln Q1i,k

)
w,Y,P̃i

· · ·
(

∂P11,k
∂ ln QNi,k

)
w,Y,P̃i

...
. . .

...(
∂ ln PNN,k
∂ ln Q1i,k

)
w,Y,P̃i

· · ·
(

∂PNN,k
∂ ln QNi,k

)
w,Y,P̃i

 = −


∂F1i,k(.)
∂ ln P11,k

· · · ∂F1i,k(.)
∂ ln PNN,k

...
. . .

...
∂FNi,k(.)
∂ ln P11,k

· · · ∂FNi,k(.)
∂ ln PNN,k


−1

︸ ︷︷ ︸
Ai


∂F1i,k(.)
∂ ln Q1i,k

· · · ∂F1i,k(.)
∂ ln QNi,k

...
. . .

...
∂FNi,k(.)
∂ ln Q1i,k

· · · ∂FNi,k(.)
∂ ln QNi,k

 .

where Fni,k(Qi,k, Pk) ≡ Pnn,k − ϱ̄nn,kwn
[
τni,kQni,k + ∑ℓ ̸=i τnℓ,kQnℓ,k

]− µk
1+µk = 0, with the corresponding

derivatives specified in Appendix E.
With the above background, we now explain how the quantitative procedure explained in Section

VI.A can be re-done without appealing to approximation or numerical optimization. In summary,
one must now solve the exact optimal tax formulas in conjunction with the equilibrium condition in
changes. The exact optimal tax/subsidy formulas can be expressed as

[optimal import tax] 1 + t∗ji,k = 1 +
1

r̂ji,kρ̂j,krji,kρj,k

[
ŵiwiLi
ŵjwjLj

ρ̂i,kρi,kκ∗
ij,k + ∑

n ̸=i

ŵnwnLn

ŵjwjLj
r̂ni,kρ̂n,krni,kρn,kκ∗

nj,k

]

[optimal export subsidy] 1 + x∗ij,k =
(σk − 1)∑n ̸=i

[
(1 + t∗ni,k)λ̂nj,kλnj,k

]
1 + (σk − 1)(1 − λ̂ij,kλij,k)

,

1̂ + si,k =
1 + µk
1 + si,k

; 1̂ + tji,k =
1 + t∗ji,k
1 + tji,k

; ̂1 + xij,k =
1 + x∗ij,k
1 + xij,k

. (A)

The variable κ∗
nj,k ≡

(
∂ ln Pnn,k
∂ ln Qji,k

)∗
w,Y,P̃i

refers to the partial price derivatives evaluated in the counter-

factual optimal policy equilibrium. The entire matrix of κ∗
nj,k’s can be recovered with information on

structural parameters and the change to observable share variables. Namely, κ∗
11,k · · · κ∗

1N,k
...

. . .
...

κ∗
N1,k · · · κ∗

NN,k

 = −

IN −

 a11,k · · · a1N,k
...

. . .
...

aN1,k · · · aNN,k

−1 
µk

1+µk
r1i,k r̂1i,k · · · 0
...

. . .
...

0 · · · µk
1+µk

rNi,k r̂Ni,k

 , (B)

where the elements of the first matrix on the right-hand side are

anj,k = 1j ̸=i
µk

1 + µk
∑
ℓ ̸=i

[(
1n=jσk − (σk − 1) λjℓ,kλ̂jℓ,k

)
rnℓ,k r̂nℓ,k

]
.

Solving Equations (A) and (B) alongside the equilibrium conditions specified by Equations 18-21 in

36Notice, the above expression for ωji,k precludes cross-industry effects, given our Cobb-Douglas utility parameterization
across industries.
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the main text determines the entire vector of counterfactual outcomes after the imposition of optimal
taxes/subsidies. The following proposition summarizes this point.

Proposition 2. Suppose we have data on observables, D =
{

λji,k, rji,k, ei,k, ρi,k, Yi, wiLi, xij,k, tji,k, si,k

}
j,i,k

,

and information on structural parameters, Θ ≡ {µk, σk}. We can determine the economic consequences of
country i’s optimal policy by calculating X =

{
Ŷi, ŵi, ρ̂i,k, 1̂ + si,k, 1̂ + tji,k, ̂1 + xij,k

}
as the solution to the

system of Equations consisting of (A) and (B) plus equilibrium conditions 18-21. After solving for X, we can
fully determine the welfare consequence of country i’s optimal policy as

Ŵi = Ŷi/ ∏
k∈K

ˆ̃Pei,k
i,k , (∀n ∈ C)

where ˆ̃Pi,k is determined by Equation 18 as a function of X and data, D.

