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Abstract

Trade restrictions are often used as (a) a first-best policy to manipulate the terms-of-
trade or (b) a second-best policy to correct misallocation in domestic industries. We an-
alyze the (in)effectiveness of trade restrictions at achieving these goals. To this end, we
derive sufficient statistics formulas for first-best and second-best trade taxes in an important
class of multi-industry, multi-country trade models where misallocation occurs due to scale
economies or profit-generating markups. We discipline our formulas by estimating the key
parameters that govern the gains from trade and industrial policy in open economies. Our
estimates reveal that (i) trade policy is remarkably ineffective at correcting misallocation in
domestic industries, reflecting a deep tension between allocative efficiency and terms-of-
trade. (ii) Unilateral adoption of corrective industrial policies is also ineffective as it causes
immiserizing growth. But (iii) industrial policies that are coordinated via a deep agreement
are more transformative than any unilateral policy intervention.

1 Introduction

The United States will likely adopt an explicit industrial policy in the coming decade. Sim-
ilar developments are well underway in other countries (Aiginger and Rodrik (2020)). And
with industrial policy back on the scene, we are witnessing a revival of old-but-questionable
trade policy practices. Governments are often turning to protectionist trade policy measures
to pursue their industrial policy objectives—as manifested by the United States National Trade
Council’s mission or the Chinese, Made in China 2025 initiative.1

*We are grateful to James Anderson, Adina Ardelean, Dominick Bartelme, Kerem Cosar, Arnaud Costinot,
Farid Farrokhi, Harald Fadinger, Fabio Ghironi, David Hummels, Kala Krishna, Konstantin Kucheryavyy, Danial
Lashkari, Nuno Limao, Gary Lyn, Ralph Ossa, James Rauch, Andrés Rodríguez-Clare, Kadee Russ, Peter Schott,
Alexandre Skiba, Anson Soderbery, Robert Staiger, Jonathan Vogel and conference participants at the Midwest
Trade Meetings, Chicago Fed, UECE Lisbon Meetings, 2017 NBER ITI Summer Institute, 2019 WCTW, Indiana
University, Purdue University, SIU, IBA, Boston College, University of Mannheim, and University of Michigan for
helpful comments and suggestions. We thank Nicolas de Roux and Santiago Tabares for providing us with data
on the Colombian HS10 product code changes over time. We are grateful to Fabio Gomez for research assistance.
Lugovskyy thanks Indiana University SSRC for financial support. All errors are our own.

1See Bhagwati (1988) and Irwin (2017) for a historical account of trade restrictions being used by governments
to promote their preferred industries. A prominent example dates back to 1791, when Alexander Hamilton ap-
proached Congress with “the Report on the Subject of Manufactures,” encouraging the implementation of protective
tariffs and industrial subsidies. These policies were intended to help the US economy catch up with Britain.
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These developments have sparked new interest in old-but-open questions regarding trade
and industrial policy. For instance: (i) Is trade policy an effective tool for correcting misalloca-
tion in the domestic economy? (ii) If not, should governments undertake unilateral domestic
policy interventions to correct misallocation? or (iii) should they coordinate their industrial
policies via a deep trade agreement?

To answer these questions, we characterize optimal trade and industrial policies in an im-
portant class of multi-industry, multi-country quantitative trade models where misallocation
occurs due to scale economies or profit-generating markups. Guided by theory, we estimate
the key parameters that govern the welfare consequences of trade and industrial policy in
open economies. We then combine our estimated parameters with optimal policy formulas to
quantify the ex-ante gains from trade and industrial policy among 43 major countries.

Our estimation reveals that trade policy is remarkably ineffective at correcting misallo-
cation, reflecting a deep tension between allocative efficiency and terms of trade. Unilateral
adoption of corrective industrial policies can also backfire as it often triggers immiserizing
growth. These considerations, we argue, may have spurred a global race to the bottom, wherein
governments either avoid corrective industrial policies or pair them with hidden trade bar-
riers. A deep agreement can remedy this problem and deliver welfare gains that are more
transformative than any unilateral policy intervention.

Section 2 presents our theoretical framework. Our baseline model is a generalized multi-
industry Krugman (1980) model that features a non-parametric utility aggregator across indus-
tries and a nested CES utility aggregator within industries. This specification has an appealing
property wherein the degrees of firm-level and country-level market love-for-variety can di-
verge. We analyze both the restricted and free entry cases of the model to distinguish between
the short-run and long-run consequences of policy. With a reinterpretation of parameters, our
baseline framework also nests (a) the multi-industry Melitz (2003)-Pareto model, and (b) the
multi-industry Eaton and Kortum (2002) model with industry-level Marshallian externalities.
We later extend our baseline model to accommodate non-parametric input-output linkages.

Section 3 derives sufficient statistics formulas for first-best and second-best trade and indus-
trial policies. Unilaterally optimal policies in our framework pursue two objectives: First, they
seek to improve the home country’s terms-of-trade (ToT) vis-à-vis the rest of the world. Sec-
ond, they seek to restore allocative efficiency in the domestic economy by reallocating workers
towards high-returns to scale or high-profit industries.

The first-best optimal policy consists of misallocation-blind import tariffs and export subsi-
dies that solely maximize ToT gains. Allocative efficiency under the first-best policy is restored
via domestic Pigouvian subsidies.2 While these insights resonate with the targeting principle,
our optimal policy formulas have other implications worth highlighting. First, even though
1st-best trade policies are blind to misallocation (the dispersion in scale elasticities), they de-
pend on the overall strength of scale economies (the level of scale elasticities). Second, optimal
import tariffs are also input-output-blind when export subsidies are assigned optimally.

Our second-best trade policy formulas attain relevance when governments are reluctant to
use industrial subsidies to correct misallocation—the root of which could be political pressures

2The optimal subsidy rate in each industry equals the inverse of the industry-level scale elasticity or markup.
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or institutional barriers.3 Second-best trade tax-cum-subsidies are composed of two compo-
nents: a neoclassical ToT-improving component and a misallocation-correcting component.
The former seeks to restrict relative exports in nationally-differentiated industries. The latter
seeks to restrict imports and promote exports in high-returns-to-scale industries, mimicking
the first-best Pigouvian subsidies.

Section 4 argues that, in empirically-relevant circumstances, second-best trade policies
have difficulty striking a balance between ToT-improving and misallocation-correcting objec-
tives. Put differently, trade policy interventions that seek to improve the ToT exacerbate mis-
allocation and vice versa. This tension diminishes the possible gains from second-best trade
policies to a considerable degree. In some canonical cases, optimal second-best trade policies
are even industry-blind—unable to beneficially correct inter-industry misallocation or manip-
ulate the ToT on an industry-by-industry basis.

Another consequence of this tension is that unilateral adoption of scale- or markup-correcting
industrial policies can cause immiserizing growth and harm welfare. The logic is that unilateral
and unreciprocated implementation of corrective policies severely worsens a country’s ToT.4

Shallow trade agreements, as a result, may prove insufficient for reaching global efficiency.
Once governments agree to abandon inefficient trade restrictions under a shallow agreement,
they become tangled in a coordination game involving corrective industrial policies. The out-
come of this game is a race to the bottom where no government is willing to implement correc-
tive industrial policies without violating their commitment to zero trade restrictions. A deep
agreement can remedy this problem.

To put these matters in perspective, Section 6 estimates the structural parameters necessary
for ex-ante policy evaluation. Our optimal policy formulas reveal that policy outcomes depend
on a set of sufficient statistics consisting of observables and two set of parameters. Namely, (i)
industry-level trade elasticities that govern the scope for ToT manipulation, and (ii) industry-
level scale elasticities that govern the extent of misallocation. We develop a new methodology
that simultaneously estimates these parameters using transaction-level trade data.

The scale elasticity parameters in our generalized Krugman (1980) model reflect the extent
of love-for-variety—the social benefits of which are not internalized by firms’ entry decisions.
The trade elasticities reflect the degree of national product differentiation. Both parameters
can be recovered from firm-level demand parameters, which we estimate by fitting a structural
firm-level demand function to the universe of Colombian import transactions covering over
225,000 firms from 251 countries. A crucial advantage of our approach is its ability to separately
identify the firm-level degree of product differentiation (that dictates the scale elasticity) from
the national-level degree (that determines the trade elasticity).

The firm-level nature of our demand estimation subjects us to a less familiar identification
challenge. Traditional estimations of import demand are often conducted with country-level
data and use the variation in tariffs to identify demand parameters. This identification strategy

3Trade policy has been regularly used—in place of domestic industrial policy—to promote critical industries
(Bhagwati (1988); Harrison and Rodríguez-Clare (2010); Irwin (2017)). Relatedly, see Lane (2020) for a historical
account of various industrial policy practices around the world.

4To be clear, this is true when the scale and trade elasticity are negatively correlated across industries, which is
consistent with our estimation of these elasticities.
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is unsuitable for firm-level demand estimation as tariffs do not vary across firms from the same
country. To navigate this issue, we construct a shift-share instrument that combines monthly
exchange rate movements with lagged monthly export sales to measure exposure to exchange
rate shocks at the firm-product-year level.

Section 7 combines our micro-level estimates, our optimal policy formulas, and macro-level
data from the 2014 World Input-Output Database to quantify the ex-ante gains from policy
among 43 major economies. Our analysis delivers three main findings.

First, we find that trade policy is remarkably ineffective at correcting misallocation in the
domestic economy—even without factoring in the cost of retaliation by trading partners. Un-
der free entry, second-best export subsidies and import taxes can raise the average country’s
real GDP by only 1.19%, which amounts to less than 4/10 of the gains attainable under the uni-
laterally first-best policy. Third-best import taxes are even less effective as a standalone policy,
raising real GDP by a mere 0.63%. These findings corroborate the argument that trade policy
has difficulty striking a balance between ToT and misallocation-correcting objectives.

Second, unilateral adoption of corrective industrial policies triggers severe immiserizing
growth in most countries. The average country’s real GDP declines by 2.7% if they implement
scale-correcting subsidies without reciprocity by trading partners. Aversion to these conse-
quences, we argue, we may have spurred a global race to the bottom in industrial policy im-
plementation. To escape immiserizing growth, governments either avoid corrective policies or
pair them with hidden trade barriers that breach shallow trade cooperation.5

Third, deep agreements can remedy the race to the bottom and deliver welfare gains that
are more transformative than any unilateral intervention. To offer some perspective, corrective
industrial policies coordinated via a deep agreement can elevate the average country’s real
GDP by 3.2%. These welfare gains rival the already-realized gains from shallow agreements for
most countries. They, moreover, exceed any welfare gains achievable through unilateral trade
or industrial policy interventions—even not considering that unilateralism often backfires in
the form of retaliation by trading partners.

Related Literature—Our theory relates to an emerging literature on optimal policy in distorted
open economies. In a concurrent paper, Bartelme, Costinot, Donaldson, and Rodriguez-Clare
(2019) characterize the first-best optimal policy for a small open economy in a multi-sector Ri-
cardian model with Marshallian externalities. Relatedly, Haaland and Venables (2016) charac-
terize optimal policy for a small open economy in two-by-two Krugman and Melitz models.6

Beyond optimal policy, Campolmi, Fadinger, and Forlati (2018) employ a two-sector Melitz-
Pareto model to elucidate the trade-offs facing countries that join shallow and deep trade
agreements.7 Our analysis of second-best trade policies speaks to an older literature empha-
sizing the firm-delocation rationale for trade restrictions (e.g., Venables (1987); Ossa (2011)),

5The Chinese government, for instance, pairs its domestic subsidies with hidden export taxes. These hidden
barriers are applied via partial value-added tax rebates and are designed to restore China’s ToT (Garred (2018)).

6Demidova and Rodriguez-Clare (2009) and Felbermayr, Jung, and Larch (2013) characterize optimal tariffs in
a single industry Melitz-Pareto model. The single industry assumption ensures that markets are efficient (Dhingra
and Morrow (2019)) and import and export taxes are equivalent (the Lerner symmetry). So, the unilaterally first-
best can be reached with import tariffs alone. Costinot, Rodríguez-Clare, and Werning (2016) examine optimal
policy in the single industry Melitz-Pareto model from a different lens, characterizing optimal firm-level taxes.

7Other papers have also used new or quantitative trade models to analyze piecemeal policy reforms in distorted
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and supplements Bagwell and Staiger’s (2001; 2004) result about the role of trade agreements
in distorted economies. We also build on Kucheryavyy, Lyn, and Rodríguez-Clare (2016) to
establish isomorphism between our baseline model and other workhorse models in the liter-
ature. Our quantitative examination of trade and industrial policy connects to two strands of
literature. First, a mature line of research measuring the ex-post consequences of tariff cuts
(Costinot and Rodríguez-Clare (2014); Caliendo and Parro (2015); Ossa (2014, 2016); Spearot
(2016)). Second, a growing literature examining the ex-ante consequences of optimal policy.
Ossa (2014), most notably, quantifies the consequences of cooperative and non-cooperative im-
port tariffs in a multi-industry Krugman model with restricted entry. Lastly, our work relates
to a vibrant literature examining the impacts of exogenous trade shocks in distorted economies
(e.g., De Blas and Russ (2015); Edmond, Midrigan, and Xu (2015); Baqaee and Farhi (2019)).

We contribute to the calculus of optimal policy in open economies by developing a new
dual technique for optimal policy derivation in general equilibrium quantitative trade models
with many countries, increasing returns-to-scale production technologies, and input-output
linkages. Our approach has applications beyond those considered in this paper. Lashkaripour
(2020b), for instance, adopts a special case of this technique to characterize Nash tariffs in a mo-
nopolistic competition model with restricted entry.8 Farrokhi and Lashkaripour (2021) extend
this technique to analyze optimal carbon pricing under international climate externalities. We
also contribute to the broader quantitative trade literature by developing an estimation tech-
nique that separately identifies the scale elasticity from the trade elasticity. Our demand-side
approach complements the supply-side approach concurrently proposed by Bartelme et al.
(2019). The main limitation of our demand-side approach is its inability to detect scale exter-
nalities unrelated to love-for-variety. Our approach, nevertheless, has the advantage of sepa-
rately identifying the trade elasticity from the scale elasticity and is robust to the presence of
quasi-fixed production inputs.

2 Theoretical Framework

Our baseline model is a generalized multi-industry, multi-country Krugman model with
semi-parametric preferences. In Section 5 we show that our theory readily applies to alterna-
tive models featuring firm-selection à la Melitz–Chaney and external economies of scale à la
Kucheryavyy et al. (2016). We also extend our theory later to accommodate arbitrary input-
output networks and political economy pressures.

We consider a world economy consisting of multiple countries and industries. Countries
are indexed by of i, j, n ∈ C. Industries are indexed by g, k ∈ K. Industries can differ in
fundamentals such as the degree of scale economies or trade elasticity. Each country i ∈ C

is populated by Li individuals who supply one unit of labor inelasticity. Labor is the sole
primary factor of production in each economy. Workers cannot relocate between countries but

economies or optimal policy in non-distorted economies—e.g., Costinot and Rodríguez-Clare (2014); Campolmi,
Fadinger, and Forlati (2014); Costinot, Donaldson, Vogel, and Werning (2015); Bagwell and Lee (2018); Caliendo,
Feenstra, Romalis, and Taylor (2015); Demidova (2017); Beshkar and Lashkaripour (2019, 2020).

8Lashkaripour (2020b) examines the cost of non-cooperative import restrictions when governments simulta-
neously apply their 3rd-best optimal import tariffs. To expedite the computational process, Lashkaripour (2020b)
uses analytic formulas for Nash tariffs, which correspond to a special of our Theorem 3.
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are perfectly mobile across industries within a country, and are paid a country-wide wage, wi.

2.1 Preferences

Each good in our model is indexed by a triplet, which signifies its location of production
(origin), it location of final consumption (destination), and the industry under which the good
is classified. To give an example: Good “ji, k” denotes a good corresponding to origin country
j–destination country i–industry k.

Cross-Industry Demand. The representative consumer in country i ∈ C faces a vector of
industry-level consumer price indexes P̃i = {P̃i,k}, where index P̃i,k ≡ P̃i,k(P̃1i,k, ..., P̃Ni,k) aggre-
gates over industry k goods sourced from various origins. The consumer choses their demand
for industry-level bundles Qi ≡ {Qi,k} to maximize a non-parametric utility function subject to
a budget constraint. This choice yields an indirect utility, which is a function of the consumer’s
income, Yi, and the vector of industry-level “consumer” price indexes in market i, P̃i:

Vi
(
Yi, P̃i

)
= max

Qi

Ui(Qi) s.t. ∑
k∈K

P̃i,kQi,k = Yi. (1)

Throughout this paper, the tilde notation on price is used to distinguish between “consumer”
and “producer” prices. The former includes taxes, whereas the latter does not. Problem 1
yields an industry-level Marshallian demand function, which we denote by Qi,k = Di,k

(
Yi, P̃i

)
.

This function tracks how (given prices and total income) consumers allocate their expenditure
across industries. A special case of our general cross-industry demand function is the Cobb-
Douglas case, wherein Ui(Qi) = ∏k∈K Qei,k

i,k implying that Qi,k = ei,kYi/P̃i,k.

Within-Industry Demand. Each industry-level bundle aggregates over various origin-specific
composite varieties: Qi,k ≡ Qi,k(Q1i,k, ..., QNi,k). Each origin-specific composite variety, itself,
aggregates over multiple firm-level varieties: Qji,k ≡ Qji,k(qji,k), where qji,k =

{
qji,k (ω)

}
ω∈Ωj,k

is a vector with each element qji,k (ω) denoting the quantity consumed of firm ω’s output.9

We assume that the within-industry utility aggregator, has a nested-CES structure, which en-
ables us to abstract from variable markups and direct our attention to the scale-driven and
profit-shifting effects of policy.

Assumption (A1). The within-industry utility aggregator is nested-CES. In particular,

Qi,k =

(
∑
j∈C

Q
σk−1

σk
ji,k

) σk
σk−1

, where Qji,k =

(∫
ω∈Ωj,k

φji,k(ω)
1

γk qji,k (ω)
γk−1

γk dω

) γk
γk−1

,

with γk ≥ σk > 1 and φji,k(ω) > 0 corresponding to a constant variety-specific taste shifter.

Based on (A1), the demand for the composite national-level variety ji, k (origin country j–
destination country i–industry k) is given by

Qji,k =
(

P̃ji,k/P̃i,k
)−σk Qi,k, (2)

where P̃ji,k and P̃i,k respectively denote the origin-specific and industry-level CES price in-

9Ωj,k denotes the set of all firms operating in origin j–industry k. In our baseline model, firms do not incur fixed
exporting cost, so each firms in Ωj,k serves market i. We relax this assumption in Section 5.
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dexes.10 Recall that Qi,k denotes industry-level demand, which is given by Qi,k = Di,k
(
Yi, P̃i

)
.

The demand facing individual firms from country j is, accordingly, given by

qji,k (ω) = φji,k(ω)

(
p̃ji,k (ω)

P̃ji,k

)−γk
(

P̃ji,k

P̃i,k

)−σk

Di,k
(
Yi, P̃i

)
. (3)

Importantly, the above parameterization of demand allows for the firm-level and national-level
degrees of market power to diverge. γk governs the degree of firm-level market power and
love-for-variety, while σk governs the degree of national-level market power in industry k.

Elasticity of Demand Facing National-Level Varieties. Following Equation 2, the demand
for aggregate variety ji, k is a function of total income in market i, Yi, and the entire vector of
origin×industry-specific consumer price indexes in that market: Namely, Qji,k = Dji,k

(
Yi, P̃i

)
.

To keep track of changes in demand, we define the elasticity of demand for national-level
variety ji, k w.r.t. to the price of variety ni, g as follows:

ε
(ni,g)
ji,k ≡

∂ lnDji,k(Yi, P̃i)

∂ ln P̃ni,g
∼ price elasticity of demand

Under Cobb-Douglas preferences (i.e., zero cross-substitutability between industries), the national-
level demand elasticities are fully determined by the upper-tier CES parameter σk and national-
level expenditure shares. Specifically, ε

ȷi,g
ji,k = 0 if g ̸= k, while

ε ji,k ∼ ε
(ji,k)
ji,k = −1 − (σk − 1)(1 − λji,k); ε

(ȷi,k)
ji,k = (σk − 1)λȷi,k (ȷ ̸= j),

where λji,k ≡ P̃ji,kQji,k/ ∑ȷ P̃ȷi,kQȷi,k denotes the (within-industry) share of expenditure on ji, k.
In the presence of cross-substitutability between industries, the demand elasticity will feature
an additional term that accounts for cross-industry demand effects.

In our setup, optimal policy internalizes the entire matrix of own- and cross-demand elas-
ticities. To present our optimal policy formulas concisely, we use the following matrix notation
to track the elasticity of demand w.r.t. goods sourced from various origins and industries.

Definition (D1). Let K = |K| denote the number of industries. The K × K matrix E(ni)
ji describes the

elasticity of demand for origin j ∈ C goods w.r.t. the price of origin n ∈ C goods in market i:

E(ni)
ji ≡


ε
(ni,1)
ji,1 ... ε

(ni,K)
ji,1

...
. . .

...

ε
(ni,1)
ji,K · · · ε

(ni,K)
ji,K

 .

To simplify the notation, we use Eji ∼ E(ji)
ji to denote the elasticity of origin j goods w.r.t.

origin j prices, and use the K× (N − 1)K matrix, E(−ii)
ji =

[
E(ni)

ji

]
n ̸=i

, to summarize the elasticity

of demand for origin j goods w.r.t. price of all import varieties in market i (i.e., all varieties
source from any origin n ̸= i). Important for our analysis, Eji is an invertible matrix—the proof
of which is provided in Appendix E using the primitive properties of Marshallian demand.

10Namely, P̃ji,k =
(

∑ω∈Ωji,k
φji,k(ω) p̃ji,k (ω)1−γk

) 1
1−γk and P̃i,k =

(
∑j∈C P̃1−σk

ji,k

) 1
1−σk .
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2.2 Production and Firms

Each economy i ∈ C is populated with a mass Mi,k = |Ωi,k| of single-product firms in
industry k ∈ K that compete under monopolistic competition. Labor is the only factor of
production. Firm entry into industry k is either free or restricted. Under restricted entry, Mi,k =

Mi,k is invariant to policy. Under free entry, a pool of ex-ante identical firms can pay an entry
cost wi f e

k to serve industry k from origin i. After paying the entry cost, each firm ω ∈ Ωi,k draws
a productivity z(ω) ≥ 1 from distribution Gi,k (z), and faces a marginal cost τij,kwi/z (ω) for
producing and delivering goods to destination j ∈ C, where τij,k denotes a flat iceberg transport
cost. Collecting these assumptions, the “producer” price index of composite good ij, k (which
aggregates over firm-level varieties associated with origin i–destination j–industry k) is

Pij,k =
γk

γk − 1
τij,k āi,kwi M

− 1
γk−1

i,k , (4)

where āi,k ≡
[∫ ∞

1 zγk−1dGi,k(z)
] 1

1−γk denotes the average unit labor cost in origin i.11 Following

Kucheryavyy et al. (2016), we refer to 1
γk−1 = − ∂ ln Pij,k

∂ ln Mi,k
as the industry-level scale elasticity:

µk ≡
1

γk − 1
∼ scale elasticity ∼ markup

Considering Equation 4, µk represents both (a) the constant firm-level markup in industry
k (i.e., 1 + µk = γk

γk−1 ), and (b) the elasticity by which (variety-adjusted) TFP increases with
industry-level employment Li,k (noting that Li,k ∝ Mi,k).12 The equivalence between markup
and scale elasticity is not a universal property, but a specific feature of our baseline Krugman
model. We take advantage of this equivalence to simplify notation, but it is not essential for
the theoretical results that follow. As shown in Section 5, our analytical formulas for optimal
policy extend to alternative models where the scale elasticity and markup levels diverge.

Expressing Producer Prices in terms of Profit-Adjusted Wages

Our optimal policy analysis reveals a tight connection between the restricted and free entry
scenarios—even though misallocation stems from markup distortions in the former scenario
and scale distortions in the latter. To illustrate this connection and integrate optimal policy
results under free and restricted entry, we specify producer prices as a function of profit-
adjusted wage rates.13 The idea is that net profits (if any) are rebated back to workers. The
profit-adjusted wage rate in country i can be, accordingly, defined as

ẁi ≡ (1 + µi)wi ∼ profit-adjusted wage,

where µi denotes economy i’s average profit margin across all industries. Namely,

µi =


0 if entry is free
∑k∈K ∑j∈C

µk
1+µk

Pij,kQij,k

∑k∈K ∑j∈C
1

1+µk
Pij,kQij,k

if entry is restricted
. (5)

11Notice that āi,k is constant in our baseline model. This is no longer true in the Melitz (2003) extension of oue
model explored in Section 5, in which firms incur a fixed cost to serve individual markets.

12With free entry and constant markups, it follows immediately that Li,k = c̄i,k Mi,k where c̄i,k is a constant.
13We should emphasize that the profit-adjusted wage is not a conceptual artifact without empirical foundation.

It denotes a worker’s overall income, which consists of her wage supplemented by her share of national profits.
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Under free entry, profits are drawn to zero, resulting in µi = 0. Under restricted entry, the
average profit margin is positive and depends on the industrial composition of country i’s
output—with a higher µi reflecting more sales in high-markup (high-µ) industries. Appealing
to our definitions for ẁi and µk, we can reformulate Equation 4 to express producer prices as a
function of profit-adjusted wages:

Pij,k =

ϱij,k

[
∑j∈C τij,kQij,k

]− µk
1+µk ẁi if entry is free

ϱ′ij,k
1+µk
1+µi

ẁi if entry is restricted
. (6)

In the above formulation, ϱij,k ≡ (1+ µk)τij,k ā
1

1+µk
i,k

(
µk
f e
k

) −µk
1+µk and ϱ′ij,k ≡ τij,k āi,k M̄−µk

i,k are constant

price shifters; and ∑j∈C

[
τij,kQij,k

]
denotes origin i–industry k’s gross output.14 As we explain

shortly, the above formulation of producer prices is useful for tracking the gains from policy in
an open economy. The gains from firm-delocation channel through changes in ∑j∈C

[
τij,kQij,k

]
,

while the gains from profit-shifting channel through changes in µi.

2.3 The Instruments of Policy

The government in country i has is afforded a complete set of revenue-raising trade and
domestic policy instruments; namely,

i. import tax, tji,k, applied to all goods imported from origin j ̸= i in industry k;

ii. export subsidy, xij,k, applied to all goods sold to market j ̸= i in industry k;

iii. industrial subsidy, si,k, applied to industry k’s output irrespective of where it is sold.

Our specification of policy is quite flexible as it accommodates import subsidies or export
taxes (−1 ≤ t < 0 or −1 ≤ x < 0) as well as production taxes (−1 ≤ s < 0). We disregard
consumption taxes as they are redundant given the availability of the other tax instruments (see
Appendix A). There is a simple intuition behind this redundancy: Country i ∈ C has access to
2(N − 1) + 2 different tax instruments in each industry (where N ≡ |C| denotes the number of
countries). These 2(N − 1) + 2 tax instruments can directly manipulate 2(N − 1) + 1 consumer
price indexes: N − 1 export prices, N − 1 import prices, and one price associated with the
domestically-produced and consumed variety (namely, P̃ii,k). So, by construction, one of the
2(N − 1) + 2 tax instruments in each industry is redundant. Here, we treat the industry-level
consumption tax as a redundant instrument.15

The above tax instruments create a wedge between consumer price indexes, {P̃ji,k} and
producer price indexes, {Pji,k}, as follows:

P̃ji,k =
1 + tji,k

(1 + xji,k)(1 + sj,k)
Pji.k, ∀j, i ∈ C, k ∈ K. (7)

14Under free entry, the total cost of entry must equal gross profits across all markets. I particular,

wi f e
k Mi,k = ∑

j∈C

[
µk

1 + µk
Pij,kQij,k

]
(Free Entry Condition) .

Replacing Pij,k in the above equation with 4 yields Mi,k=
(

µk
f e
k

∑j

[
āij,kQij,k

]) 1
1+µk . Equation 6, then, follows from

plugging the expression for Mi,k back into Equation 4.
15With more than two countries (N > 2), Country i has access to 2(N − 1) + 2 instruments per industry. These

instruments can manipulate 2(N − 1) + 1 price variables, which implies the same redundancy.
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These tax instruments also generate/exhaust revenue for the tax-imposing country. The com-
bination of all taxes imposed by country i ∈ C produce a tax revenue equal to

Ri =

industrial subsidies︷ ︸︸ ︷
∑

k∈K

((
1

1 + si,k
− 1
)

Pii,kQii,k

)
+ ∑

k∈K

∑
j ̸=i

(
tji,k

(1 + xji,k)(1 + sj,k)
Pji,kQji,k +

[
1

(1 + xij,k)(1 + si,k)
− 1
]

Pij,kQij,k

)
︸ ︷︷ ︸

import taxes + export subsidies

. (8)

Tax revenues are rebated to the consumers in a lump-sum fashion. After we account for tax
revenues, total income in country i equals the sum of profit-adjusted wage payments, ẁiLi =

(1 + µi)wiLi, and tax revenues. Namely, Yi = ẁiLi +Ri, where Ri can be positive or negative
depending on whether country i’s policy consists of net taxes or subsidies.

2.4 General Equilibrium

For convenience, we refer to profit-adjusted wages as just wages going forward, using w ≡
{ẁi} to denote the global vector of wages. We also assume throughout the paper that the un-
derlying parameters of the model are such that the necessary and sufficient conditions for the
uniqueness of equilibrium are satisfied.16 To present our theory, we express all equilibrium
outcomes—except for wages—as a function of global taxes (x, t, and s), treating wages w as
given. As detailed in Appendix E, this formulation derives from solving a system that im-
poses all equilibrium conditions aside from the labor market clearing conditions. For future
reference, we outline this formulation of equilibrium variables below.

Notation. For a given vector of taxes and wages T = (t, x, s; w), equilibrium outcomes Yi(T), Pji,k(T),
P̃ji,k(T), Qji,k(T) are determined such that (i) producer prices are characterized by 6; (ii) consumer
prices are given by 7; (iii) industry-level consumption choices are a solution to 1 with demand for
national-level varieties, Qji,k, given by 2; and (iv) total income (which dictates total expenditure by
country i) equals profit-adjusted wage payments plus tax revenues:

Yi(T) = ẁiLi +Ri(T),

where tax revenues Ri(T) are described by Equation 8.

Considering the above formulation of equilibrium variables, welfare, too, can be expressed
as a function of taxes and wages as follows:

Wi (t, x, s; w) ≡ Vi
(
Yi(t, x, s; w), P̃i(t, x, s; w)

)
.

Note that w is itself an equilibrium outcome. So, a vector T = (t, x, s; w) is feasible insofar as w
is the equilibrium wage consistent with t, x, and s. Related to this point, our goal in this paper
is to study problems where the government in i choses T = (t, x, s; w) to maximize Wi (T)
subject to feasibility. So, to fix ideas, we define the set of feasible policy–wage vectors below.

Definition (D2). The set of feasible policy–wage vectors, F, consists of any vector T = (t, x, s; w) where

16Following Kucheryavyy et al. (2016), this assumption holds in the two country case if γk ≥ σk and holds
otherwise if trade costs are sufficiently small.
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w satisfies the labor market clearing condition in every country, given t, x, and s:

F =

{
T = (t, x, s; w) | ẁiLi = ∑

k∈K

∑
j∈C

[
Pij,k(T)Qij,k(T)

]
; ∀i ∈ C

}
.

There is a basic reason for why we formulate equilibrium outcomes as a function of T =

(t, x, s; w) instead of just (t, x, s). This choice of formulation allows us to articulate an important
intermediate result regarding tax neutrality. This result, which is stated below, simplifies our
theoretical derivation of optimal policy to a great degree.

Lemma 1. [Tax Neutrality] For any a and ã ∈ R+ (i) if T = (1+ ti, t−i,1+ xi, x−i, 1+ si, s−i; ẁi, w−i) ∈
F, then T′ = (a(1 + ti), t−i, a(1 + xi), x−i, 1

ã (1 + si), s−i; a
ã ẁi, w−i) ∈ F. Moreover, (ii) welfare is

preserved under T and T′: Wn(T) = Wn(T′) for all n ∈ C.

The above lemma is proven in Appendix B, and connects two fundamental tax neutrality
principles: The Lerner symmetry (Lerner (1936); Costinot and Werning (2019)) and the welfare-
neutrality of uniform subsidies or markups (Lerner (1934); Samuelson (1948)). Importantly,
Lemma 1 implies that there are multiple optimal tax combinations for each country i, which
simplifies our forthcoming task of characterizing optimal policy. To give some detail: The
contribution of general equilibrium wage and income effects to the optimal tax schedule is
often summarized by aggregate terms that are industry-blind. The neutrality established by
Lemma 1, simplifies the task of handling of these terms to a great degree.

Table 1: Summary of Key Variables

Variable Description

P̃ji,k Consumer price index (origin j–destination i–industry k)

Pji,k Producer price index (origin j–destination i–industry k)

Yi Total income in country i

Ri Total tax revenue in country i (Equation 8)

wi and ẁi pure and profit-adjusted wage rates in country i: ẁi = (1 + µi)wi

xji,k Export subsidy applied to good ji, k (if j ̸= i)

tji,k Import tax applied on good ji, k (if j ̸= i)

si,k Industrial subsidy applied to all goods from origin i–industry k

λji,k Within-industry expenditure share (good ji, k): P̃ji,kQji,k/ ∑ȷ P̃ȷi,kQȷi,k

rji,k Within-industry sales share (good ji, k): Pji,kQji,k/ ∑ι Pjι,kQjι,k

ei,k Industry-level expenditure share (destination i–industry k)

ρi,k Industry-level sales share (origin i–industry k)

µk industry-level markup ~ industry-level scale elasticity

µi Average profit margin in origin i (Equation 5)

σk Cross-national CES parameter ~ (1 + trade elasticity)

ε
(ni,g)
ji,k Elasticity of demand for good ji, k w.r.t. the price of ni, g

ωji,k Inverse of good ji, k’s supply elasticity (Equation 27)
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3 Sufficient Statistics Formulas for Optimal Policy

This section derives sufficient statistics formulas for optimal trade and industrial policies.
These formulas are later employed to quantify the ex-ante gains from policy among many
countries. Before proceeding to the derivation, let us highlight the two rationales for policy
intervention in our setup. A non-cooperative, welfare-maximizing government seeks to (i)
restrict trade and reap unexploited terms-of-trade (ToT) gains vis-à-vis the rest of the world,
and (ii) correct misallocation in the domestic economy. Misallocation, notice, stems from the
cross-industry heterogeneity in markups or scale elasticities, leading to inefficiently low output
in high-profit or high-returns-to-scale (high-µ) industries. A crucial difference between these
policy objectives is that ToT manipulation is inefficient from a global standpoint—as it disrupts
allocative efficiency to transfer surplus from the rest of the world to the tax-imposing country.

3.1 Efficient Policy from a Global Standpoint

As a useful benchmark, we first characterize the efficient policy from a global standpoint.
Efficient policies, by definition, are the solution to a central planner’s problem that maximizes
global welfare via taxes and lump-sum international transfers. Let δi denote the Pareto weight
assigned to country i in the planner’s objective function. The globally efficient policy solves
the following planning problem subject to the availability of lump-sum transfers:

max
(t,x,s;w)∈F

∑
i∈C

δi log Wi (t, x, s; w) .

Keep in mind that the above problem affords the planner enough instruments to obtain their
first-best. Good-specific taxes allow the planner to restore allocative efficiency, while lump-
sum transfers allow her to redistribute inter-nationally based on the Preto weights, δi. This
point is expanded on in Appendix F, were it is shown that the efficient tax policy involves zero
trade taxes and Pigouvian subsidies that restore marginal-cost-pricing globally:17

t⋆ji,k = x⋆ji,k = 0 ∀ji, k; 1 + s⋆i,k = 1 + µk ∀i, k (9)

The above characterization applies to both the free and restricted entry cases—with the under-
standing that µk assumes different interpretations in each case. Appealing to this result, Ap-
pendix E establishes a basic point about international cooperation: Welfare-maximizing gov-
ernments will settle on the efficient policy only if they are unable to influence consumer/producer
prices in the rest of the world. Otherwise, they will defect to take advantage of terms-of-trade
(ToT) gains. This result indicates that the pursuit of ToT gains is the sole reason welfare-
maximizing governments deviate from efficient policy choices—at least when they are af-
forded sufficient policy instruments.18 This result echos the argument in Bagwell and Staiger
(2001, 2004), generalizing it to settings with many countries and differentiated industries.

17To be specific, the implementation of the efficient allocation involves the above taxes plus lump-sum inter-
national transfers based on Pareto weights. The logic is that the planner maximizes global output by restoring
marginal-cost pricing and redistributes the corresponding income gains between countries via efficient trans-
fers. Absent transfers, implementing {t⋆, x⋆, s⋆} would deliver a Kaldor-Hicks improvement (Kaldor (1939); Hicks
(1939)), but not necessarily a Pareto improvement relative to Laissez-faire. Though, the resulting policy equilibrium
would constitute a point on the Pareto-efficient frontier—see Appendix F for more details.

18This need not be true if government are prohibited from using domestic taxes and afforded only import tax
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In the next section, we characterize the unilaterally optimal policy of non-cooperative gov-
ernments. This exercise elucidates two issues. First, it determines how governments deviate
from the cooperative policy choice when ToT considerations are taken into account. Second,
it clarifies how governments approach industrial policy when they view 1st-best Pigouvian
subsidies as politically-infeasible. Once we settle these two issues, we argue that the imple-
mentation of globally efficient policies requires both a “shallow agreement” to discipline trade
policy choices and a “deep agreement” to coordinate industrial policy implementation.

