The Muti-Industry \times Multi-Factor Trade Model

International Trade (PhD), Fall 2019

Ahmad Lashkaripour

Indiana University

Overview

- In this lecture,I present a multi-industry trade model that features multiples types of workers.
- The model is often labeled the Ricardo-Roy model as it features:
 - specialization across industries à la Ricardo
 - allocation of workers across industries à la Roy
- Main implications
 - The overall gains from trade are larger...
 - ... but trade creates winners and losers.
- Main References:
 - parametric R-R model: Galle, Rodriguez-Clare, Yi (2018)
 - non-parametric R-R model: Costinot and Vogel (2015, ARE)

Environment

- j, i = 1, ..., N countries
- k = 1, ..., K industries
- Labor is the only factor of production
- g = 1, ..., G groups of workers
- $\overline{L}_{i,g}$ denotes the total number of group g workers in Country i.

Environment

- j, i = 1, ..., N countries
- k = 1, ..., K industries
- Labor is the only factor of production
- g = 1, ..., G groups of workers
- $\bar{L}_{i,g}$ denotes the total number of group g workers in Country i.

Overview

- Demand/Supply of final goods is governed by a multi-industry gravity model (to fix minds, I adopt the *Eaton-Kortum* interpretation).
- Departures from the standard multi-industry model:
 - different workers have different abilities.
 - different industries in a given country pay different wages.
 - workers sort into industries in order to maximize their productivity×wage à la Roy.

Demand for Final Goods

- Cobb-Douglas utility aggregator across industries:

$$u_{i}\left(\boldsymbol{Q}\right)=\sum_{k}Q_{k}^{\beta_{i,k}}$$

 \implies a constant fraction $\beta_{i,k}$ of income is spent on industry k goods.

– There are a continuum of goods $\omega \in \Omega_k$ within industry k, and the utility aggregator across these goods is CES:

$$Q_{k}(\mathbf{q}) = \left(\int_{\omega \in \Omega_{k}} q(\omega)^{\frac{\sigma_{k}-1}{\sigma_{k}}} d\omega\right)^{\frac{\sigma_{k}}{\sigma_{k}-1}}$$

Supply of Final Goods (Eaton & Kortum, 2002)

– The price at which country j can supply good $\omega\in\Omega_k$ to market i

 $p_{ji,k}(\omega) = \tau_{ji,k} w_{j,k} / z_{j,k}(\omega)$

where $z(\omega)$'s are *Fréchet-distributed*: $Pr\{z_{j,k}(\omega) \leq z\} = \exp(-T_{j,k}z^{-\theta})$.

– Country i buys good ω from the cheapest supplier \implies the share of country i's spending on country j goods is

$$\lambda_{ji,k}(\boldsymbol{w}_{k}) = \frac{T_{j,k} \left(\tau_{ji,k} w_{j,k}\right)^{-\theta_{k}}}{\sum_{\ell} T_{\ell,k} \left(\tau_{\ell i,k} w_{\ell,k}\right)^{-\theta_{k}}}$$

where $w_k \equiv \{w_{j,k}\}$ is a vector describing the wage per efficiency units across different countries in industry k.

Demand for Labor

– Demand for labor efficiency units in industry k of country \ensuremath{i}

$$\mathsf{E}_{i,k}^{\mathcal{D}}(\boldsymbol{w}_{k}) \equiv \frac{1}{w_{i,k}} \sum_{j=1}^{N} \lambda_{ij,k} \left(\boldsymbol{w}_{k}\right) \beta_{j,k} Y_{j}$$

Demand for Labor

– Demand for labor efficiency units in industry k of country \ensuremath{i}

$$\mathsf{E}_{i,k}^{\mathcal{D}}(\boldsymbol{w}_{k}) \equiv \frac{1}{w_{i,k}} \underbrace{\sum_{j=1}^{N} \lambda_{ij,k}\left(\boldsymbol{w}_{k}\right) \beta_{j,k} Y_{j}}_{total \; industry-wide \; sales}$$

Demand for Labor

– Demand for labor efficiency units in industry k of country \ensuremath{i}

$$\mathsf{E}_{i,k}^{\mathcal{D}}(\boldsymbol{w}_{k}) \equiv \frac{1}{w_{i,k}} \underbrace{\sum_{j=1}^{N} \lambda_{ij,k}\left(\boldsymbol{w}_{k}\right) \beta_{j,k} Y_{j}}_{\text{total industry-wide sales}}$$