Using Proposition 3, we recalculate the exact gains from optimal policy and compare them with
the baseline gains implied by our approximate formulas. The results are displayed in Table V.1 for se-
lect countries. These are relatively large countries for which our approximation is more suspect. One
immediately notices that our approximate formulas deliver identical numbers to the exact formulas.
The intuition, as explained in Appendix E, is that the matrix Ak =

[
anj,k

]
is sufficiently sparse. To

put these results in perspective, Table V.1 also reports the gains implied by the small open economy
optimal policy formulas. These formulas are presented in Section II. The small open economy as-
sumption is markedly more error-prone, as it attributes “zero” import market power to each country
irrespective of market size and import composition.

Table V.1: Gains from policy: exact vs. approximate optimal tax formulas

Exact Formula Approximated Formula Small Open Economy Formula

Country ∆W ∆W Error ∆W Error

BEL 1.3088% 1.3088% 0.00% 1.3007% 0.62%
DEU 1.7117% 1.7113% 0.02% 1.6885% 1.37%
NLD 1.3547% 1.3547% 0.00% 1.3450% 0.72%
NOR 1.1889% 1.1889% 0.00% 1.1757% 1.12%
USA 1.5283% 1.5278% 0.03% 1.5178% 0.69%

Note: The data source is the 2014 World Input-Output Database (WIOD, Timmer et al. (2015)). Policy outcomes in the small
open economy case are calculated using the optimal policy specification under 12.

W Elucidating the Tension between ToT and Misallocation
This appendix shows that the inefficacy of 2nd-best non-cooperative trade taxes stems from the

tension between terms-of-trade (ToT) and misallocation. Our quantitative analysis, recall, indicated
that 2nd-best trade taxes can replicate less than 40% of the gains from the 1st-best policy choice, which
combines trade taxes with Pigouvian subsidies. In what follows, we argue that this apparent lack of
efficacy is not a universal feature that merely reflects the targeting principle. Instead, it is an empirical
result based on our estimated trade and scale elasticity values.

To establish this point, we artificially raise Cov (σk, µk) and recompute the gains from 2nd-best
trade taxes. We then calculate the efficacy of 2nd-best trade taxes as the ratio of the corresponding
gains relative to the 1st-best policy choice. Each iteration maintains the estimated vector of trade
elasticities and adjusts the scale elasticities (or firm-level markups) to artificially inflate Cov (σk, µk)
relative to its estimated value. Throughout this appendix, we report results for the case of restricted
entry, noting that similar results hold under free entry.

The results reported in Figure W.1 confirm that 2nd-best trade taxes become increasingly more
effective as Cov (σk, µk) is artificially inflated. Under our estimated parameters, Cov (σk, µk) ≈ −0.60
and 2nd-best trade taxes can replicate less than 40% of the 1st-best gains from policy. When Cov (σk, µk)
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is artificially raised to −0.35, 2nd-best trade taxes can replicate close to 60% of the gains from 1st-best
gains from policy. When Cov (σk, µk) is raised further to 0.30, the efficacy of 2nd-best trade taxes im-
proves to 80%. These results indicate that the inefficacy of 2nd-best trade taxes is not an exclusive
reflection of the targeting principle. While one expects a less-than-100% efficacy based on the target-
ing principle, 2nd-best trade taxes become a remarkably weaker substitute for Pigouvian subsidies
under lower values of Cov (σk, µk).

Figure W.1: 2nd-best trade taxes become more effective as Cov (µk, σk) is artificially inflated
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Note: The data source is the 2014 World Input-Output Database (WIOD, Timmer et al. (2015)). Each bar reports the average
welfare gains when countries implement their 1st-best policy without retaliation by partners. The artificial parameters are
constructed by fixing σ to its estimated values and adjusting µto artificially inflate Cov (µk, σk).