3.2 Unilaterally Optimal Policy Choices

First-Best: Unilaterally Optimal Trade and Domestic Policies

We now characterize a non-cooperative country’s unilaterally optimal policy. We consider
cases where a non-cooperative country i ∈ C selects taxes, ti ≡ {tji,k}, xi ≡ {xij,k}, and si ≡
{si,k}, taking policy choices elsewhere as given. Countries in the rest of the world are passive
in their use of taxes but actively maintains internal cooperation—i.e., countries other than i
preserve the balance of market access concessions among themselves. To elaborate: country i’s
policy could, in principle, disrupt the balance of concessions in the rest of the world, leading
to a deterioration of one cooperative country’s ToT relative to another. Cooperation within the
rest of the world requires that these extraterritorial ToT effects be neutralized via buffers that
preserve wn/wj for all n, j ̸= i—see Appendix G for further details.

We begin with the unilaterally first-best case where the government in i is afforded all pos-
sible tax instruments. The first-best unilaterally optimal policy solves the following problem:19

max
(ti ,xi ,si ;w)

Wi (ti, xi, si; w) s.t. (ti, xi, si; w) ∈ F (P1).

We analytically solve Problem (P1) under both the restricted and free entry cases. We perceive
the restricted entry case to be a more appropriate benchmark if governments are concerned
with short-run gains from policy. The free entry case, on the other hand, is more relevant if
governments are concerned with long-run gains. These two cases exhibit an important dif-
ference: Producer prices respond differently to contractions in export supply under restricted
and free entry—as we elaborate next.

Conditional Export Supply Elasticity. The terms-of-trade gains from policy, in our frame-
work, channel through changes in the price of imported and exported goods. The government
in i ∈ C cannot directly dictate the producer price of say good, ji, k, that is imported from origin
j ̸= i. Instead, it can deflate its producer price (Pji,k) indirectly by contracting or expanding its
export supply (Qji,k). The contraction in Qji,k also affects the producer price of goods supplied
by other locations through general equilibrium linkages. Our theory indicates that, for opti-
mal policy analysis, the conditional inverse export supply elasticity is sufficient to track these
effects. To present this elasticity, let P̃i contain the consumer price of all goods either produced
by or consumed in country i. These are prices that country i’s government can fully control via

instruments. Following Venables (1987) and Ossa (2011), welfare-maximizing governments will erect tariffs in that
case, even if they perceive world prices as invariant to their policy choice. By doing so, they improve allocative
efficiency in the domestic economy but impose a negative firm-delocation externality on the rest of the world.

19Given that the rest of the world is passive in their use of taxes (i.e.,t−i = x−i = s−i = 0), we condense the
notation by specifying equilibrium variables as a function of only (ti, xi, si, w).
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taxes. We define the conditional inverse export supply elasticity of good ji, k as

ωji,k ≡
1

rji,kρj,k
∑

g∈K

[
ẁiLi

ẁjLj
ρi,g

(
∂ ln Pii,g

∂ ln Qji,k

)
w,Y,P̃i

+ ∑
n ̸=i

ẁnLn

ẁjLj
rni,gρn,g

(
∂ ln Pni,g

∂ ln Qji,k

)
w,Y,P̃i

]
,

where rni,g ≡ Pni,gQni,g

∑ι Pnι,gQnι,g
and ρn,g ≡ ∑ι Pnι,gQι,g

∑ι,s Pnι,sQι,s
respectively denote the good-specific and industry-

wide sales shares associated with origin n. Notice, ωji,k is a conditional elasticity that describes
how the producer prices linked to economy i respond to a change in Qji,k, holding P̃i and the
entire vector of wage and income levels constant.20 This elasticity encapsulates different eco-
nomic forces under free and restricted entry, as we detail next.

Under restricted entry, producer prices from origin j ∈ C are fully determined by the
(profit-adjusted) wage rate, ẁj, and the aggregate profit margin, µj (see Equation 6). Policy,
thus, has two distinct effects on producer prices under restricted entry: One effect that chan-
nels through wages, w; and another that channels through aggregate profit margins. To explain
the latter, hold w constant: contracting the export supply of good ji, k with taxes will alter all
producer prices associated with origin j through a change in origin j’s aggregate profit margin,
µj. The change in µj derives from the fact that industries have differential markup margins,
and that taxing good ji, k alters the industrial composition of output in origin j ∈ C.

Under free entry, producer prices from origin j ∈ C are determined by the wage rate,
ẁj, and the origin j–industry k-specific scale of production. So, aside from wage-related ef-
fects, policy has a second effect on producer prices that channels through industry-level scale
economies. To elaborate, consider an import tax on good ji, k (origin j–destination i–industry
k). Such a tax contracts the supply of ji, k and the scale of production in origin j–industry k.
Given Equation 6, this contraction in scale increases the entire vector of producer price indexes
associated with origin j–industry k—all through additional firm entry.

In both cases, ωji,k describes how expanding or contracting good ji, k’s export supply im-
pacts country i’s terms-of-trade via either profit-shifting or industry-level scale economies.
Importantly, ωji,k can be characterized (to a first-order approximation) as a simple function of
sales shares, scale elasticities, and Marshallian demand elasticities (see Appendix E):21

ωji,k ≈



− µk
1+µk

rji,k

1− µk
1+µk

∑ι ̸=i rjι,kε jι,k

[
1 − µk

1+µk

wi Li
wj Lj

∑n ̸=i
ρi,krin,k
ρj,krjn,k

ε
(jn,k)
in,k

]
if entry is free(

1−
1+µj
1+µk

)
∑g rji,gρj,g

1+∑g ∑ι ̸=i

[
1+
(

1−
1+µj
1+µg

)
rjι,gρj,gε jι,g

] if entry is restricted

.

(10)
The above formulation for ωji,k is quite intuitive: Under restricted entry, ωji,k governs the rela-
tionship between export supply and the average markup paid on imports. Accordingly, ωji,k

is non-zero only when industries exhibit differential markup levels. Otherwise, ωji,k collapses

20The conditional elasticity, ωji,k, is strictly more distilled than the traditional notion of export supply elasticity
(e.g., Dixit (1985)). It is, in particular, purged from general equilibrium wage-and-income effects, which we later
show are redundant in the neighborhood of the optimum policy. This crucial feature makes our optimal policy
formulas (that encapsulate ωji,k) amenable to quantitative analysis—see Section 7 for details.

21The above approximation derives from Wu, Yin, Vosoughi, Studer, Cavallaro, and Dick’s (2013) first-order
approximated inverse of a diagonally-dominant matrix. Figure (4) in Appendix E illustrates the precision of this
approximation. The same appendix also presents an exact (approximation-free) formulation for ωji,k.
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to zero as the average markup (or profit margin) paid on imports is constant and invariant to
changes in export supply, i.e., µj = µk = µ =⇒ ωji,k = 0. Under free entry, ωji,k regulates the
terms-of-trade gains from policy that channel through scale economies. Accordingly, in the
limit where industries operate based on constant-returns to scale, ωji,k once again collapses to
zero—namely, limµk→0 ωji,k = 0.

Three-Step Dual Approach to Characterizing Optimal Policy. Our characterization of optimal
policy employs the dual approach and is presented in Appendix E. Below, we provide a verbal
summary of our approach, which involves three main steps.

First, we simplify Problem (P1) by reformulating it into a problem where country i’s gov-
ernment chooses the vector of prices Pi =

{
P̃ii, P̃ji, P̃ij

}
associated with its own economy.

Country i’s optimal tax/subsidy schedule T∗
i ≡ (t∗i , x∗i , s∗i ) is then recovered as the wedge

between the optimal price vector P∗
i and producer prices.

Second, we derive the first-order conditions (F.O.C.) associated with country i’s reformu-
lated optimal policy problem. We use two technical tricks to overcome the complications re-
lated to general equilibrium analysis: First, we use the envelope conditions associated with
optimal demand choices to net out redundant behavioral responses. Second, we identify addi-
tional welfare neutrality conditions specific to Problem (P1). Most importantly, we observe that
terms in the F.O.C.s that account for general equilibrium wage and income effects are redun-
dant in the neighborhood of the optimum. That is, we could specify the F.O.C.s associated with
(P1) as if wages were constant and Marshallian demand functions were income-inelastic.22

Third, we combine the F.O.C.s and solve them as part of one system. In this process, we
appeal to the tax neutrality result specified by Lemma 1 to eliminate redundant tax shifters,
which are difficult to characterize. We then appeal to well-known properties of Marshallian
demand functions (e.g., Cournot aggregation and homogeneity of degree zero) to establish that our
system of F.O.C.s admits a unique solution.23 Together, these steps lead us to simple sufficient
statistics formulas for unilaterally optimal policies, as summarized by the following theorem.24

Theorem 1. Country i’s optimal policy is unique up to two uniform tax shifters 1+ s̄i and 1+ t̄i ∈ R+,
and is implicitly given by

[domestic subsidy] 1 + s∗i,k = (1 + µk)(1 + s̄i)

[import tax] 1 + t∗ji,k = (1 + ωji,k)(1 + t̄i)

[export subsidy] 1 + x∗ij = −E−1
ij E(−ij)

ij (1 + t∗i ) ;

where ωji,k denotes the good ji, k’s inverse supply elasticity as given by Equation 10, while Eij ∼ E(ij)
ij

and E(−ij)
ij denote matrixes of Marshallian demand elasticities as defined under (D1).25

22Farrokhi and Lashkaripour (2021) streamline the dual approach developed in this paper, extending our result
about the welfare neutrality of wages and income effects to settings with arbitrary inter-national externalities.

23We should perhaps emphasize an important nuance. It is possible that our model admits multiple optimal
policy equilibria. Yet the optimal policy formulas are uniquely specified by Theorem 1 in each case.

24We later combine the formulas specified by Theorem 1 with micro-estimated parameter values to quantify
the ex-ante gains from policy. In Appendix H, we test the accuracy and speed of our formulas by performing
150 numerical simulations in which the underlying model parameters are repeatedly sampled from a uniform
distribution. The theoretical policy predictions are then compared to those obtained from numerical optimization.

25To be clear, E(−ij)
ij =

[
E(nj)

ij

]
n ̸=i

is a K × (N − 1)K matrix and 1 ≡ 1(N−1)K×1 is a column vector of ones. Also,
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The uniform tax shifters, s̄i, and t̄i account for the multiplicity of optimal policy equilibria
(as indicated by Lemma 1). These shifters can be assigned any arbitrary value, provided that
1 + s̄i and 1 + t̄i ∈ R+. For instance, if we assign a sufficiently high value to t̄i and s̄i, the opti-
mal policy will involve import tariffs, export subsidies, and industrial subsidies. Conversely, if
we assign a sufficiently low value to t̄i and s̄i, the optimal policy will involve import subsidies,
export taxes, and industrial production taxes.

Intuition Behind Optimal Tax Formulas. Theorem 1 states that country i’s unilaterally opti-
mal policy consists of (1) Pigouvian subsidies that restore marginal cost pricing in economy
i; (2) import taxes/subsidies that exploit country i’s collective import market power, deliv-
ering an optimal mark-down on the producer price of imported goods Pji,k; and (3) export
taxes/subsidies that exploit country i’s collective export market power, charging the optimal
national-level mark-up on the consumer price of exported goods P̃ij,k.26

When gauging the scope of Theorem 1, note that Marshallian demand elasticities, ε
(ni,g)
ji,k , are

fully-determined by expenditure shares, λji,k, and σk. Likewise, the export supply elasticity,
ωji,k, is fully-determined by sales shares, rji,k, scale elasticities, µk, and Marshallian demand
elasticities. As such, Theorem 1 characterizes optimal policy in terms of three sets of sufficient
statistics: (i) observable shares, rij,k, and λij,k, (ii) industry-level trade elasticities, σk − 1, and
(iii) industry-level scale elasticities, µk. This particular feature of Theorem 1 greatly simplifies
our quantitative analysis of optimal policy in Section 7.

A canonical special case of Theorem 1 is the multi-industry Armington case, in which µk =

0 for all k ∈ K. Under this special case, ωji,k = 0 for all ji, k and optimal import tariffs are
uniform, i.e., t∗ji,k = t̄i for all ji, k. This result can be understood as follows: Absent scale
economies or profits, import tariffs cannot impact the producer price of imported goods on a
good-by-good basis. At best, import taxes can induce a uniform reduction in import prices
(per origin j) by deflating w−i relative to wi. This uniform reduction, though, can be perfectly
mimicked with a uniform increase in export taxes per destination j. As such, optimal import
taxes are either uniform or redundant by choice of t̄i = 0.

Theorem 1 has two additional implications worth highlighting. First, optimal tariffs and
export subsidies are misallocation-blind but not necessarily blind to the overall magnitude of
scale economies. To elaborate, holding the average scale elasticity constant but increasing the
cross-industry dispersion in scale elasticities (i.e., the extent of misallocation) preserves t∗ji and
x∗ij. The intuition is that any gains from correcting misallocation from scale elasticity dispersion
are fully-internalized by domestic subsidies. However, raising the average scale elasticity can
modify t∗ji and x∗ij irrespective of the underlying degree of misallocation.27

in the general case with asymmetric income elasticities of demand, Eij should be replace with Ẽij ≡ [
eij,g
eij,k

ε
(ij,k)
ij,g ]g,k.

Otherwise , the symmetry of the Slutsky matrix implies that eij,g
eij,k

ε
(ij,k)
ij,g = ε

(ij,g)
ij,k , which implies that Eij = Ẽij.

26Our formula for t∗ji,k echoes the traditional optimal–tariffs–equal–foreign’s–inverse–export–supply–elasticity
result. Our formula, though, derives from a general equilibrium multi-country model, whereas traditional theories
are often limited to partial equilibrium two-country settings. Another distinction is that ωjn,k in our model is
associated with a backward falling supply curve due to increasing-returns to scale. In traditional theories, ωjn,k
is associated with an upward-sloping supply curve resulting from quasi-fixed inputs. Our framework is, thus,
consistent with a possibly negative ωjn,k, which conforms to recent evidence in Farrokhi and Soderbery (2020).

27Following the literature, we define misallocation as the log welfare distance to the efficient frontier (Li). In a
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Second, the optimal export tax-cum-subsidy, x∗ij,k, depends on the entire matrix of own-
and cross-price demand elasticities associated with good ij, k. The explanation is that x∗ij,k
(in Theorem 1) corresponds to the optimal markup of a multi-product monopolist. To better
understand this point, assign t̄i = 0, in which case x∗ij,k represents a tax on good ij, k (rather
than a subsidy). The optimal tax rate on ij, k is equal to the optimal mark-up on that good
if country i’s government was pricing its exports as a multi-product monopolist rather than
an individual single-product firm. The government’s optimal pricing decision, accordingly,
internalizes the effect of raising P̃ij,k on its sales of other products in destination j.

Special Case with Cobb-Douglas Preferences. To gain deeper intuition about Theorem 1, con-
sider a special case where preferences are Cobb-Douglas across industries. In that case, the
formulas specified by Theorem 1 reduce to28

[domestic subsidy] 1 + s∗i,k = (1 + µk)(1 + s̄i)

[import tax] 1 + t∗ji,k = (1 + ωji,k)(1 + t̄i)

[export subsidy] 1 + x∗ij,k =
(σk − 1)∑n ̸=i

[
(1 + ωni,k)λnj,k

]
1 + (σk − 1)(1 − λij,k)

(1 + t̄i), (11)

A well-known special case of the above formula is the single-industry×two-country formula in
Gros (1987). To demonstrate this, drop the industry subscript k and reduce the global economy
into two countries, i.e., C = {i, j}. Noting that 1 − λij = λjj in the two-country case, we can
deduce from the above formulas that

1 + t∗ji
1 + x∗ij

= 1 +
1

(σ − 1)λjj
.

By the Lerner symmetry, export and import taxes are equivalent in the single-industry model.29

Hence, without loss of generality, we can set x∗ij = 0 and arrive at the familiar-looking optimal
tariff formula in Gros (1987), i.e., t∗ji = 1/(σ − 1)λjj.

The Cobb-Douglas case of Theorem 1 is also a strict generalization of the formula derived
concurrently by Bartelme et al. (2019) for a small open economy with multiple sectors. Specif-
ically, enforcing the small open economy assumption—i.e., setting ωji,k ≈ λij,k ≈ 0; λjj,k ≈ 1—
our optimal policy formulas in the Cobb-Douglas case reduce to:

1 + s∗i,k = 1 + µk; t∗ji,k = 0; 1 + x∗ij,k =
σk − 1

σk
. (12)

closed economy with Cobb-Douglas-CES preferences, Li = Eρi [µ log µ]− Eρi [µ] log Eρi [µ] , where Eρi [.] denotes
the cross-industry mean weighted by the industry-level employment shares, ρi,k. If the scale elasticity is strictly
positive but uniform across industries, then Li = 0 . Our claim is that preserving the average scale elasticity, Eρi [µ],
but raising the coefficient of variation, CVρi [µ], intensifies misallocation but preserves t∗ji and x∗ij.

28In the Cobb-Douglas case: (a) ε
(ij,k)
nj,k = −σk1n=j + (σk − 1)λij,k and (b) ε

(ij,k)
nj,g = 0 if g ̸= k. Plugging the

expression for ε jι,k into Equation 6, the inverse of the export supply under restricted entry is given by

ωji,k =

(
1 − µj

µk

)
∑g rji,gρj,g

1 + ∑ι ̸=i

[
1 −

(
1 − µj

µk

)
rjι,k

(
1 + (σk − 1)(1 − λjι,k)

)] .

The parameterization of ωji,k under free entry can be derived in a similar fashion.
29The Lerner symmetry is a special case of the equivalence result presented under Lemma 1. Also, note that the

market equilibrium is efficient in the single industry Krugman model studied by Gros (1987). As such, the optimal
industrial subsidy can be also normalized to zero, i.e., s∗i = 0.
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Second-Best: Unilaterally Optimal Import Tariffs and Export Subsidies

Suppose the government in i ∈ C cannot use domestic subsidies due to say institutional
barriers or political pressures. It is optimal, in that case, to use trade taxes as a second-best pol-
icy to restore allocative efficiency in the domestic economy. In this section, we derive analytic
formulas for second-best optimal trade taxes in such circumstances. Country i’s optimal policy
problem, in this case, includes an added constraint that si = 0:

max
(ti ,xi ,si ;w)

Wi (ti, xi, si; w) s.t.

(ti, xi, si; w) ∈ F

si = 0
(P2).

Using the dual approach discussed earlier, we analytically solve Problem (P2) and derive suf-
ficient statistics formulas for second-best optimal trade taxes. The following theorem presents
these formulas, with a formal proof provided in Appendix I.

Theorem 2. Suppose industrial subsidies si are unavailable to the government: Second-best optimal
trade taxes are unique up to a uniform tax shifter t̄ ∈ R+ and are implicitly given by:

[import tariff] 1 + t∗∗ji = (1 + t̄i) (1 + Ωji)⊘
(

1 + E−1
−ii E(ii)

−ii

[
1 − 1 + µk

1 + µi

]
k

)
[export subsidy] 1 + x∗∗ij = −(1 + t̄i)

(
E−1

ij E(−ij)
ij (1 + Ω−ii)

)
⊙
[

1 + µk

1 + µi

]
k

,

where Ωji =
[
ωji,k

]
k is a vector of inverse export supply elasticities (Equation 10); µi denotes the

output-weighted average markup in economy i (Equation 5); and E−ii, E(ii)
−ii , Eij, and E(−ij)

ij are matrixes
of Marshallian demand elasticities as defined under Definition (D1).30

Theorem 2 asserts that, when governments cannot use industrial subsidies, (i) the opti-
mal export subsidy is adjusted to promote exports in high-returns-to-scale (high-µ) industries,
and (ii) the optimal import tax is adjusted to restrict import competition in high-returns-to-
scale (high-µ) industries. Intuitively, the government’s objective when solving (P2) is to mimic
Pigouvian industrial subsidies with trade taxes/subsidies. To reach this objective, import taxes
and export subsidies should increase in high-returns-to-scale industries relative to the first-best
benchmark. While these adjustments elevate domestic production in high-µ industries, they
are insufficient for obtaining the unilaterally first-best allocation.

Special Case with Cobb-Douglas Preferences. We can invoke the Cobb-Douglas assumption to
further elucidate the second-best tax formulas under Theorem 2. Under this assumption, there
are zero cross-demand effects between industries and the optimal policy formulas specified by
Theorem 2 can be simplified as follows:

30Letting N and K denote the number of countries and industries: E−ii ∼ E(−ii)
−ii =

[
E(ȷi)

ni

]
n ̸=i,ȷ ̸=i

is a square (N −

1)K × (N − 1)K matrix, where E(ȷi)
ni ≡

[
ε
(ȷi,g)
ni,k

]
k,g

as defined under Definition (D1). Likewise, E(−ij)
ij =

[
E(nj)

ij

]
n ̸=i

and E(ii)
−ii =

[
E(ii)

ni

]
n ̸=i

are respectively K × (N − 1)K and (N − 1)K ×K matrixes. In all the equations, 1 ≡ 1(N−1)K×1

is a columns vector of ones. Meanwhile, Ω−ii =
[
ωni,k

]
n ̸=i,k is a (N − 1)K × 1 vector; and the operators ⊙ and ⊘

denote element-wise multiplication and division.
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[import tariff] 1 + t∗∗ji,k =
1 + (σk − 1) λii,k

1 + 1+µi
1+µk

(σk − 1) λii,k

(
1 + t∗ji,k

)
[export subsidy] 1 + x∗∗ij,k =

1 + µk

1 + µi

(
1 + x∗ij,k

)
,

where 1 + t∗ji,k = (1 + ωji,k)(1 + t̄i) and 1 + x∗ji,k =
(σk−1)∑n ̸=i[(1+ωni,k)λnj,k]

1+(σk−1)(1−λij,k)
(1 + t̄i) denote the

first-best optimal rate (Equation 11). For a small open economy, the formulas further reduce to

1 + t∗∗ji,k =
1 + (σk − 1)λii,k

1 + 1+µi
1+µk

(σk − 1)λii,k
(1 + t̄i); 1 + x∗∗ij,k =

1 + µk

1 + µi

(
σk − 1

σk

)
(1 + t̄i).

In summary, the above formulas indicate that second-best import taxes are higher in (1) in-
dustries with a greater-than-average markup, and (2) industries in which country i has a
comparative advantage (i.e., high-(σk − 1)λii,k industries). These two properties allow second-
best import taxes to mimic Pigouvian subsidies to the best extent possible. Likewise, second-
best export subsidies feature a misallocation-correcting component that favors industries with a
higher-than-average scale elasticity or markup.

Importantly, if the markup or scale elasticity is uniform across industries (i.e., µk = µ = µi),
the above formulas yield the first-best or purely ToT-improving tax rate—i.e., t∗∗ji,k = t∗ji,k and
x∗∗ij,k = x∗ij,k. The intuition is that the Krugman model without cross-industry markup hetero-
geneity is efficient; leaving no room for policy interventions to restore allocative efficiency.

Third-Best: Unilaterally Optimal Import Tariffs

Now suppose that, in addition to restriction on industrial subsidies, the use of export sub-
sidies is also restricted. The government’s optimal policy problem in this case features two
additional constraints, si = xi = 0:

max
(ti ,xi ,si ;w)

Wi (ti, xi, si; w) s.t.

(ti, xi, si; w) ∈ F

si = xi = 0
(P3).

Some variation of the above problem has been studied by an expansive literature on optimal
tariffs. Though, nearly all existing studies are limited to partial equilibrium two-by-two mod-
els. Here, we use the same dual approach described earlier to analytically solve Problem (P3)
within our multi-country, multi-industry general equilibrium framework. Our derivation, as
before, yields simple sufficient statistics formulas for optimal third-best import taxes. The fol-
lowing theorem presents these formulas, with a formal proof provided in Appendix J.31

Theorem 3. Suppose both industrial and export subsidies are unavailable to the government: Third-
best optimal import taxes are uniquely given by:

1 + t∗∗∗ji = (1 + τ̄∗
i ) (1 + Ωji)⊘

(
1 + E−1

−ii E(ii)
−ii

[
1 − 1 + µk

1 + µi

]
k

)
where τ̄∗

i =
[
−∑g,s ∑j ̸=i χij,g

(
1 + ε

(ij,s)
ij,g

)]−1
is a uniform tariff shifter that represents the elasticity

of international demand for country i’s labor (with χij,g ≡ Pij,gQij,g/ ∑n ̸=i Pin · Qin denoting export

31In the special case where entry is restricted and countries are sufficiently small, the optimal tariff formula
presented under Theorem 4 reduces to the formula used by Lashkaripour (2020b) to examine global tariff wars.
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shares). µi denotes the output-weighted average markup in economy i as described by Eq. 5; and E−ii

and E(ii)
−ii are matrixes of Marshallian demand elasticities as defined under Definition (D1).

Unlike Theorems 1 and 2, the third-best optimal tariff schedule identified by Theorem 3
is unique. That is because the multiplicity implied by Lemma 1 no longer applies when both
export and industrial subsidies are restricted to zero. Nevertheless, the third-best tariff speci-
fied by Theorem 3 differs from the second-best tariffs (in Theorem 2) by only a uniform tariff
shifter, 1 + τ̄∗

i . So, barring the uniform component, 1 + τ̄∗
i , we can understand the above for-

mula based on the same intuition provided under Theorem 2.
The uniform tariff component, 1 + τ̄∗

i , compensates for the unavailability of export tax-
cum-subsidies to the government. By the Lerner symmetry, which is implicit in Lemma 1,
import taxes can perfectly mimic a uniform export tax. This ability was previously redundant
(under Theorems 1 and 2) because export taxes/subsidies were directly applicable, and there
was no point in using other instruments to mimic them. But since export taxes are restricted
under Problem (P3), it is optimal to uniformly raise all tariffs by a factor 1 + τ̄∗

i , using them as
a second-best substitute for optimal export taxes/subsidies.

4 Tension between Allocative Efficiency and Terms-of-Trade

Following Theorems 2 and 3, second-best trade policies seek to strike a balance between (a)
improving the terms-of-trade (ToT), which requires contracting exports in nationally-differentiated
(low-σ) industries, and (b) correcting misallocation, which requires expanding output in high-
returns-to-scale (high-µ) industries. Obtaining this balance becomes difficult if not impossi-
ble when Cov (σk, µk) < 0—which is the empirically-relevant case based on our forthcoming
estimation. Consider, for instance, a country that is initially operating under Laissez-Faire.
And suppose that due to political constraints, the government is unable to use industrial pol-
icy to correct misallocation. In that case, a trade policy intervention that improves the ToT
by restricting exports in low-σ industries concurrently shrinks output in high-µ industries if
Cov (σk, µk) < 0, thereby exacerbating misallocation.

To navigate this tension, a welfare-maximizing government must customize its 2nd-best
trade policy in a way that curtails the ToT gains without necessarily correcting misallocation.
These considerations all but erode the gains from 2nd-best trade policies and can even render
them industry-blind—unable to beneficially correct inter-industry misallocation or manipulate
industry-specific export market power. This is, for instance, the case in the canonical Krugman
(1980) model where µk = 1/ (σk − 1). Theorem 2 asserts that the 2nd-best trade policy for
a small open economy in this particular setting consists of industry-blind or uniform import
tariffs and export subsidies. Namely,

1 + t∗∗ji,k = 1 + t̄i; 1 + x∗∗ij,k = (1 + t̄i)

(
1 − 1

σi

)
,

where t̄i ∈ R is an arbitrary tax shifter and σi = (∑k ρi,k/σk)
−1 is the sales-weighted average

trade elasticity facing country i. The optimal trade tax in each industry is evidently blind to
misallocation (µk) or industry-specific export market power (σk)—reflecting the difficulty to
reconcile these two policy considerations. All this policy choice can achieve is to improve
country i’s aggregate ToT by inflating its wage relative to the rest of the world. Proposition 1
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summarizes these arguments, with a formal proof provided in Appendix L.

Proposition 1. If industry-level trade and scale elasticities are negatively correlated (Cov (σk, µk) <

0), trade policy interventions that seek to improve the terms-of-trade (relative to Laissez-Faire) exacer-
bate inter-industry misallocation. In the canonical case where µk = 1/ (σk − 1), this tension forces a
small open economy’s optimal 2nd-best trade policy to be industry-blind—unable to beneficially correct
misallocation or manipulate the ToT on an industry-by-industry basis.

Figure 1 demonstrates how the tension between ToT and allocative efficiency erodes the
potential gains from second-best trade policies. The left panel demonstrates that the gains from
2nd-best trade policies diminish rapidly as Cov (σk, µk) is artificially lowerred from positive to
negative values. In each case, the trade elasticities are held constant, meaning that the scope
for ToT gains remains that same. The only thing that changes is the rising tension between ToT
and corrective gains from policy as Cov (σk, µk) becomes more negative.32

Figure 1: Tension between ToT and allocative efficiency, when Cov (σk, µk) < 0, can yield dire policy outcomes

Note: This figure corresponds to a two-country and two-industry model with symmetric countries and
Cobb-Douglas preferences across industries. The left panel report the gains from Second-best trade
taxes, specified by Theorem 2. The trade elasticities in industries 1 and 2 are assigned values σ1 = 1.5
and σ2 = 3 and scale elasticities are adjusted to vary Cov (σk, µk). The right panel reports the welfare
consequences of unilateral scale or markup correction. Industry-level scale elasticities are assigned
values µ1 = 0.5 and µ2 = 0.2 and trade elasticities are adjusted to vary Cov (σk, µk).

Proposition 1 has a notable flip side: If Cov (σk, µk) < 0, a unilateral adoption of Pigouvian
subsidies will worsen the ToT, resulting in possibly adverse welfare consequences. This out-
come is a basic manifestation of immiserizing growth (Bhagwati, 1958). This point is illustrated
by the right panel in Figure 1. In each case, the degree of inter-industry misallocation is held
fixed, but trade elasticities are adjusted to vary Cov (σk, µk) from negative to positive values.
In regions where Cov (σk, µk) < 0, a unilateral adoption of Pigouvian subsidies can diminish
welfare considerably (i.e., cause immiserizing growth).

32This tension is distinct from the targeting principle (Bhagwati and Ramaswami (1963)), which applies irrespec-
tive of the sign of Cov (σk, µk). Indeed, 2nd-best trade taxes become more potent despite the targeting principle if
Cov(σk, µk) > 0; but we focus on the case where Cov (σk, µk) < 0 as it aligns with our forthcoming estimation.
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There is a simple intuition behind these immiserizing growth effects. If Cov (σk, µk) < 0,
Pigouvian subsidies (that restore marginal-cost-pricing) expand domestic output in high-σ in-
dustries. These are nationally-differentiated industries in which countries enjoy significant
export market power. Raising output and, correspondingly, exports in these industries can
worsen the ToT to the point of triggering immiserizing growth. As we discuss next, this ten-
sion can become a major obstacle for industrial policy implementation after countries commit
to cooperative policies under a shallow trade agreement.

4.1 Avoiding Immiserizing Growth via Deep Trade Agreements

Immizerising growth can be a serious obstacle to industrial policy implementation in open
economies. To convey this point, we adopt the common view that intentional negotiations in-
volve two stages.33 In the first-stage, governments negotiate over policy space to ensure each
party restricts itself to the cooperative policy choice (Equation 9). In the second stage, govern-
ments negotiate a deeper agreement to ensure implementation. Each country, in this stage, has
the choice to either implement their cooperative policy choice or withhold implementation.

Proposition 1 addressed the first stage of this game, making a strong case for cooperation.
It formalized the lack of justification for non-cooperative trade taxes, even when economies are
plagued with misallocation and governments are shortsighted and wary of political pressures.
To elaborate, the conventional argument against non-cooperative trade taxes emphasizes the
cost of retaliation. If trading partners retaliate, the ToT gains from trade taxation will more-
than-evaporate and leave all parties in a prisoner’s dilemma situation. Suppose, however, that
governments are shortsighted and do not sufficiently fear retaliation. In that case, they may
be tempted to use trade taxes to correct misallocation in domestic industries. This second-best
choice may allow them to correct misallocation without triggering political backlash. Proposi-
tion 2, however, indicated that this justification is also weak provided that Cov (σk, µk) < 0.

Now, suppose governments resolve the issue of cooperation with a shallow trade agree-
ment. Under this arrangement, each government confines itself to the cooperative policy spec-
ified by Equation 9. Under perfect competition, the shallow agreement suffices to reach the
global first-best. This need not be the case under market imperfections, where unilateral ac-
tion can cause immiserizing growth when Cov (σk, µk) < 0. Cooperative countries, in this case,
are tangled in a coordination game over policy implementation. A unilateral implementation
of cooperative industrial subsidies causes immizerising growth at home and benefits trading
partners. Cooperative governments, therefore, have an incentive to free-ride on industrial pol-
icy implementation in the rest of the world, prompting a race to the bottom.

Table 2 illustrates the second-stage implementation game facing cooperative countries. The
game involves two cooperative countries (i and j) that can take two actions: (1) implement
Pigouvian subsidies that restore marginal cost-pricing in the domestic economy, i.e., si = µ, or
(1) delay implementation and stick to business as usual, i.e., si = 0. The efficient outcome is
the implementation of Pigouvian subsidies in both countries, which will boost welfare by 2.7%

33Modeling international cooperation as a two-stage game consisting of enactment and implementation stages is
commonplace in the global governance literature (Shaffer and Pollack (2009)). In the trade and environmental
policy literature, many studies treat international negotiations as multi-stage games where initial stages restrict
policy choices and latter stages ensure implementation (e.g., Murdoch, Sandler, and Vijverberg (2003); Drazen and
Limão (2008); Kosfeld, Okada, and Riedl (2009)).
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across the board. But this outcome is not sustainable without formal coordination, because
each country has an incentive to free-ride on the other country’s implementation. The outcome
of this game is a race to bottom, wherein no party is willing to correct misallocation in domestic
industries without violating its commitments to cooperation (i.e., zero trade taxes).

Table 2: The industrial policy implementation game facing cooperative governments when Cov (σk, µk) < 0

Country j (%∆Wj)

sj = 0 sj = µ

Country i (%∆Wi)
si = 0 ( 0% , 0% ) ( 3.7% , −1.2% )

si = µ ( −1.2% , 3.7% ) ( 2.7% , 2.7% )

Note: This figure corresponds to a two-country and two-industry model with symmetric countries and
CES preferences across industries with substitution elasticity 1.2. Industry-level level trade elasticities
are σ1 = 1.5 and σ2 = 3 and scale elasticities are µ1 = 0.2 and µ2 = 0.5, implying Cov (σk, µk) ≈ −0.225.
The unique Nash equilibrium is a race to the bottom, wherein si = sj = 0.

Countries can avoid a race to the bottom by supplementing their shallow agreement with a
"deep agreement" that ensures reciprocity in industrial policy implementation. The following
proposition (proven in Appendix L) formalizes this point and underscores the role of domestic
policy coordination—the lack of which is often considered an impediment to growth among
middle-income countries (Aiginger and Rodrik (2020)).

Proposition 2. [Markup Correction Paradox] If Cov(σk, µk) < 0, a unilateral implementation of
scale- or markup-correcting industrial subsidies can trigger immizerising growth at home and deliver
strong spillover gains to trading partners. Hence, without a deep agreement to ensures reciprocity in
implementation, countries have an incentive to free-ride on other’s corrective policies. The outcome
of this game is a race to the bottom, wherein no party is willing to correct misallocation in domestic
industries without violating its commitments to shallow cooperation (i.e., zero trade taxes).

The above proposition resonates with the anecdote that governments pursuing industrial
policy often pair it with various trade restrictions. The Chinese government, for instance, has
paired its active industrial policy measures with hidden export taxes. These hidden export
barriers are applied via partial value-added tax rebates and are designed to improve China’s
terms-of-trade (Garred (2018)). At the end, we must emphasize that a race to the bottom will
not occur if Cov(σk, µk) ≥ 0. In that case, a unilateral adoption of corrective subsidies improves
rather than deteriorates one’s terms of trade. Implementing corrective subsidies, as a result,
becomes a dominant strategy for cooperative countries. We nevertheless maintain our focus
on the case where Cov(σk, µk) < 0 because it aligns with our forthcoming estimation of scale
and trade elasticities.

5 Extensions and Application to other Canonical Models

In this section, we first show that our theoretical results readily apply to two other canonical
trade models. We then extend our baseline theoretical results to richer environments featuring
input-output linkages and political economy pressures.
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5.1 Application to Other Canonical Trade Models

The optimal policy formulas specified by Theorems 1-3 apply to two other canonical trade
models. Though, parameters σk and µk in these formulas adopt different interpretations, which
reflects the different micro-foundation underlying these frameworks.

The Eaton-Kortum model with Marshallian externalities. Consider a multi-industry Eaton and
Kortum (2002) model where industry-level production is subject to agglomeration economies.
Let ψk denote the constant agglomeration elasticity in industry k, and θk denote the Eaton-
Kortum Fréchet shape parameter. Theorem 1 characterizes the optimal policy in this model
under the following reinterpretation of parameters: µEK

k = ψk and σEK
k = 1 + θk. The tension

between the ToT and allocative efficiency (outlined by Proposition 1) extends to this model if
Cov(ψk, θk) < 0. The fact that our theory readily extends to the Eaton-Kortum model echos the
isomorphism established in Kucheryavyy et al. (2016). Appendix C shows that this isomor-
phism is even more profound. The nested-CES import demand function implied by (A1), we
demonstrate, may analogously arise from within-industry specialization á la Eaton-Kortum.