- The above equation follows from the fact that

Total Sales = Total Wage Payments = $w \times eff$. units

Supply of Labor: Roy Model

- There is a constant measure $\overline{L}_{i,g}$ of group g workers in country i.
- Each individual ι from group g independently draws an efficiency vector $z(\iota) = \{z_1(\iota), ..., z_K(\iota)\}$ from the following GEV distribution:

$$F_{i,g}(z) = \exp\left(-\sum_{k=1}^{K} a_{i,kg} z_k^{-\kappa_g}\right)$$

 Discrete choice problem facing individual : choose an industry where wage income is maximized so that

indidviual i's income = max{ $w_{i,1}z_1(\iota), ..., w_{i,K}z_K(\iota)$ }

Supply of Labor: Roy Model

– Theorem of Extreme Value \implies share of group g workers in country i

that choose to work in industry k is

$$\pi_{i,kg}(\boldsymbol{w}_i) = \frac{a_{i,kg} w_{i,k}^{\kappa_g}}{\sum_{s} a_{i,sg} w_{i,s}^{\kappa_g}}$$

- Intuition: workers are more likely to choose
 - industries where they are inherently more capable in (high- $a_{i,kq}$)
 - industries that pay higher wages (high- $w_{i,k}$).

– The total supply of efficiency units by group g workers to industry k:

$$\mathsf{E}_{i,kg}^{S} = \pi_{i,kg}(\boldsymbol{w}_{i})\boldsymbol{e}_{i,kg}(\boldsymbol{w}_{i})\bar{\mathsf{L}}_{i,g}$$

- The total supply of efficiency units by group g workers to industry k:

$$E_{i,kg}^{S} = \pi_{i,kg}(\boldsymbol{w}_{i}) \underbrace{e_{i,kg}(\boldsymbol{w}_{i})}_{\text{avg. productivity}} \bar{L}_{i,g}$$

- The total supply of efficiency units by group g workers to industry k:

$$E_{i,kg}^{S} = \pi_{i,kg}(\boldsymbol{w}_{i}) \underbrace{\underbrace{e_{i,kg}(\boldsymbol{w}_{i})}_{avg. \text{ productivity}}}_{\text{avg. productivity}} \bar{L}_{i,g}$$

where

$$e_{i,kg}(\boldsymbol{w}_i) = a_{i,kg}\pi_{i,kg}(\boldsymbol{w}_i)^{-\frac{1}{\kappa_g}}$$

- **Intuition:** a higher $\pi_{i,kg}$ means that more group g workers are choosing industry k, which implies that less productive individuals are choosing industry k presumably dues to higher wages \implies lower avg. productivity.

– The total supply of efficiency units by group g workers to industry k:

$$E_{i,kg}^{S} = \pi_{i,kg}(\boldsymbol{w}_{i}) \underbrace{\underbrace{e_{i,kg}(\boldsymbol{w}_{i})}_{avg. \text{ productivity}}}_{\text{avg. productivity}} \bar{L}_{i,g}$$

where

$$e_{i,kg}(\boldsymbol{w}_i) = a_{i,kg}\pi_{i,kg}(\boldsymbol{w}_i)^{-\frac{1}{\kappa_g}}$$

 A limitation of the model: the avg. income of group g workers is equalized across industries:

$$y_{i,g} = w_{i,k}e_{i,kg} = \left(\sum_{k} a_{i,kg}w_{i,k}^{\kappa_g}\right)$$

Labor Market Clearing Condition

– Equilibrium is a $N\times K$ vector of wage, $w\equiv\{w_{i,k}\}$ that satisfy $N\times K$

labor market clearing conditions:

$$\sum_{g} e_{i,kg}(\boldsymbol{w}_{i}) \pi_{i,kg}(\boldsymbol{w}_{i}) \bar{L}_{i,g} = \frac{1}{w_{i,k}} \sum_{j} \lambda_{ij,k}(\boldsymbol{w}_{k}) \beta_{j,k} Y_{j}$$