We repeat the same exercise to elucidate the immiserizing growth effects of unilateral policy
markup correction. In particular, we artificially raise Cov (σk, µk) and recompute the consequences
of unilateral markup correction. Each iteration maintains the estimated vector of firm-level markups
(or scale elasticities) and adjusts the trade elasticities to artificially inflate Cov (σk, µk) relative to its
estimated value. This choice ensures that the degree of inter-industry misallocation remains approxi-
mately the same despite the change in Cov (σk, µk).

The results reported in Figure W.2 indicate that immiserizing growth effects fade and even reverse
as Cov (σk, µk) is artificially inflated. Under our estimated parameters, where Cov (σk, µk) ≈ −0.60,
unilateral markup correction prompts immiserizing growth and lowers welfare. When Cov (σk, µk)
is artificially raised to −0.35, unilateral markup correction no longer triggers immiserizing growth.
When Cov (σk, µk) is raised further to 0.30, unilateral markup correction becomes a promising policy
choice as it restores allocative efficiency and improves the ToT at the same time.

X Country-Level Exposure to Immiserizing Growth
This appendix digs deeper into the immiserizing growth effects of unilateral industrial policy.

Recall from section sec: Tension that immiserizing growth presents a grave challenge to industrial
implementation in open economies. In Section III, we reported the extent of immiserizing growth for
the average country. Here we unpack these numbers. First, by reporting immiserizing growth effects
on a country-by-country basis. Second, by highlighting that trade-to-GDP is a crucial determinant of
the extent to which countries experience immiserizing growth.

Figure X.1 displays welfare consequences when countries implement corrective policies without
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Figure W.2: Immiserizing growth effects diminish as Cov (µk, σk) is artificially inflated
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Note: The data source is the 2014 World Input-Output Database (WIOD, Timmer et al. (2015)). Each bar reports the average
welfare change when countries undertake unilateral markup correction without reciprocity by partners. Thea artificial
parameters are constructed by fixing µ to its estimated values and adjusting σto artificially inflate Cov (µk, σk).

reciprocity by trading partners. The results in Figure X.1 highlight two rudimentary points: First,
while most countries experience a deterioration of welfare, a few do not. But even for those few coun-
tries dampened gains from correcting misallocation than if they were operating as closed economies.
Second, trade-to-GDP (measured as the value of imports divided by GDP) is strongly associated with
the intensity at which countries experience immiserizing growth. Figure X.1, moreover, reveals that
countries not experiencing immiserizing growth tend to trade relatively more with each other. Hence,
even if these countries adopt corrective industrial policies, it does not spare others from immiserizing
growth—hence the importance of multilateral coordination of corrective policies via deep agreements.

Y Gains from Policy Under Alternative Assumptions
In this appendix we quantify the gains from optimal policy under three alternative scenarios, com-

paring them to the baseline gains reported in Section VI. In each case, we contrast the new policy gains
with the baseline gains along the two dimensions: First, in terms of the gains from first-best trade and
industrial policies. Second, in terms of the effectiveness of second-best trade taxes at replicating the
first-best outcome.

Y.1 Gains Implied by the Melitz-Pareto Model
Suppose the data generating process is consistent with a Melitz-Pareto model that accommodates

firm-selection effects. In that case, Theorem 1 characterizes the optimal policy under the following
reinterpretation of parameters—see Appendix D:

1 + µMelitz
k =

{
1 + 1

ϑk
if entry is free

γkϑk
(γk−1)(ϑk+1)−ϑk

if entry is restricted
; σMelitz

k = 1 +
ϑk

1 + ϑk

(
1

σk−1 −
1

γk−1

) .