The Melitz-Pareto model. Consider a multi-industry Melitz (2003) model that features the
same nested-CES demand function specified by (A1). Suppose the firm-level productivity dis-
tribution is Pareto in each industry with a shape parameter, ϑk. Appendix D establishes that
the Melitz-Pareto model is isomorphic to our baseline Krugman model insofar as macro-level
representation is concerned. Hence, Theorem 1 characterizes the optimal policy in the Melitz-
Pareto model under the following reinterpretation of parameters: µMelitz

k = γkϑk
(γk−1)(ϑk+1)−ϑk

− 1

if entry is restricted and µMelitz
k = 1

ϑk
if entry is free; and σMelitz

k = 1+ϑk

[
1 + ϑk

(
1

σk−1 −
1

γk−1

)]−1
.

This mapping indicates that we need to estimate parameter ϑk, in addition to σk and γk, to
quantify the gains from policy under firm-selection effects—a procedure we formally under-
take and elaborate on in Section 7.

5.2 Extension #1: Accounting for Input-Output Networks

Suppose production employs both labor and intermediate inputs, which are distinguished
from final goods by superscript I . Cost minimization entails that the producer price of good
ij, k (origin i–destination j–industry k) depends on (i) the wage rate in origin i and (ii) the price
of all intermediate inputs, P̃I

i ≡ {P̃I
nj,k}, available to firms in origin i. Namely,

Pij,k = ρ̄ij,kCi,k(wi, P̃I
i )Q

− µk
1+µk

i,k , (13)

where Ci,k(.) is a homogeneous of degree one cost function w.r.t. wi and P̃I
i .34 The depen-

dence of Pij,k on origin i–industry k’s effective output, Qi,k ≡ ∑j∈C

[
āij,kQij,k

]
, accounts for

scale economies under free entry. The formal definition of general equilibrium in the presence
of input-output (IO) linkages is presented in Appendix K. The same appendix characterizes
optimal policy using our previously-described dual approach, while appealing to additional

34Without loss of generality, we assume that good ji, k can be used as either an intermediate input or a final
consumption good, with taxes being applied on a good irrespective of the intended final use, i.e., P̃I

ij,k = P̃ij,k. This
assumption is innocuous, because we can fragment every industry k into a final good version k′ and an intermediate
good version k′′. Since we do not impose any restrictions on the number of industries, our theory extends to the
case where differential taxes are imposed on fragments k′ and k′′.
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supply-side envelope conditions. Our characterization indicates that optimal industrial subsi-
dies and import taxes are IO-blind—i.e., they are described by the same formulas as in Theo-
rem 1. The intuition is that after fixing the price of exported goods with export subsidies, im-
port tariffs and industrial subsidies have no impact on prices in the rest of the world. For these
policies to affect prices in the rest of the world, they need to propagate through re-exportation.
But any possible gains the channel through re-exportation, will be already internalized by the
optimal choice w.r.t. export subsidies. Consistent with this intuition, optimal export subsidies
depend on the fraction of export value that is reimported via the global IO network. Putting
the pieces together, country i’s first-best optimal policy under IO linkages is given by:

Theorem 4. Under IO linkages, the unilaterally first-best import tariffs and domestic subsidies are
IO-blind; but 1st-best export subsidies exhibit an upward-adjustment that account for re-importation
via the IO network. More formally, the unilaterally first-best policy schedule is given by

[domestic subsidy] 1 + s∗i,k = (1 + µk) (1 + s̄C
i )

−1

[import tax] 1 + t∗ji,k = (1 + ωji,k) (1 + t̄i) (1 + s̄C
i )

[export subsidy] 1 + x∗ij = −E−1
ij

[
E(−ij)

ij (1 + t∗i ) + Λij(1 + t̄i)(1 + s̄C
i )
]

,

where elements of Λij ≡
[
Λij,k

]
k correspond to the fraction of good ij, k that is reimported, and s̄C

i is an
arbitrary tax shifter that assumes a positive value if the taxed item is a final good and zero otherwise.35

The above theorem indicates that the tax-equivalent of export subsidies is relatively lower
on intermediate inputs to mitigate tax-reimportation via the IO network. Moreover, there is
uniform wedge between final and intermediate input taxes as represented by the final good
tax-shifter, s̄C

i .36 This detail aside, the ToT-improving motive for policy still requires a con-
traction of exports in low-σ industries while the misallocation-correcting objective asks for an
expansion of output in high-µ industries. So, unless intermediate input goods exhibit a sys-
temically lower σ, the same tensions identified by Propositions 1 and 2 remain.37

5.3 Extension #2: Accounting for Political Economy Pressures

Suppose optimal policy choices internalize political economy pressures. To characterize op-
timal policy in these situations, we follow Ossa’s (2014) adaptation of Grossman and Helpman
(1994). Our baseline analysis, in particular, assumed that the government in country i maxi-
mizes Wi ≡ Vi(wiLi +Ri + Πi, P̃i), where Πi ≡ µiwiLi denotes total profits. Now, the govern-
ment maximizes a politically-weighted welfare function, Wi ≡ Vi(wiLi +Ri + ∑k πi,kΠi,k, P̃i),
where πi,k is the political economy weight assigned to industry k’s profits (with ∑k πi,k/K =1).

35If country i is a small open economy, Λij,k ≈ 0. Correspondingly, optimal policy formulas for a small open
economy under IO linkages perfectly overlap with the baseline formulas specified under Equation 12.

36Theorem 4 indicates that uniform markup pricing is not a necessary condition for efficiency. Consider, for
instance, a vertical production economy where goods are used as either final goods or intermediate inputs, but not
both. The efficient policy, in this setup, must restore uniform markup pricing within input and final good segments
but not across—see Antràs, Gutiérrez, Fort, and Tintelnot (2022) for further exploration of this issue.

37Theorem 4 offers insight into the structure of second-best import tariffs and export subsidies under IO link-
ages. Several papers, including Blanchard, Bown, and Johnson (2016), Beshkar and Lashkaripour (2020), Caliendo,
Feenstra, Romalis, and Taylor (2021), and Antràs et al. (2022), examine in more detail how IO linkages impact 3rd-
best import tariff choices. Beshkar and Lashkaripour (2020), moreover, adopt a special case of Theorem 4, with
Cobb-Douglas production and no scale economies, to examine the cost of trade wars.
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It follows trivially from Theorem 1 that the first-best policy in the political setup consists of the
same trade tax/subsidy formulas but a politically-adjusted industrial subsidy rate. Namely,

1 + s∗i,k = (1 + µP
i,k) (1 + s̄i) ,

where µP
i,k = µk

πi,k−(1−πi,k)µk
is the political economy-adjusted markup of industry k. Considering

the above formulas: if Cov (πi,k, µk) < 0, the optimal policy may tax high-µ industries to the
detriment of social welfare. In that case, even if Cov(σk, µk) > 0, the misallocation-correcting
and ToT motives for trade taxation will clash. However, if Cov (πi,k, µk) ≥ 0 Propositions 1 and
2 remains valid despite political economy pressures.

6 Estimating the Key Policy Parameters

Based on our theory, policy evaluation in open economies requires credible estimates for
industry-level trade elasticities, σk, and industry-level scale elasticities, µk ∼ 1

γk−1 . The former
governs the degree of national-level market power, while the latter regulates the extent of
love-for-variety. The trade literature has paid considerable attention to estimating σk, but less
to estimating µk. The existing policy literature typically normalizes µk in one of two ways:
(i) µk = 1

σk−1 in imperfectly competitive models, and (ii) µk = 0 in perfectly competitive
models.38 Both normalizations impose strong and artificial restrictions on Cov (µk, σk), which
based on Propositions 1 and 2 can lead to possibly flawed policy predictions.

Against this backdrop, we seek to estimate σk and µk in a way that ascertains mutual con-
sistency and gives us a credible evaluation of Cov (µk, σk). To this end, we propose a new
methodology that simultaneously estimates σk and µk from the same data.39 Our approach
involves fitting the structural firm-level import demand function implied by A1 to the universe
of Colombian import transactions from 2007–2013. We outline this approach below, starting
with a description of the data used in our estimation.

Data Description. Our estimation uses data on import transactions from the Colombian Cus-
toms Office during 2007–2013.40 The data include detailed information about each transaction,
such as the Harmonized System 10-digit product category (HS10), country of origin, import-
ing and exporting firm IDs, quantity, f.o.b. (free on board), and c.i.f. (customs, insurance, and
freight) transaction values, freight, insurance, and value-added tax in US dollars. As a unique
feature, our data reports the identities of all foreign firms exporting to Colombia. This feature
allows us to define import varieties as firm-product combinations rather than country-product
combinations, which is the standard approach. Table 6 (in the appendix) reports a summary
of basic trade statistics in our data.41 Working with firm-level data presents two challenges:

38See Ossa (2016) and Costinot and Rodríguez-Clare (2014) for a synthesis of the previous literature. Under
restricted entry, µk denotes the firm-level markup, which can be alternatively estimated with firm-level production
data (e.g., De Loecker and Warzynski (2012), De Loecker, Goldberg, Khandelwal, and Pavcnik (2016)).

39In the presence of firm-selection effects, our estimated parameters are necessary but not sufficient to pin down
the trade and scale elasticities—see Appendixes D and X for details.

40The data is obtained from DATAMYNE, a company that specializes in documenting import and export trans-
actions in Americas. For more detail, please see www.datamyne.com.

41Our estimation also employs data on monthly average exchange rates, which are taken from the Bank of
Canada: http://www.bankofcanada.ca/rates/exchange/monthly-average-lookup/.
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First, exporters are not identified by unique standardized IDs. Instead, they are identified by
a name, a number, and an address. We handle this problem by standardizing the spelling and
lengths of firms’ names and using the information on firms’ phone numbers (see Appendix
M). Second, Colombia changed the HS10 classification for some products between 2007 and
2013. Fortunately, the Colombian Statistical Agency, DANE, keeps track of these changes. We
utilize this information to concord the Colombian HS10 codes over time, using the guidelines
in Pierce and Schott (2012).42 Overall, changes in HS10 codes between 2007 and 2013 affect less
than 0.1% of our data points.

6.1 Estimating Equation

Since we are focusing on one importer, we hereafter drop the importer’s subscript i and add
a year subscript t to account for the time dimension of our data. With this switch in notation,
the demand facing firm ω located in country j and supplying product k in year t is given by:

qj,kt (ω) = φj,kt(ω)

(
p̃j,kt(ω)

P̃j,kt

)−γk
(

P̃j,kt

P̃kt

)−σk

Qkt, (14)

Subscript k, in our theoretical model, designated industries. In our estimation, k denotes an
HS10 product—the most disaggregated product classification in our data. The quadruplet
“ωjkt” accordingly denotes a unique variety corresponding to firm ω–country of origin j–HS10
product k–year t. Let x̃(ω) ≡ p̃(ω)q(ω) denote gross sales. Rearranging Equation 14 yields the
following log-linear import demand function facing individual varieties:

ln x̃j,kt(ω) = (1 − σk) ln p̃j,kt(ω) +

(
1 − σk − 1

γk − 1

)
ln λj,kt (ω) + Dkt + ln φj,kt(ω), (15)

where Dkt ≡ ln Pσk
kt Qkt can be treated as a product-year fixed effect and λj,kt (ω) denotes the

share of expenditure on firm ω conditional on buying good k from country of origin j,

λj,kt (ω) ≡ φj,kt(ω)

(
p̃j,kt(ω)

P̃j,kt

)1−γk

=
x̃j,kt (ω)

∑ω′∈Ωj,kt
x̃j,kt (ω)

.

We assume that φjkt(ω) = φ̄j,k(ω)× φωjkt can be decomposed into a time-invariant firm-and-
product-specific quality component, φ̄j,k(ω), and a time-varying component φωjkt, that encom-
passes idiosyncratic variations in consumer taste, measurement errors, and/or omitted vari-
ables that account for dynamic demand optimization. To eliminate φ̄j,k(ω) from the estimating
equation, we employ a first-difference estimator, which also drops observations pertaining to
one-time exporters. We deem the first-difference estimator appropriate given the possibil-
ity that φωjkt’s are sequentially correlated. As a robustness check, we also report estimation
results based on a two-ways fixed effects estimator in Appendix P.43 Stated in terms of first-

42To preserve the industry identifier of the product codes, and in contrast to Pierce and Schott (2012), we try to
minimize the number of the synthetic codes. The concordance data and do files are provided in the data appendix.

43Following Boehm, Levchenko, and Pandalai-Nayar (2020), the first-difference estimation offers a partial rem-
edy for omitted variable bias and reverse causality. Both issues pose a serious challenge to traditional log-level
estimations of import demand. Depending on the application, though, the first-difference estimator may not nec-
essarily identify the desired long-run elasticity. As detailed in Appendix P, this limitation is less severe in our
firm-level estimation—as we explicitly control for the extensive margin of trade. We illustrate this point formally
in Appendix P by re-estimating Equation 15 in levels and comparing the estimation results to the baseline values.
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differences, our estimating equation takes the following form

∆ ln x̃j,kt(ω) = (1 − σk)∆ ln p̃j,kt (ω) +

(
1 − σk − 1

γk − 1

)
∆ ln λj,kt (ω) + ∆Dkt + ∆ ln φωjkt, (16)

where ∆ ln φωjkt, roughly speaking, represents a variety-specific demand shock; and ∆Dkt is
a product-year fixed effect.44 Of the remaining variables, ∆ ln p̃j,kt(ω) and ∆ ln x̃j,kt(ω) are
directly observable for each import variety. The change in the within-national market share,
∆ ln λj,kt (ω), can be calculated using the universe of firm-level sales to Colombia.

Recovering Scale & Trade Elasticities from Demand Parameters. Equation 16 allows us to esti-
mate demand parameters, σk and γk, from which we can recover the scale and trade elasticities
as follows (see Section 2 for the underlying theoretical foundation):

µk =
1

γk − 1
∼ scale elasticity σk ∼ trade elasticity

The reason we can infer µk from demand parameters is that the scale elasticity in the general-
ized Krugman model reflects the extent of love-for-variety—the social benefits of which are not
internalized by firms’ entry decisions. In the Melitz-Pareto case, we also need estimates for
the shape of the Pareto productivity distribution (in addition to γk and σk) to recover the scale
elasticity—see Appendix O. Our demand-based estimation technique is of course unable to
detect scale externalities unrelated to love-for-variety. These externalities can be estimated us-
ing supply-side techniques, which require strong assumptions on the variability of production
inputs. We discuss the relative advantages of each technique in Appendix Q.45

Breaking the Sample into Broadly-Defined Industries. As noted earlier, k indexes an HS10
product category in Equation 16. To conduct our forthcoming quantitative analysis, we must
estimate demand parameters for 14 broadly-defined industries based on the World Input-
Output Database (WIOD) industry classification. Considering this, we pool all HS10 products
belonging to the same WIOD industry K together, and estimate Equation 16 on this pooled
sample assuming that σk and γk are uniform across products within the same industry (i.e.,
γk = γK and σk = σK for all k ∈ KK). In principle, we can also estimate the import demand
function separately for each HS10 product category to attain HS10-level elasticities. However,
such elasticities will be of little use for quantitative policy analysis, as multi-country data on
trade, production, and expenditure shares are scarce at such levels of disaggregation.

6.2 Identification Strategy

The identification challenge we face is that ∆ ln p̃j,kt (ω) and ∆ ln λj,kt (ω) are endogenous
variables that can covary with the demand shock, ∆ ln φωjkt.46 Traditional country-level import

44To handle outliers, we trims our sample to exclude observations that report a price change, ∆ ln p̃j,kt (ω), above
the 99th percentile or below the 1st percentile of the HS10 product code k in year t.

45In the restricted entry case, our demand estimation identifies the firm-level markup in each industry. Fol-
lowing an old tradition in the industrial organization literature, we assume that market conduct is monopolistic
competition and recover firm-level markups as µk = 1

γk−1 . Appendix V recover markups under alternative as-
sumptions vis-à-vis market conduct.

46Another challenge is that unit price data may be contaminated with measurement errors, as they are averaged
across many transactions. Following Berry (1994), this type of measurement error is fairly innocuous when dealing
with log-linear demand functions. Furthermore, our instrumental variable approach will handle measurement
errors, provided that lagged monthly sales patterns are uncorrelated with concurrent measurement errors.
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demand estimations overcome a similar challenge by instrumenting for prices with plausibly
exogenous tariff rates.47 This strategy, however, does not suit our firm-level estimation, because
tariffs discriminate by country-of-origin but not across firms from the same country.

We employ a shift-share research design to overcome our firm-level identification challenge.
Our approach is rooted in two data observations: First, a typical variety is imported under
multiple invoices spread across different months in a given year. As a matter of account-
ing, the annual-level price of a variety is the quantity-weighted average of monthly prices.
Namely, pj,kt (ω) = ∑m∈M s̃j,kt(ω; m)pj,kt (ω; m), where m denotes month and s̃ (ω; m) and
p (ω; m) denote the quantity share and price associated with month m. Second, the month
m price of an imported variety (in Colombian Pesos) is equal to markup-plus-taxes×marginal
input cost invoiced in local currency×exchange rate in month m. More formally, pj,kt (ω; m) =

τj,kt (ω)×Cj,kt (ω)×Ejt(m), where τ and C respectively denote markup-plus-tax and marginal
cost, while Ejt(m) represents the exchange rate between origin j’s currency and the Colombian
Peso in month m of year t. To a first-order approximation, the change in variety-level annual
prices in response to monthly exchange rate shock is, thus,

∆ ln p̃j,kt (ω) ≈ ∑
m∈M

sj,kt(ω; m)∆ ln Ejt(m),

where ∆ ln Ejt(m) denotes the year-over-year change in origin j’s exchange rate with the Colom-
bian Peso in month m ; and sj,kt(ω; m) is the share of month m in variety ωjkt’s annual export
sales to Colombia:

sj,kt (ω; m) =
x̃j,kt(ω; m)

∑m′∈M x̃j,kt(ω; m′)
∼ share of month m in annual export sales

Capitalizing on the above observation, we construct our shift-share instrument as the inner
product of lagged monthly export shares and monthly exchange rate shocks. Namely,

zj,kt(ω) = ∑
m∈M

sj,kt−1 (ω, m)∆ ln Ejt (m) .

Stated verbally, zj,kt(ω) measures exposure to exchange rate shocks at the firm×origin×product×year
level. The idea being that aggregate exchange rate shocks have differential effects on individ-
ual firms depending on the monthly composition of their prior export activity to Colombia.
Encouragingly, the relevance of our shift-share instrument is supported by the strong and sta-
tistically significant correlation between z and ∆ ln p̃. Appendix N illustrates this point using
the example of two U.S.-based exporters.

Exclusion Restriction. Our instrument utilizes lagged export shares, which depend on lagged
prices and a set of market-level indexes—namely, sjkt−1(ω, m) = s( p̃jkt−1(ω, m); ...). Consider-
ing this, the exclusion restriction in our setup, E [z ∆ ln φ] = 0, rests on two conditions:

(C1) Prior price-setting decisions (and thus lagged export shares) are orthogonal to con-
current demand shocks: E

[
p̃j,kt−1(ω)∆ ln φωjkt

]
= 0.

(C2) Monthly national-level exchange rate shocks are orthogonal to variety-level de-
mand shocks: E

[
∆ ln Ejt(m)∆ ln φωjkt

]
= 0.

47A prominent example is Caliendo and Parro (2015) who use tariff data to identify the trade elasticity.
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Since our sample features many firms and a finite number of months, Condition (C1) is suffi-
cient for the consistency of our estimates (see Proposition 2.1 in Goldsmith-Pinkham, Sorkin,
and Swift, 2020). In fact, our two-stage least square (2SLS) estimator is numerically equivalent
to a generalized method of moments (GMM) estimator with lagged monthly export shares as
instruments and a weight matrix constructed from monthly aggregate exchange rate shocks.
Condition (C2), meanwhile, is more crucial for the finite sample properties of our estimator.
Both conditions can in principle be violated if there are cross-inventory linkages or if indi-
vidual export varieties account for a significant fraction of national exports to Colombia. We
discuss and address these issues in Section 6.4.

Instruments for ∆ ln λj,kt (ω). Following Khandelwal (2010), we construct two standard
instruments for the annual variation in the within-national market shares: (i) annual changes
in the total number of origin j firms serving the Colombian market in product category k, and
(ii) changes in the total number of HS10 product categories actively served by firm ω in year
t. These count measures will be correlated with ∆ ln λj,kt (ω) but uncorrelated with ∆ ln φωjkt if
variety-level entry and exit occurs prior to, or independent of, the demand shock realization of
competing varieties. As noted by Khandelwal (2010), this assumption is widely-invoked when
estimating discrete choice demands curves—see also Berry, Levinsohn, and Pakes (1995).48

6.3 Estimation Results

Table 3 reports our industry-level estimation results. We also report results corresponding
to a pooled sample of all industries in Table 9 of the appendix. This table also compares the
2SLS and OLS estimates to ensure that our IV strategy operates in the expected direction. Our
estimates point to a median trade elasticity of σ − 1 = 3.9 and a median scale elasticity of
µ ≈ 0.20. Our pooled estimation yields a heteroskedasticity-robust Kleibergen-Paap Wald rk
F-statistic of 259, rejecting the null of weak instruments given the Stock-Yogo critical values. A
similar albeit weaker outcome emerges from the industry-level estimation.

The industry-level elasticities reported in Table 3 display considerable variation across in-
dustries. The estimated scale elasticity or markup margin is highest in the ’Electrical & Optical
Equipment’ (µ = 0.55) and ’Petroleum’ (µ = 1.2) industries; both of which are associated with
high R&D or fixed costs. The estimated scale elasticity is lowest in ’Agricultural & Mining’
(µ = 0.14) and ’Machinery’ (µ = 0.12) industries. Furthermore, with the exception of ’Agri-
culture & Mining,’ we cannot reject the prevalence of scale economies.49

Importantly, our estimates indicate that σk−1
γk−1 ̸= 1 in nearly all industries. This finding

rejects the arbitrary link often assumed between the firm-level and national-level degrees of

market power in the literature. Our estimates also indicate that

Cov(σk, µk) ≈ −0.65,

which corroborates the innate tension between the ToT-improving and misallocation-correcting
48Border taxes tend to be a weak instrument for firm-level prices in our sample, but we include to comply

with the past literature. These include applied ad-valorem tariffs and the Columbian value-added tax (VAT). We
exclude the VAT component in the ’Transportation’ and ’Petroleum’ industries since the VAT in these industries
discriminates by the delivery method and level of luxury—both of which may be correlated with ∆ ln φωjkt.

49The finding that returns-to-scale are negligible in the agricultural sector aligns with a large body of evidence
on the inverse farm-size productivity (IFSP) relationship—see Sen (1962) and subsequent references to IFSP.
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objectives, which are the core of Propositions 1 and 2.50

Table 3: Industry-level estimation results

Estimated Parameter

Sector ISIC4 codes σk − 1 σk−1
γk−1 µk Obs. Weak

Ident. Test

Agriculture & Mining 100-1499 6.227 0.891 0.143 11,568 2.40
(2.345) (0.148) (0.059)

Food 1500-1699 2.303 0.905 0.393 19,615 6.27
(0.765) (0.046) (0.132)

Textiles, Leather & Footwear 1700-1999 3.359 0.753 0.224 125,120 66.65
(0.353) (0.022) (0.024)

Wood 2000-2099 3.896 0.891 0.229 5,872 1.41
(1.855) (0.195) (0.120)

Paper 2100-2299 2.646 0.848 0.320 37,376 3.23
(1.106) (0.061) (0.136)

Petroleum 2300-2399 0.636 0.776 1.220 3,973 2.83
(0.464) (0.119) (0.909)

Chemicals 2400-2499 3.966 0.921 0.232 133,142 38.01
(0.403) (0.025) (0.024)

Rubber & Plastic 2500-2599 5.157 0.721 0.140 106,398 7.16
(1.176) (0.062) (0.034)

Minerals 2600-2699 5.283 0.881 0.167 27,952 3.53
(1.667) (0.108) (0.056)

Basic & Fabricated Metals 2700-2899 3.004 0.627 0.209 153,102 20.39
(0.484) (0.030) (0.035)

Machinery 2900-3099 7.750 0.927 0.120 263,797 12.01
(1.330) (0.072) (0.023)

Electrical & Optical Equipment 3100-3399 1.235 0.682 0.552 257,775 26.27
(0.323) (0.017) (0.145)

Transport Equipment 3400-3599 2.805 0.363 0.129 85,920 5.50
(0.834) (0.036) (0.041)

N.E.C. & Recycling 3600-3800 6.169 0.938 0.152 70,264 11.57
(1.012) (0.090) (0.029)

Notes. Estimation results of Equation (16). Standard errors in parentheses. The estimation is conducted with HS10
product-year fixed effects. All standard errors are simultaneously clustered by product-year and by origin-product,
which is akin to the correction proposed by Adao, Kolesár, and Morales (2019). The weak identification test statistics
is the F statistics from the Kleibergen-Paap Wald test for weak identification of all instrumented variables. The test for
over-identification is not reported due to the pitfalls of the standard over-identification Sargan-Hansen J test in the
multi-dimensional large datasets pointed by Angrist, Imbens, and Rubin (1996).

6.4 Challenges to Identification

Our two conditions for identification, (C1) and (C2), can be contested under certain circum-
stances. Below, we discuss these issues and present additional evidence to address them.

Within-Cluster Correlation in Error Terms. Adao et al. (2019) show that identification based

50Our trade elasticity estimates are one of the few based on firm-level data. Traditional estimates of σk are
typically based on country-level data (e.g., Simonovska and Waugh (2014); Caliendo and Parro (2015)).
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on shift-share instruments exhibits an over-rejection problem if regression errors are cross-
correlated. In the context of our estimation, this problem will arise if demand shocks are cor-
related across firm-origin-product-year varieties with a similar monthly export composition. We
adopt a conservative two-way clustering of standard errors by product-year and origin-product
to handle this issue. Clustering standard errors in this manner is akin to the correction pro-
posed by Adao et al. (2019).

Dynamic Cross-Inventory Effects. Lagged inventory clearances can challenge our identify-
ing assumptions on two fronts. First, firms’ optimal pricing decisions may be forward-looking,
violating Condition (C1). To address this concern, we reconstruct our shift-share instrument
using four lags instead of one. If inventories clear in at most four years, we can deduce
that pricing decisions do not internalize expected demand shocks beyond the four-year mark.
Hence, E

[
p̃jkt−4(ω)∆ ln φωjkt

]
= 0, and the new instrument will satisfy the exclusion restric-

tion. The trade-off is that we lose observations, as the instrument is constructible for only firms
that continuously export in the 4 different years. The top panel of Figure 9 (in Appendix O)
compares estimation results under this alternative instrument to the baseline results. The new
estimation preserves the ordering and magnitude of our estimated elasticities. More impor-
tantly, it retains the negative correlation between σk and µk, which is the critical assumption
underlying Propositions 1 and 2.

Second, with cross-inventory linkages, ∆ ln φωjkt may encompass omitted variables that
reflect firms’ dynamic inventory management decisions. One of these omitted variables is pre-
sumably the exchange rate. If so, E

[
∆ ln Ejt(m)∆ ln φωjkt

]
̸= 0, which violates Condition (C2).

To address this concern, we reestimate Equation 16 while directly controlling for the annual
change in the exchange rate, ∆ ln Ejt. Even if changes in inventory-related demand depend on
the changes in the exchange rate, we can still assert that E

[
zj,kt(ω)∆ ln φωjkt | ∆ ln Ejt

]
= 0—

i.e., the exclusions restriction is satisfied with the added control, ∆ ln Ejt. The middle panel of
Figure 9 (in Appendix O) compares estimation results from this alternative specification to the
baseline results. Reassuringly, The new estimation preserves the ordering and magnitude of
our estimated elasticities and the negative correlation between σk and µk.

Export Varieties with Significant Market Share. Our identification can come under threat
if individual varieties account for a significant fraction of a country’s sales to Colombia. In
such a case, variety-specific demand shocks can influence the bilateral exchange between the
Colombian Peso and the origin country’s currency, thereby violating Condition (C2). This
concern, however, does not apply to our sample of exporters. The variety with the highest
99th percentile within-national market share accounts for only 0.1% of the origin country’s
total exports to Colombia. The variety with the highest 90th percentile within-national market
share accounts for only 0.0008% of the origin country’s total exports to Colombia.

One may remain concerned about large multi-product firms that export multiple prod-
uct varieties to Colombia in a given year. Consider, for instance, a multi-product firm ω

that exports goods k and g to Colombia in year t. If demand shocks are correlated across
varieties supplied by this firm (i.e., E

[
∆ ln φωjkt ∆ ln φωjgt

]
̸= 0), Condition (C2) may be vio-

lated despite each variety’s market share being infinitesimally small. To address this issue, we
reestimate Equation 16 on a restricted sample that drops excessively large firms with a total
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within-national market share that exceeds 0.1%. The bottom panel of Figure 9 (in Appendix O)
compares estimation results from the trimmed sample to the baseline results. Encouragingly,
the ordering and magnitude of the estimated elasticities are preserved across industries. The
new estimation also retains the negative correlation between σk and µk.

6.5 Plausibility of Estimates

We conclude this section, discussing the plausibility of our estimates. We do so by explor-
ing their macro-level implications and comparing them to counterparts in the literature.

Plausibility from the Lens of Macro-Level Predictions. Our scale elasticity estimates can be
evaluated based on their prediction about the income-size elasticity. As pointed out by Ra-
mondo, Rodríguez-Clare, and Saborío-Rodríguez (2016), the factual relationship between real
per capita income and population size (i.e., the income-size elasticity) is negative and statisti-
cally insignificant. Quantitative trade models featuring the normalization µ(σ − 1) = σ−1

γ−1 = 1,
however, predict a strong and positive income-size elasticity that remains significant even af-
ter the introduction of domestic trade frictions. Ramondo et al. (2016) call this observation the
income-size elasticity puzzle. Considering this puzzle, in Appendix R we compute the income-
size elasticity implied by our estimated value of σ−1

γ−1 ≈ 0.67. Encouragingly, we find that our
estimated value for σ−1

γ−1 completely resolves the aforementioned puzzle. In other words, our
micro-estimated elasticities are consistent with the macro-level cross-national relationship be-
tween population size and real per capita income.

Comparison to Counterparts in the Literature. Reassuringly, our estimates align closely with
well-known industry-level case studies. Take, for example, our elasticity estimates for the
’Petroleum’ industry, which appear somewhat extreme. First, our estimate for σk aligns with
the consensus in the Energy Economics literature that national-level demand for petroleum
products is price-inelastic.51 Second, our estimated µk for the ’Petroleum’ industry closely
resembles existing estimates in the Industrial Organization literature. Considine (2001), for in-
stance, estimates µ ≈ 1.15 using detailed data on the U.S. petroleum industry. Moreover, our
finding that the ’Petroleum’ industry is the most scale-intensive industry is consistent with the
finding in Antweiler and Trefler (2002), which is based on more aggregated data. Likewise,
consider the ’Transportation’ or auto industry, where our estimated µk = 0.13 implies an opti-
mal markup of 13%. This estimate aligns with existing estimates from various industry-level
studies. Recently, Coşar, Grieco, Li, and Tintelnot (2018) have estimated markups for the auto
industry that range between roughly 6% to 13%. Previously, Berry et al. (1995) have estimated
markups of around 20% in the U.S. auto industry using data from 1971-1990. Lastly, the scale
elasticity can be alternatively estimated using supply-side techniques. These techniques can
in principle detect scale externalities unrelated to love-for-variety—albeit under strong assump-
tions about the variability of production inputs. Supply-side estimation techniques, however,
cannot separately identify the trade elasticity from the scale elasticity, and are thereby unable
to determine Cov (σk, µk)— see Appendix Q for further details.

51See Pesaran, Smith, and Akiyama (1998) for specific estimates and Fattouh (2007) for a survey of this literature.
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7 Quantifying the Consequences of Trade and Industrial Policy

As a final step, we use our estimated values for µk and σk to quantify the gains from trade
and industrial policy for a wide range of countries. Before outlining our quantitive approach,
we describe the macro-level data used to discipline our quantitative model.

Trade, Production, and Tariff Data. We take macro-level data on domestic and international
production and expenditure from the 2014 World Input-Output Database (WIOD, Timmer,
Erumban, Gouma, Los, Temurshoev, de Vries, Arto, Genty, Neuwahl, Francois, et al. (2012)).
This database spans 56 industries and 43 countries plus an aggregate of the rest of the world.
The list of countries in the sample includes all 27 members of the European Union plus 16 other
major economies—all of which are listed in Table 4. Following Costinot and Rodríguez-Clare
(2014), we aggregate the 56 WIOD industries into 15 traded industries (for which we have
estimated µk and σk) plus a service sector. Details for our industry aggregation are reported in
Table 10 of the appendix. Our baseline analysis normalizes µk = 0 and σk = 11 for all service-
related industries. In Appendix X, however, we test the sensitivity of our results to alternative
normalization choices. We also need to take a stance on applied tariffs and subsidies. We
take data on applied tariffs, tji,k, from the UNCTAD-TRAINS database.52 International data
on domestic and export subsidies are not as widely available. Considering that these subsidy
measures are generally prohibited by the WTO, we extrapolate that xij,k ≈ si,k ≈ 0.

7.1 Mapping Optimal Policy Formulas to Data

The sufficient statistics formulas provided by Theorems 1-3 let us compute the gains from
optimal policy without appealing to numerical optimization. This feature is particularly ad-
vantageous as numerical optimization routines (like MATLAB’s FMINCON) have well-known
limitations when applied to non-linear models with many free-moving variables.53 We present
our optimization-free procedure focusing on first-best policies under free entry. Appendix S
illustrates how a similar procedure can recover policy consequences in other scenarios.

To map our theory to data, we need to take a stance on the cross-industry utility aggregator.
As is common in literature, we assume a Cobb-Douglas parameterization, Ui (Qi) = ∏k Qei,k

i,k .
As explained earlier, we posses data on observable shares, national accounts, and applied
taxes. We use D =

{
λji,k, rji,k, ei,k, ρi,k, Yi, wiLi, xij,k, tji,k, si,k

}
j,i,k to denote such data.54 We have

estimated the trade and scale elasticity across many industries, and use Θ = {σk, µk} to denote
our set of estimated parameters.

The logic behind our procedure is to (a) specify optimal tax/subsidy choices as a function
of the equilibrium variables (e.g., expenditure shares), and (b) specify equilibrium variables as

52We closely follow Kucheryavyy et al. (2016) to clean the UNCTAD-TRAINS database and match it with WIOD.
To make the data consistent with our theoretical model, we also purge it from trade imbalances following the
procedure described in Costinot and Rodríguez-Clare (2014).

53Costinot and Rodríguez-Clare (2014) note that computing optimal policy via numerical optimization can be-
come increasingly burdensome when dealing with many free-moving tax instruments. Their optimal tariff analysis
is, therefore, limited to a uniform tariff applied to all industries (see P. 227 and the discussion following Figure 4.1)

54As explained in Section 2, under free entry, the number of firms operating in origin n–industry k can be ex-
pressed as Mi,k = m̄i,kρi,k, where m̄i,k is composed of parameters and variables that are invariant to policy. We can,
therefore, use ρi,k to track scale economies that channel through entry—as detailed under Equation 6.
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a function of optimal tax/subsidy choices. We then jointly solve the system of equations that
combine (a) and (b) to determine welfare outcomes under optimal policy choices. We use the
exact hat-algebra notation to accomplish this task, whereby ẑ = z∗/z denotes the change in
a generic variable when moving from the factual value, z, to the counterfactual value under
optimal policy, z∗.

As discussed under Theorem 1, country i’s first-best policy schedule in the Cobb-Douglas
case is described by the following set of formulas

1 + s∗i,k = 1 + µk; 1 + t∗ji,k = 1 + ω∗
ji,k; 1 + x∗ij,k =

(σk − 1)∑n ̸=i

[
(1 + ω∗

ni,g)λ
∗
nj,k

]
1 + (σk − 1)(1 − λ∗

ij,k)
;

where superscript “∗” indicates that a variable is evaluated in the counterfactual optimal pol-
icy equilibrium. Using the hat-algebra notation and our expression for the good-specific sup-
ply elasticity, ωji,k (Equation 10), we can write the above formulas in changes as follows:55

[optimal import tax] 1 + t∗ji,k =
− µk

1+µk
r̂ji,krji,kΦ∗

ji,k

1 − µk
1+µk

∑ι ̸=i
(
r̂jι,krjι,k

[
1 + (σk − 1)(1 − λ̂jι,kλjι,k)

])
[optimal export subsidy] 1 + x∗ij,k =

(σk − 1)∑n ̸=i

[
(1 + t∗ni,g)λ̂nj,kλnj,k

]
1 + (σk − 1)(1 − λ̂ij,kλij,k)

,

[change in taxes] 1̂ + si,k =
1 + µk

1 + si,k
; 1̂ + tji,k =

1 + t∗ji,k
1 + tji,k

; ̂1 + xij,k =
1 + x∗ij,k
1 + xij,k

.