– Total income income in country i is given by

$$Y_{i}(\boldsymbol{w}_{i}) = \sum_{k} \sum_{g} w_{i,k} e_{i,kg}(\boldsymbol{w}_{i}) \pi_{i,kg}(\boldsymbol{w}_{i}) \bar{L}_{i,g}$$

Labor Market Clearing Condition

– Equilibrium is a $N \times K$ vector of wage, $w \equiv \{w_{i,k}\}$ that satisfy $N \times K$ labor market clearing conditions:

$$\underbrace{\sum_{g} e_{i,kg}(\boldsymbol{w}_{i})\pi_{i,kg}(\boldsymbol{w}_{i})\bar{L}_{i,g}}_{\text{Supply}} = \underbrace{\frac{1}{\boldsymbol{w}_{i,k}}\sum_{j}\lambda_{ij,k}(\boldsymbol{w}_{k})\beta_{j,k}Y_{j}(\boldsymbol{w}_{j})}_{\text{Demand}}$$

– Total income income in country i is given by

$$Y_{i}(\boldsymbol{w}_{i}) = \sum_{g} y_{i,g}(\boldsymbol{w}_{i}) \bar{L}_{i,g}$$

where
$$y_{i,g} = \left(\sum_{k} a_{i,kg} w_{i,k}^{\kappa_g}\right)$$
.

Welfare Analysis

– The avg. real income per worker in group g is

$$W_{i,g} = \frac{y_{i,g}}{\prod_{k=1}^{K} P_{i,k}^{\beta_{i,k}}}$$

Welfare Analysis

– The avg. real income per worker in group g is

$$W_{i,g} = \frac{y_{i,g}}{\prod_{k=1}^{K} P_{i,k}^{\beta_{i,k}}}$$

- Change in welfare due to some international shocks:

$$\hat{W}_{i,g} = \prod_{k} \left(\frac{\hat{w}_{i,k}}{\hat{P}_{i,k}} \frac{\hat{y}_{i,g}}{\hat{w}_{i,k}} \right)^{\beta_{i,k}} = \prod_{k} \hat{\lambda}_{ii,k}^{-\frac{\beta_{i,k}}{\theta_k}} \hat{\pi}_{i,kg}^{-\frac{\beta_{i,k}}{\kappa_g}}$$

Total Income

– Change in aggregate welfare

$$\hat{W}_{i} \equiv \frac{\hat{Y}_{i}}{\hat{P}_{i}} = \sum_{g \in G_{i}} \frac{Y_{i,g}}{Y_{i}} \hat{W}_{i,g}$$

– Plugging the expression for $\hat{W}_{i,g}$ into the above equation yields

$$\hat{W}_{i} = \prod_{k} \left(\hat{\lambda}_{ii,k}^{-\frac{\beta_{i,k}}{\theta_{k}}} \right) \cdot \left(\sum_{g} \frac{Y_{i,g}}{Y_{i}} \prod_{k} \hat{\pi}_{i,kg}^{-\frac{\beta_{i,k}}{\kappa_{g}}} \right)$$

Special Case: $\kappa_g\approx 1$

 $\begin{array}{l} - \mbox{ If } \kappa_g = \kappa \approx 1 \Longrightarrow \mbox{ the present model becomes isomorphic to a specific factor model (i.e., there is a fixed supply of efficiency units by group g workers to industryk <math display="inline">E^{S}_{i,kg} = \mathfrak{a}_{i,kg} \bar{L}_{i,g}) \end{array}$

– The effect of an international shocks on group ${\mathfrak g}$ workers relative to

the rest of the economy:

$$\frac{\hat{W}_{i,g}}{\hat{W}_{i}} \approx \left(\sum_{k} \pi_{i,kg} \hat{r}_{i,k}\right)^{\frac{1}{k}}$$

Intuition: group g workers incur a loss if they are mainly employed in shrinking (low-r̂) industries!