To compute the gains from policy we, therefore, need estimates for σk, γk, and ϑk. We have already
produced estimates for the former two parameters. To estimate ϑk, we can first recover σMelitz

k using
a standard gravity estimation à la Caliendo and Parro (2015). To explain the estimation procedure,
suppose tariffs are applied before markups and industrial and export subsidies are zero (xji,k = sj,k =
0 for all i, j, k). In that case, the national-level import demand function transforms into the following
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Figure X.1: Higher Trade
GDP is associated with stronger immiserizing growth from unilateral corrective policies
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Note: The data source is the 2014 World Input-Output Database (WIOD, Timmer et al. (2015)). The y-axis corresponds to
welfare gains when a country undertakes unilateral markup scale without reciprocity by partners.

industry-level gravity equation:37

X̃ji,k ≡ P̃ji,kQji,k = Φj,kΩi,kτ
1−σMelitz

k
ji,k (1 + tji,k)

1−σMelitz
k ,

where Φj,k ≡ L
µMelitz

k
j,k ā

1−σMelitz
k

j,k w
1−σMelitz

k
j,k and Ωi,k ≡ ∑n

[
ān,kw

1−σMelitz
k

n,k τ
1−σMelitz

k
ni,k (1 + tni,k)

1−σMelitz
k

]
ei,kYi,k

can be viewed as the exporter and importer fixed effects in the standard gravity estimation sense.
To produce our final estimating equation, we assume that iceberg trade costs are given by ln τji,k =
ln dji,k + ε ji,k, where (i) dji,k = dij,k is a systematic and symmetric cost component that accounts for
the effect of distance, common language, and common border, while (ii) ε ji,k is a random disturbance
term that represents any deviation from symmetry. Invoking this decomposition, we can produce the
following estimating equation for any triplet (j, i, n):

ln
X̃ji,kX̃in,kX̃nj,k

X̃ij,kX̃ni,kX̃jn,k
= −

(
σMelitz

k − 1
)

ln
(1 + tji,k)(1 + tin,k)(1 + tnj,k)

(1 + tij,k)(1 + tni,k)(1 + tjn,k)
+ ε jin,k.

The left-hand side variable, in the above equation, is composed of observable national-level trade val-
ues in industry k. The right-hand side variable is composed of observable industry-level tariff rates.
The error term ε jin,k ≡ θk(εij,k − ε ji,k + εin,k − εni,k + εnj,k − ε jn,k) encompasses any idiosyncratic vari-
ation in non-tariff barriers. Under the identifying assumption that applied tariff rates are orthogonal
to ε jin,k, i.e., E

[
tji,k ε ji,k

]
= 0, we can estimate σMelitz

k by estimation the above equation with data on

37The assumption that tariffs are applied before markups, amounts to saying that tariffs act as a cost-shifter. Alternatively,
if tariffs are applied after markups, they act as a demand shifter. In the latter case, the elasticity of trade with respect to tariffs
diverges from the trade elasticity in its standard definition—see Costinot and Rodríguez-Clare (2014) for more details.
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Figure Y.1: The gains from policy under the Melitz-Pareto model
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trade values, X̃ji,k, and applied tariffs, tji,k, from the WIOD and TRAINS-UNCTAD datasets. After
estimating σMelitz

k , we can recover ϑk for our previously-estimated values for σk and µk (which are
reported in Table 3):

ϑk =
σ̂Melitz

k − 1

1 +
(
σ̂Melitz

k − 1
) ( 1

γk−1 −
1

σk−1

) .

For the analysis that follows, we borrow the estimated values for σMelitz
k from Lashkaripour (2020a;

2020b), which is based on the 2014 WIOD and TRAINS-UNCTAD datasets. After pinning down
all the necessary parameters, we simply evaluate and plug σMelitz

k and µMelitz
k into our optimal tax

formulas to compute the gains from optimal policy. The process is akin to that outlined in Section VI.
Importantly, one should note that without our micro-level estimates for σk and µk, it is impossible to
recover both σMelitz

k and µMelitz
k from macro-level trade and tariff data.

The optimal policy gains implied by the Melitz-Pareto model are reported under Figure Y.1. The
results indicate that accounting for firm-selection (à la Melitz-Pareto) magnifies the gains from the
first-best trade and industrial policy schedule. Moreover, accounting for firm-selection dampens the
efficacy of second-best trade taxes at replicating the first-best policy gains. If anything, these results
indicate that our baseline claim that trade taxes are an ineffective second-best substitute for industrial
subsidies is strengthened once we account for firm-selection effects.

Y.2 Gains Implied by the Fixed-Effect Estimates for µk and σk
Our baseline estimation of the gains from policy in Section VI utilized the first-difference estimates

for µk and σk—these estimates were reported under Table 3. In Appendix Q (under Table Q.1), we
reported alternative estimates for µk and σk based on a two-ways fixed-effects estimation of the firm-
level import demand function. In this appendix, we recompute the gains from policy using these
alternative estimates for µk and σk.