(17)

Since the rest of the world is passive in their use of taxes, 1̂ + sn,k = ̂1 + tjn,k = ̂1 + xnj,k = 1
for all n ̸= i. To determine the change in expenditure shares, λ̂ji,k, we need to determine the
change in consumer price indexes. Invoking the CES structure of within-industry demand, we
can express the change in market i–industry k’s consumer price index as

[price indexes] ˆ̃Pi,k = ∑
n∈C

λni,k

[
̂1 + tni,k

( ̂1 + xni,k)(1̂ + sn,k)
ŵnρ̂

−µk
n,k

]1−σk
 1

1−σk

. (18)

Recall that ρn,k = Ln,k/Ln denotes industry k’s sales share in origin n, which—under free
entry—is equal to the share of origin n’s workers employed in that industry. The above for-
mulation uses the fact that, by free entry, M̂i,k = ρ̂i,k. Given ˆ̃Pi,k, we can calculate the change in
expenditure and revenue shares as follows:

[expenditure shares] λ̂ji,k =

[
1̂ + tji,k

( ̂1 + xji,k)(1̂ + sj,k)
ŵjρ̂

−µk
j,k

]1−σk

ˆ̃Pσk−1
i,k

[revenue shares] r̂ji,k =

(
̂1 + xji,k

1̂ + tji,k

λ̂ji,kŶi

)(
∑

n∈C

̂1 + xjn,k

̂1 + tjn,k

λ̂jn,kŶn

)−1

. (19)

The change in the wage rate, ŵi, and industry-level sales shares, ρ̂i,k, are dictated by the labor

55The multiplier Φ∗
ji,k = 1 −

(
1 − 1

µk

)
(σk − 1)∑ι ̸=i

[
r̂iι,kriι,k
r̂ji,krji,k

λ̂jι,kλjι,k

]
ρ̂i,kρi,kŵiwi Li
ρ̂j,kρj,kŵjwj Lj

accounts for cross-demand ef-
fects in foreign markets—see Equation 10 from Section 3.
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market clearing (LMC) condition, which ensures that industry-level sales match wage pay-
ments, industry by industry:

[LMC] ρ̂i,kρi,kŵiwiLi = ∑
j∈C

[
(1 + x∗ij,k)(1 + s∗i,k)

1 + t∗ij,k
λ̂ij,kλij,kej,kŶjYj

]
; ∑

k∈K

ρ̂i,kρi,k = 1. (20)

The change in national expenditure, Ŷi, is governed by the balanced budget (BB) condition,
which ensures that total expenditure matches total income from wage payments and tax rev-
enues:

[BB] ŶiYi =ŵiwiLi − ∑
k∈K

[
s∗i,kλ̂ii,kλii,kei,kŶiYi

]
+∑

j ̸=i
∑

k∈K

(
t∗ji,k

1 + t∗ji,k
λji,kλ̂ji,kei,kŶiYi +

1 − (1 + x∗ij,k)(1 + s∗i,k)

1 + t∗ij,k
λij,kλ̂ij,kej,kŶjYj

)
. (21)

Equations 17-21 represent a system of 2N + NK+(2(N − 1) + 1)K independent equations and
unknowns. The independent unknown variables are ŵi (N unknowns), Ŷi (N unknowns), ρ̂i,k

(NK unknowns), 1̂ + si,k (K unknowns), 1̂ + tji,k ((N − 1)K unknowns), and ̂1 + xij,k ((N − 1)K
unknowns). Solving the aforementioned system is possible with information on observable
data points, D, and estimated parameters, Θ ≡ {µk, σk}. Once we solve this system, the wel-
fare consequences of country i’s optimal policy are automatically determined. The following
proposition outlines this result.56

Proposition 3. Suppose we have data on observable shares, national accounts, and applied taxes,
D =

{
λji,k, rji,k, ei,k, ρi,k, Yi, wiLi, xij,k, tji,k, si,k

}
j,i,k

, and information on structural parameters, Θ ≡
{µk, σk}. We can determine the economic consequences of country i’s optimal policy by calculating
X =

{
Ŷi, ŵi, ρ̂i,k, 1̂ + si,k, 1̂ + tji,k, ̂1 + xij,k

}
as the solution to the system of Equations 17-21. After

solving for X, we can fully determine the welfare consequence of country i’s optimal policy as

Ŵi = Ŷi/ ∏
k∈K

ˆ̃Pei,k
i,k , (∀n ∈ C)

where ˆ̃Pi,k is determined by Equation 18 as a function of X and data, D.

To take stock, the optimization-free procedure described by Proposition 3 simplifies the
task of computing the gains from first-best trade and industrial policies. We can use a sim-
ilar procedure (based on Theorems 2 and 3) to compute the gains from second-best trade
policies—see Appendix S. Without Proposition 3, we would have to rely on numerical opti-
mization to recover country i’s optimal policy.57 As noted earlier, numerical optimization can
become increasingly difficult-to-implement when dealing with many free-moving policy vari-
ables. Furthermore, in many instances, obtaining credible results from numerical optimization
requires specialized commercial solvers like SNOPT or KNITRO. Propositions 3’s optimization-
free procedure allows us to bypass such complications, delivering notable gains in computa-
tional speed and accuracy.

56Under Proposition 3, the optimal policy specification uses our approximation for ωji,k. In Appendix U, we
examine the accuracy of our approximation and outline how our optimization-free approach can be alternatively
conducted with an exact formula for ωji,k.

57Such a problem is typically formulated as a Mathematical Programming with Equilibrium Constraints (MPEC)
problem–see Ossa (2014) for further details.
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7.2 The Consequences of Non-Cooperative Policies

Our first set of results elucidate policy consequences when governments act non-cooperatively.
These results convey two basic points. First, non-cooperative trade taxes are ineffective at cor-
recting misallocation in domestic industries—even without retaliation. Second, the cost of re-
taliation is sizable. Together these results point to little justification for non-cooperative trade
taxation even in 2nd-best economies plagued with misallocation.

Table 4 reports the gains from optimal non-cooperative policies under free and restricted
entry. The first three columns in each case report welfare gains assuming the rest of the world
does not retaliate. The fourth column reports net welfare effects after retaliation. The 1st-best
non-cooperative policy consists of Pigouvian subsidies, import tariffs, and export subsidies
(Theorem 1); the 2nd-best consists of only import tariffs and export subsidies (Theorem 2); the
3rd-best consists of only import tariffs (Theorem 3).

We can draw two main conclusions from Table 4. First, trade taxes are a poor 2nd-best
substitute for Pigouvian subsidies. Trade taxes can replicate only 1/3 of the welfare gains at-
tainable under the 1st-best policy that combine Pigouvian subsidies with trade taxes.58 Under
free entry, the 1st-best non-cooperative policy increases welfare by 3.01% on average, whereas
2nd-best trade taxes/subsidies raise welfare by only 1.19%. 3rd-best import tariffs (not paired
with export subsidies) are half as effective.

These results reflect the tension between the terms-of-trade and allocate efficiency empha-
sized by Proposition 1. Since our estimated scale and trade elasticities satisfy Cov(σk, µk) < 0,
correcting inter-industry misallocation with trade policy worsens the terms-of-trade—making
it difficult for 2nd-best trade policies to strike a balance between these two policy targets. We
elucidate this point further in Appendix V by artificially raising Cov(σk, µk) and recomputing
the gains from policy. The results displayed in Figure 11 of the appendix point to a sharp rise
in the efficacy of 2nd-best trade taxes as Cov(σk, µk) is artificially inflated.

Second, we find that retaliation more than wipes out the gains from non-cooperative taxa-
tion. The net effect of non-cooperative policies after retaliation is a welfare loss of 1.20% under
free entry. Retaliation, in our calculation, occurs through the reciprocal adoption of optimal
trade taxes by trading partners. As noted in Section 4, the cost of retaliation may not deter
a short-sighted government from erecting trade taxes—at least when trade taxes are a less
politically-controversial instrument for correcting misallocation. In such cases, our finding
that trade policy is incapable of improving misallocation should serve as a deterrent.

7.3 The Gains from International Cooperation

Suppose governments recognize the danger of non-cooperation and limit themselves to
the cooperative policy outlined in Section 3. As we show next, cooperative countries risk
immiserizing growth if they take the lead in policy implementation. This issue can cause a race
to the bottom in industrial policy implementation, but can be resolved via a deep agreement.

58This finding echoes the numerical result in Balistreri and Markusen (2009) that optimal tariffs yield smaller
gains in the presence of positive firm-level markups.
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Table 4: The Gains from Non-Cooperative Policies and the Consequences of Retaliation

Restricted Entry Free Entry

Country 1st-best
2nd-best
trade tax

3rd-best
import tax

post
retaliation

1st-best
2nd-best
trade tax

3rd-best
import tax

post
retaliation

AUS 0.90% 0.21% 0.14% -0.83% 2.31% 0.58% 0.35% 2.85%
AUT 1.31% 0.66% 0.45% -1.67% 2.07% 1.11% 0.58% -2.34%
BEL 1.31% 0.69% 0.50% -3.07% 1.62% 0.90% 0.55% -4.13%
BGR 2.01% 0.63% 0.52% 0.04% 5.48% 1.88% 0.83% 0.23%
BRA 1.87% 0.23% 0.17% 0.93% 4.32% 0.64% 0.36% 3.21%
CAN 1.72% 0.57% 0.45% -1.10% 3.37% 1.19% 0.46% 0.34%
CHE 1.04% 0.56% 0.46% -0.92% 1.27% 0.76% 0.53% -1.26%
CHN 1.76% 0.27% 0.24% 1.43% 3.70% 0.39% 0.28% 2.90%
CYP 1.75% 0.68% 0.61% -4.20% 5.47% 1.56% 1.43% -10.88%
CZE 1.68% 0.88% 0.54% -1.70% 2.86% 1.60% 0.73% -2.13%
DEU 1.71% 0.78% 0.49% -0.37% 2.74% 1.34% 0.65% -0.10%
DNK 1.22% 0.58% 0.48% -2.41% 1.94% 0.91% 0.49% -4.78%
ESP 1.53% 0.52% 0.39% -0.15% 2.53% 1.03% 0.49% 0.29%
EST 1.18% 0.62% 0.45% -4.86% 2.69% 1.42% 0.56% -7.90%
FIN 1.40% 0.54% 0.25% -0.76% 2.00% 0.83% 0.47% -1.08%
FRA 1.20% 0.45% 0.34% -0.78% 2.49% 1.10% 0.50% 0.01%
GBR 1.09% 0.48% 0.42% -0.65% 2.10% 1.03% 0.58% 0.17%
GRC 1.82% 0.59% 0.53% -0.20% 2.58% 1.08% 0.68% -0.04%
HRV 1.03% 0.55% 0.45% -2.27% 1.79% 0.73% 0.52% -2.99%
HUN 2.25% 1.06% 0.73% -2.85% 4.08% 2.28% 0.96% -3.33%
IDN 2.00% 0.36% 0.26% -0.37% 4.81% 1.45% 0.50% 2.42%
IND 1.81% 0.35% 0.31% 1.60% 4.24% 1.10% 0.37% 2.82%
IRL 0.86% 0.68% 0.53% -2.07% 1.49% 0.89% 0.40% -3.32%
ITA 1.50% 0.46% 0.26% 0.36% 2.75% 0.95% 0.48% 0.80%
JPN 1.48% 0.32% 0.22% 0.31% 2.84% 0.75% 0.42% 1.55%
KOR 2.12% 0.65% 0.49% 0.14% 4.37% 1.62% 0.73% 1.25%
LTU 2.50% 0.93% 0.76% -1.38% 3.54% 1.26% 0.85% -2.47%
LUX 0.93% 0.81% 0.78% -3.59% 0.84% 1.15% 1.01% -4.90%
LVA 0.91% 0.54% 0.44% -4.26% 1.31% 0.80% 0.46% -4.85%
MEX 2.24% 0.60% 0.44% -0.92% 4.96% 1.36% 0.76% 1.96%
MLT 1.35% 0.92% 0.82% -3.75% 2.05% 1.39% 1.06% -4.81%
NLD 1.35% 0.66% 0.54% -3.44% 1.86% 0.98% 0.59% -3.73%
NOR 1.19% 0.40% 0.27% -0.74% 2.02% 0.81% 0.41% -0.33%
POL 2.19% 0.76% 0.65% -0.26% 4.03% 1.62% 0.81% 0.80%
PRT 2.04% 0.74% 0.65% -0.36% 3.85% 1.72% 0.80% 0.73%
ROU 2.05% 0.77% 0.67% -0.42% 3.97% 1.72% 0.98% 1.15%
RUS 2.39% 0.32% 0.27% 0.84% 5.25% 1.39% 0.37% 2.80%
SVK 2.01% 1.06% 0.79% -2.17% 3.17% 2.09% 1.08% -2.73%
SVN 1.42% 0.87% 0.67% -3.09% 1.35% 1.20% 0.90% -4.92%
SWE 1.21% 0.62% 0.45% -0.95% 1.54% 0.77% 0.49% -1.48%
TUR 1.43% 0.46% 0.32% -1.52% 3.52% 1.34% 0.61% -6.33%
TWN 2.18% 0.69% 0.56% -0.94% 4.99% 1.85% 0.79% 0.81%
USA 1.53% 0.32% 0.27% 0.69% 3.04% 0.80% 0.30% 2.15%
Average 1.59% 0.60% 0.47% -1.23% 3.01% 1.19% 0.63% -1.20%

Note: The data source is the 2014 World Input-Output Database (WIOD, Timmer et al. (2012)). The 1st best policy is characterized
by Theorem 1; 2nd best trade taxes are characterized by Theorem 2; and 3rd best import taxes are characterized by Theorem 3. Post
retaliation corresponds to a situation were the home country sets its 1st-best policies and the RoW retaliates.

38



7.3.1 The Immiserizing Growth Effects of Unilateral Industrial Policy

Suppose countries limit themselves to the cooperative policy choice consisting of zero trade
taxes and (markup-correcting) Pigouvian subsidies. Industrial policy implementation, under
this arrangement, can be obstructed by immiserizing growth effects (Proposition 2). In this
section, we show that these effects are quantitatively important.

Table 5 reports the welfare consequences of unilateral and coordinated industrial policy
implementation. The policy applied in each case is a set of Pigouvian subsidies that restore
marginal cost-pricing in the local economy. Unilateral implementation corresponds to a sce-
nario where the home country implements its industrial policy but trading partners do not
reciprocate and stick to business as usual. Coordinated implementation corresponds to a re-
ciprocal implementation of industrial policies worldwide.

Table 5: Industrial Policy and Immiserizing Growth
Restricted Entry Free Entry

Unilateral Coordinated Unilateral Coordinated

Gains from Corrective
Industrial Subsidies

-0.39% 1.65% -2.78% 3.42%

Note: The data source is the 2014 World Input-Output Database (WIOD, Timmer et al. (2012)). The columns titled
unilateral reports welfare gains when a country unilaterally adopts industrial subsidies that restore marginal cost
pricing in the domestic economy. The columns titled multilateral reports welfare gains when all countries simulta-
neously adopt industrial subsidies that restore marginal cost pricing globally. The average gains are calculated as
the simple average across all 43 countries in the WIOD sample. Country-level results are reported in Appendix W.

The results in Table 5 confirm the strong immiserizing growth effects of unilateral scale cor-
rection. Real income in the average country drops by more than 2.7% if corrective industrial
policies are implemented unilaterally. By comparison, welfare increases by more than 3.4%
under coordinated or reciprocal implementation. These results suggest that we may be wit-
nessing a race to the bottom in industrial policy implementation—without a deep agreement
to ensures reciprocity in implementation. As things stand, cooperative countries two two
choices: (i) immplement scale correction and risk immiserizing growth, or (ii) violate their
commitments to cooperation by pairing corrective subsidies with trade restrictions.

It is worth emphasizing that the immiserizing growth effects reported in Table 5 stem from
the tension between misallocation and the terms of trade (ToT). Given that our estimated scale
and trade elasticities satisfy Cov(σk, µk) < 0, restoring allocate efficiency with Pigouvian subsi-
dies worsens one’s ToT, to the point of causing immiserizing growth. We confirm this point in
Appendix V by artificially raising Cov(σk, µk) and recomputing the gains from unilateral scale
(or markup) correction. As Cov(σk, µk) is artificially inflated relative to its estimated value,
immiserizing growth effects fade and are even reversed (see Figure 12 of the appendix).

7.3.2 The Gains from Deep vs. Shallow Cooperation

Recall from Section 4 that we can model international cooperation as a two-stage process:

i. The first stage involves a shallow agreement that disciplines non-cooperative trade taxes
helping countries avert a full-fledged trade war.

39



ii. The second stage involves a deep agreement that ensures reciprocity in industrial policy
implementation, helping countries avoid a race to the bottom.

Figure 2 reports the welfare gains associated with each stage. The blue bars correspond to the
welfare gains brought by the existing nexus of shallow agreements. These gains are computed
relative to a counterfactual equilibrium where all countries adopt their non-cooperative trade
taxes. The blue bars correspond to the prospective-but-unrealized welfare gains from deep
cooperation. These gains are computed as the welfare gains associated with a universal imple-
mentation of (markup-correcting) industrial policies.59 As discussed earlier, a deep agreement is
necessary to uncover these welfare gains.

The welfare gains from shallow cooperation are on average 3.2%. That is, the average
country is poised to lose 3.2% of its real income if trade taxes are counterfactually raised to
their non-cooperative level everywhere. The existing nexus of shallow agreements have al-
ready materialized these gains. The prospective gains from deep cooperation are 1.6% under
restricted entry. That is, if countries can agree to a reciprocal implementation of markup-
correcting industrial policies, they can boost their real income by an additional 1.6%. Similar
but larger welfare gains will occur under free entry.

Our estimated gains from shallow cooperation relate to the theoretical arguments in Bag-
well and Staiger (2001, 2004). As explained earlier, shallow cooperation is sufficient for global
efficiency if (i) Cov (µk, σk) ≥ 0, or (ii) governments play a one-shot game where they si-
multaneously choose and implement their best-policy response with the belief that others do
the same. Our micro-level estimation rejected the former condition. Exhaustive literature on
the history of international policy coordination disputes the latter condition. If we suspect
that governments move sequentially in the implementation stage and are not convinced about
reciprocity in policy implementation, then deep cooperation is necessary for global efficiency.

7.3.3 A Stronger Case for International Cooperation

The standard argument for international cooperation recognizes that governments can reap
short-term gains if they adopt non-cooperative trade taxes. But these short-term gains will
turn into losses if trading partners retaliate. The standard argument may, thus, fail to deter a
short-sighted government from taking the non-cooperative route. After all, from the lens of
traditional theories, the only way to reap short-term welfare gains (relative to the status quo)
is to adopt non-cooperative trade restrictions and hope for delayed retaliation.

Our quantitative analysis unveils a stronger augment for international cooperation. Start-
ing from the status quo, a government seeking welfare improvements has two options: (1) en-
gage in a coordinated industrial policy effort, or (2) raise non-cooperative trade taxes to reap
short-lived ToT benefits. We find that the former option not only delivers sustainable welfare
gains but strictly dominates the latter option even before we adjust for the cost of retaliation.

This point is illustrated in Figure (3). The x-axis corresponds to the unrealized gains from
deep cooperation. The y-axis corresponds to the maximal short-term gains from (non-cooperative)
unilateral policies, which transpire before retaliation. For most economies, the unrealized

59The gains from deep cooperation can be computed with the aid of the optimal policy formulas specified under
Equation 9 and the logic presented earlier under Section (7.1).
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Figure 2: The welfare gains from deep and shallow cooperation
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Note: The data source is the 2014 World Input-Output Database (WIOD, Timmer et al. (2012)). Welfare effects are
computed under restricted entry. The gains from deep cooperation correspond to welfare gains when moving from
the status quo to the globally efficient equilibrium in which all countries coordinate their corrective Pigouvian
subsides. The gains from shallow cooperation correspond to the avoided welfare losses when moving from the status
quo to an non-cooperative equilibrium where all countries adopt Nash trade taxes and subsidies.
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gains from deep cooperation dominate even the short-term gains from unilateral policy in-
terventions. This finding indicates that the spillover gains from corrective policies in the rest
of the world exceed the short-term ToT gains from non-cooperative taxes—echoing our earlier
claim that the ToT gains from policy are limited in scope, even before retaliation.60

Figure 3: Deep cooperation vs. unilateral policy interventions
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Note: The data source is the 2014 World Input-Output Database (WIOD, Timmer et al. (2012)). The gains from 1st
best non-cooperative policy are the gains when each country implements the policy characterized by Theorem 1
and the rest of the world is passive. The gains from global cooperation correspond to a scenario where all countries
forgo trade taxation and apply industrial subsidies that restore marginal cost pricing.

7.4 Sensitivity Analysis

In Appendix X we recalculate the gains from policy under several alternative specifications.
First, we recompute the gains assuming that the data-generating process is a Melitz-Pareto
model. Second, we recompute the gains based on alternative values for σk and µk, which are
estimated via a two-ways fixed effects estimation (as reported in Appendix P). Lastly, we re-
compute the gains from policy under a more conservative set of values assigned to µk and σk

in services. In all cases, trade policy turns out to be a poor second-best instrument for resort-
ing allocative efficiency. Another noteworthy observation is that accounting for firm-selection
effects à la Melitz (2003), magnifies the gains from (first-best) optimal policies. However, these
greater gains are primarily driven by the larger misallocation-correcting gains. If anything,
second-best trade taxes/subsidies are even less effective at replicating the firs-best policy gains
in the presence of firm-selection into export markets.

What parameter values would imply larger gains from policy? We analyze this question in Ap-
pendix Y, noting that the gains from optimal policy are increasing in two statistics: (i) the

60Interestingly, the gains from deep cooperation favor small countries that have a comparative disadvantage in
high-returns-to-scale (or high-profit) industries, e.g., Estonia, Malta, and Slovenia. The intuition is that these coun-
tries depend relatively more on imported varieties in high-returns-to-scale industries and under deep cooperation,
these industries are subsidized across the globe.
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cross-industry variance of the scale elasticities, Var (log µk), and (ii) the average of the (in-
verse) trade elasticities, E

[
1

σk−1

]
. In Appendix Y, we adjust our estimated parameter values to

artificially increase both of theses statistics, and recompute the gains from policy under these
artificial parameter values. The results are reported in Figure 17 of the same appendix. They
reveal that the gains from optimal policy nearly double for all countries if we artificially in-
crease Var (log µk) by a factor of about three. The policy gains for different countries, however,
exhibit different degrees of sensitivity to an artificial increase in E

[
1

σk−1

]
—with the gains for

larger countries like the U.S. or China being noticeably less sensitive. The intuition is that
Var (log µk) governs the gains from correcting misallocation, whereas E

[
1

σk−1

]
regulates the

extent to which countries can improve their ToT. For large countries, where trade accounts for
a smaller fraction of the GDP, there is less scope for raising real GDP via ToT improvements—
hence, the lower sensitivity of policy gains to E

[
1

σk−1

]
.

8 Concluding Remarks

For centuries, scale economies have served as a justification for controversial trade and in-
dustrial policy practices. Yet we know surprisingly little about the actual empirics of trade and
industrial policy in increasing returns to scale industries. Against this backdrop, we took a pre-
liminary step toward identifying the force of industry-level scale economies using micro-level
trade data. Our estimates indicated that trade restrictions are a poor second-best policy for cor-
recting misallocation from industry-level scale economies. Unilateral industrial policy can be
equally ineffective, as it triggers immiserizing growth in most countries. However, industrial
policies coordinated via deep agreements deliver welfare gains that are more transformative
than any unilateral policy intervention.

We used our micro-estimated scale elasticities to uncover a range of macro-level policy im-
plications, but our estimates have an even broader reach. Three issues, in particular, deserve
closer attention. First, our scale elasticity estimates can help disentangle the relative contri-
bution of scale economies and Ricardian comparative advantage to patterns of international
specialization. This is an old topic of interest for which our empirical understanding is sur-
prisingly limited.

Second, our estimates can shed fresh light on the puzzlingly large income gap between
advanced and emerging economies. Economists have always hypothesized that a fraction of
this income gap stems from asymmetric specialization across low- and high returns-to-scale
industries. An empirical assessment of this hypothesis is impeded by a lack of comprehensive
estimates for industry-level scale elasticities. Our micro-level estimates pave the way for an
empirical exploration in this direction.

Finally, we are the first to empirically document the negative cross-industry correlation
between trade elasticities and firm-level markups. This relationship is crucial for policy eval-
uation in open economies, as it creates tension between the terms-of-trade and allocative ef-
ficiency. Our theoretical model is purposely agnostic about the direction and origins of this
relationship. We leave it to future research to explore this particular matter more profoundly.
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Theoretical Appendix

A The Redundancy of Consumption Taxes

Without loss of generality suppose country i ∈ C imposes a full set of tax instruments, while the
rest of the world is passive. Now, consider any arbitrary combination of taxes (indexed by A) that
includes (i) industrial (or domestic production) subsidies, sA

i,k, (ii) domestic consumption taxes, τA
i,k,

(iii) import taxes, tA
ji,k, and (iv) export subsidies, xA

ij,k. This set of tax instruments –which includes
consumption taxes– produces the following wedges between producer and consumer price indexes
for various product varieties:

P̃A
ii,k =

1 + τA
i,k

1 + sA
i,k

Pii,k; P̃A
ji,k = (1 + tA

ji,k)(1 + τA
i,k)Pji,k; P̃A

ij,k =
1

(1 + xA
ij,k)(1 + sA

i,k)
Pij,k; (j ̸= i)

Our claim here is that the same wedges can be replicated without appealing to consumption taxes, τi,k.
This claim can be established by considering an alternative tax schedule, B, which excludes consump-
tion taxes (i.e., 1 + τB

i,k = 0), but includes the following set of production subsidies, export subsidies,
and import taxes:

1 + sB
i,k =

1 + sA
i,k

1 + τ̄A
i,k

; 1 + tB
ji,k =

(
1 + tA

ji,k

) (
1 + τA

i,k

)
; 1 + xB

ij,k = (1 + xA
ij,k)(1 + τA

i,k)

It is straightforward to see that schedule B can reproduce the same wedge between producer and
consumer prices as the original schedule A (i.e., P̃A

= P̃B). In particular,

P̃B
ii,k =

1
1 + sB

i,k
Pii,k =

1 + τA
i,k

1 + sA
i,k

Pii,k = P̃A
ii

P̃B
ji,k = (1 + tB

ji,k)Pji,k = (1 + tA
ji,k)(1 + τA

i,k)Pji,k = P̃A
ji,k

P̃B
ij,k =

1
(1 + xB

ij,k)(1 + sB
i,k)

Pij,k =
1

(1 + xA
ij,k)(1 + sA

i,k)
Pij,k = P̃A

ij,k.

It also follows trivially that P̃B
nj,k = Pnj,k = P̃A

nj,k if n, j ̸= i, because the rest of the world does not impose
taxes.61 This equivalence indicates that consumption taxes are redundant if the government has access
to the other three sets of instruments. Note that the same can be said about production subsidies.
More specifically, the effect of industry-level production subsidies can be perfectly replicated with
a combination of consumption taxes, import taxes, and export subsidies. However, due to product
differentiation, if two (of the 2(N − 1) + 2) tax instruments are restricted, the replication argument fails.
That is, if both production subsidies and consumption taxes are restricted, export subsidies and import
taxes cannot fully replicate their effect.

61Note that the rest of the world imposing or not imposing taxes, does not matter for the redundancy of consumption
taxes. The above argument can be easily extrapolated to the case where all countries impose arbitrary taxes.
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B Proof of Lemma 1

Consider two policy-wage combinations, T = (s, t, x; w), and T′ = (s′, t′, x′; w′), that differ in
uniform shifters a and ã ∈ R+:

1 + x′i = a (1 + xi) 1 + x′−i = 1 + x−i

1 + t′i = a (1 + ti) 1 + t′−i = 1 + t−i

1 + s′i = (1 + si) /ã 1 + s′−i = 1 + s−i

w′
i = (a/ã)wi w′

−i = w−i

.

Our goal is to prove that (i) if T ∈ F then T′ ∈ F, and (ii) Wn(T) = Wn(T′) for all n ∈ C. To prove these
claims, we appeal to two intermediate lemmas. The first lemma establishes the following: Suppose
equilibrium quantities are identical under policy-wage vectors T and T’ (i.e., Qjn,k(T′) = Qjn,k(T) for
all jn, k ). Then, the implied nominal income and price levels under T and T′ are the same up to a
scale. The second lemma is a standard result from consumer theory: It indicates the nominal income
and price levels implied by the first lemma confirm the original assumption that Qjn,k(T′) = Qjn,k(T)
for all jn, k. Below, we state and prove the first of these lemmas for any a ∈ R+.

Lemma 2. Qjn,k(T′) = Qjn,k(T) for all jn, k =⇒

P̃i (T′) = aP̃i (T) ; P̃−i (T′) = P̃−i (T)

Yi (T′) = aYi (T) ; Y−i (T′) = Y−i (T)

Proof. Our goal is to compute nominal income and consumer prices under T and T′ starting from the
assumption that Qjn,k(T′) = Qjn,k(T) for all jn, k. We start our proof with nominal prices: To simplify

the notation, define δjn,k(T) ≡ ρjn,kQj,k(T)
− µk

1+µk . Note that –by assumption– δjn,k(T) = δjn,k(T′) = δjn,k.
First, consider the price of a typical good ji, k imported by i from origin j ̸= i. Using Equations 6 and
7, the consumer price of ji, k under combination T′ can be related to its price under T as follows:

P̃ji,k(T′) = δji,k
1 + t′ji,k

(1 + x′ji,k)(1 + s′j,k)
w′

j = δji,k
a(1 + tji,k)

(1 + xji,k)(1 + sj,k)
wj = aP̃ji,k(T),

where the third equality follows from the fact that 1 + t′ji,k = a(1 + tji,k), while w′
j = wj, x′ji,k = xji,k,

and s′j,k = sj,k (since wj ∈ w−i, xji,k ∈ x−i, and sj,k ∈ s−i). Second, consider a typical good ii, k that is
produced and consumed locally in country i. The consumer price of ii, k under combination T′ can be
related to its price under T as follows

P̃ii,k(T′) = δii,k
1

1 + s′i,k
w′

i = δii,k
1

1
ã (1 + si,k)

× a
ã

wi = aP̃ii,k(T),

where the third equality follows from the fact that 1 + s′i,k = (1 + si,k)/ã and w′
i = awi/ã. Third,

consider the price of a typical good ij, k export by i to destination market j ̸= i. The consumer price of
ij, k under combination T′ can be related to its price under T as follows:

P̃ij,k(T′) = δij,k
1 + t′ij,k

(1 + x′ij,k)(1 + s′i,k)
w′

i = δij,k
1 + tij,k

a(1 + x′ij,k)×
1
ã (1 + s′i,k)

× a
ã

wi = P̃ij,k(T),

where the third equality follows from the fact that 1 + x′ij,k = a(1 + xij,k), 1 + si,k = (1 + s′i,k)/ã, and
w′

i = awi/ã; while t′ij,k = tji,k since tji,k ∈ t−i. Lastly, is follows trivially that P̃jn,k(T′) = P̃jn,k(T) if j and
n ̸= i. Considering that P̃i =

{
P̃ji, P̃ii

}
, the above equations establish that

P̃i
(
T′) = aP̃i (T) , P̃−i

(
T′) = P̃−i (T) .
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Next, we turn to our claim about nominal income levels. To simplify the presentation, we hereafter use
X ≡ X(T) and X′ ≡ X(T′) to denote the value of a generic variable X under policy-wage combinations
T and T′. Keeping in mind this choice of notation, country i’s nominal income under T′, i.e., Y′

i ≡
Yi(T′) is given by:

Y′
i = w′

i Li + ∑
k

[(
1

1 + s′i,k
− 1

)
P′

ii,kQ′
ii,k

]
+ ∑

k
∑
j ̸=i

(
t′ji,k

(1 + x′ji,k)(1 + s′j,k)
P′

ji,kQ′
ji,k +

[
1

(1 + x′ij,k)(1 + s′i,k)
− 1

]
P′

ij,kQ′
ij,k

)

= w′
i Li + ∑

k

[(
1 − [1 + s′i,k]

)
P̃′

ii,kQ′
ii,k

]
+ ∑

k
∑
j ̸=i

((
1 − 1

1 + t′ji,k

)
P̃′

ji,kQ′
ji,k +

[
1

1 + t′ij,k
−

(1 + x′ij,k)(1 + s′i,k)

1 + t′ij,k

]
P̃′

ij,kQ′
ij,k

)
.

Note that, by assumption, policy-wage combinations T and T′ exhibit the same output schedule, i.e.,
Q′

ii,k = Qii,k, Q′
ji,k = Qji,k, and Q′

ij,k = Qij,k. Also, recall that (T and T’ are constructed such that)
1 + t′ji,k = a(1 + tji,k), 1 + x′ij,k = a(1 + xij,k), 1 + si,k = (1 + s′i,k)/ã, and w′

i = awi/ã, t′ij,k = tji,k.
Considering these relationships and plugging our earlier result that (i) P̃ii,k = aPii,k, (ii) P′

ji,k = aP̃ji,k,
and (iii) P̃′

ij,k = P̃ij,k into the above equation, yields the following expression for Y′
i :

Y′
i =

a
ã

wiLi + ∑
k

[(
1 − 1

ã
(1 + si,k)

)
aP̃ii,kQii,k

]

+ ∑
j,k

[(
1 − 1

a(1 + tji,k)

)
aP̃ji,kQji,k +

[
1

1 + tij,k
−

a(1 + xij,k)× 1
ã (1 + si,k)

1 + tij,k

]
P̃ij,kQij,k

]
.

Appealing to the balanced trade condition, ∑k ∑j ̸=i

(
1

1+tji,k
P̃ji,kQji,k − 1

1+tij,k
P̃ij,kQij,k

)
= 0, and observ-

ing that (1 + si,k)P̃ii,k = Pii,k and (1+xij,k)(1+si,k)

1+tij,k
P̃ij,k = Pij,k, the above equation reduces to

Y′
i =

a
ã

wiLi + a ∑
k

[
P̃ii,kQii,k + ∑

j ̸=i
P̃ji,kQji,k

]
− a

ã ∑
k

[
Pii,kQii,k + ∑

j ̸=i
Pij,kQij,k

]
.

Invoking the labor market clearing condition, wiLi − ∑k ∑n Pijn,kQin,k = 0, the above equation further
simplifies as follows

Y′
i = a ∑

k

[
P̃ii,kQii,k + ∑

j ̸=i
P̃ji,kQji,k

]
= a [wiLi +Ri] = aYi,

where Ri ≡ Ri(T) denotes country i’s tax revenues under T. To bel clear, the third line, in the above
equation, follows from country i’s balanced budget condition (i.e., total expenditure = total income).
Turning to the rest of the world: The fact that Yn(T′) = Yn(T) for all n ̸= i follows trivially from a
similar line of arguments–hence, establishing our claim about nominal income levels:

Yi
(
T′) = aYi (T) ; Y−i

(
T′) = Y−i (T)

Lemma 2 (proved above) starts from the assumption that Qjn,k(T′) = Qjn,k(T) for all jn, k. Our next
lemma indicates that this assumption is validated by the nominal income and price levels implied by
T and T′. Below, we state this lemma noting that it follows trivially from the Marshallian demand
function, Qji,k = Dji,k(Yi, P̃i), being homogeneous of degree zero.

Lemma 3. ∀a ∈ R+:

P̃i (T′) = aP̃i (T)

Yi(T′) = aYi(T)
=⇒ Qji,k(T′) = Qji,k(T) for all ji, k
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Together, Lemmas 3 and 2 establish that equilibrium quantities should be indeed identical under
policy-wage combinations T and T′—i.e., Qjn,k(T′) = Qjn,k(T) for all jn, k. Hence, if T ∈ F it follows
immediately that (i) T′ ∈ F, and (ii) Wn(T) = Wn(T′) for all n ∈ C, which is the claim of Lemma 1.

C Nested-Eaton and Kortum (2002) Framework

Here we show that the nested CES import demand function specified by Assumption (A1), can
also arise from within-product specialization à la Eaton and Kortum (2002). To this end, suppose that
each industry k is comprised of a continuum of homogenous goods indexed by ν. The sub-utility of
the representative consumer in country i with respect to industry k is a log-linear aggregator across
the continuum of goods in that industry:

Qi,k =
∫ 1

0
ln q̃i,k(ν)dν

As in our main model, country j hosts Mj,k firms indexed by ω, with Ωj,k denotes the set of all firms
serving industry k from country j.62 Each firm ω supplies good ν to market i at the following quality-
adjusted price:

p̃ji,k(ν; ω) = p̃ji,k (ω) /φ(ν; ω),

where p̃ji,k (ω) is a nominal price (driven by production costs) that applies to all goods supplied by
firm ω in industry k, while the quality component, φ(ν; ω), is good×firm-specific. Suppose for any
given good ν, firm-specific qualities are drawn independently from the following nested Fréchet joint
distribution:

Fk(φ(ν)) = exp

− N

∑
i=1

(
∑

ω∈Ωi,k

φ(ν; ω)−ϑk

) θk
ϑk

 ,

The above distribution generalizes the basic Fréchet distribution in Eaton and Kortum (2002). In par-
ticular, it relaxes the restriction that productivities are perfectly correlated across firms within the
same country. Instead, it allows for sub-national productivity differentiation and also for the degrees
of cross- and sub-national productivity differentiations (ϑk and θk, respectively) to diverge. A spe-
cial case of the distribution where ϑk −→ ∞ corresponds to the standard Eaton and Kortum (2002)
specification.

The above distribution also has deep theoretical roots. The Fisher–Tippett–Gnedenko theorem
states that if ideas are drawn from a (normalized) distribution, in the limit the distribution of the best
draw takes the form of a general extreme value (GEV) distribution, which includes the above Fréchet
distribution as a special case. A special application of this result can be found in Kortum (1997) who
develops an idea-based growth model where the limit distribution of productivities is Fréchet, with
φω,k reflecting the stock of technological knowledge accumulated by firms ω in category k.