Proposition (Galle, Rodruguez-Clare, Yi, 2018)

Assume that $\kappa_q = \kappa$ for all g, then the aggregate gains from trade are

strictly higher than those that arise in the single factor model (which corresponds the special case where $\kappa\to\infty$)

Proposition (Galle, Rodruguez-Clare, Yi, 2018)

Assume that $\kappa_q = \kappa$ for all g, then the aggregate gains from trade are

strictly higher than those that arise in the single factor model (which corresponds the special case where $\kappa \to \infty$)

$$\hat{W}_{i} = \prod_{k} \left(\hat{\lambda}_{ii,k}^{-\frac{\beta_{i,k}}{\theta_{k}}} \right) \cdot \left(\sum_{g} \frac{Y_{i,g}}{Y_{i}} \prod_{k} \hat{\pi}_{i,kg}^{\frac{\beta_{i,k}}{\kappa}} \right) \quad > \underbrace{\prod_{k} \left(\hat{\lambda}_{ii,k}^{-\frac{e_{i,k}}{\theta_{k}}} \right)}_{\text{GT in single factor model}}$$

Performing Counterfactuals using Exact Hat-Algebra

– If the economy is exposed to a change in trade costs, $\{\hat{\tau}_{ji,k}\}$ and/or technology levels $\{\hat{T}_{j,k}\} \Longrightarrow$ counterfactual outcomes can be solved

using the following system of NK equations and unknowns:

$$\sum_{g} \hat{\pi}_{i,kg} \left(\hat{\boldsymbol{w}} \right)^{1-\frac{1}{\kappa_{g}}} Y_{i,gk} = \frac{1}{\hat{\boldsymbol{w}}_{i,k}} \sum_{j} \hat{\lambda}_{ij,k} \lambda_{ij,k} \left(\hat{\boldsymbol{w}} \right) \beta_{j,k} \hat{Y}_{j} \left(\hat{\boldsymbol{w}} \right) Y_{j}$$

where

$$\begin{cases} \hat{Y}_{i}(\hat{\boldsymbol{w}})Y_{i} = \sum_{g} \left(\sum_{k} \pi_{i,kg} \hat{w}_{i,k} \kappa_{g}\right) Y_{i,g} \\ \hat{\pi}_{i,kg}\left(\hat{\boldsymbol{w}}\right) = \frac{\hat{w}_{i,k} \kappa_{g}}{\sum_{s} \pi_{i,sg} \hat{w}_{i,s} \kappa_{g}} \\ \hat{\lambda}_{ij,k}\left(\hat{\boldsymbol{w}}\right) = \frac{\hat{T}_{j,k} \left(\hat{\tau}_{ji,k} \hat{w}_{j,k}\right)^{-\theta_{k}}}{\sum_{\ell} \lambda_{\ell i,k} \hat{T}_{\ell,k} \left(\hat{\tau}_{\ell i,k} \hat{w}_{j,k}\right)^{-\theta_{k}}} \end{cases}$$

Application I: The Effect of \hat{T}_{China}^{1}

Table 2: The Welfare Effects of the China Shock on the US

κ	Aggregate	Mean	CV	Min.	Max.	ACR
$\rightarrow 1$	0.24	0.30	1.40	-1.73	2.32	0.14
1.5	0.22	0.27	1.16	-1.42	1.64	0.15
3	0.20	0.24	0.80	-0.90	0.97	0.16
$\rightarrow \infty$	0.20	0.20	0	0.20	0.20	0.20

- $\hat{T}_{\text{China},k}$ is inferred from China's export growth to global markets.
- A worker group g is defined as a group of workers residing in one of the 722 commuting zones in the US.

¹Source: Galle, Rodriguez-Clare, Yi, 2018.

Application I: The Effect of \hat{T}_{China}

Figure 1: Geographical distribution of the welfare gains from the rise of China

Application II: The Gains from Trade

Table 3: Aggregate and Group-level Gains from Trade

κ	Aggregate	Mean	CV	Min.	Max.	ACR
$\rightarrow 1$	1.61	1.65	0.82	-6.98	3.72	1.45
1.5	1.56	1.59	0.58	-4.19	2.97	1.45
3	1.51	1.52	0.31	-1.38	2.22	1.45
$\rightarrow \infty$	1.45	1.45	0	1.45	1.45	1.45

– The gains are calculated by setting $\hat{\tau}_{iUSA,k} \rightarrow \infty.$

 A worker group g is defined as a group of workers residing in one of the 722 commuting zones in the US.

Application II: The Gains from Trade

Figure 5: Geographical Distribution of the Gains from Trade