The implied gains from optimal policy are reported under Figure Y.2. The fixed-effects estimates
for σk and µk imply (on average) smaller gains from first-best trade and industrial policies. This
outcome drives from two main factors: First, the fixed-effects estimates for µk exhibit smaller het-
erogeneity across industries. As such, they imply a small degree of misallocation in the economy
compared to the baseline estimates. Second, the fixed-effects estimates for σk are generally smaller
and imply larger unilateral gains from terms-of-trade manipulation.
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Figure Y.2: The gains from policy under alternative estimates for σk and µk
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Another takeaway from Figure Y.2 is that second-best trade taxes exhibit a greater degree of ef-
ficacy compared to the baseline case. This outcome reflects two issues: First, the corrective gains
from policy are a smaller fraction of the overall first-best policy gains, once we plug the fixed-effects-
estimated values for σk and µk. Second, the fixed-effects-estimated values for σk and µk exhibit a
smaller negative correlation relative to the baseline estimates. As explained in Section IV, the less
negative Cov (σk, µk), the smaller the implicit tensions between the terms-of-trade-improving and cor-
rective gains from trade taxation—hence, the greater efficacy of second-best trade taxes.

Y.3 Assigning Alternative Values to µk and σk for the Service Sector
Our estimation of σk and µk in Section V relied on transaction-level trade data, which is scarce for

(semi-non-traded) service industries. To address this issue, our baseline estimation of the gains from
policy normalized the aforementioned parameters in service-related industries as follows:

σk = 11; µk = 0 if k ∈ Service
The value assigned to σk for service-related industries is less consequential for our estimated wel-
fare gains. The reason is that σk governs the gains from terms-of-trade manipulation. However,
under the status quo, there is little-to-no trade occurring in service industries. With little-to-no ser-
vice trade under the status quo equilibrium, the scope for terms-of-trade manipulation is limited in
service industries—all irrespective of the value assigned to σk.38

The value assigned to µk, however, can have a profound effect on the estimated gains from optimal
policy. To elaborate on this point, recall that one function of optimal policy (in our framework) is
to correct misallocation due to markup heterogeneity. The degree of misallocation can be crudely
measured as the cross-industry variance in markups, i.e., Var(µk). Data indicate that the service

38This outcome is an artifact of the CES parametrization of import demand. Specifically, in response to a change, τ̂, in
trade taxes, the post-tax-change expenditure shares remain zero if start as zero in the initial equilibrium—all irrespective of
the trade elasticity values. Stated in mathematical terms,

lim
λji,k→0

λ̂ji,k =
λji,k

(
τ̂ji,kŵj

)1−σk

∑n λni,k
(
τ̂ni,kŵn

)1−σk
= 0 ∀σk ≥ 1.

Since λji,k ≈ 0 in services, trade taxes have little-to-no ability at improving the terms-of-trade, as doing so requires policy to
shrink exports/imports in the service sector away from their factual level.
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Figure Y.3: The gains from policy when the service sector is modeled more conservatively
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sector constitutes a non-trivial fraction of total output in each country. So, the value assigned to the
service sector’s µk is a non-trivial determinant of misallocation, as measured by Var(µk).

As indicated above, our baseline analysis assumed that the service sector is perfectly competitive.
This assumption, which is rather standard in the quantitative trade literature, amounts to setting
µk = 0 for any service-related industry, k. In this appendix, we contrast our baseline results with those
obtained under the alternative but extremely conservative assumption that µk in services equals the
average µk in traded (non-service) industries. This assumption is conservative because it artificially
deflates Var(µk) and, accordingly, dampens the corrective gains from optimal policy.

The gains computed under our conservative treatment of the service sector are reported under
Figure Y.3. As expected, the gains from first-best policies are relatively lower under the conservative
treatment—simply because the conservative value assigned to the service sector markup artificially
lowers the degree of misallocation and the scope for policy intervention. Relatedly, second-best trade
taxes are also more successful at replicating the gains obtainable under the first-best policy schedule.
The intuition is that the corrective gains from policy constitute a smaller fraction of the first-best policy
gains under the conservative model. Hence, the inability of trade taxes to replicate corrective gains
becomes less consequential.