Given the vector of effective prices, the representative consumer in county i (who is endowed
with income Yi) maximizes their real consumption of each good, q̃i,k(ν) = ei,kYi/ p̃i,k(ν), by choosing
p̃i,k(ν) = minω{ p̃ji,k (ω)}. That being the case, the consumer’s discrete choice problem for each good
ν can be expressed as:

min
ω

p̃ji,k (ω) /z(ν; ω) ∼ max
ω

ln z(ν; ω)− ln p̃ji,k (ω) .

62The implicit assumption here is that entry is restricted, so that Mj,k is exogenous.
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To determine the share of goods for which firm ω is the most competitive supplier, we can invoke the
theorem of “General Extreme Value.” Specifically, define G(p̃i) as follows

Gk(p̃i) =
N

∑
j=1

 ∑
ω∈Ωj,k

exp(−ϑk ln p̃ji,k (ω))


θk
ϑk

=
N

∑
j=1

 ∑
ω∈Ωj,k

p̃ji,k (ω)−ϑk


θk
ϑk

.

Note that Gk(.) is a continuous and differentiable function of vector p̃i ≡ { p̃ji,k (ω)} and has the
following properties:

i. Gk(.) ≥ 0;

ii. Gk(.) is a homogeneous function of rank θk: Gk(ρp̃i) = ρθk Gk(p̃i) for any ρ ≥ 0;

iii. limp̃ji,k(ω)→∞ Gk(p̃i) = ∞, ∀ω;

iv. the m’th partial derivative of Gk(.) with respect to a generic combination of m variables p̃ji,k (ω),
is non-negative if m is odd and non-positive if m is even.

Manski and McFadden (1981) prove that if Gk(.) satisfies the above conditions, and φ(ν; ω)’s are
drawn from distribution,

Fk(φ(ν)) = exp
(
−Gk(e− lnφ)

)
= exp

−
N

∑
j=1

 ∑
ω∈Ωj,k

φ(ν; ω)−ϑk


θk
ϑk

 ,

then the probability of choosing variety ω (from origin j in industry k) is given by

πji,k(ω) =

(
p̃ji,k(ω)

θk

)
∂Gk(p̃i)
∂pji,k(ω)

Gk(p̃i)
=

p̃ji,k (ω) p̃ji,k (ω)ϑk−1
(

∑ω′∈Ωj,k
p̃ji,k (ω

′)−ϑk
) θk

ϑk
−1

∑N
n=1

(
∑ω′∈Ωj,k

p̃ji,k (ω′)−ϑk
) θk

ϑk

.

Rearranging the above equation yields the following expression for probability shares,

πji,k(ω) =

(
p̃ji,k (ω)

P̃ji,k

)−ϑk
(

P̃ji,k

P̃i,k

)−θk

,

where P̃ji,k ≡
[
∑ω′∈Ωj,k

p̃ji,k (ω
′)−ϑk

]−1/ϑk
and P̃i,k ≡

[
∑ P̃−θk

ji,k

]− 1
θk . Given that the probability shares

coincide with the share of goods sourced from firm ω, total sales of firm ω to market i, in industry k
can be calculated as:

p̃ji,k(ω)qji,k(ω) = p̃ji,k(ω)
πji,k(ω)ei,kYi

p̃ji,k(ω)
=

(
p̃ji,k (ω)

P̃ji,k

)−ϑk
(

P̃ji,k

P̃i,k

)−θk

ei,kYi

which is identical to the nested-CES function specified by Assumption (A1), with corresponding sub-
stitution parameters γk − 1 = ϑk and σk − 1 = θk.

D Firm-Selection under Melitz-Pareto

In this appendix, we outline the isomorphism between our baseline model and one that admits
selection effects. In doing so, we borrow heavily from Kucheryavyy et al. (2016) (KLR, hereafter). We
rely on three key assumptions, hereafter:
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i. Within-industry demand is governed by the same nested-CES utility function presented under
Assumption (A1). As in the baseline mode, σk and γk respectively denote the upper- and lower-
tier elasticities of substitution.

ii. The firm-level productivity distribution, Gi,k(z), is Pareto with shape parameter, ϑk.

iii. The fixed “marketing” cost is paid in terms of labor in the destination market.

iv. Taxes are applied before the markup, and operate as a cost-shifter.

Following KLR, we also assume that cross-industry utility aggregator is Cobb-Douglas, with ei,k de-
noting the constant share of country i’s expenditure on industry k. Following the derivation in KLR,
we can define the effective supply of production labor in country i as

L̃i =

[
1 − ∑

k
ei,k

(
ϑk − γk + 1

ϑkγk

)]
Li.

The labor market clearing condition is, accordingly, given by ∑ wiLi,k = wi L̃i. With regards to aggre-
gate markup levels, we can appeal to the well-known result that the profit margin in each industry is
constant and given by the following expression:

mark-up ~
∑n Pin,kQin,k

wiLi,k
=

γkϑk

(γk − 1) (ϑk + 1)− ϑk
.

With regards to aggregate demand functions, we can follow the derivation in Appendix B.2 of KLR to
express demand for national-level variety ji, k as

Qji,k =

(
P̃ji,k

P̃i,k

)−σMelitz
k

Qi,k,

where σMelitz
k ≡ 1 + ϑk

[
1 + ϑk

(
1

σk−1 −
1

γk−1

)]−1
denotes the trade elasticity under firm-selection.

Moreover, we can show that national-level producer price indexes are given by the following for-
mulation:

PMelitz
ij,k =

ϱij,kwi if entry is restricted

ϱ̄′ij,kwiQ
− ϑk

1+ϑk
i,k if entry is free

,

where ϱ̄ij,k and ϱ̄′ij,k are composed of structural parameters that are invariant to policy–this includes

ϑk that regulates firm selection.63 Abstracting from taxes, P̃i,k =
(

∑ P1−σk
ji,k

) 1
1−σk is the CES industry-

level consumer price index that shows up in indirect utility Vi(.). Referring to our earlier result about
constant markup margins, aggregate profits in country i given by

ΠMelitz
i =


∑k ∑j

(
γkϑk

(γk−1)(ϑk+1)−ϑk

1+ γkϑk
(γk−1)(ϑk+1)−ϑk

Pij,kQij,k

)
if entry is restricted

0 if entry is free

.

To fixe ideas, recall that we used µk to denote both (1) the scale elasticity under free entry, and (2)
the profit margin under restricted entry in the baseline model. This overlapping choice of notation
was motivated by the observation that in the generalized Krugman model, the scale elasticity (under

63Unlike P̃i,k, the national-level indexes, P̃ji,k, are not the same as the CES price indexes defined in the main text, but this
is not problematic from the point of the isomorphism result we are seeking.
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free entry) and the profit margin (under restricted entry) are identical and equal to µk =
1

γk−1 . This
equivalence, though, was not used to derive any of our theorems. Instead, it was only invoked to
simplify the presentation of our theorems. Evidently, under the Melitz-Pareto model the equivalence
between the scale elasticity and the profit margin crumbles. Taking note of this nuance, the Melitz-
Pareto model is isomorphic to our baseline model with the following reinterpretation of parameters:

1 + µMelitz
k =

1 + 1
ϑk

if entry is free
γkϑk

(γk−1)(ϑk+1)−ϑk
if entry is restricted

; σMelitz
k = 1 +

ϑk

1 + ϑk

(
1

σk−1 −
1

γk−1

) .

The Marshallian demand elasticities in the Melitz-Pareto model are accordingly given by the following
equations as a function σMelitz

k and expenditure shares:

ε
(ji,k)
ji,k = −1 − (σMelitz

k − 1)
(
1 − λji,k

)
; ε

(ȷi,k)
ji,k = σMelitz

k λȷi,g

In the above expressions, γk and σk can be taken directly from our firm-level demand estimation.
Doing so, identifies the Melitz-Pareto model’s key parameters up to a Pareto shape parameter, ϑk. To
obtain an estimate for ϑk, we can estimate the trade elasticity, σMelitz

k − 1, using macro-level trade data
and standard techniques from the literature. Given the estimated trade elasticities, we can simply
recover ϑk by plugging our micro-level estimates for γk and σk into the expression for σMelitz

k .

D.1 The Case where Taxes are Applied After Markups

Our derivation, above, assumed that taxes are applied before the markup, and act as a cost shifter.
Below, we discuss how relaxing this assumption may affect the arguments listed above. To this end,
we focus on the spacial case where preferences are non-nested. Namely,

non-nested preferences ∼ σk = γk, ∀k ∈ K.

Following the Online Appendix 5 in Costinot and Rodríguez-Clare (2014), the trade elasticity in the
Melitz-Pareto model with non-nested preferences is described by the following formulation:

σMelitz
k =

1 + ϑk tax applied before markup
σ

σ−1 ϑ tax applied after markup
.

Appealing to the above formulation, we can show that Theorem 1 nests, as a special case, the optimal
tariff formula derived by Demidova and Rodriguez-Clare (2009) for a small open economy in a single-
industry×two-country Melitz-Pareto model. To demonstrate this, drop the industry subscript k and
reduce the global economy into two countries, i.e., C = {i, j}. Noting that 1 − λij = λjj in the two-
country case, we can deduce from the above formulation and Theorem 1 that

1 + t∗ji
1 + x∗ij

= 1 +
1

(σMelitz − 1)λjj
=

1
( σ

σ−1 ϑ − 1)λjj
.

By the Lerner symmetry, export and import taxes are equivalent in the single-industry model.64 Hence,
without loss of generality, we can set x∗ij = 0. Moreover, if country i is a small open economy, then
λjj ≈ 1. Combining these two observations, we can arrive at the familiar-looking optimal tariff for-

64The Lerner symmetry is a special case of the equivalence result presented under Lemma 1. Also, note that the market
equilibrium is efficient in the single industry Krugman model studied by Gros (1987). As such, the optimal industrial
subsidy can be normalized to zero, i.e., s∗i = 0.
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mula in Demidova and Rodriguez-Clare (2009):

t∗ji =
σ−1

σ

ϑ − σ−1
σ

∼ small open economy w/ one traded sector.

E Proof of Theorem 1

Our proof proceeds in five steps. The first four steps characterize the optimal tax/subsidy sched-
ule for country i ∈ C under free entry. The last step demonstrates that this characterization can be
extrapolated to the case with restricted entry.

Step #1: Express Equilibrium Variables as function of P̃i and w

Our goal is to characterize optimal policy for country i ∈ C assuming the rest of the world is
passive in their use of taxes: t−i = x−i = s−i = 0. To simplify the proof, we reformulate country i’s
optimal policy problem as one where the government chooses the optimal consumer prices (rather
than the actual taxes) associated with its economy. By construction, country i’s optimal tax schedule
can be recovered from its optimal consumer-to-producer price ratios. The first step in reformulating
the optimal policy problem is to express equilibrium variables (e.g., Qji,k, Yi, etc.) as a function of (1)
the vector of consumer prices associated with economy i, P̃i ≡

{
P̃ii, P̃ji, P̃ij

}
, where

P̃ii ≡ {Pii,k}k; P̃ji ≡
{

Pji,k
}

j ̸=i,k ; P̃ij ≡
{

Pij,k
}

j ̸=i,k (22)

and (2) the vector of national-level wage rates across the world,

w = {w1, ..., wN} .

The following lemma shows that our desired formulation of equilibrium variables follows from (a)
treating P̃i and w as given, and(b) solving a system that satisfies all equilibrium conditions excluding
the labor market clearing condition.

Lemma 4. All equilibrium outcomes (excluding P̃i and w) can be uniquely determined as a function of P̃i ≡{
P̃ii, P̃ji, P̃ij

}
, and w.

Proof. As noted above, the proof follows from solving all equilibrium conditions excluding the equi-
librium expression for consumer prices, P̃ji,k (which are encompassed by P̃i), and the country-specific
balanced trade conditions (which pin down w).65 Stated formally, we need to solve the following
system treating P̃i, and w as given:

[optimal pricing] Pjn,k = ρ̄ji,kwj

[
∑

i
āji,kQji,k

]− µk
1+µk

[optimal consumption] Qjn,k = Djn,k(Yn, P̃1n, ...P̃Nn)

[RoW imposes zero taxes] P̃jn,k = Pjn,k (P̃jn,k /∈ P̃i); Yn = wnLn (n ̸= i)

[Balanced Budget in i] Yi = wiLi +
(
P̃ii − Pii

)
· Qii +

(
P̃ij − Pij

)
· Qij +

(
P̃ji − Pji

)
· Qji,

where “·” denotes the inner product operator for equal-sized vectors (i.e., a · b = ∑n anbn). Since there
is a unique equilibrium, the above system is exactly identified in that it uniquely determines Pjn,k,
Qjn,k, and Yn as a function of P̃i and w .

65Note that by Walras’ law, the balanced trade condition is equivalent to the labor market clearing condition in each
country.
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Following Lemma 4, we can express total income in country i, Yi, as well as the entire demand
schedule in that country as follows:

Yi ≡ Yi(P̃i; w); Qji,k ≡ Qji,k(P̃i; w) = Dji,k
(
Yi(P̃i; w), P̃ii, P̃ji

)
.

Recall that Dji,k(.) denotes the Marshallian demand function facing variety ji, k. Taking note of the
above representation, our main objective is to reformulate country i’s policy problem as one where the
government chooses P̃i (as opposed to directly choosing tax rates). This reformulation, though, needs
to take into account that w is an equilibrium outcome that implicitly depends on the choice of P̃i. To
track this constraint, we define the (P̃i; w) combinations that are feasible as follows.

Definition 1. A policy-wage combination (P̃i; w) is feasible iff given P̃i, the vector of wages, w, satisfies the
balanced trade condition in every country n ∈ C. In particular,

(P̃i; w) ∈ FP ⇐⇒

∑j ̸=n ∑k∈K

[
Pjn,k(P̃i; w)Qjn,k(P̃i; w)− Pnj,k(P̃i; w)Qnj,k(P̃i; w)

]
= 0 if n ̸= i

∑j ̸=n ∑K
k=1
[
Pji,k(P̃i; w)Qjn,k(P̃i; w)− P̃ij,kQnj,k(P̃i; w)

]
= 0 if n = i

.

To elaborate on the above definition: The balanced trade condition for a generic country n ∈ C

can be expresses as ∑j ̸=n,k

[
1

1+tjn,k
P̃nj,kQjn,k − 1

1+tnj,k
P̃nj,kQnj,k

]
. The expression for the balanced trade

condition, above, follows from the assumption that only country i imposes taxes and the rest of the
world is passive. We should emphasize one more time that by Walras’ law the satisfaction of the
balanced trade condition is analogous to the satisfaction of the labor market clearing condition in each
country. Relatedly, take note of the equivalence between FP and F–with the latter being defined in the
main text under Definition (D2). Taking note of these implicit details, we now proceed to reformulate
the optimal policy problem (P1).

Step #2: Reformulate the Optimal Tariff Problem

Before proceeding with the second step of the proof, we formally present our notation for partial
derivatives. We will rely heavily on this choice of notation, especially in the subsequent steps of the
proof where we derive the first-order conditions.

Notation [Partial Derivative] Let f (x1, x2) be a function of two variables, where x2 = g(x1) is possibly an
implicit function of x1. We henceforth use(

∂ f (x1, x2)

∂x1

)
x2

=
∂ f (x1, x̄2)

∂x1

to denote the derivative of f (.) w.r.t. x1, treating x2 = x̄2 as a constant.66

Moving on with Step 2, recall the original formulation of the optimal policy problem (P1) from
Section 2:

max
Ti

Wi(Ti; w) s.t. (Ti; w) ∈ F (P1)

In the above formulation, Ti ≡ (ti, xi, si) denotes country i’s vector of taxes and F is defined according
to Definition (D2, Section 2) and analogously to FP. Our next intermediate result shows that Problem

66Based on the above notation and the chain rule, the full derivative of f (.) w.r.t. x1 is given by

d f (x1, x2)

dx1
=

(
∂ f (x1, x2)

∂x1

)
x2

+

(
∂ f (x1, x2)

∂x2

)
x2

dg(x1)

dx1
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(P1) can be alternatively cast as one where the government chooses the optimal vector of consumer
prices P̃i associated with its economy. After determining P̃i, the optimal tax vectors, t∗i , x∗i , and s∗i can
be automatically recovered from the optimal consumer-to-producer price ratios.

Lemma 5. Country i’s vector of optimal taxes, {t∗i , x∗i , s∗i }, can be determined by solving the following problem
instead of (P1):

max
P̃i

Wi(P̃i; w) ≡ Vi(Yi(P̃i; w), P̃i) s.t.

(P̃i; w) ∈ FP

w−i = w−i,
(P̃1),

where w−i denotes the vector wages in the rest of the world under the status quo.

Proof. The proof consists of two parts. First, we can verify that there is a one-to-one correspondence
between the optimal choice w.r.t. P̃i ≡

{
P̃∗

ii, P̃∗
ji, P̃∗

ij

}
and T∗

i ≡ {t∗i , x∗i , s∗i }. More specifically, given

information on P̃i (and the accompanying wage vector w∗), we can uniquely recover the optimal
tax/subsidy rates using the following set of equations:

1 + t∗ji,k =
P̃∗

ji,k

Pji,k(P̃i, w∗)
; 1 + x∗ij,k =

Pji,k(P̃i, w∗)/P̃∗
ji,k

Pii,k(P̃i, w∗)/P̃∗
ii,k

; 1 + s∗i,k =
Pii,k(P̃i, w∗)

P̃∗
ii,k

.

The correspondence presented above, indicates an equivalence between choosing P̃i versus choosing
Ti directly. That is,

max
P̃i

Wi(P̃i; w) s.t. (P̃i; w) ∈ FP ∼ max
Ti

Wi(Ti; w) s.t. (Ti; w) ∈ F.

Second, we must rationalize the constraint on foreign wages, w−i = w−i. This constraint in the two-
country case (N = 2) follows directly from Walras’ law. Beyond that, it follows from Walras’ law
and the existence of cooperative buffers, which preserve relative wages in the rest of the world—see
Appendix G for details.67

Step #3. Deriving and Simplifying the System of First-Order Conditions

This step derives and solves the system of first-order necessary conditions (F.O.C.s) associated with
Problem P̃1. This system of F.O.C.s can be formally expressed as follows:

∇P̃Wi(P̃i; w) +∇wWi ·
(

dw
dP̃

)
(P̃i ;w)∈FP

= 0, ∀P̃ ∈ P̃i.

where recall that P̃i =
{

P̃ii, P̃ij, P̃ji
}

includes all consumer price variables associated with economy i.
To elaborate the right-hand side of the above equation consists of two terms, as implied by the chain
rule: The first term accounts for the change in welfare holding w fixed. The second term account for
the change in w w.r.t. P̃ ∈ P̃i in order to satisfy feasibility.

67As noted in Appendix G, the constraint w−i = w−i, holds in some canonical special cases of our framework irrespective
of cooperative wage buffers in the RoW. One can also show that the constraint w−i = w−i is non-binding at the optimum if
trade is bilaterally balanced. In particular, specify country i’s welfare as Wi

(
P̃i, wi, w−i

)
= Vi

(
wi Li +Ri

(
P̃i, wi, w−i

)
, P̃i
)
,

where recall that P̃i ⊂ P̃i. Taking partial derivatives w.r.t. wn ∈ w−i and noting that Yn = wn L̄n, yields
∂Wi(P̃i ,wi ,w−i)

∂wn
=

∂Ri(P̃i ,wi ,w−i)
∂wn

− ∑k

[
Pji,kQji,k

]
+ ∑k

[(
P̃ij,k − Pij,k

)
Qij,kηij,k

]
+ ∑n ̸=i ∑k,g

[(
P̃in,k − Pin,k

)
Qin,kε

(jn,g)
in,k

]
. Now, suppose the gross

trade matrix is bilaterally balanced, ∑k

[
Pji,kQji,k − P̃ij,kQij,k

]
. Then, one can invoke the optimality condition w.r.t. P̃in

(Equation 42) and appeal to the Slutsky symmetry, ε
(jn,g)
in,k = ejn,gε

(in,k)
jn,g /ein,k and the demand function’s homogeneity of

degree zero property ε
(ij,k)
ij,k + = ηij,k + ∑n,g ̸=i,k e(nj,g)

ij,k to get ∂Wi(.)
∂wn

|P̃i=P̃∗
i
= 0.

58



Our characterization of optimal policy employs the dual approach, the presentation of which re-
lies heavily on Marshallian demand elasticities. So, for future reference, we formally define these
elasticities below.

Notation [Marshallian Demand Elasticities] Let Qji,k ≡ Dji,k(Yi, P̃i) denote the Marshallian demand
function facing variety ji, k. This demand function is characterized by the following set of demand elasticities:

ε
(ni,g)
ji,k ≡

∂ lnDji,k(Yi, P̃i)

∂ ln P̃ni,g
∼ price elasticity

ηji,k ≡
∂ lnDji,k(Yi, P̃i)

∂ ln Yi
∼ income elasticity,

where P̃i =
{

P̃1i, P̃2i, ..., P̃Ni
}

corresponds to the entire of vector of consumer prices in market i. Also, recall
from the main text that V(Yi, P̃i) denotes the indirect utility associated with the Marshallian demand function,
Dji,k(Yi, P̃i).

In what follows, we appeal the above definition to characterize the first-order condition w.r.t. each
element of P̃i. We start with country i’s import prices, P̃ji, and then proceed to domestic and export
price instruments, P̃ii, and P̃ij.

Step 3.A: Deriving the F.O.C. w.r.t. Pji,k ∈ P̃i.

Consider the price of import variety ji, k, supplied by origin j–industry k (where j ̸= i). To present
the first-order necessary condition (F.O.C.) w.r.t. the price of ji, k, we use P−ji,k to denote all elements
of P̃i excluding P̃ji,k:

P−ji,k ≡ P̃i − {P̃ji,k} ∼ entire policy vector excluding P̃ji,k

Next, recall that Wi(P̃i; w) ≡ Vi(Yi(P̃i; w), P̃ii, P̃ji) where income, Yi(P̃i; w) = ẁiLi + Ri(P̃i; w), is
dictated by the balanced budget condition. Applying the chain rule to Wi(P̃i; w), the F.O.C. w.r.t. P̃ji,k

(holding the remaining elements of P̃i constant) can be stated as follows:68

(
dWi(P̃i; w)

d ln P̃ji,k

)
P−ji,k

=

(
∂Wi(P̃i ;w)

∂P̃ji,k

)
w,P−ji,k︷ ︸︸ ︷

∂Vi(Yi, P̃i)

∂ ln P̃ji,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P−ji,k

+

(
∂Wi(P̃i; w)

∂w

)
P̃i

·
(

dw
d ln P̃ji,k

)
P−ji,k

= 0

(23)

The first term on the right-hand side of the above equation accounts for the direct welfare effects of
a change in the price of good ji, k (holding Yi and P̃−ji,k ≡ P̃i − {P̃ji,k} constant). The second term
accounts for welfare effects that channel through revenue-generation (holding w and P̃−ji,k constant).

68We can alternatively formulate the above optimization problem using the method of Lagrange multipliers, and by
appealing to Lagrange sufficiency theorem. In that case the objective function can be formulated as follows:

max
P̃i ,Yi

Li(P̃i; w) = Vi(Yi, P̃i) + λy
(
Yi − ẁi Li −Ri(P̃i; w)

)
.

The F.O.C.with respect to Yi entails that λY = ∂Vi(.)
∂Yi

. Hence, the F.O.C. with respect to P̃ji,k ∈ P̃i can be expressed as

dLi(P̃i; w)

d ln P̃ji,k
=

∂Vi(Yi, P̃i)

∂ ln P̃ji,k
+ λy

(
∂(ẁi Li +Ri(P̃i; w))

∂ ln P̃ji,k

)
w,P−ji,k

+

(
∂Li(P̃i; w)

∂w

)
P̃i

·
(

dw
d ln P̃ji,k

)
P−ji,k

= 0,

which is equivalent to the F.O.C. expressed above.

59



The last term accounts for general equilibrium wage effects. Below, we characterize each of these
elements one-by-one.

The term accounting for direct price effects can be simplified by appealing to Roy’s identity, ∂Vi/P̃ji,k
∂Vi/∂Yi

=

−Qji,k, which indicates that

[Roy’s identity]
∂Vi(Yi, P̃i)

∂ ln P̃ji,k
= −P̃ji,kQji,k

(
∂Vi

∂Yi

)
. (24)

To characterize
(
∂Yi(P̃i; w)/∂ ln P̃ji,k

)
w,P−ji,k

, note that total income in country i (which dictates total

expenditure) is the sum of wage payments plus tax revenues:69

Yi(P̃i; w) = wiLi + ∑
n ̸=i

[(
P̃ni − Pni

)
· Qni

]
︸ ︷︷ ︸

import tax revenues

+
(
P̃ii − Pii

)
· Qii︸ ︷︷ ︸

production tax revenues

+ ∑
n ̸=i

[(
P̃in − Pin

)
· Qin

]
︸ ︷︷ ︸

export tax revenues

,

Holding w and P−ji,k ≡ P̃i −{P̃ji,k} fixed, P̃ji,k has no effect on wage payments:
(
∂ (wiLi) /∂ ln P̃ji,k

)
w,P−ji,k

=

0. The effect of P̃ji,k on import tax revenues can be unpacked as follows:

(
∂ ∑n ̸=i

[(
P̃ni − Pni

)
· Qni

]
∂ ln P̃ji,k

)
= P̃ji,kQji,k + ∑

g
∑
n ̸=i

(P̃ni,g − Pni,g
)

Qni,g

(
∂ ln Qni,g

∂ ln P̃ji,k

)
w,P−ji,k


−∑

g
∑
n ̸=i

Pni,gQni,g

∑
ȷ ̸=i

Pȷi,gQȷi,g

Pni,gQni,g

(
∂ ln Pȷi,g

∂ ln Qni,g

)
w,P̃i

+ ∑
ℓ∈C

Piℓ,gQiℓ,g

Pni,gQni,g

(
∂ ln Piℓ,g

∂ ln Qni,g

)
w,P̃i

(∂ ln Qni,g

∂ ln P̃ji,k

)
w,P−ji,k

 .

(25)

The first term in the above expression accounts for the direct, arithmetic effect of P̃ji,k on import tax
revenues. The second term accounts for the change in revenue due to the change in country i’s import
demand schedule as a result of changing P̃ji,k ∈ P̃i. The change in demand can itself be decomposed
into two components:(

∂ ln Qni,g

∂ ln P̃ji,k

)
w,P−ji,k

=
∂ lnDni,g(P̃i, Yi)

∂ ln P̃ji,k︸ ︷︷ ︸
price effect

+
∂ lnDni,g(P̃i, Yi)

∂ ln Yi

(
∂ ln Yi

∂ ln P̃ji,k

)
w,P−ji,k︸ ︷︷ ︸

income effect

= ε
(ji,k)
ni,g + ηni,g

(
∂ ln Yi

∂ ln P̃ji,k

)
w,P−ji,k

,

(26)

where ε
(ji,k)
ni,g and ηni,g denote the Marshallian price and income elasticities of demand. The presence

of
(
∂ ln Yi/∂ ln P̃ji,k

)
w,P−ji,k

in the above expression, manifests the circular nature of our general equilib-
rium setup. We will not unpack this term for now. Instead, we show later that income effects sum up
to zero at the optimum.

The last term in Equation 25, accounts for scale effects: Noting that Pni,g = ϱ̄ni,gwn
[
∑ι τnι,gQnι,g

]− µg
1+µg ,

a change in the export supply of good ni, g (due to a change in P̃ji,k) alters the scale of production in
origin n–industry g and the producer prices associated with that location. Due to cross demand effects,
this change also impacts the producer price of domestic suppliers as well as foreign suppliers outside
of origin n.70 To keep track of the general equilibrium scale effects, we use ωni,g to denote (the inverse

69The operator “·” denotes the inner product of two equal-sized vectors. Also, since we are focused on the free entry
case, for now, the profit-adjusted wage rate is equal to the actual (unadjusted) wage rate, i.e., ẁi = wi.

70To give an example, the producer price of goods supplied by country i in industry g (Pij,g) respond to a reduction in
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of) good ni, g’s export supply elasticity:

ωni,g ≡ ∑
ℓ∈C

[
Piℓ,gQiℓ,g

Pni,gQni,g

(
∂ ln Piℓ,g

∂ ln Qni,g

)
w,P̃i

]
+ ∑

j ̸=i

[
Pji,gQji,g

Pni,gQni,g

(
∂ ln Pji,g

∂ ln Qni,g

)
w,P̃i

]

=
1

rni,gρn,g
∑
g

[
ẁiLi

ẁnLn
ρi,g

(
∂ ln Pii,g

∂ ln Qni,g

)
w,P̃i

+ ∑
j ̸=i

ẁjLj

ẁnLn
rji,gρj,g

(
∂ ln Pji,g

∂ ln Qni,g

)
w,P̃i

]
∼ export supply elasticity

(27)

The second line in the above definition derives from the fact that
(

∂ ln Piℓ,g
∂ ln Qni,g

)
w,P̃i

=
(

∂ ln Pii,g
∂ ln Qni,g

)
w,P̃i

for all

ℓ ∈ C (as the price of origin i’s good sold to different locations differ in only a constant iceberg cost
shifter) and that sales shares for each origin n ∈ C are defined as follows:

rni,g ≡
Pni,gQni,g

∑ι∈C

(
Pnι,gQnι,g

) ∼ good-specific sales share; ρn,g =
∑ι∈C

(
Pnι,gQnι,g

)
ẁnLn

∼ industry-wide sales share.

For now, we do not unpack the supply elasticity, ωni,g. We relegate this task instead to Step #4 of the
proof, where we solve our full system of F.O.C.s. Using the above definition for ωni,g, we can simplify
Equation 25 as follows:(

∂ ∑n ̸=i
[(

P̃ni − Pni
)
· Qni

]
∂ ln P̃ji,k

)
w,P−ji,k

= P̃ji,kQji,k +∑
g

∑
n ̸=i

(P̃ni,g − [1 + ωni,g]Pni,g
)

Qni,g

(
∂ ln Qni,g

∂ ln P̃ji,k

)
w,P−ji,k

 .

(28)
Moving on, the effect of a change in P̃ji,k on country i’s production and export tax revenues can be
unpacked as(

∂

∂ ln P̃ji,k

{(
P̃ii − Pii

)
· Qii,g + ∑

n ̸=i

[(
P̃in − Pin

)
· Qin

]})
w,P−ji,k

=∑
g

(P̃ii,g − Pii,g
)

Qii,g

(
∂ ln Qii,g

∂ ln P̃ji,k

)
w,P−ji,k

− ∑
g

∑
n

Pin,gQin,g

(
∂Pin,g

∂ ln Qii,g

)
w,P̃i

(
∂ ln Qii,g

∂ ln P̃ji,k

)
w,P−ji,k

 . (29)

The first term in the above equation accounts for revenue effects that channel through a change in the
demand for domestic varieties (i.e., ii, g). The second term accounts for scale effects—i.e., a change in
Qii,g alters the scale of production in origin i–industry k, and the producer prices associated with coun-
try i in all export markets. To simplify the term accounting for scale effects, we invoke the following
observation, which follows from the Free Entry condition:71

Qni,g through the following chain of effects:

Qni,g ↓ scale effects (n,g)−−−−−−−−−→ Pnℓ,g ↑ cross-demand effects (ℓ ̸=i)−−−−−−−−−−−−−−−→ Qiℓ,g ↑ scale effects (i,g)−−−−−−−−−→ Pij,g ↓

Stated verbally, a reduction in Qni,g lowers the producer price of origin n–industry g goods in all markets including ℓ ̸= i.
Since consumer prices in location ℓ ̸= i are not regulated by policy, an increase in Pnℓ,g is fully passed onto consumer prices
(provided that n ̸= i), leading to a increase in Qiℓ,g through cross-substitution (or cross-demand) effects. The increase in
Qiℓ,g, in turn, lowers the producer price of goods supplied by origin i–industry g to all markets.

71In particular, note that Pin,g = τin,gPii,g, where by Free Entry, Pii,g = ρ̄ii,gwiQ
− µg

1+µg

i,g , with Qi,g = ∑n āin,gQin,g denoting

country i’s effective output in industry g. Hence, holding w and P̃−ji,k ≡ P̃i − {P̃ji,k} constant, we can show that

∑
n

( ∂ ln Pin,g

∂ ln Qij,g

)
w,P−ji,k

rin,g

rij,g

 = ∑
n

( ∂ ln Pii,g

∂ lnQi,g

∂ lnQi,g

∂ ln Qij,g

)
w,P−ji,k

rin,g

rij,g

 =
∂ ln Pii,g

∂ lnQi,g
= −

µg

1 + µg
, (30)

where the second line follows from the fact that ∂ lnQi,g/∂ ln Qij,g = rij,g, by definition.
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∑
n

[
Pin,gQin,g

(
∂Pin,g

∂ ln Qii,g

)
w,P̃i

]
= ∑

n

[
Pin,gQin,g

Pii,gQii,g

(
∂Pin,g

∂ ln Qii,g

)
w,P̃i

]
Pii,gQii,g = (31)

= ∑
n

[
rin,g

rii,g

(
∂Pin,g

∂ ln Qii,g

)
w,P̃i

]
Pii,gQii,g = −

µg

1 + µg
Pii,gQii,g,

The last line in the above equation follows from the fact that (a)
(

∂Pin,g
∂ ln Qii,g

)
w,P̃i

= − µg
1+µg

rii,g, and (b)

∑n rin,g = 1. We can plug the above equation back into Equation 29 to simplify it as follows:

(
∂

∂ ln P̃ji,k

{
∑
n

[(
P̃in − Pin

)
· Qin

]})
w,P−ji,k

= ∑
g

(P̃ii,g −
[

1 −
µg

1 + µg

]
Pii,g

)
Qii,g

(
∂ ln Qii,g

∂ ln P̃ji,k

)
w,P−ji,k

 .

(32)

Note that
(
∂ ln Qii,g/∂ ln P̃ji,k

)
w,P−ji,k

encompasses price and income effects as indicated by Equation
26. Combining Equations 28 and 32, we can express the sum of all tax revenue-related effects as(

∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P−ji,k

= P̃ji,kQji,k + ∑
g

∑
n ̸=i

[(
P̃ni,g − [1 + ωni,g]Pni,g

)
Qni,gε

(ji,k)
ni,g

]

+ ∑
g

[(
P̃ii,g −

1
1 + µg

Pii,g

)
Qii,gε

(ji,k)
ii,g

]
+ ∆i(P̃i, w)

(
∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P−ji,k

. (33)

The uniform term ∆i(P̃i) regulates the net force of (circular) general equilibrium income effects. It
correspondingly depends on the Marshallian income elasticities of demand:

∆i(P̃i; w) ≡ ∑
g

∑
n ̸=i

[(
P̃ni,g − [1 + ωni,g]Pni,g

)
Qni,gηni,g

]
+ ∑

g

[(
P̃ii,g −

1
1 + µg

Pii,g

)
Qii,gηii,g

]
. (34)

To characterize the general equilibrium wage effects in the F.O.C. (i.e., the last term on the right-hand
side of Equation 23), we invoke our earlier result under Lemma 5: By the targeting principle w−i is
welfare neutral at the optimum (i.e., P̃i = P̃i), which implies that(

∂Wi(P̃i; w)

∂w

)
P̃i

·
(

dw
d ln P̃ji,k

)
P−ji,k

=

(
∂Wi(P̃i; w)

∂wi

)
w−i ,P̃i

(
dwi

d ln P̃ji,k

)
w−i ,P−ji,k

.

That is, we can characterize the term that encompasses wage effects, treating w−i as given. Accord-
ingly, the term

(
dwi/d ln P̃ji,k

)
w−i ,P−ji,k

can be calculated by applying the Implicit Function Theorem to

country i’s balanced trade condition,72

[Balanced Trade] Ti
(
P̃i, w

)
≡ ∑

n ̸=i

[
Pni(P̃i; w) · Qni,g(P̃i; w)− P̃ni · Qni,g(P̃i; w)

]
,

while treating w−i = w̄−i as if it were given. This step yields the following equation(
d ln wi

d ln P̃ji,k

)
w−i ,P−ji,k

= −
(

∂Ti(P̃i, w)

∂ ln P̃ji,k

)
w,P−ji,k

/
(

∂Ti(P̃i, w)

∂ ln wi

)
w̄−i ,P̃i

=

−∑n ̸=i

[
(Pni ⊙ Qni) ·

(
∂ ln Qni
∂ ln P̃ji,k

)
w,P−ji,k

+ (Pni ⊙ Qni) ·
(

Ωni ⊙ ∂ ln Qni
∂ ln P̃ji,k

)
w,P−ji,k

]
(

∂Ti(P̃i ,w)
∂ ln wi

)
w̄−i ,P̃i

. (35)

72To be clear about the notation, we can write country i’s balanced trade condition without appealing to the inner product

operator as follows: Ti
(
P̃i, w

)
≡ ∑g ∑n ̸=i

(
Pni,g(P̃i, w)Qni,g(P̃i, w)− P̃in,gQin,g(P̃i, w)

)
= 0.
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where Ωni ≡ {ωni,k}k is a vector composed of export supply elasticities (as defined under Equation
27) and ⊙ denotes the element-wise product of two equal-sized vectors (i.e., a ⊙ b = [anbn]n). The
second line in the above equation follows from the fact that

(
∂ ln Qin,g(P̃i, w)/∂ ln P̃ji,k

)
w,P−ji,k

= 0 if

n ̸= i. That is, if we fix the vector of wages, w, the choice of P̃ji,k has no effect on the demand schedule
in the rest of the world. In other words, the only way the effect of P̃ji,k transmits to foreign markets is
through its effect on w. Now, define the importer-wide term, τ̄i, as follows:

τ̄i ≡

(
∂Wi(P̃i ;w)

∂wi

)
w̄−i ,P̃i

(
∂Vi(.)

∂Yi

)−1

(
∂Ti(P̃i, w)/∂ ln wi

)
w̄−i ,P̃i

. (36)

Importantly, note that τ̄i does not feature an industry-specific subscript. Combining Equation 35 with
the expression for τ̄i, we can summarize the wage effects in the F.O.C. (Equation 23) as follows(

∂Wi(P̃i; w)

∂w

)
P̃i

·
(

dw
d ln P̃ji,k

)
P−ji,k

=− ∑
g

∑
n ̸=i

[
[1 + ωni,g]τ̄iPni,gQni,gε

(ji,k)
ni,g

]

− ∑
g

∑
n ̸=i

[
[1 + ωni,g]τ̄iPni,gQni,gηni,g

] (∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P−ji,k

. (37)

Finally, plugging Equations 24, 33, and 37 back into the F.O.C. (Equation 23); yields the following
optimality condition w.r.t. to price instrument P̃ji,k ∈ P̃i:

[FOC w.r.t. P̃ji,k] ∑
n ̸=i

∑
g

[(
P̃ni,g

Pni,g
− (1 + τ̄i)(1 + ωni,g)

)
Pni,gQni,gε

(ji,k)
ni,g

]

+ ∑
g

[(
P̃ii,g

Pii,g
− 1

1 + µg

)
Pii,gQii,gε

(ji,k)
ii,g

]
+ ∆̃i(P̃i; w)

(
∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P−ji,k

= 0.

(38)

The uniform term ∆̃i(.) is defined analogously to ∆i(.), but adjusts for the interaction of general equi-
librium wage and income effects:

∆̃i(P̃i; w) ≡ ∑
g

∑
n ̸=i

[(
P̃ni,g

Pni,g
− (1 + ωni,g)(1 + τ̄i)

)
Pni,gQni,gηni,g

]
+∑

g

[(
P̃ii,g

Pii,g
− 1

1 + µg

)
Pii,gQii,gηii,g

]
.

(39)
Before moving forward, a remark on the uniform term τ̄i is in order. We do not unpack this term
because the multiplicity of country i’s optimal tax schedule (per Lemma 1) will render the exact value
assigned to τ̄i as redundant. We will elaborate more on this point when we combine the F.O.C.s w.r.t.
all tax instruments in step #4 of the proof.

Step 3.B: Deriving the F.O.C. w.r.t. Pii,k ∈ P̃i .

Next, we derive the F.O.C. w.r.t. to a locally produced and locally consumer variety ii, k. Recall
that the objective function can is given by Wi = Vi(Yi(P̃i; w), P̃ii, P̃ji). The F.O.C. w.r.t. P̃ii,k, holding the
remaining elements of P̃i (namely, P−ii,k ≡ P̃i − {P̃ii,k}) constant, can be stated as(

dWi(P̃i; w)

d ln P̃ii,k

)
P−ii,k

=
∂Vi(Yi, P̃i)

∂ ln P̃ii,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(P̃i; w)

∂ ln P̃ii,k

)
w,P−ii,k

+

(
∂Wi(P̃i; w)

∂w

)
P̃i

·
(

dw
d ln P̃ii,k

)
P−ii,k

= 0.

(40)
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Each element of the right-hand side can be characterized in a manner identical to Step 3.A. Specifically,
the first term can be simplified using Roy’s identity. The second term, which accounts for revenue-
raising effects can be characterized using cross-demand elasticities w.r.t. P̃ii,k instead of P̃ji,k. The same
goes for the last term accounting for general equilibrium wage effects. Repeating the derivations in
Step 3.A, the F.O.C. characterized by Equation 40 can be unpacked as follows:

[FOC w.r.t. P̃ii,k] ∑
n ̸=i

∑
g

[(
P̃ni,g

Pni,g
− (1 + τ̄i)(1 + ωni,g)

)
Pni,gQni,gε

(ii,k)
ni,g

]

+ ∑
g

[(
P̃ii,g

Pii,g
− 1

1 + µg

)
Pii,gQii,gε

(ii,k)
ii,g

]
+ ∆̃i(P̃i; w)

(
∂Yi(P̃i; w)

∂ ln P̃ii,k

)
w,P−ii,k

= 0,

(41)

where the uniform terms, ∆̃i(.), and τ̄i, have the same definition as that introduced under Equations
39 and 36.

Step 3.C: Deriving the F.O.C. w.r.t. Pij,k ∈ P̃i.

Finally, we derive the F.O.C. w.r.t. to export variety ij, k, which is sold to destination j ̸= i in
industry k. Note again that the objective function is given by Wi = Vi(Yi(P̃i; w), P̃ii, P̃ji). The F.O.C.
w.r.t. P̃ij,k, holding the remaining elements of P̃i (namely, P−ij,k ≡ P̃i − {P̃ij,k}) constant, can be stated
as(

dWi(P̃i; w)

d ln P̃ij,k

)
P−ij,k

=
∂Vi(Yi, P̃i)

∂ ln P̃ij,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P−ij,k

+

(
∂Wi(P̃i; w)

∂w

)
P̃i

·
(

dw
d ln P̃ij,k

)
P−ij,k

= 0.

(42)

The first term as before accounts for the direct effect of a price change on consumer surplus. This term
is trivially equal to zero in this case, since P̃ij,k /∈ P̃i. That is, since ij, k is not part of the domestic
consumption bundle, raising its price has no direct effect on consumer surplus in country i:

P̃ij,k /∈ P̃i =⇒ ∂Vi(Yi, P̃i)

∂ ln P̃ij,k
= 0. (43)

The second term in Equation 42 accounts for the revenue-raising effects of a change in P̃ij,k ∈ P̃i. To
unpack this term note that total income (or expenditure) in country i is dictated by the sum of wage
payments and tax revenues:

Yi(P̃i; w) = wiLi + ∑
n ̸=i

[(
P̃ni − Pni

)
· Qni

]
+
(
P̃ii − Pii

)
· Qii + ∑

n ̸=i

[(
P̃in − Pin

)
· Qin

]
,

Hence, holding wages w constant, the change in country i’s income amounts to the change in import,
domestic, and export tax revenues. The effect on import tax revenues can be unpacked as follows:

(
∂ ∑n ̸=i

[(
P̃ni − Pni

)
· Qni

]
∂ ln P̃ij,k

)
w,P−ij,k

=∑
g

∑
n ̸=i

(P̃ni,g − Pni,g
)

Qni,g

(
∂ ln Qni,g

∂ ln P̃ij,k

)
w,P−ij,k


− ∑

g
∑
n ̸=i

Pni,gQni,gωnj,g

(
∂ ln Qnj,g

∂ ln P̃ij,k

)
w,P−ij,k

 . (44)

where ωnj,g is the export supply elasticity as defined by 27. The first term on the right-hand side
accounts for general equilibrium income effects: Specifically, a change in P̃ij,k can raise country i’s
income Yi through higher tax revenues, and alter the entire demand schedule, Qni,g = Dni,g(P̃i, Yi),
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in the local market. The second term accounts for scale effects: To elaborate, a change in P̃ij,k dis-
torts origin i’s export supply schedule in market j ∈ C. This change alters the scale of produc-
tion and the producer prices associated with origin n–industry g that serves market j (this includes
Pni,g which is associated with economy i). It also changes the scale of production and producer
prices from foreign suppliers through cross-demand effects. These changes in international pro-
ducer prices, impacts country i’s terms-of-trade by changing its import tax revenues. Also, note
that since the rest of the world (including country j) is passive in terms of taxation, their income
is pinned to their wage rate and vector w. Hence,

(
∂Yj/∂ ln P̃ij,k

)
w,P−ij,k

= 0, which implies that(
∂ ln Qnj,g/∂ ln P̃ij,k

)
w,P−ij,k

= ∂ lnDnj,g(Ȳj, P̃j)/∂ ln P̃ij,k = ε
(ij,k)
nj,g . Likewise, since P̃ij,k /∈ P̃i, its only

effect on the demand schedule in the local market i is through general equilibrium income effects.
Putting these results together, we can posit that(

∂ ln Qnι,g

∂ ln P̃ij,k

)
w,P−ij,k

=


ε
(ij,k)
nj,g if ι = j

ηni,g

(
∂ ln Yi

∂ ln P̃ij,k

)
w,P−ij,k

if ι = i
.

Considering the above expressions and noting our earlier definition for ωni,g under Equation 27, Equa-
tion 44 can be simplified as(

∂ ∑n ̸=i
[(

P̃ni − Pni
)
· Qni

]
∂ ln P̃ij,k

)
w,P−ij,k

= −∑
g

∑
n ̸=i

[
ωnj,gPni,gQni,gε

(ij,k)
nj,g

]
+ ∑

g
∑
n ̸=i

[(
P̃ni,g − [1 + ωni,g]Pni,g

)
Qni,gηni,g

] ( ∂ ln Yi

∂ ln P̃ij,k

)
w,P−ij,k

= −∑
g

∑
n ̸=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∑

g
∑
n ̸=i

[(
P̃ni,g − [1 + ωni,g]Pni,g

)
Qni,gηni,g

] ( ∂ ln Yi

∂ ln P̃ij,k

)
w,P−ij,k

.

(45)

The last line in the above equation follows from (1) the definition of ω, which entails that ωnj,grni,g =

ωni,grnj,g, and (2) the fact that rni,g/rnj,g = Pni,gQni,g/Pnj,gQnj,g, since the markup is uniform across
output sold to different destinations in the same industry.

The effect of a change in P̃ij,k on country i’s production and export tax revenues can be unpacked
as follows:73

(
∂

∂ ln P̃ij,k
∑
n

[(
P̃in − Pin

)
· Qin

])
w,P−ij,k

= ∑
g

(P̃ii,g − Pii,g
)

Qii,g

(
∂ ln Qii,g

∂ ln P̃ij,k

)
w,P−ij,k


+ P̃ij,kQij,k + ∑

g

(P̃ij,g − Pij,g
)

Qij,g

(
∂ ln Qij,g

∂ ln P̃ij,k

)
w,P−ij,k

+ ∑
g

∑
n

Pin,gQin,g

(
∂Pin,g

∂ ln Qij,g

)
w,P̃i

(
∂ ln Qij,g

∂ ln P̃ij,k

)
w,P−ij,k

 .

(46)

The first term (in the first line) account for the effect on domestic tax revenues that channel through
general equilibrium income effects. The second term on the right-hand side (P̃ij,kQij,k) accounts for the
direct, arithmetic effect of P̃ij,k on export tax revenues. The third term account for revenue effects that
channel through a change in the demand for all varieties sold to destination j (i.e., ij, g). The last term
accounts for scale effects—i.e., a change in Qij,g alters the scale of production in origin i–industry g, and
modifies all the producer prices associated with that industry. As noted in Step 3.A, the last term in

73To be clear, ∑n
[(

P̃in − Pin
)
· Qin

]
=
(
P̃ii − Pii

)
·Qii,g +∑n ̸=i

[(
P̃in − Pin

)
· Qin

]
denotes the sum of domestic and export

tax revenues.
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Equation 46 can be simplified using the Free Entry condition, which entails that (See Equation 31):

∑
n∈C

[
Pin,gQin,g

(
∂Pin,g

∂ ln Qij,g

)
w,P̃i

]
= −

µg

1 + µg
Pij,gQij,g,

Also, recall from our earlier discussion that since country j ̸= i collects no tax revenues by assumption,(
∂Yj/∂ ln P̃ij,k

)
w,P−ij,k

= 0, which implies that
(
∂ ln Qnj,g/∂ ln P̃ij,k

)
w,P−ij,k

= ∂ lnDnj,g(Ȳj, P̃j)/∂ ln P̃ij,k =

ε
(ij,k)
nj,g . Plugging these expressions back into Equation 46 simplifies it as

(
∂

∂ ln P̃ij,k
∑
n

[(
P̃in − Pin

)
· Qin

])
w,P−ij,k

= P̃ij,kQij,k + ∑
g

[(
P̃ij,g − [1 −

µg

1 + µg
]Pij,g

)
Qij,gε

(ij,k)
ij,g

]

+ ∑
g

[(
P̃ii,g −

1
1 + µg

Pii,g

)
Qii,gηii,g

](
∂ ln Yi

∂ ln P̃ij,k

)
w,P−ij,k

.

(47)

Combining Equations 45 and 47, we can express the sum of tax revenue-related effects as(
∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P−ij,k

= P̃ij,kQij,k+∑
g

[(
P̃ij,g − [1 −

µg

1 + µg
]Pij,g

)
Qij,gε

(ij,k)
ij,g

]

−∑
g

∑
n ̸=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∆i(P̃i; w)

(
∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P−ij,k

, (48)

where ∆i(.) encompasses the terms accounting for circular income effects and is given by Equation 34.
No we turn to characterizing the general equilibrium wage effects in the F.O.C.—namely, the last term
on the right-hand side of Equation 23. To this end, we invoke our observation based on the targeting
principle (as stated under Lemma 5) that

(
∂Wi(.)

∂w

)
P̃i

·
(

dw
d ln P̃ij,k

)
P−ij,k

=
(

∂Wi(.)
∂wi

)
w−i ,P̃i

(
dwi

d ln P̃ij,k

)
w−i ,P−ij,k

.

The term
(

dwi
d ln P̃ji,k

)
w−i ,P−ji,k

can be calculated by applying the Implicit Function Theorem to country i’s

balanced trade condition,

[Balanced Trade] Ti
(
P̃i, w

)
≡ ∑

n ̸=i

[
Pni(P̃i; w) · Qni,g(P̃i; w)− P̃ni · Qni,g(P̃i; w)

]
,

while treating w−i = w̄−i as given. This application yields the following equation (Notation: Ωnj ≡{
ωnj,k

}
k is a vector composed of export supply elasticities, while ⊙ and · denotes the element-wise

and inner products of two equal-sized vectors):(
d ln wi

d ln P̃ij,k

)
w−i ,P−ij,k

= −
(

∂Ti(P̃i, w)

∂ ln P̃ij,k

)
w,P−ij,k

/
(

∂Ti(P̃i, w)

∂ ln wi

)
w̄−i ,P̃i

=

−P̃ij,kQij,k −
(

P̃ij ⊙ Qij

)
·
(

∂ ln Qij

∂ ln P̃ij,k

)
w,P−ij,k

+ ∑n ̸=i

[
(Pni ⊙ Qni) ·

(
∂ ln Qni
∂ ln P̃ij,k

+ Ωnj ⊙
∂ ln Qnj

∂ ln P̃ij,k

)
w,P−ij,k

]
(

∂Ti(P̃i ,w)
∂ ln wi

)
w̄−i ,P̃i

(49)

The numerator in the second line of the above equation is composed of three terms: The first term
accounts for the arithmetic effect of P̃ji,k on country i’s trade balance. The second term account for own-
and cross-price effects that are specific to market j—the market to which good ij, k is being exported.
The last term accounts for scale effects: Specifically, a change in P̃ij,k interacts with the balanced trade
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condition by modifying the producer of a generic good ni, g imported from origin i–industry g. As
before, define the uniform importer-wide term, τ̄i, as follows

τ̄i ≡

(
∂Wi(P̃i ;w)

∂wi

)
w̄−i ,P̃i

(
∂Vi(.)

∂Yi

)−1

(
∂Ti(P̃i, w)/∂ ln wi

)
w̄−i ,P̃i

. (50)

Combining Equation 49 with the expression for τ̄i, we can summarize the wage effects in the F.O.C.
(Equation 23) as follows:

(
∂Wi(.)

∂w

)
P̃i

·
(

dw
d ln P̃ij,k

)
P−ij,k

= τ̄i P̃ij,kQij,k + ∑
g

[
τ̄i P̃ij,gQij,gε

(ij,k)
ij,g

]

−∑
g

∑
n ̸=i

[
τ̄iωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
− ∑

g
∑
n ̸=i

[
[1 + ωni,g]τ̄iPni,gQni,gηni,g

] (∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P−ij,k

. (51)

Finally, plugging Equations 43, 48, and 51 back into the F.O.C. (Equation 42); and dividing all the
expressions by (1 + τ̄i) yields the following optimality condition w.r.t. to price instrument P̃ij,k ∈ P̃i:

[FOC w.r.t. P̃ij,k] P̃ij,kQij,k+∑
g

[(
1 − 1

(1 + τ̄i)(1 + µg)

Pij,g

P̃ij,g

)
P̃ij,gQij,gε

(ij,k)
ij,g

]

−∑
g

∑
n ̸=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∆̃i(P̃i, w)

(
∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P−ij,k

= 0, (52)

where ∆̃i(.) is defined as in Equation 39. Also, we are not unpacking the term τ̄i, for the same reasons
discussed under Step 3.A.

Step #4: Solving the System of F.O.C.s and Establishing Uniqueness

To determine the optimal tax schedule we need to collect the each of first order conditions and
simultaneously solve them under one system. For the ease of reference, we will restate the F.O.C.
w.r.t. to each element of P̃i below. Following Equations 38 and 41, the F.O.C. w.r.t. P̃ℓi,k ∈ P̃i (where
ℓ = i or ℓ = j ̸= i) is given by the following equation:

(1) ∑
n ̸=i

∑
g

[(
1 − (1 + τ̄i)(1 + ωni,g)

Pni,g

P̃ni,g

)
eni,gε

(ℓi,k)
ni,g

]
+

∑
g

[(
1 − 1

1 + µg

Pii,g

P̃ii,g

)
eii,gε

(ℓi,k)
ii,g

]
+∆̃i(P̃i; w)

(
∂ ln Yi(P̃i; w)

∂ ln P̃ℓi,k

)
w,P−ℓi,k

= 0.

where eni,g = P̃ni,gQni,g/Yi denotes the (unconditional) expenditure share on good ni, g. Likewise,
dividing Equation 52 by P̃ij,kQij,k, the F.O.C. w.r.t. export price P̃ij,k ∈ P̃i is given by the following
equation:

(2) 1 + ∑
g

[(
1 − 1

(1 + µg)(1 + τ̄i)

Pij,g

P̃ij,g

)
eij,g

eij,k
ε
(ij,k)
ij,g

]

− ∑
n ̸=i

∑
g

[
ωni,g

enj,g

eij,k
ε
(ij,k)
nj,g

]
+∆̃i(P̃i, w)

Yi

Yj

(
∂ ln Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P−ij,k

= 0.

To set the stage for what follows, let us emphasize four points:

(1) In accordance with the tax-neutrality result presented under Lemma 1, the optimal policy sched-
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ule is unique only up-to two arbitrary tax shifters.74 That is, there are multiple optimal policy
schedules that are welfare-equivalent but differ in the average level assigned to domestic and
trade taxes—we come back to this point when finalizing our optimal policy formulas.

(2) The system of F.O.C.s labeled (1) can be solved independently of (2) to recover the optimal export-
and import-side price wedges.

(3) The trivial solution to system (1) satisfies ∆̃i(P̃i; w) = 0. Moreover, we can invoke Lemma 1 to
show that if there exists an optimal policy schedule for which ∆̃i(P̃i; w) ̸= 0, that policy choice is
welfare-equivalent to another that satisfies ∆̃i(P̃i; w) = 0—see Appendix E.1 for an formal proof.
These two observations together affirm that we can identify the full set of (welfare-equivalent)
optimal policy schedules by setting ∆̃i(P̃i; w) = 0 in the F.O.C.s. This particular proposition
can be alternatively stated as an envelope-type result: If the government is afforded sufficient
policy instruments, the system of F.O.C.s can be derived and solved as if the Marshallian demand
functions were income inelastic.

(4) We focus on interior solutions that do not assign a prohibitive price to any good (i.e., eni,g > 0,
∀ ni, g). Since prohibitive prices exclude goods from the system of F.O.C.s., one may worry that
a non-interior solution that prohibits some goods but satisfies the necessary first-order condi-
tions w.r.t. the other goods is optimal. Appendix E.2 rules out the optimality of prohibitive
taxes/prices by appealing to the Inada conditions, which is standard in the literature.

All in all, these points indicate that System (1) can be solved independent of (2) and by restricting
attention to interior solutions that satisfy ∆̃i(P̃i; w) = 0. Doing so leads us to a unique trivial solution
from which we can infer the remaining optimal tax schedules—all of which deliver the same welfare
outcome. To establish this claim, set ∆̃i(.) = 0 and express System (1) in matrix notation as follows:


e1i,1ε

(1i,1)
1i,1 · · · eNi,ε

(1i,1)
Ni,1 · · · e1i,Kε

(1i,1)
1i,K · · · eNi,Kε

(1i,1)
Ni,K

...
. . . . . .

...

e1i,1ε
(Ni,K)
1i,1 · · · eNi,ε

(Ni,K)
Ni,1 · · · e1i,Kε

(Ni,K)
1i,K · · · eNi,Kε

(Ni,K)
Ni,K


︸ ︷︷ ︸

Ẽi



1 − (1 + ω1i,k)(1 + τ̄i)
P1i,1
P̃⋆

1i,k
...

1 − 1
1+µk

Pii,k
P̃⋆

ii,k
...

1 − (1 + ωNi,k)(1 + τ̄i)
PNi,k
P̃⋆

Ni,k


k

= 0.

To prove that the above equation exhibits a unique, trivial solution it suffices to show that the expenditure-
adjusted elasticity matrix, Ei =

[
eji,kε

(ni,g)
ji,k

]
jk,ng

is non-singular. The following intermediate lemma

establishes this result using the primitive properties of Marshallian demand functions.

Lemma 6. The NK × NK matrix Ẽi ≡
[
eji,kε

(ni,g)
ji,k

]
jk,ng

is non-singular.

Proof. We can appeal to Proposition 2.E.2 in Mas-Colell, Whinston, Green, et al. (1995), which indicates
that the Marshallian demand function satisfies eji,k =| eji,kε

(ji,k)
ji,k | −∑n,g ̸=j,k | eni,gε

(ji,k)
ni,g |—a property

often referred to as Cournot aggregation. Since eji,k > 0 (as we have ruled out prohibitive prices),
Cournot aggregation ensures the matrix Ẽi is strictly diagonally dominant. The Lèvy-Desplanques

74To be clear the pseudo-uniqueness of the optimal policy formula is different from the uniqueness of the optimal policy
equilibrium. Establishing the latter is a daunting task well beyond the scope of this paper (see Kucheryavyy et al. (2016)).
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Theorem (Horn and Johnson (2012)), accordingly, ensures that Ẽi is non-singular. The lower bound on
det(Ẽi) follows trivially from Gerschgorin’s circle theorem. Specifically, following Ostrowski (1952),

| det
(

Ẽi

)
|≥∏

j∈C

∏
k∈K

∣∣∣eji,kε
(ji,k)
ji,k

∣∣∣− ∑
(n,g) ̸=(j,k)

∣∣∣eni,gε
(ji,k)
ni,g

∣∣∣
 = ∏

j∈C

∏
k∈K

eji,k > 0.

Appealing to above lemma, it is immediate that the unique solution to the above matrix equation
is indeed the trivial solution, given by:

P̃∗
ji,k

Pji,1
= (1 + ωji,k)(1 + τ̄i);

P̃∗
ii,k

Pii,k
=

1
1 + µk

. (53)

It is straightforward to check that the above solution constitutes a global maximum by contradiction.
To present the logic: Since limP̃i→∞ Wi(P̃i, w) → 0, the above solution identifies a vector of consumer
prices at home, P̃∗

i ∈ P̃i, that yields a strictly higher welfare level than prohibitive prices. As such,
P̃i cannot constitute a global minimum. Lastly, it is straightforward to see that if the domestic price
elements in P̃i satisfy 53, then

∆̃i(P̃i; w) ≡ ∑
g

∑
n ̸=i

[(
P̃∗

ni,g

Pni,g
− (1 + ωni,g)(1 + τ̄i)

)
Pni,gQni,gηni,g

]
+∑

g

[(
P̃∗

ii,g

Pii,g
− 1

1 + µg

)
Pii,gQii,gηii,g

]
= 0.

That is, the term accounting for general equilibrium income effects amounts to zero in the neighbor-
hood of the optimum, as if demand functions were income inelastic (i.e., ηni,g = ηii,g = 0) Capitalizing
on this result, we can proceed to solving System (2), knowing that ∆̃i(P̃i, w) = 0. To this end, let us
economize on the notation by defining X as follows:

Xij,k ≡
1

(1 + µg)(1 + τ̄i)

Pij,g

P̃ij,g
.

Invoking this minor switch of notation, the F.O.C. specified by System (2) implies the following opti-
mality condition:

1 + ∑
g

(1 −Xij,g
) eij,gε

(ij,k)
ij,g

eij,k

− ∑
n ̸=i

∑
g

ωni,g
enj,gε

(ij,k)
nj,g

eij,k

 = 0. (54)

To simplify the above expression we will appeal to the Cournot aggregation property–a well-known
primitive property of Marshallian demand as discussed earlier (see Mas-Colell et al. (1995)):

[Cournot aggregation] 1 + ∑
g

[
eij,g

eij,k
ε
(ij,k)
ij,g

]
= − ∑

n ̸=i
∑
g

[
enj,g

eij,k
ε
(ij,k)
nj,g

]
.

Next, combine the above expression with Equation 54, while noting that by Slutsky’s equation enj,g
eij,k

ε
(ij,k)
nj,g =

ε
(nj,g)
ij,k if ηni,g = 1 for all ni, g. Performing these steps yields the following:

−∑
g

[
Xij,gε

(ij,g)
ij,k

]
− ∑

n ̸=i
∑
g

[
(1 + ωni,g)ε

(nj,g)
ij,k

]
= 0 ∀(ij, k).

We can rewrite the above equation in matrix algebra as follows:

−EijXij − E(−ij)
ij

(
1(N−1)K + Ωi

)
= 0, (55)

where Xij ≡
[
Xij,k

]
k is a K × 1 vector. The K × K matrix Eij ∼ E(ij)

ij ≡
[
ε
(ij,g)
ij,k

]
encompasses the own-

and cross-price elasticities between the different varieties sold by origin i to market j—see Definition
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(D1). Analogously, E(−ij)
ij ≡

[
ε
(nj,g)
ij,k

]
k,n ̸=i,g

is a K × (N − 1)K matrix summarizing the cross-price elas-

ticity of market j’s demand between varieties sold by origin i and all other (non-i) origin countries.
Ωi ≡

[
ωni,g

]
n,g is a (N − 1)K × 1 vector of all import good-specific inverse supply elasticities. To invert

the above system we need to establish that Eij is non-singular, which is done under the following
lemma.

Lemma 7. The K × K matrix Eij ≡
[
ε
(ij,g)
ij,k

]
k,g

is non-singular.

Proof. The proof proceeds similar to Lemma 6: The Marshallian demand function’s homogeneity of
degree zero implies that | ε

(ij,k)
ij,k |= ηij,k + ∑n,g ̸=i,k | ε

(nj,g)
ij,k |. Based on this property, since ηij,k > 0,

the matrix Eij is strictly diagonally dominant. The Lèvy-Desplanques Theorem (Horn and Johnson
(2012)), therefore, ensures that Eij is non-singular.

Following the above lemma we can invert the system specified by Equation 55 to obtain the optimal
level of Xij =

[
Xij,k

]
k:

X∗
ij = −E−1

ij E(−ij)
ij

(
1(N−1)K + Ωi

)
. (56)

Next, there remains the task of recovering the optimal tax/subsidy rates from the optimal price
wedges implies by Equations 53 and 56. Noting the following relationship between taxes/subsidies
and price wedges,

1 + t∗ji,k =
P̃ji,k

Pji,k
; 1 + s∗i,k =

Pii,k

P̃∗
ii,k

; 1 + xij,k =
Pij,k/P̃∗

ij,k

Pii,k/P̃∗
ii,k

;

country i’s unilaterally optimal tax schedule can be expressed as follows:

[domestic subsidy] 1 + s∗i,k = 1 + µk

[import tariff] 1 + t∗ji,k = (1 + ωji,k)(1 + τ̄i)

[export subsidy] 1 + x∗ij = −E−1
ij E(−ij)

ij (1 + t∗i ) . (57)

The last step is to invoke the multiplicity of optimal tax schedules as indicated by Lemma 1. Doing
so indicates that the uniform term τ̄i is redundant and need not be unpacked. To elaborate, Lemma 1
indicates that any policy schedule that includes an import tax equal to (1 + t̄i ∈ R+)

1 + tji,k = (1 + ωji,k)(1 + τ̄i)(1 + t̄i)

is also optimal, since it delivers an identical level of welfare to the original optimal policy schedule
specified by 57. As such, the exact value assigned to τ̄i is redundant for a welfare standpoint. This
is why we did not unpack the term τ̄i earlier in Step #3. Lemma 1 indicates that there is another
dimension of multiplicity, whereby any uniform shift in domestic production subsidies (paired with
a proportional adjustment to wi) preserves the equilibrium. Considering these points, the optimal
policy schedule (after accounting for all dimensions of multiplicity) is given by:

[domestic subsidy] 1 + s∗i,k = (1 + µk)(1 + s̄i)

[import tariff] 1 + t∗ji,k = (1 + ωji,k)(1 + t̄i)

[export subsidy] 1 + x∗ij = −E−1
ij E(−ij)

ij (1 + t∗i ) ,

where 1 + s̄i = 1 + t̄i ∈ R+ are arbitrary tax shifters. What remains is a formal characterization of the
good-specific supply elasticity, ωji,k, which is presented below.
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Characterizing the (Inverse) Export Supply Elasticity, ωji,k. To fix ideas, it is helpful to repeat the
definition of the export supply elasticity presented earlier:

ωji,k ≡
1

rji,kρj,k
∑
g

[
ẁiLi

ẁjLj
ρi,g

(
∂ ln Pii,g

∂ ln Qji,k

)
w,P̃i

+ ∑
n ̸=i

ẁnLn

ẁjLj
rni,gρn,g

(
∂ ln Pni,g

∂ ln Qji,k

)
w,P̃i

]
, (58)

where rni,g = Pni,gQni,g/ ∑ι∈C

(
Pnι,gQnι,g

)
and ρn,g = ∑ι∈C

(
Pnι,gQnι,g

)
/ẁnLn respectively denote the

good ni, g-specific and industry-wide sales shares associated with origin n ∈ C. Also, note that the
producer price of good ni, g under free entry is given by Pni,g = τni,gPnn,g, where

Pnn,g = ϱ̄nn,gwn ∑
ι∈C

[
τnι,gQnι,g

]− µg
1+µg ∀(n, g)

To characterize ωji,k, we need to characterize
(

∂ ln Pni,g
∂ ln Qji,k

)
w,Ti

=
(

∂ ln Pii,g
∂ ln Qji,k

)
w,Ti

for each origin n–industry

g. To this end we can apply the Implicit Function Theorem to the following function:

Fni,g(Q1i,g, ..., QNi,g, P11,g, ..., PNN,g) = Pnn,g − ϱ̄nn,gwn

τni,gQni,g + ∑
ℓ ̸=i

τnℓ,gQnℓ,g(τ−iℓ ⊙ P−i︸ ︷︷ ︸
P̃−iℓ

)


− µg

1+µg

= 0.

where τ−in ⊙ P−i ∼
{

τȷn,gPȷȷ,g
}

ȷ ̸=i,g denotes the vector of consumer prices in market n ̸= i from all
origins aside from i. The above function implicitly characterizes the producer prices in each origin j–
industry g as a function of export supply levels to market i (i.e., Q1i,g, ..., QNi,g). Importantly, the above
function treats both P̄i and w as given, as all elements of P̄i are chosen directly the by the government
in i. Accordingly, the function Qnι,g(.) on the right-hand side derives from the Marshallian demand
function,

Qjn,g(τ−in ⊙ P−i︸ ︷︷ ︸
P̃−in

) = Dnι,g(P̃−in, P̃in, wnLn︸ ︷︷ ︸
Yn

),

treating P̃in ∈ P̃i and wn ∈ w as given. This function accounts for the fact that any change in the
producer price of varieties associated with origin n–industry g will affect the consumer prices and
the demand schedule in all market excluding i. The reason is that prices in international markets
(excluding i) are not directly pinned down by the choice, P̃i. For the sake of presentation, abstract from
cross-industry demand effects. Applying the Implicit Function Theorem to the system of equations
specified by Fni,k (. ), yields the following:
(

∂ ln P11,k
∂ ln Q1i,k

)
w,P̃i

· · ·
(

∂P11,k
∂ ln QNi,k

)
w,P̃i

...
. . .

...(
∂ ln PNN,k
∂ ln Q1i,k

)
w,P̃i

· · ·
(

∂PNN,k
∂ ln QNi,k

)
w,P̃i

 = −


∂F1i,k(.)
∂ ln P11,k

· · · ∂F1i,k(.)
∂ ln PNN,k

...
. . .

...
∂FNi,k(.)
∂ ln P11,k

· · · ∂FNi,k(.)
∂ ln PNN,k


−1

︸ ︷︷ ︸
Ai


∂F1i,k(.)
∂ ln Q1i,k

· · · ∂F1i,k(.)
∂ ln QNi,k

...
. . .

...
∂FNi,k(.)
∂ ln Q1i,k

· · · ∂FNi,k(.)
∂ ln QNi,k

 .

(59)
The elements of the matrixes on the right-hand side of the above equation are given by

∂Fni,k (. )
∂ ln Pjj,k

= 1j=n + 1j ̸=i ×
µk

1 + µk
∑
ι ̸=i

rnι,kε
(jι,k)
nι,k ;

∂Fni,k (. )
∂ ln Qji,k

= 1j=n
µk

1 + µk
rji,k.

Notice that the off-diagonal elements of Ai are near-zero (i.e., rnι,kε
(jι,k)
nι,k ∝ rnι,kλjι,k ≈ 0 if n ̸= j ̸=

ι). So, we can apply the method proposed by Wu et al. (2013) to characterize A−1
i to a first-order

approximation around rjι,k ≈ λjι,k ≈ 0 (for j ̸= ι). This procedure is detailed in Appendix E.3 and
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Figure 4: The efficacy of the approximated ωji,k at predicting gains from policy

Note: the above simulation is based on a two country–two industry model with the following specifications: (2)
σ1 = σ2 = 5, (2) µ1 = 0.25 and µ2 = 0.5µ1; (3) expenditure shares are assigned the following values λ21,1 = 0.6,
λ12,1 = 0.25/δ, λ21,2 = 0.25; λ12,2 = 0.4/ρ where ρ is relative size.

yields the following expression based on the matrix Equation 59:

(
∂ ln Pnn,k

∂ ln Qji,k

)
w,P̃i

≈


− µk

1+µk
rni,k

1+ µk
1+µk

∑ι ̸=i rnι,kε
(nι,k)
nι,k

n = j
µk

1+µk
rji,k

1+ µk
1+µk

∑ι ̸=i rnι,kε
(nι,k)
nι,k

(
µk

1+µk
∑ι ̸=i rnι,kε

(jι,k)
nι,k

)
n ̸= j

Plugging the above expression back into the definition specified by Equation 58, while noting that
rni,k × rji,k ≈ 0 if j ̸= i and n ̸= i, yields the following approximation for the export supply elasticity:

ωji,k ≈
− µk

1+µk
rji,k

1 + µk
1+µk

∑ι ̸=i rjι,kε jι,k

[
1 − µk

1 + µk

wiLi

wjLj
∑
n ̸=i

ρi,krin,k

ρj,krji,k
ε
(jn,k)
in,k

]
.

For the sake of clarity, note that wi = ẁi under free entry—so, we can replace wi with ẁi every-
where in the above approximation. Figure 4 illustrates the goodness of our approximated ωji,k using a
rather conservative numerical example. We simulate a two-country×two-industry economy in which
trade is relatively open and the tax-imposing country is relatively large compared to the rest of the
world. We compute the actual gains from optimal policy for the tax-imposing country i, and compare
them to gains implied by (1) our approximated ωji,k as well (2) the small open economy approxima-
tion, ωji,k ≈ 0. Evidently, our approximated value for ωji,k yields indistinguishable results relative to
approximation-free benchmark.75

75To be clear, the above approximation is only intended for the quantitative applications. It should not be viewed as a
limitation of our theory. The optimal tax formula derived earlier in combination with Equation 59 deliver an exact theoretical
specification for the first-best optimal policy schedule.
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Step #5. Extending the Derivation to the Restrict Entry Case

Equipped with a full characterization of optimal policy under free entry, we now switch attention
to the case of restricted entry. The main difference between the two cases is in how producer prices
vary with export supply: Under restricted entry, holding w = {ẁn} fixed, contacting the export supply
of good ni, g affects the producer prices associated with origin n through a uniform reduction in the
average markup µn. Namely,

Pni,g = ϱ̄′ni,g
1 + µk

1 + µn
ẁn =⇒

(
∂ ln Pni,g

∂ ln Qni,g

)
w,P̃i

= −
(

∂ ln(1 + µn)

∂ ln Qni,g

)
w,P̃i

,

where economy n’s (endogenously-determined) average profit margin is given by

1 + µn =
∑ι∈C ∑k∈K [Pnι,kQnι,k]

∑ι∈C ∑k∈K

[
1

1+µk
Pnι,kQnι,k

] .

Another difference is that non-tax-revenue income in country i is the sum of wage payments plus
profits. Stated formally, total income in country i can be specified as follows (notation: the operator “·”
denotes the inner product of two equal-sized vectors):

Yi(P̃i; w) = (1 + µi)wiLi︸ ︷︷ ︸
ẁi Li

+ ∑
n ̸=i

[(
P̃ni − Pni

)
· Qni

]
+
(
P̃ii − Pii

)
· Qii + ∑

n ̸=i

[(
P̃in − Pin

)
· Qin

]
, (60)

In the above formulation, ẁiLi = (1 + µi)wiLi, stands for the sum of wage payments plus profits.
With the background information provided above, we can recycle our earlier derivations from the

free entry case to characterize the F.O.C. w.r.t. each price instrument in P̃i.