Z The Gains from Policy Under Artificial Parameter Values
Under what parameter values will our framework predict larger gains from policy? To answer this

question, we simulate an artificial economy (with artificial values assigned to σk and µk) to examine
the degree to which the gains from policy inflate under more extreme parameter values. Our theory
indicates that the gains from optimal policy are regulate by two key statistics:

i. The variance in the industry-level scale elasticities, Var [log µk].

ii. The average level of the (inverse) industry-level trade elasticities, E
[

1
σk−1

]
.

The first statistic governs the extent to which countries can gain from restoring allocative efficiency.
To explain this statistic, we can appeal to the Hsieh and Klenow (2009) exact formula for distance from
the efficient frontier. Considering that preferences are Cobb-Douglas across industries, the distance
from the efficient frontier in each country (net of trade effects) can be approximated to a first-order as

Distance from efficient frontier ≈ 1
2

Var [log µk] .
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The average level of µk is, however, inconsequential. To convey this point, suppose we multiply all
the markups by some number a ∈ R+. Since this change is akin to offering a uniform industrial
subsidy a to all industries, then it preserves real welfare based on Lemma 1.

The second statistic determines the degree of national-level market power and, thus, governs the
degree to which countries can gain from ToT manipulation. To explain this statistic succinctly, con-
sider a country that is sufficiently small in relation to the rest of the world. Following Theorem 1, the
average optimal trade tax for this country is given by

Avg. optimal trade tax ≈ E

[
1

σk − 1

]
.

If σk → ∞ for all k, the average optimal trade tax approaches zero, leaving no room for unilateral ToT
improvements. Conversely, as σk approaches 1 the average optimal trade tax increases and so do the
implicit gains from unilateral trade restrictions.39

Noting the above background, we recompute the gains from policy by artificially increasing Var [log µk]

and decreasing E
[

1
σk−1

]
, starting from our estimated vectors of {σk} and {µk}. The results are re-

ported in Z.1 for a select set of countries—namely, the United States, China, Indonesia, and Korea. The
graph indicates that the gains from policy nearly double if we artificially raise Var [log µk] by a factor
of two. A similar effect is borne out if we artificially raise E

[
1

σk−1

]
by a factor of about two. An ap-

parent pattern, here, is that the gains from policy exhibit similar sensitivity levels to Var [log µk] across
all countries, but different sensitivity levels to E

[
1

σk−1

]
. This pattern is expected, because E

[
1

σk−1

]
governs the gains from ToT-improvement which are smaller (by design) for larger economies like the
United States or China. The gains for restoring allocative efficiency, however, depend less on size and
more on a country’s industrial pattern of specialization under the status quo—see Kucheryavyy et al.
(2023a) for the role of specialization patterns.

These findings provide a platform to compare our estimated gains with alternatives in the litera-
ture. Our finding that the gains from restoring allocative efficiency are large sits well with the findings
in Baqaee and Farhi (2017) that eliminating sectoral markup-heterogeneity in the U.S. economy can
raise real GDP by 2.3%.40 Bartelme et al. (2019), however, estimate smaller gains from similar policies.
To understand these differences, note the formula for distance from the efficient frontier. Also note
that true value for the scale elasticity, µTrue

k = µk + ψk, where ψk denotes the elasticity of Marshallian
externalities. Accordingly, the true distance from the frontier can be approximated as follows:

LTrue ≈ 1
2

Var [log (ψk + µk)]

Our analysis like Baqaee and Farhi (2017) sets ψk = 0, and measures the degree of allocative inef-
ficiency as LLL≈ 1

2Var [log (ψk + µk)]. This approach can lead to an overstatement of L if ψk is neg-
atively correlated with firm-level market power, µk.41 In comparison and as noted in Section V.D,
the degree of misallocation in BDCR’s analysis is measured as LBCDR≈ 1

2Var
[
log
(

µk + ψk −
βk

σ−1

)]
,

where βk is the share of industry-specific factors in production. This approach can understate L when
there are significant diseconomies of scale due to a high βk.
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Figure Z.1: The gains from policy under artificially higher Var [log µk] and E
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