First-Order Condition w.r.t. P̃ji,k and P̃ii,k ∈ P̃i. To fix ideas, recall from Step #3 of the proof that the
F.O.C. w.r.t. P̃ji,k ∈ P̃i (where possibly j = i) is given by(

dWi(P̃i; w)

d ln P̃ji,k

)
P−ji,k

=
∂Vi(Yi, P̃i)

∂ ln P̃ji,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P−ji,k

+

(
∂Wi(P̃i; w)

∂w

)
P̃i

·
(

dw
d ln P̃ji,k

)
P−ji,k

= 0.

(61)
As before, P−ji,k ≡ P̃i −

{
P̃ji,k
}

denotes the vector of country i’s price instruments excluding P̃ji,k.
Each term on the right-hand can be unpacked as in the free entry case, with one difference: holding
w constant, a change in good ji, k’s export supply affects the entire vector of prices from origin j.
Specifically, noting that Pji,g = ϱ̄′ji,g

1+µg
1+µj

wj, indicates that(
∂ ln Pji,g

∂ ln Qji,k

)
w,P̃i

= −
(

∂ ln(1 + µj)

∂ ln Qji,k

)
w,P̃i

∀g ∈ K.

Noting this distinction, we now repeat the steps present earlier to unpack each term on the right-hand
side of Equation 61. By Roy’s identity, the first term on the right-hand side can be unpacked as follows:

∂Vi(Yi, P̃i)

∂ ln P̃ji,k
= −P̃ji,kQji,k

(
∂Vi

∂Yi

)
.

Recall that the second term on the right-hand side of Equation 61 accounts for the revenue-raising
effects of policy. Specifically, taking note of Equation 60, the effect on import tax revenues can be
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unpacked as follows:

(
∂ ∑n ̸=i

(
P̃ni − Pni

)
· Qni

∂ ln P̃ji,k

)
w,P−ji,k

= P̃ji,kQji,k + ∑
g

∑
n ̸=i

(P̃ni,g − Pni,g
)

Qni,g

(
∂ ln Qni,g

∂ ln P̃ji,k

)
w,P−ji,k


− ∑

g∈K

∑
n ̸=i

Pni,gQni,g ∑
s∈K

∑
ȷ ̸=i

Pȷi,sQȷi,s

Pni,gQni,g

(
∂Pȷi,s

∂ ln Qni,g

)
w,P̃i

+ ∑
ℓ∈C

Piℓ,sQiℓ,s

Piℓ,gQiℓ,g

(
∂Piℓ,s

∂ ln Qni,g

)
w,P̃i

(∂ ln Qni,g

∂ ln P̃ji,k

)
w,P−ji,k

 .

(62)

As in the free entry case,
(
∂ ln Qni,g/∂ ln P̃ji,k

)
w,P−ji,k

encompasses demand adjustments that channel
through both price and income effects—see Equation 26. We can simplify the last term on the right-
hand side of above equation, by appealing to our definition of the export supply elasticity:

ωni,g ≡ ∑
ℓ∈C

[
Piℓ,gQiℓ,g

Pni,gQni,g

(
∂ ln Piℓ,g

∂ ln Qni,g

)
w,P̃i

]
+ ∑

j ̸=i

[
Pji,gQji,g

Pni,gQni,g

(
∂ ln Pji,g

∂ ln Qni,g

)
w,P̃i

]

=
1

rni,gρn,g
∑
g

[
ẁiLi

ẁnLn
ρi,g

(
∂ ln (1 + µi)

∂ ln Qni,g

)
w,P̃i

+ ∑
j ̸=i

ẁjLj

ẁnLn
rji,gρj,g

(
∂ ln (1 + µn)

∂ ln Qni,g

)
w,P̃i

]
(63)

The second line indicates our focus on the restricted entry case, wherein
(

∂ ln Pni,g
∂ ln Qji,k

)
w,P̃i

=
(

∂ ln(1+µn)
∂ ln Qji,k

)
w,P̃i

for all g. That is, holding w constant, producer prices from each origin change equal-proportionally
across all industries with the aggregate profit margin, 1 + µi. Plugging the above expression back
into Equation 62 yields the following expression that summarizes the (conditional) effect of policy on
import tax revenues:(

∂ ∑n ̸=i
[(

P̃ni − Pni
)
· Qni

]
∂ ln P̃ji,k

)
w,P−ji,k

= P̃ji,kQji,k +∑
g

∑
n ̸=i

(P̃ni,g − [1 + ωni,g]Pni,g
)

Qni,g

(
∂ ln Qni,g

∂ ln P̃ji,k

)
w,P−ji,k

 .

(64)
The effect of policy on export and domestic tax revenues can be unpacked as in Equation 29, which
was derived earlier for the free entry case. To simplify this equation under restricted entry, we can use
the following observation:

∑
n

[
Pin,gQin,g

(
∂Pin,g

∂ ln Qii,g

)
w,P̃i

]
= − ∑

s∈K

∑
n∈C

[
Pin,sQin,s

Pii,gQii,g

(
∂ ln(1 + µi)

∂ ln Qii,g

)
w,P̃i

]
Pii,gQii,g =

= ∑
s∈K

∑
n∈C

[
rin,sρi,s

rii,gρi,g

(
µi − µg

1 + µg
rii,gρi,g

)]
Pii,gQii,g = −

(
1 − 1 + µi

1 + µg

)
Pii,gQii,g,

To explain, the second line on the above equation follows from that fact that all prices associated with
economy i are included in the set P̃i. So, holding P̃i and wages w constant, the policy-induced change
in Qii,g has only a direct arithmetic effect on country i’s aggregate profit margin, i.e.,

(
∂ ln(1+µi)
∂ ln Qii,g

)
w,P̃i

=

µi−µg
1+µg

rii,gρi,g.76 Plugging the above equation back into Equation 29 yields the following equation de-

76Note that this argument does not extend to the aggregate profit margin in other countries. Changing the export supply
of say good ji, k with policy has a circular effect on origin j’s profit margin, µj, which occurs because the prices associated
with economy j ̸= i are not pegged to P̃i. Specifically, a change in Qji,k affects the entire vector of origin j’s prices outside of
market i. This change in prices affects the industrial composition of origin j’s output and µj in a circular fashion.
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scribing the (conditional) effects of policy on export and domestic tax revenues:(
∂

∂ ln P̃ji,k

{
∑
n

[(
P̃in − Pin

)
· Qin

]})
w,P−ji,k

= ∑
g

(P̃ii,g −
1 + µi
1 + µg

Pii,g

)
Qii,g

(
∂ ln Qii,g

∂ ln P̃ji,k

)
w,P−ji,k

 .

(65)
Recall that

(
∂ ln Qni,g/∂ ln P̃ji,k

)
w,P−ji,k

, in the above equations, encompasses price- and income-related
demand adjustments—see Equation 26. Taking note of this detail, we can combine Equations 64 and
65 to arrive at the following expression that summarizes the (conditional) effect of raising P̃ji,k on
country i’s tax revenues:(

∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P−ji,k

=P̃ji,kQji,k + ∑
g

∑
n ̸=i

[(
P̃ni,g − [1 + ωni,g]Pni,g

)
Qni,gε

(ji,k)
ni,g

]

+ ∑
g

[(
P̃ii,g −

1 + µi
1 + µg

Pii,g

)
Qii,gε

(ji,k)
ii,g

]
+ ∆i(P̃i; w)

(
∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P−ji,k

,

where ∆i(.), as before, encapsulated the circular income effects. The expression for ∆i(.) is specified
analogously to Equation 34 with two amendments: (1) ωni,g is redefined according to 63; and (2)
1/(1 + µg) replaced with (1 + µi)/(1 + µg).77 Next, we unpack the last term on the right-hand side of
Equation 61, which accounts for general equilibrium wage effects. Repeating the steps presented for
the free entry case, while noting the differences discussed above, yields the following:(

∂Wi(P̃i; w)

∂w

)
P̃i

·
(

dw
d ln P̃ji,k

)
P−ji,k

=− ∑
g

∑
n ̸=i

[
τ̄i
(
1 + ωni,g

)
Pni,gQni,gε

(ji,k)
ni,g

]
,

− ∑
g

∑
n ̸=i

[
τ̄i
(
1 + ωni,g

)
Pni,gQni,gηni,g

] (∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P−ji,k

where τ̄i is given by 36. Note that the above expression differs from the analogous expression derived
under free entry in the economic forces that regulate export supply elasticity, ωni,g. Under restricted
entry, the export supply elasticity governs the change in aggregate profit margins in response to dis-
tortions to export supply. Combining the various terms on the right-hand side of Equation 61, yields
the following simplified representation of the F.O.C. w.r.t. P̃ji,k ∈ P̃i under restricted entry:

∑
n ̸=i

∑
g

[(
P̃ni,g

Pni,g
− (1 + τ̄i)

)
Pni,gQni,gε

(ji,k)
ni,g

]

+ ∑
g

[(
P̃ii,g

Pii,g
− 1 + µi

1 + µg

)
Pii,gQii,gε

(ji,k)
ii,g

]
+ ∆̃i(P̃i; w)

(
∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P−ji,k

= 0.

The uniform term ∆̃i(.) is described by Equation 39, but with ωni,g redefined according to 63 and
1/(1 + µg) replaced with (1 + µi)/(1 + µg).

77To be more specific, ∆i(.) is described by the following equation:

∆i(P̃i; w) ≡ ∑
g

∑
n ̸=i

[(
P̃ni,g − [1 + ωni,g]Pni,g

)
Qni,gηni,g

]
+ ∑

g

[(
P̃ii,g −

1 + µi
1 + µg

Pii,g

)
Qii,gηii,g

]
,

where µi > 0 and ωni,g is given by Equation 63 for the case of restricted entry.
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First-Order Condition w.r.t. P̃ij,k (j ̸= i). Now consider the F.O.C. w.r.t. the price of a generic export
good ij, k (where j ̸= i). Recall from Step #3 that the F.O.C. w.r.t. P̃ij,k ∈ P̃i is given by(

dWi(P̃i; w)

d ln P̃ij,k

)
P−ij,k

=
∂Vi(Yi, P̃i)

∂ ln P̃ij,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P−ij,k

+

(
∂Wi(P̃i; w)

∂w

)
P̃i

·
(

dw
d ln P̃ij,k

)
P−ij,k

= 0.

(66)
where P−ij,k ≡ P̃i −

{
P̃ij,k
}

denotes the vector of country i’s price instruments excluding P̃ij,k. Building
on our previous discussion, each term on the right-hand side is characterized by the same formulas
derived in Step #3, with two qualification: (1) The formulation assigned to ωni,g should be revised to
account for restricted entry (see Equation 10), (2) all equations should be adjusted to admit a non-zero
µj, as is required by restricted entry (see Equation 5).

Without repeating all the details from Step 3, we can unpack the terms on the right-hand side of
Equation 66 as follows: Since P̃ij,k /∈ P̃i is not part of the domestic consumer price index, ∂Vi(Yi, P̃i)/∂ ln P̃ji,k =

0. The second-term on the right-hand side of Equation 66 is given by:(
∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P−ij,k

= P̃ij,kQij,k+∑
g

[(
P̃ij,g − [1 −

µg

1 + µg
]Pij,g

)
Qij,gε

(ij,k)
ij,g

]

−∑
g

∑
n ̸=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∆i(P̃i; w)

(
∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P−ij,k

,

where ωni,g is defined as in Equation 63, while ∆i(.) is given by Equation 34, with the necessary ad-
justments described earlier.The last term on the right-hand side of Equation 66 , which accounts for
general equilibrium wage effects, can be unpacked as

(
∂Wi(.)

∂w

)
P̃i

·
(

dw
d ln P̃ij,k

)
P−ij,k

= τ̄i P̃ij,kQij,k + ∑
g

[
τ̄i P̃ij,gQij,gε

(ij,k)
ij,g

]

−∑
g

∑
n ̸=i

[
τ̄iωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
− ∑

g
∑
n ̸=i

[
[1 + ωni,g]τ̄iPni,gQni,gηni,g

] (∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P−ij,k

.

where τ̄i is given by 36. To be clear, the above formula differs from the one derived under free entry
in only how ωni,g is defined—see Equation 63. Combining the various terms on the right-hand side of
Equation 66, yields the following simplified representation of the F.O.C. w.r.t. P̃ij,k ∈ P̃i:

P̃ij,kQij,k+ ∑
g∈K

[(
1 − 1 + µi

(1 + τ̄i)(1 + µg)

Pij,g

P̃ij,g

)
P̃ij,gQij,gε

(ij,k)
ij,g

]

∑
g∈K

∑
n ̸=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∆̃i(P̃i, w)

(
∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P−ij,k

= 0,

The uniform term ∆̃i(.) is described by Equation 39, but with ωni,g redefined according to Equation 63
and 1/(1 + µg) replaced with (1 + µi)/(1 + µg).

Solving the system of F.O.C. Given the tight correspondence between the F.O.C.s derived under
the restricted and free entry cases, we can repeat the arguments as in step #4 to solve the system of
F.O.C.s and establish the uniqueness of the resulting solution. Doing so yield the following formula

76



for optimal taxes/subsidies under restricted entry:

[domestic subsidy] 1 + s∗i,k = (1 + µk)/(1 + µi)

[import tariff] 1 + t∗ji,k = (1 + ωji,k)(1 + τ̄i)

[export subsidy] 1 + x∗ij = −E−1
ij E(−ij)

ij (1 + t∗i ) .

Recall from Lemma 1 that there are two degrees of multiplicity associated with optimal policy sched-
ule. As a result, we need not to unpack the uniform terms τ̄i and µi. Instead, for any arbitrary choice of
tax shifters 1+ s̄i and 1+ t̄i ∈ R+, the following tax/subsidy schedule represents an optimal solution:

[domestic subsidy] 1 + s∗i,k = (1 + µk)(1 + s̄i)

[import tariff] 1 + t∗ji,k = (1 + ωji,k)(1 + t̄i)

[export subsidy] 1 + x∗ij = −E−1
ij E(−ij)

ij (1 + t∗i ) .

The above formula is identical to that derived under free entry, with one qualification. The (inverse)
export supply elasticity ωji,k has a different interpretation under restricted entry, and is given by 63.
So, to conclude the proof, we characterize ωji,k under restricted entry next.

Characterizing the (Inverse) Export Supply Elasticity. Following Equation 63, the inverse of the
export supply elasticity under restricted entry is defined as

ωji,k =
−1

rji,kρj,k

[
ẁiLi

ẁjLj

(
∂ ln(1 + µi)

∂ ln Qji,k

)
w,P̃i

+ ∑
n ̸=i

∑
g

(
ẁnLn

ẁjLj
rni,gρn,g

)(
∂ ln(1 + µn)

∂ ln Qji,k

)
w,P̃i

]
, (67)

where the second line follows from the fact that Pni,s = ϱ̄′ni,s
1+µs
1+µn

ẁn, which implies that
(

∂ ln Pni,s
∂ ln Qni,g

)
w,P̃i

=

−
(

∂ ln(1+µn)
∂ ln Qni,g

)
w,P̃i

. To unpack the above equation, note that (for a given P̃i and w) the aggregate profit

margin implicitly solves the following equation:

Fni(µ, Qni) = (1 + µn)−
Pni(µn) · Qni + ∑ι ̸=i Pnι(µn) · Qnι(µ−i)

1
1+µ ⊙ Pni(µn) · Qni + ∑ι ̸=i

1
1+µ ⊙ Pnι(µn) · Qnι(µ−i)︸ ︷︷ ︸

gni(µn,Qni)

= 0.

As before, ⊙ and · respectively denote the inner and element-wise products of equal-sized vectors (i.e.,
a · b = ∑n anbn and a ⊙ b = [anbn]n), while with a slight abuse of notation, 1

1+µ ≡
[

1
1+µk

]
k
. The vector

Qni represents the export supply of goods from origin n ̸= i to market i (which is fully determined by
P̃i and w). Outside of market i, consumer prices are not directly pegged to P̃i. So, holding ẁn ∈ w and
P̃iι ∈ P̃i constant, a change in µi affects the producer and consumer price of goods supplied by origin
n to any market ι ̸= i. Accordingly, Qnι(µ−i) ≡

{
Qnι,k(µ−i)

}
k in the above equation is determined by

the Marshallian demand function (treating ẁn ∈ w and P̃iι ∈ P̃i as given):

Qnι,k(µ−i) = Dnι,k(ẁιLι, P̃iι, P̃−iι(µ−i))

Taking note of this detail, we can compute
(
∂ ln(1 + µn)/∂ ln Qni,g

)
w,P̃i

by applying the Implicit Func-
tion Theorem to the system of equations specified by Fni(µ, Qni). Namely,

∂ ln(1+µ1)
∂ ln Q1i

· · · ∂(1+µ1)
∂ ln QNi

...
. . .

...
∂ ln(1+µN)

∂ ln Q1i
· · · ∂(1+µN)

∂ ln QNi

 = −


∂F1i(.)

∂ ln(1+µ1)
· · · ∂F1i(.)

∂ ln(1+µN)
...

. . .
...

∂FNi(.)
∂ ln(1+µ1)

· · · ∂FNi(.)
∂ ln(1+µN)


−1 

∂F1i
∂ ln Q1i

· · · ∂F1i
∂ ln QNi

...
. . .

...
∂FNi

∂ ln Q1i
· · · ∂FNi

∂ ln QNi

 . (68)
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Next, we characterize the elements of the matrixes on the right-hand side of the above equation. Con-

sidering that Fni(µ, Qni) = (1 + µn) − gni(µ, Qni), we can unpack the elements of
[

∂Fni(.)
∂ ln(1+µj)

]
n,j

as

follows. Using vector algebra we can show that if n ̸= i, then

∂gni(µ, Qni)

∂ ln(1 + µn)
=

−Pni(µn) · Qni − ∑ι ̸=i [Pnι(µn) · Qnι(µn)]

1
1+µ ⊙ Pni(µn) · Qni + ∑ι ̸=i

[
1

1+µ ⊙ Pnι(µn) · Qnι(µn)
]

︸ ︷︷ ︸
−(1+µn)

+
−∑ι ̸=i [Pnι(µn) · Qnι(µn)⊙ εnι]

1
1+µ ⊙ Pni(µn) · Qni + ∑ι ̸=i

[
1

1+µ ⊙ Pnι(µn) · Qnι(µn)
]

︸ ︷︷ ︸
−(1+µn)∑ι [rnι ·εnι ]

− (1 + µn)


− 1

1+µ ⊙ Pni(µn) · Qni − ∑ι ̸=i

[
1

1+µ ⊙ Pnι(µn) · Qnι(µn)
]

1
1+µ ⊙ Pni(µn) · Qni + ∑ι ̸=i

[
1

1+µ ⊙ Pnι(µn) · Qnι(µn)
]

︸ ︷︷ ︸
−1

−
∑ι ̸=i

[
1

1+µ ⊙ Pnι(µn) · Qnι(µn)⊙ εnι

]
1

1+µ ⊙ Pni(µn) · Qni + ∑ι ̸=i

[
1

1+µ ⊙ Pnι(µn) · Qnι(µn)
]

︸ ︷︷ ︸
(1+µn)∑ι

[
1

1+µ ⊙rnι ·εnι

]


.

where εni ≡
[
ε
(ni,g)
ni,g

]
g

is a K × 1 vector of own-price elasticities of demand. rni ≡
[
rni,gρn,g

]
g is a

K × 1 vector of sales shares. The above derivation appeals to the definition of sales shares, whereby
rni,kρn,k =

Pni,kQni,k
∑j ∑g Pnj,gQnj,g

. Likewise, for any n and ℓ ̸= i, we can

∂gni(µ, Qni)

∂ ln(1 + µℓ)
=

−∑ι ̸=i

[
Pnι(µn) · Qnι(µn)⊙ ε

(ℓι)
nι

]
+ (1 + µn)∑ι ̸=i

[
1

1+µ ⊙ Pnι(µn) · Qnι(µn)⊙ ε
(ℓι)
nι

]
1

1+µ ⊙ Pni(µn) · Qni + ∑ι ̸=i

[
1

1+µ ⊙ Pnι(µn) · Qnι(µn)
] .

Combining the above two equations we can characterizes each element of the matrix
[

∂Fni(.)
∂ ln(1+µℓ)

]
n,ℓ

as

follows:
∂Fni(µ, Qni)

∂ ln(1 + µℓ)
= (1 + µn)

[
1ℓ=n + 1ℓ ̸=i ∑

k
∑
ι ̸=i

[(
1 − 1 + µn

1 + µk

)
rnι,kρn,kε

(ℓι,k)
nι,k

]]

The elements of the matrix
[

∂Fni
∂ ln Qℓi

]
n,ℓ

can be unpacked with a similar logic. Specifically, if n ̸= ℓ then
∂Fni

∂ ln Qℓi
= 0. Otherwise, for any n ∈ C we can derive the following expression:

∂gni(µ, Qni)

∂ ln Qni,k
=

Pni,kQni,k
1

1+µ ⊙ Pni(µn) · Qni + ∑ι ̸=i

[
1

1+µ ⊙ Pnι(µn) · Qnι(µn)
]

︸ ︷︷ ︸
(1+µn)rni,kρn,k

−
(1 + µn)

1
1+µk

Pni,kQni,k

1
1+µ ⊙ Pni(µn) · Qni + ∑ι ̸=i

[
1

1+µ ⊙ Pnι(µn) · Qnι(µn)
]

︸ ︷︷ ︸
(1+µn)

1+µn
1+µk

rni,kρn,k

,

which, in turn, characterizes every element of matrix
[

∂Fni
∂ ln Qℓi

]
n,ℓ

as follows:

∂Fni(µ, Qni)

∂ ln Qℓi,k
= 1ℓ=n(1 + µn)

[(
1 − 1 + µn

1 + µk

)
rni,kρn,k

]
.

As in the free entry case, the off-diagonal elements of Ãi ≡
[

∂Fni(.)
∂ ln(1+µj)

]
n,j

are near zero. So, we can

once again invoke the first-order approximation proposed by Wu et al. (2013) to characterize Ã−1
i .

Doing so and plugging the implied values of ∂ ln(1+µn)
∂ ln Qji

back into Equation 67, implies the following
approximation for the export supply elasticity under restricted entry:

ωni,g ≈
−
(

1 − 1+µn
1+µg

)
∑k rni,kρn,k

1 + ∑k ∑ι ̸=i

[
1 +

(
1 − 1+µn

1+µk

)
rnι,kρn,kεnι,k

] .
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E.1 Redundancy of Solutions for which ∆i ̸= 0

To finalize the proof, we appeal to the multiplicity of optimal taxes to show the following: If there
exists an optimal tax vector for which ∆̃i ̸= 0, that tax vector can be recovered from an equivalent
optimal tax vector that satisfies ∆̃i = 0. This can be shown building on two intermediate points:
First, following Lemma 1, if T∗

i =
{

t∗ji,k, x∗ij,k, s∗i,k
}

is an optimal policy choice, then policy TE
i (a) ={

tEji,k (a) , xEij,k (a) , sEii,k (a)
}

is also optimal for any a ∈ R, where

1+ tEji,k (a) =
(

1 + t∗ji,k
)
(1 + a)−1 ; 1+ xEij,k (a) =

(
1 + x∗ij,k

)
(1 + a) ; 1+ sEi,k (a) =

(
1 + s∗i,k

)
(1 + a)−1 .

Second, the aggregate term ∆̃i, specified below in terms of taxes, appears identically in the F.O.C.s
associated with every policy instrument:

∆̃i = ∑
g

∑
n ̸=i

[(
1 −

(
1 + ωni,g

)
(1 + τ̄i)

1 + tni,g

)
eni,gηni,g

]
+ ∑

g

[(
1 −

1 + si,g

1 + µg

)
eii,gηii,g

]
.

Suppose there exists an optimal policy choice, T∗
i for which ∆̃∗

i ̸= 0. Analogously, let ∆̃E
i (a) denote

the aggregate term collecting income effects under the equivalent policy choice, TE
i (a)—with ∆̃∗

i =

∆̃E
i (1), by construction. In particular,

∆̃E
i (a) = ∑

g
∑
n ̸=i

1 −
(
1 + ωni,g

)
(1 + τ̄i)

(1 + a)
(

1 + t∗ni,g

)
 eni,gηni,g

+ ∑
g

[(
1 −

1 + si,g(
1 + µg

)
(1 + a)

)
eii,gηii,g

]
,

where all equilibrium variables are evaluated at TE
i (a). Based on Lemma 1, all variables in the above

equation (e.g., eni,g, ωni,g, ηni,g, etc.) are independent of a—since varying a preserves real equilibrium
outcomes based on Lemma 1. Considering this, it should be the case that

lim
a→−1

∆̃E
i (a) < 0; lim

a→∞
∆̃E

i (a) > 0.

So, following the Intermediate Value Theorem, there exists an a ∈ (−1, ∞) such that ∆̃E
i (a) = 0. That

is, if we suspect there to be an optimal policy T∗
i satisfying ∆̃∗

i ̸= 0, that policy can be recovered by
re-scaling an optimal policy, TE

i (a), that is welfare-equivalent to T∗
i but satisfies ∆̃E

i (a) = 0.

E.2 Non-Optimality of Prohibitive Taxes

Since prohibitive taxes exclude goods from the system of F.O.C.s, we must prove that a tax schedule
that prohibits say good ji, k but satisfies the F.O.C.s w.r.t. all other goods is not optimal. We prove this
point separately for taxes applied to domestically-consumed goods and taxes applied to export goods.

Prohibitive tax on domestically-consumed good ji, k—We first provide a generic proof starting from the
first principles to communicate the logic behind the non-optimality of prohibitive taxes. Then, we
provide an alternative proof invoking the system of F.O.C.s derived earlier. To articulate our generic
proof, suppose without loss of generality that good ii, k is the good not subjected to a prohibitive tax.
Utility maximization entails that ∂Ui (Qi) /∂Qji,k = λL

i P̃ji,k for all ji, k, where λL
i is the Lagrange mul-

tiplier associated with the representative consumer’s budget constraint (P̃i · Qi ≤ Yi). Assuming that
Ui (.) satisfies the Inada conditions, utility maximization implies that the marginal utility associated
with good ji, k at the prohibitive price is infinitely large; and so is the marginal rate of substitution
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between goods ji, k and ii, k:

lim
P̃ji,k
P̃ii,k

→∞

∂Ui/∂Qji,k

∂Ui/∂Qii,k
= ∞.

Let Fk
(
Qi; P̃i, P̃−i

)
= 0 denote the transformation frontier for country i, which reflects country i’s

production possibility frontier (PPF) augmented for its ability to transform exports to imports subject
to balanced trade. Following Dixit and Norman (1980), the relative marginal rate of transformation,
∂Fi/∂Qii,k
∂Fi/Qji,k

, is finite if the utility and production functions satisfy the Inada conditions and Qii,k is strictly
positive—which is the case since good ii, k is not subjected to a prohibitive price. As a result,

P̃ji,k

P̃ii,k
→ ∞ =⇒

∂Ui/∂Qji,k

∂Ui/∂Qii,k
>

∂Fi/∂Qii,k

∂Fi/Qji,k
,

indicating that (when P̃ji,k = ∞, Qji,k = 0) the marginal rate of substitution between Qji,k and Qii,k

exceeds the marginal rate of transformation. Hence, welfare (Ui ∼ Wi) can be improved by increasing
the consumption of good ji, k relative to ii, k, which entails lowering the price of ji, k from its pro-
hibitive level. Prohibitive taxes, as such, cannot be optimal unless the scale or substitution elasticities
are unbounded. This result echoes the Grinols-Wong theorem that a piecemeal reduction in prohibitive
tariffs is welfare improving (see Feenstra (2015, P. 198)). The logic is that a prohibitively-taxed good
exhibits an infinitely large marginal utility. So, the gains from restoring its consumption dominate the
possible efficiency loss from cross-substitution and a lower scale-of-production on other goods.

The above point can be alternatively proven by appealing to the F.O.C.s specified by Equation 38.
Suppose all prices other than P̃ji,k are set to their non-prohibitive optimal level. let P∗

i =
{

Pji,k, P∗
−ji,k

}
denote the policy vector representing this choice of prices. Following Equation 38, the marginal wel-
fare effects of adjusting P̃ji,k in the neighborhood of P∗

i is

∂Wi

∂ ln P̃ji,k
|P∗

i
=

(
P̃ji,k

Pji,k
− (1 + τ̄i)(1 + ωni,g)

)
Pni,gQni,g

ε
(ji,k)
ji,k + ηji,k

(
∂Yi

∂ ln P̃ji,k

)
w,P−ji,k

 .

Notice that ε
(ji,k)
ji,k < 0 and ηji,k > 0, since the demand function is assumed to be well-behaved. Also, the

tax revenues from good ji, k (namely,Tji,k) approach zero from above as P̃ji,k → ∞. Hence, for sufficiently
large values of P̃ji,k, it must be the case that(

∂ ln Yi

∂ ln P̃ji,k

)
w,P−ji,k

=

(
∂ ln Tji,k

∂ ln P̃ji,k

)
w,P−ji,k

< 0.

The above equation, correspondingly, implies that ∂Wi
∂ ln P̃ji,k

|P∗
i

is negative when the tax rate on good ji, k
is sufficiently large (or nearly-prohibitive):

P̃ji,k

Pji,k
≫ (1 + τ̄i)(1 + ωni,g) =⇒ ∂Wi

∂ ln P̃ji,k
|P∗

i
< 0.

The above result reveals that lowering P̃ji,k/Pji,k starting from a prohibitive price/tax rate will improve
welfare (Wi)—asserting that a prohibitive tax, which excludes good ji, k from the system of F.O.C.s,
cannot be optimal. The same logic can be applied to show that a prohibitive tax on two-or-more goods
is not optimal either.

Prohibitive tax on export good ij, k—The price of export good, ij, k, does not explicitly enter the rep-
resentative consumer’s indirect utility function, Vi

(
Yi, P̃i

)
. So, given the government’s choice w.r.t.

P̃i ⊂ P̃i, the choice of P̃ij,k ∈ P̃iinfluences welfare solely through its effect on tax revenues, which
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contribute to income, Yi. Under a prohibitive export tax rate, i.e., P̃ij,k = ∞, the export tax revenues
associated with good ij, k are trivially zero, i.e., Tij,k = 0. Lowering P̃ij,k from its prohibitive level
elevates Tij,k to a positive value and, thus, raises total tax revenues, Ti.78 Lowering P̃ij,k from its pro-
hibitive level, thus, raises income and thereby welfare given that ∂Vi (.) /∂Yi > 0. This chain of ar-
guments asserts that prohibitive export taxes cannot be optimal since they yield the lowest possible
tax revenue—resonating with the conventional Laffer curve argument. The same point can be demon-
strated using the F.O.C.s specified by Equation 52. In particular, suppose all prices other than P̃ij,k are
set to their non-prohibitive optimal level. Equation 52 indicates that the marginal welfare effect of
lowering P̃ij,k is strictly positive if the initial value assigned to P̃ij,k is arbitrarily large.

E.3 Approximate Export Supply Elasticity: Derivation Details

This appendix provides a detailed derivation of our approximate export supply elasticity formula.
Our derivation, recall, relies on the approximate matrix inversion technique developed by Wu et al.
(2013). Note that the inverse export supply elasticity (when country i is the tax-imposing authority) is

ωji,k ≡
1

rji,kρj,k
∑

g∈K

[
wiLi

wjLj
ρi,g

(
∂ ln Pii,g

∂ ln Qji,k

)
w,P̃i

+ ∑
n ̸=i

wnLn

wjLj
rni,gρn,g

(
∂ ln Pni,g

∂ ln Qji,k

)
w,P̃i

]
, (69)

where each of the price derivative
(

∂ ln Pni,g
∂ ln Qji,k

)
w,P̃i

can be characterized using the following system:
(

∂ ln P11,k
∂ ln Q1i,k

)
w,P̃i

· · ·
(

∂P11,k
∂ ln QNi,k

)
w,P̃i

...
. . .

...(
∂ ln PNN,k
∂ ln Q1i,k

)
w,P̃i

· · ·
(

∂PNN,k
∂ ln QNi,k

)
w,P̃i

 = −A−1
i Ci, (70)

where, from Appendix X, Ai and Ci are square matrixes whose elements are

(Ai)ι,ȷ = 1ȷ=ι + 1ȷ ̸=i
µk

1 + µk
∑
n ̸=i

[
rιn,kε

(ȷn,k)
ιn,k

]
; (Ci)ι,ȷ = 1ȷ=ι

µk

1 + µk
rιi,k.

Our goal is to apply Wu et al.’s (2013) approach to derive a first-order approximation for Ai, which
is then used to compute

(
∂ ln Pni,g
∂ ln Qji,k

)
w,P̃i

and ωji,k. For this, decompose Ai into its diagonal, Di, and

off-diagonal, Ei, such that
Ai = Di + Ei.

The elements of the diagonal matrix associated with Ai are given by

(Di)ι,ι = 1 + 1ι ̸=i
µk

1 + µk
∑
n ̸=i

[rιn,kε ιn,k] .

The elements of the off-diagonal matrix associated with Ai are, correspondingly,

(Ei)ι,j =

0 if (ι = i) ∨ (ι = ȷ)
µk

1+µk
∑n ̸=i

(
rιn,kε

(ȷn,k)
ιn,k

)
if (ι ̸= i) ∧ (ι ̸= ȷ)

.

Following Wu et al. (2013), if the off-diagonal elements of Ai are small, we can appeal to the Neumann
Series to approximate the inverse of A1as

A−1
i ≈ D−1

i − D−1
i EiD−1

i .

78Beyond the Cobb-Douglas case, lowering the price of good ij, k can alter the revenue raised from other goods through
cross-demand effects. But total revenue always increase, in response, given Cournot aggregation.
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Based on the above equation, each element of the inverse of Ai can be written (approximately) in
closed-form in terms of the diagonal and off-diagonal elements of Ai:

A−1
i ≈



1
(Di)11

(
1 − (Ei)11

(Di)11

)
−(Ei)12

(Di)11(Di)22
· · · −(Ei)1N

(Di)11(Di)NN
−(Ei)21

(Di)22(Di)11

1
(Di)22

(
1 − (Ei)22

(Di)22

)
· · · −(Ei)2N

(Di)22(Di)NN
...

...
. . .

...
−(Ei)N1

(Di)NN(Di)11

−(Ei)N2
(Di)NN(Di)22

· · · 1
(Di)NN

(
1 − (Ei)NN

(Di)NN

)

 .

Invoking the above approximation, Equation 70 yields the following approximation for
(

∂ ln Pιι,k
∂ ln Qȷi,k

)
w,P̃i

:

(
∂ ln Pιι,k

∂ ln Qȷi,k

)
w,P̃i

≈


µk

1+µk
rȷi,k

1+1ι ̸=i×
µk

1+µk
∑n ̸=i(rιn,kε ιn,k)

if ι = ȷ

µk
1+µk

∑n ̸=i

[
rιn,kε

(ȷn,k)
ιn,k

](
µk

1+µk
rȷi,k

)
(

1+ µk
1+µk

∑n ̸=i rȷn,kε ȷn,k

)(
1+1ι ̸=i×

µk
1+µk

∑n ̸=i rιn,kε ιn,k

) if ι ̸= j

Plugging the price derivatives specified above into Equation 69, while noting that rni,k × rji,k ≈ 0 if
j ̸= i and n ̸= i, yields our approximation for the export supply elasticity:

ωji,k ≈
− µk

1+µk
rji,k

1 + µk
1+µk

∑ι ̸=i rjι,kε jι,k

[
1 − µk

1 + µk

wiLi

wjLj
∑
n ̸=i

ρi,krin,k

ρj,krji,k
ε
(jn,k)
in,k

]
.

E.4 Unilaterally Optimal Policy Net of ToT Considerations

Suppose we redo the entire proof under one restriction: Country i treats the entire vector of in-
ternational prices as given. This includes (a) all consumer prices, P̃−i =

{
P̃nj,k

}
j ̸=i , unassociated

with domestic consumers and (b) all producer prices, P−i ≡
{

Pnj,k
}

n ̸=i, unassociated with domestic
firms. The idea here is that government presumes that cannot manipulate the consumer, P̃ij,k, of export
goods. Nor can it influence the producer price, Pji,k, of import (or non-imported foreign) goods. Go-
ing back to the derivations presented above, we can solve this new terms-of-trade-blind problem by
discarding the F.O.C.s relating to export prices (which amounts to setting P̃ij,k = Pij,k), and setting the
inverse export supply elasticity to zero everywhere. Performing these alterations yields the following
formula for optimal taxes:

[domestic subsidy] 1 + s∗i,k = (1 + µk)/(1 + µi)

[import tariff] 1 + t∗ji,k = 1 + τ̄i

[export subsidy] 1 + x∗ij = 1 + τ̄i.

Normalizing the tax-shifters to zero (i.e., τ̄i = µi = 0) yields the cooperative optimal tax structures
consisting of zero trade taxes and Pigouvian industrial subsidies. So, if welfare-maximizing govern-
ments were (i) blind to terms-of-trade gains from policy and (ii) granted a complete vector of domes-
tic policy instruments, they would adopt the cooperative policy choice. This point can be restated as
follows: When welfare-maximizing governments have sufficient policy instruments at their disposal,
their non-cooperative choice only inflicts a terms-of-trade externality on partners. So, the sole purpose
of shallow trade agreements is to remedy the terms-of-trade externality. This result is a strict general-
ization of Bagwell and Staiger (2001, 2004). Notice a shallow agreement cannot resolve the problem of
policy implementation, which is highlighted in Section 4 and quantified in Section 7.
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F Efficient Policy from a Global Standpoint

The central planner seeks to maximize a weighted sum of national-level welfare using two sets of
policy instruments. (1) A vector of good-specific taxes which grants them the ability to set consumers
prices, P̃, in every location. (2) A vector of inter-country lump-sum transfers, which enables them to
control the share of each country’s income from global income. Accordingly, the planner’s choice of
inter-country transfers is summarized by α = {αi}i, where αi denotes country i’s share from global
income (Y = ∑i,n,k P̃ni,kQni,k) after transfers.

Recall that country i’s welfare is summarized by the indirect utility function, Wi ∼ Vi
(
Ỹi, P̃i

)
,

where country i’s income under the planner’s choice of policy is Ỹi = αiY. Considering this choice of
notation, the global planner’s problem can be formulated as

max
P̃,α

∑
i

δi ln Vi
(
αiY, P̃i

)︸ ︷︷ ︸
Wi

,

where δi denotes the Pareto weight assigned to country i. Notice that Yi (the equilibrium income
raised by country i) does not explicitly appear in the objective function since the planner can obtain
any desired vector of national-level incomes,

{
Ỹi
}

i ∼ {αiY}i, with an appropriate choice of transfers
subject to ∑i Ỹi = Y, where Y is the sum of equilibrium wage payments and tax revenues across all
countries.79 Namely,

Y (P; w, Y) = ∑
n

wnLn + ∑
i,n

∑
k

(
P̃ni,k − Pni,k

)
Qni,k (P; Y) ,

where P ≡
{

P̃, α
}

denotes the complete set of policy instruments available to the central planner
and Qni,k (P; Y) = Dni,k

(
P̃i, αiY

)
with P̃i ⊂ P̃.80 Following the logic presented in Section 2, we can

specify the planner’s objective function, W (P; w, Y) = ∑i δi ln Wi (P; w, Y), as an explicit function of
policy, P, wages, w, and global income, Y—noting that w and Y are feasible if they satisfy equilibrium
conditions given P. The first-order condition w.r.t. price instrument, P̃ji,g ∈ P̃ ⊂ P, can be written as

∂W (P; w, Y)
∂ ln P̃ji,g

= ∑
n

[
δn

(
∂ ln Vn (.)

∂ ln Ỹn

)
∂ ln Y

∂ ln P̃ji,g

]
+ δi

∂ ln Vi (.)
∂ ln P̃ji,g

= 0. (71)

where the right-hand side uses the fact that Ỹn = αnY, implying that ∂ ln Ỹn
∂ ln P̃ji,g

= ∂ ln Y
∂ ln P̃ji,g

since αn is a policy
choice. Borrowing from our earlier derivation leading to the proof of Theorem 1, we can specify the
change in global income in response to P̃ji,k as

∂ ln Y (P; w, Y)
∂ ln P̃ji,g

=
1
Y

{
∂Y (.)

∂ ln P̃ji,g
+ ∑

n

[
∂Y (.)
∂ ln wn

d ln wn

dlnP̃ji,g

]
+

∂Y (.)
∂ ln Y

d ln Y
dlnP̃ji,g

}

=
1
Y

{
P̃ji,gQji,g + ∑

n
∑

k

([
P̃ni,k −

1
1 + µk

Pni,k

]
Qni,kε

ji,k
ni,k

)

+ ∑
n

([
wnLn − ∑

ι,k
Pnι,kQnι,k

]
dlnwn

dlnP̃ji,g

)
+ ∑

n,ι
∑

k

([
P̃ni,k −

1
1 + µk

Pni,k

]
Qni,kηni,k

)
d ln Y

dlnP̃ji,g

}
,

(72)

where notice that the first term in the second line is zero given the labor market clearing condition,
79To put it differently, the planner’s problem (as we specify it) separates the issue of restoring production efficiency from

inter-national redistribution. The former objective is attained with the proper choice of P̃; the latter is attained with the
proper choice of α—a point we discuss more later.

80The notation Y = Y (P; w, Y) makes explicit the circular nature of income effects in general equilibrium.
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wnLn = ∑ι,k Pnι,kQnι,k. Appealing to Roy’s identity we can formulate the mechanical consumption loss
from raising P̃ji,k as

δi
∂ ln Vi (.)
∂ ln P̃ji,g

= − δi

Ỹi
P̃ji,gQji,g

∂ ln Vi (.)
∂ ln Yi

|Yi=Ỹi
, (73)

where note that Ỹi = αiY by the definition of αi, which is the country i’s optimal share of global
income given lump-sum transfers. Combining Equations 71-73, and dividing by the final expression
by ∑n δn

∂ ln Vn
∂ ln Yn

> 0 yields the following F.O.C. with respect to price instrument P̃ji,k:(
1 − 1

αi

δi
∂ ln Vi
∂ ln Yi

∑n δn
∂ ln Vn
∂ ln Yn

)
P̃ji,kQji,k + ∑

n
∑

k

([
1 − 1

1 + µk

Pni,k

P̃ni,k

]
P̃ni,kQni,kε

(ji,k)
ni,k

)
+∑

n,ι
∑

k

([
1 − 1

1 + µk

Pnι,k

P̃nι,k

]
P̃nι,kQnι,kηnι,k

)
d ln Y

dlnP̃ji,g
= 0. (74)

Optimal Policy Implementation—Next, we specify the taxes that deliver the optimal consumer-to-
producer price wedges. We also specify the optimal income shares, which implicitly determine the
optimal international lump-sum transfers. The trivial solution to Equation 74 involves price wedges
equal to P̃ni,k/Pni,k = 1/ (1 + µk) and income shares that ensure the term in the first parenthesis to
zero. The optimal price wedges, notice, are trade blind, indicating the optimal price wedges can be
implemented with production subsidies alone. Appealing to this basic point, the production tax and
transfers that satisfy the system of F.O.C.s consist of zero trade taxes, production subsidies that are
proportional to the industry-level scale elasticities, and lump-sum transfers such that each country’s
share of global income reflects its Pareto weight and marginal utility from income. Stated formally,

1 + s⋆i,k =
P⋆

ni,k

P̃⋆
ni,k

= 1 + µk; x⋆ij,k = t⋆ji,k = 0; α⋆
i =

δi
∂ ln Vi
∂ ln Yi

∑n δn
∂ ln Vn
∂ ln Yn

.

The Logic Behind Efficient Policy Formulas—The notion of optimal policy in our framework (as in
much of the trade policy literature) is formulated to deliver the first-best outcome from the planner’s
standpoint. The planner, in particular, is afforded sufficient policy instruments to achieve both pro-
duction efficiency and their desired level of redistribution. Production subsidies that restore marginal
cost pricing are used to achieve production efficiency, while efficient lump-sum transfers are used to
attain redistributive objectives based on Pareto weights. To elucidate this point, suppose lump-sum
transfers where unavailable. Then, implementing the efficient tax schedule T⋆ = (t⋆, x⋆, s⋆) without
transfers would deliver a Kaldor-Hicks (Kaldor (1939); Hicks (1939)) improvement but not necessarily
a Pareto improvement. Still, the resulting equilibrium would be Hicks-optimal and, therefore, Pareto
efficient. To ensure Pareto improvements (relative to Laissez-Faire) without lump-sum transfers, the
optimal policy must also include non-zero trade taxes that redistribute the welfare gains from restor-
ing marginal cost pricing across countries. But when efficient lump-sum transfers are available, the
planner avoids redistribution via trade taxes as they undermine production efficiency.

Efficient Policy vs. Cooperative Tariffs—It is important to distinguish between efficient policies and
cooperative tariffs of the sort examined by Ossa (2014) and Lashkaripour (2020b). Efficient policies de-
liver the global planner’s first-best outcome. Cooperative tariffs, on the other hand, maximize global
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welfare in second-best scenarios, where efficient production subsidies and transfers are unavailable.
More formally, cooperative tariffs are given by

t⋆⋆ = arg max ∑
i

δi log Wi (t) s.t.

s = 0

αi,k = Yi (t) /Y (t)

So, t⋆⋆, by design, mimics the first-best (or efficient) subsidies and transfers to deliver the second-
best.81 In other words, cooperative seek to improve allocative efficiency by restricting trade (and thus
global output) in low-µ industries. They also seek to redistribute inter-nationally, taking into account
the Pareto weights in the planner’s objective function or the bargaining weights in the Nash bargaining
formulation of the same problem.82

Efficient Policy Under Political Economy Considerations—Our baseline model and the efficient policies
implied by it abstract from political economy considerations. What if governments assign different
political weights to say profits collected from different industries? In that case, efficient production
subsidies should take into account not only the industry-level scale elasticity (or markup) but also
its political weight. We can, moreover, refer to the discussion in Section 5 to specify the politically-
adjusted efficient policy. Recall, in particular, that the political economy model is isomorphic to an
augmented version of our baseline model wherein markups are politically-adjusted and given by
µP

i,k = µk
πi,k−(1−πi,k)µk

, where πi,k is the political economy weight assigned by the planner to profits
collected from industry k in origin i. The efficient production subsidy, accordingly, becomes s⋆i,k = µP

i,k .

G Internal Cooperation within the Rest of the World

When characterizing country i’s unilaterally optimal policy, we treat the rest of the world as inter-
nally cooperative. Our notion of cooperation is based on the WTO’s core principles: reciprocity and
non-discrimination (see Bagwell and Staiger (2004)). The principle of reciprocity entails that coopera-
tive countries maintain the balance of market access concessions internally. In our model, where labor
is the sole factor of production, any change in relative market access is equivalent to a change in rel-
ative wages (see Footnote 84). Hence, to maintain the balance of concessions, cooperative countries
must adopt policy buffers that neutralize relative wage disruptions among each other. Otherwise, the
subset of countries whose relative wage improves in response to country i’s policy reap terms-of-trade
(or market access) gains at the expense of others whose relative wage deteriorates.

To formalize these arguments, we first specify the change in country n’s welfare in response to
country i’s policy, {d ln (1 + xi) , d ln (1 + ti) , d ln (1 + si)}. Suppose consumer preferences in country
n ̸= i are homothetic. Appealing to Roy’s identity, the welfare impacts of country i’s policy shock on
country n’s welfare, can be expresses as d ln Wn = d ln Yn − ∑j λjn,ken,kd ln P̃jn,k. Next, we characterize
d ln Yn focusing on restricted entry for expositional purposes. Nominal income in country i is the sum
of wage income adjusted for profit payments—namely,Yn = (1 + µn)wnLn, where µn = ∑k µkρn,k is

81As we argue shortly, cooperative tariffs also internalize political economy pressures if any. Put together, these points
echo Ossa’ (2016) verbal argument that second-best cooperative tariffs pursue three objectives: First, they seek to improve
allocative efficiency by mimicking efficient production subsidies. Second, they seek to redistribute welfare inter-nationally
based on Pareto or bargaining weights. Third, they seek to promote politically-organized industries. Though, they are not
the first-best instrument for reaching either objective.

82Correspondingly, if the baseline economy is efficient, there exists a set of Pareto/bargaining weights (δ) for which
t⋆⋆ = 0 —see e.g., the analytic formula for t⋆⋆ in Lashkaripour (2020b).
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the employment-weighted average markup in country n.83 Taking full derivatives from the expression
for Yn, yields

d ln Yn = d ln

(
∑

k
(1 + µk) ρn,k

)
+ d ln wn = ∑

k

[
ρn,k ·

(
1 + µk

1 + µn

)
d ln ρn,k

]
+ dlnwn,

where d ln ρn,k and d ln wn respectively denote the change in country n’s employments shares and
wage rate in response to country i’s tax policy. To economize on the notation let Eρ [.] and Covρ (.)
denote cross-industry mean and covariance operators with weights, {ρi,k}. As a matter of accounting,

∑k ρn,kd ln ρn,k ∼ Eρ [dln ρn,k] = 0, indicating that the first term in the last line of the above equation
can be specified as

∑
k

[
ρn,k ·

(
1 + µk

1 + µn

)
d ln ρn,k

]
∼ Covρ

(
1 + µk

1 + µn
, dln ρn,k

)
.

Next, we specify the welfare effects due to changes in consumer prices. The change in good-specific
consumers prices for goods originating from j ̸= i is determined by the underlying wage change, i.e.,
d ln P̃jn,k = d ln wj for all j ̸= i. The change in consumers prices for goods originating from country i is
the sum of the direct tax change and the indirect wage effects, i.e. d ln P̃in,k = d ln wi + d ln (1 + xin,k).
Putting the pieces together, we can write the change in country n’s welfare in response to country i’s
non-cooperative policy as

d ln Wn = Covρ

(
1 + µk

1 + µn
, dln ρn,k

)
+ (1 − λii)dlnwn

− ∑
j ̸=i,n

∑
k

(
λjn,ken,kdln wj

)
− ∑

k
(λin,ken,k [d ln wi + d ln (1 + xin,k)]) .

We can rearrange the above equation and decompose the various welfare terms as

d ln Wn = −

Terms-of-Trade vis-a-vis Country i︷ ︸︸ ︷(
λind ln (wi/wn) + ∑

k
λni,ken,kd ln (1 + xin,k)

)

+ Covρ

(
1 + µk

1 + µn
, dln ρn,k

)
︸ ︷︷ ︸

Allocative Efficiency

− ∑
j ̸=i

[
λjndln

(
wj/wn

)]
︸ ︷︷ ︸

Terms-of-Trade vis-a-vis RoW

, (75)

where λjn ≡ ∑k λji,ken,k denotes aggregate expenditure shares.84 Following Baqaee and Farhi (2017),
Allocative Efficiency effects are defined as the welfare change net of Hulten (1978) in response to policy
shocks that do not raise revenues for closed-economy n. The remaining terms are, by design, terms of
trade (ToT) effects. Theses can be divided into changes in ToT vis-à-vis country i and changes to ToT
vis-à-vis the rest of the world, with which country n maintains cooperation.

Extraterritorial Terms of Trade Effects—Following Equation 75, country i’s non-cooperative policy
can disrupt country n’s ToT and balance of concessions vis-à-vis countries other than i. Consider

83Recall for Section 2, that µn ≡
∑k,j

µk
1+µk

Pnj,kQnj,k

∑k,j
1

1+µk
Pnj,kQnj,k

. Noting that wnLn,k = 1
1+µk

Pnj,kQnj,k, we can rewrite µn as

µn =
∑k,j

µk
1+µk

Pnj,kQnj,k

∑k,j
1

1+µk
Pnj,kQnj,k

= ∑
k,j

µk
Ln,k
Ln

∼ ∑
k,j

µkρn,k,

where ρn,k ≡ Ln,k/Ln is the employment share assocaited with industry k in country n.
84We can re-formulate the above decomposition in the spirit of Arkolakis, Costinot, and Rodriguez-Clare (2012), to clarify

86



country j ̸= i who is cooperative with country n. If d ln
(
wj/wn

)
< 0, country n’s ToT improves

relative to j in response to country i’s policy. Or stated differently, the bilateral balance of market
access concessions tilts in favor of country n, which violates reciprocity. We call these “Extraterritorial
Terms of Trade Effects,” as they disrupt the ToT and balance of concessions between countries in the rest
of the world. To restore reciprocity—one of WTO’s core principles—the rest of the world must exert
wage buffers that neutralize the extraterritorial ToT effects associated with country i’s policy.

Neutralizing Extraterritorial ToT Effects with Cooperative Wage Buffers—The rest of the world can in-
stitute cooperative wage buffers to neutralize the extraterritorial ToT effects associated with country
i’s policy, ensuring that ∆ ln

(
wj/wn

)
= 0 for all n, j ̸= i. Ideally, these policies must satisfy WTO’s

non-discrimination principle and be efficient, which effectively rules out trade tax measures. A pol-
icy option that satisfies these requirements is a wage tax-cum-subsidy that is either revenue-neutral
or financed via an efficient lump-sum tax on residents of all countries outside of i. To elaborate, let
w∗

n denote the wage rate in country n after the implementation of country i’s optimal policy, P̃i, if
no policy buffers were in place. The country-specific wage subsidy, τ ≡ {τw

n }n ̸=i, is allotted such
that τw

n /τw
j < 1 if w∗

n/w∗
j < wn/wj—to the point that the post-subsidy effective relative wage rates

(w∗
n (τ) /w∗

j (τ)) remains equal to their status-quo level. Namely, w∗
n/w∗

j = wn/wj for all n, j ̸= i.

Treating the RoW as Internally Cooperative vs. Merely Passive—Treating the rest of the world as
cooperative or passive is, after all, a theoretical formality since for all practical purposes, country
i’s good-specific taxes have little-to-no effect on aggregate relative wages in the rest of the world.
We demonstrate this point numerically in Appendix H using multiple simulations of our model—
including some where country i is large. But even in theory, one can envision many settings in which
the rest of the world being cooperative or passive is immaterial. Let us provide one such example.
Suppose there is a traded homogeneous sector, k0, operating under constant-returns to scale technolo-
gies (i.e., σk0 ≈ γk0 → ∞). Moreover, assume that sector k0 has a strictly positive employment share,
i.e., ρn,k0 > 0, in every country n (with the possible exception of i). Assuming that en,k0 is sufficiently
large such that ρ̂n,k0 ̸= 0 in response to country i’s policy, ensures that wn/wn′ remains constant for
all n, n′ ̸= i—even if the rest of the world is passive.85 Notice that this is a strictly weaker version
of the common assumption adopted by Fajgelbaum, Grossman, and Helpman (2011) and Ossa (2011),
among others. In particular, these studies assume that neither country i’s nor the rest of the world’s
employment in the homogeneous sector reduces to zero in response to country i’s policy (i.e., ρ̂i,k0 ̸= 0
and ρ̂n,k0 ̸= 0, ∀n ̸= i). Our example, in contrast, only requires that the rest of the world’s employment
in the homogeneous sector does not collapse to zero.

that market access is fully-determined by relative wages. In particular, appealing to the CES demand system whereby

d ln
(

P̃jn,k/P̃nn,k

)
= 1

1−σk
d ln

(
λjn,k/λnn,k

)
, we can alternatively express the welfare effects of an external shock to economy

n as

d ln Wn = dlnYn − ∑
k

[
ei,kd ln P̃nn,k

]
+ ∑

j,k

[
ei,k

1 − σk
λjn,kd ln

(
λjn,k

λnn,k

)]

= Covρ

(
1 + µk
1 + µn

, dln ρn,k

)
+ ∑

k

[
ei,k

1 − σk
dln λii,k

]
,

where the last line follows from the adding up constraint, ∑j λjn,kd ln λji,k = 0. Notice that λii,k, by definition, summarizes
an open economy’s market access. Comparing the above representation to Equation 75 indicates that the change in market
access can be alternatively summarized by changes to relative wages.

85To elaborate, the price of the homogeneous good k0 must be equalized across origins. Let an,k0 denote the constant unit
labor requirement for producing good k0 in origin n. Price equalization entails that wn/wn′ = an′ ,k0 /an,k0 , which is constant.

87



H Numerical Examination of Optimal Policy Formulas

This appendix illustrates the accuracy and speed of our theoretical optimal policy formulas by
benchmarking against results obtained from numerical optimization. We, more specifically, demon-
strate two points. First, our formulas often outperform numerical optimization as they identify an
optimal policy schedule that is strictly superior to that specified by standard numerical optimization
routines. The improved accuracy is especially notable when analyzing a global economy with many
countries. Second, our theoretical formulas are orders of magnitude faster than numerical optimiza-
tion at detecting optimal policy.

We must underscore two points to set the stage for our numerical analysis. First, throughout this
section, we use our approximate formula for the inverse export supply elasticity. Second, we treat
the rest of the world as passive rather than internally cooperative. As such, our numerical analysis
reveals two additional points. First, that our approximation of the export supply elasticity exhibits
great numerical precision. Second, treating the rest of the world as internally cooperative vs. passive
is virtually inconsequential. Since individual policy instruments have negligible impacts on relative
wages in the rest of the world, our optimal policy formulas retain accuracy even if the rest of the world
is passive—even if the tax-imposing country is relatively large.

Details of Numerical Simulation—We examine three hypothetical economies with N = 2, 5, and
20 countries, each containing S = 10 industries. We assume that preferences across industries are
Cobb-Douglas, with ei,k denoting the Cobb-Douglas weight on industry k in country i. To compute
the optimal policy, we need to assign values to the following vector of parameters/endowments,
Θ = {µk, σk, ei,k, Li}i,k. The information relating to other parameters is implicit in the value assigned to
the matrix of bilateral expenditure shares and national income levels, X =

{
λij,k, Yi

}
i,j,k. We normalize

Yi = 100 for all countries and randomly draw the remaining parameters/variables from a uniform
distribution using the RAND function in MATLAB. We repeat this 50-time for each case, resulting in
150 simulations of the global economy under randomly-selected parameters. For each choice of pa-
rameters, we numerically solve for the optimal policy equilibrium using (a) our theoretical formulas
relying on the optimization-free approach described under Proposition 3 in Section 7 and (b) using
numerical optimization relying on the MPEC approach described in Ossa (2014). The latter is the stan-
dard approach when theoretical formulas are unavailable, so we benchmark our formulas’ numerical
accuracy and speed against it. Our implementation of MPEC, as in Ossa (2014), uses MATLAB’s stan-
dard optimization routine, FMINCON.

Accuracy of Theoretical Formulas

Figure 5 compares the welfare gains implied by our optimal policy formulas to those obtained
from numerical optimization (MPEC). Each dot corresponds to one of our 150 simulations. A dot ly-
ing on the 45-degree line in Figure 5 indicates that our theoretical formulas identify the same optimal
policy schedule numerical optimization. Dots lying above the 45-degree line correspond to simula-
tions where our theoretical formulas (Theorem 1) outperform numerical optimization (MPEC)—that
is, they identify an optimal policy schedule that strictly dominates in terms of implied welfare gains,
which is the policy objective. The reverse is true for dots below the 45-degree line. Keep in mind that
the simulations in Figure 5 use our approximation of the export supply elasticity and treat the rest
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Figure 5: Gains from optimal policy: theoretical formula vs. numerical optimization

Note: This figure reports results from 150 simulations in which parameters are randomly sampled for three cases of our
model—namely, N = 2, 5, 10, with K = 10. The y-axis reports the pre-cent welfare gains predicted by our optimal policy
formulas (Theorem 1) in a simulated model. The x-axis reports reports the welfare gains obtained from numerical optimiza-
tion conducted using MATLAB’s FMINCON routine.

of the world as passive—each of which can possibly compromise the performance of our theoretical
formulas relative to numerical optimization.

Figure 5 reveals that the prediction of our theory is virtually identical to numerical optimization
in most cases. On several occasions, our theoretical formulas outperform numerical optimization by a
non-trivial margin. These are more frequent when we simulate a global economy consisting of more
countries. We summarize this point more clearly in Figure 6. We divide simulation outcomes into
three categories:

i. [Orange] Simulations where our theoretical formulas and numerical optimization (MPEC) pre-

dicted comparable gains from optimal policy, i.e.,

∣∣∣∆Wtheory
i −∆WMPEC

i

∣∣∣
min

{
∆Wtheory

i ,∆WMPEC
i

} ≤ 0.0025.

ii. [Blue] Simulations where our theoretical formulas outperform numerical optimization (MPEC)
by at least 0.25%, i.e., ∆Wtheory

i > 1.0025 × ∆WMPEC
i .

iii. [Grey] Simulations where numerical optimization (MPEC) outperforms our theoretical formulas
by at least 0.25%, i.e., ∆WMPEC

i > 1.0025 × ∆Wtheory
i .

A clear takeaway is that –for all practical purposes– our theoretical formulas either deliver compara-
ble accuracy or outperform numerical optimizations. Numerical optimization exhibits great accuracy
when dealing with only two countries. With 20 countries, however, our theoretical formulas out-
perform numerical optimization by at least 0.25% in more than thirty percent of the simulations. This
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Figure 6: Performance of theoretical formulas vs. numerical optimization (MPEC)

Note: This figure summarizes results from 150 simulations with randomly-sampled parameters. The yellow bars represent
the frequency of simulations where our optimal policy formulas and MPEC (numerical optimization) predict welfare gains
that are within 0.25% of one another in terms of magnitude. The blue bars represent the frequency of simulations where
our optimal policy formulas predict welfare gains that at least 0.25% greater than those implied by numerical optimization
(MPEC). The grey bars represents the frequency of simulations where our optimal policy formulas predict welfare gains that
at least 0.25% greater than those implied by numerical optimization (MPEC).

improvement is noteworthy in practice, as we are often interested in cases where country i implements
trade policy in relation to tens if not hundreds of trading partners. In these cases, numerical optimiza-
tion must identify an optimal vector of policies consisting of hundreds and thousands of free-moving
policy instruments—which can compromise accuracy depending on the properties of the underlying
objective function.

Why does numerical optimization become less accurate with many countries?—Figure 5 reveals that,
when dealing with many countries, our theoretical formulas occasionally outperform numerical opti-
mization by a non-trivial margin. The reason is that with many countries and free-moving tax instru-
ments, numerical optimization may detect a near-prohibitive good-specific tax rate that is non-optimal
but artificially satisfies the first-order conditions to a good approximation. Even though numerical op-
timization identifies the appropriate policy vis-à-vis most goods in these cases, it fails with respect to
one or more goods for which it converges to a high and non-optimal tax rate. One can perhaps navi-
gate this pitfall by setting bounds on feasible tax choices, but it is unclear what these bounds should be
without theory. Relatedly, Figure 6 suggests that our approximated optimal policy formulas occasion-
ally underperform numerical optimization when dealing with two countries. This is a mere reflection
of our export-supply-elasticity-approximation error, which can be non-trivial when country i is exces-
sively large relative to the rest of the world. To elaborate, our simulation assigns the same size to all
countries. Correspondingly, country i is similar in size to the entire rest of the world in the simulation
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Figure 7: Improvement in computation speed from using theoretical formulas

Note: The figure compares the per-cent increase in computation speed when using our optimal policy formulas over numer-
ical optimization. Each bar represents the average increase over 50 simulations with randomly-sampled parameters.

with two countries—thereby, the possibly large approximation error.86

The RoW being Internally Cooperative or Passive is Immaterial—When performing numerical opti-
mization, we purposely treat the rest of the world as passive—i.e., we do not restrict relative wages to
remain constant in the rest of the world. Yet our optimal policy formulas (which treat the rest of the
world as internally cooperative) deliver predictions that are virtually identical to those obtained from
numerical optimization (which treats the rest of the world as passive)—even though the tax-imposing
country is large relative to the rest of the world in our simulations. These outcomes all but corroborate
our previous assertion that the rest of the world being passive vs. cooperative is a theoretical formality
and virtually immaterial from a quantitative standpoint.

Computational Speed of Theoretical Formulas

Figure 7 reveals that our theoretical formulas deliver orders of magnitude improvements in com-
putation speed relative to numerical optimization (MPEC). Let ttheory denote the time it takes to com-
pute the optimal policy equilibrium with the aid of our theoretical formulas. Correspondingly, let
tMPEC denote the computational time required to run numerical optimization. The y-axis in Figure 7
corresponds to 100 ×

(
tMPEC/tthoery), which is the per-cent improvement in computation speed when

using our theoretical formulas over numerical optimization. Our theory delivers a more than 20-fold
improvement in speed with two countries, and a more than 60-fold improvement with 20 countries.
The gains will be, accordingly, greater in real-world scenarios involving many countries (like those
examined in Section 7). The improvement in computation speed is especially crucial when determin-
ing the Nash equilibrium of a non-cooperative policy game, wherein each country’s optimal policy
must be solved iteratively as a function of others’ policies. We perform such an analysis in Section 7,
where it takes us a few minutes to identify the Nash equilibrium versus many hours if we had relied
on numerical optimization.

86To be clear, in the two-country case, the rest of the world being passive (rather than internally cooperative) is is irrele-
vant and our approximation of the export supply elasticity is the only source of numerical error.
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I Proof of Theorem 2

The proof of Theorem 2 has the same basic foundation as Theorem 1. We reformulate the optimal
policy problem, expressing equilibrium variables (e.g., Qji,k, Yi, etc.) as a function of (1) the vector of
consumer prices associated with economy i, excluding P̃ii, i.e., P̃i ≡

{
P̃ji, P̃ij

}
;87 and (2) the vector of

national-level wage rates all over the world, w = {w1, ..., wN}. To implement this reformulation of
equilibrium variables, we need to solve the following system treating P̃i, and w as given:

[optimal pricing] Pjn,k = ρ̄ji,kwj

[optimal consumption] Qjn,k = Djn,k(Yn, P̃1n, ...P̃Nn)

[RoW imposes zero taxes] P̃jn,k = Pjn,k (P̃jn,k /∈ P̃i); Yn =

wn Ln+Πn︷ ︸︸ ︷
(1 + µn)wnLn (n ̸= i)

[Balanced Budget in i] Yi = (1 + µi)wiLi +
(
P̃ij − Pij

)
· Qij +

(
P̃ji − Pji

)
· Qji

[avg. profit margin in j] 1 + µj =
∑n∈C

[
Pjn · Qjn

]
∑n∈C

[
Pjn ·

(
Qjn ⊘ (1 + µ)

)]
where “·” denotes the inner product operator for vectors of equal size. “⊘” denotes element-wise
division of equal-sized vectors, with µ ≡ {µk}k. Since there is a unique equilibrium, the above system
is exactly identified in that it uniquely determines Pjn,k(P̃i; w), Qjn,k(P̃i; w), Yn(P̃i; w), and µi(P̃i; w) as
a function of P̃i and w . Appealing to the above reformulation of the equilibrium, we can reformulate
the original optimal policy problem (P2) as follows.

Lemma 8. Country i’s vector of second-best trade taxes, {t∗∗i , x∗∗i }, can be determined by solving the following
problem:

max
P̃i

Wi(P̃i; w) ≡ Vi(Yi(P̃i; w), P̃i) s.t. (P̃i; w) ∈ FP (P̃2),

where the feasibility constraint is satisfied if, given P̃i , the wage vector w satisfies balanced trade in each
country:

(P̃i; w) ∈ FP ⇐⇒

∑j ̸=n ∑k∈K

[
Pjn,k(P̃i; w)Qjn,k(P̃i; w)− Pnj,k(P̃i; w)Qnj,k(P̃i; w)

]
= 0 if n ̸= i

∑j ̸=n ∑K
k=1
[
Pji,k(P̃i; w)Qjn,k(P̃i; w)− P̃ij,kQnj,k(P̃i; w)

]
= 0 if n = i

.

The system of F.O.C.’s underlying Problem (P̃2) can be expressed as follows:

∇P̃Wi(P̃i; w) +∇wWi ·
(

dw
dP̃

)
(P̃i ;w)∈FP

= 0, ∀P̃ ∈ P̃i =
{

P̃ji, P̃ij
}

.

In what follows we characterize and simplify the system of F.O.C., building heavily on the results
presented in Appendix E.

Deriving the First-Order Condition w.r.t. P̃ji

Consider the consumer price index P̃ji,k ∈ P̃i associated with a good imported by i from origin
j–industry k. The F.O.C. w.r.t. this price instrument can be stated as follows:

87Recall that vectors P̃ji ≡
{

P̃ji,k

}
j ̸=i,k

and P̃ij ≡
{

P̃ij,k

}
j ̸=i,k

encompass only the export/import prices linked to economy

i.
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(
dWi(P̃i; w)

d ln P̃ji,k

)
P−ji,k

=
∂Vi(Yi, P̃i)

∂ ln P̃ji,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P−ji,k

+

(
∂Wi(P̃i; w)

∂w

)
P̃i

·
(

dw
d ln P̃ji,k

)
P−ji,k

= 0,

(76)
where P−ji,k ≡ P̃i −

{
P̃ji,k
}

denotes the vector of price instruments excluding P̃ji,k. The above equa-
tion is similar to what we characterized in Appendix E under restricted entry, with two distinctions:
First, country i’s government does not control the price of domestically produced and domestically
consumed varieties, i.e., P̃ii /∈ P̃i. Second, country i’s income does not include domestic tax revenues:

Yi = (1 + µi)wiLi +
(
P̃ij − Pij

)
· Qij +

(
P̃ji − Pji

)
· Qji.

Taking note of these two differences, we can build on the derivation in Appendix E to simplify Equa-
tion 76. By Roy’s identity, the first term on the right-hand side of Equation 76 can be stated as

∂Vi(Yi, P̃i)

∂ ln P̃ji,k
= −P̃ji,kQji,k

(
∂Vi

∂Yi

)
.

Without repeating the derivations, the second term on the right-hand side of Equation 76 reduces to(
∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P−ji,k

=P̃ji,kQji,k + ∑
g

∑
n ̸=i

[(
P̃ni,g − (1 + ωni,g)Pni,g

)
Qni,gε

(ji,k)
ni,g

]

∑
g

[(
1 − 1 + µi

1 + µg

)
Pii,gQii,gε

(ji,k)
ii,g

]
+ ∆′

i(P̃i, w)

(
∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P−ji,k

where ∆′
i(P̃i; w) is a uniform term (without industry subscripts) and is given by

∆′
i(P̃i; w) ≡ ∑

g
∑
n ̸=i

[(
P̃ni,g − (1 + ωni,g)Pni,g

)
Qni,gηni,g

]
+ ∑

g

[(
1 − 1 + µi

1 + µg

)
Pii,gQii,gηii,g

]
. (77)

To be clear, the above expressions can be derived by repeating the steps in Appendix E, while dropping
domestic tax revenues from the expression for income Yi. Likewise, the third term on the right-hand
side of Equation 76 can be stated as

(
∂Wi(.)

∂w

)
P̃i

·
(

dw
d ln P̃ij,k

)
P−ij,k

= −∑
g

∑
n ̸=i

[
(1 + ωni,g)τ̄iPni,gQni,gε

(ji,k)
ni,g

]
−∑

g
∑
n ̸=i

[
(1 + ωni,g)τ̄iPni,gQni,gηni,g

] (∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P−ji,k

,

where τ̄i is given by 88. Combining the above equations the F.O.C. specified by Equation 76 can be
simplified as

∑
n ̸=i

∑
g

[(
P̃ni,g

Pni,g
− (1 + τ̄i)(1 + ωni,g)

)
Pni,gQni,gε

(ji,k)
ni,g

]

+ ∑
g

[(
1 − 1 + µi

1 + µg

)
Pii,gQii,gε

(ji,k)
ii,g

]
+ ∆̃′

i(P̃i, w)

(
∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P−ji,k

= 0, (78)

where ∆̃′
i(P̃i; w) is specified analogously to ∆′

i(P̃i, w), but features an adjustment for general equilib-
rium wage effects:

∆̃′
i(P̃i; w) ≡ ∑

g
∑
n ̸=i

[(
P̃ni,g − (1 + τ̄i)(1 + ωni,g)Pni,g

)
Qni,gηni,g

]
+ ∑

g

[(
1 −

1 + µi
1 + µg

)
Pii,gQii,gηii,g

]
. (79)
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Deriving the First-Order Condition w.r.t. P̃ij

Now, consider the consumer price index P̃ij,k ∈ P̃i associated with a good exported by i from
destination j–industry k. The F.O.C. w.r.t. this price instrument can be stated as follows:(

dWi(P̃i; w)

d ln P̃ij,k

)
P−ij,k

=
∂Vi(Yi, P̃i)

∂ ln P̃ij,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P−ij,k

+

(
∂Wi(P̃i; w)

∂w

)
P̃i

·
(

dw
d ln P̃ij,k

)
P−ij,k

= 0.

(80)
where P−ij,k ≡ P̃i −

{
P̃ij,k
}

denotes the vector of price instruments excluding P̃ij,k. As with the pre-
vious subsection, The above equation is similar to what we characterized in Appendix E, with two
distinctions: First, country i’s government does not control the price of domestically produced and
domestically consumed varieties, i.e., P̃ii /∈ P̃i. Second, country i’s income does not include domestic
tax revenues. Noting these two distinctions, we can borrow from the derivation in Appendix E to
simplify Equation 80.

Namely, since P̃ij,k /∈ P̃i is not part of the domestic consumer price index in i, ∂Vi(Yi, P̃i)/∂ ln P̃ji,k =

0. So, the first term on the right-hand side of Equation 80 collapses to zero. Without repeating the
derivations from Appendix E, the second term on the right-hand side of Equation 80 reduces to(

∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P−ij,k

=P̃ij,kQij,k + ∑
g

[(
P̃ij,g −

1 + µi
1 + µg

Pij,g

)
Qij,gε

(ij,k)
ij,g

]
− ∑

g
∑
n ̸=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∆′

i(P̃i; w)

(
∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P−ij,k

,

where ∆′
i(P̃i; w) is a uniform term without industry subscripts, as defined by Equation 77. To elab-

orate, the above expression can be derived by repeating the steps in Appendix E, while dropping
domestic tax revenues from the expression for income Yi. Likewise, the third term on the right-hand
side of Equation 80 can be stated as(

∂Wi(P̃i; w)

∂w

)
P̃i

·
(

dw
d ln P̃ij,k

)
P−ij,k

= τ̄i P̃ij,kQij,k + ∑
g

[
τ̄i P̃ij,gQij,gε

(ij,k)
ij,g

]

−∑
g

∑
n ̸=i

[
τ̄iωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
− ∑

g
∑
n ̸=i

[
[1 + ωni,g]τ̄iPni,gQni,gηni,g

] (∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P−ij,k

,

where τ̄i is given by 88. Combining the above equations the F.O.C. specified by Equation 80 can be
simplified as

P̃ij,kQij,k+ ∑
g∈K

[(
1 − 1 + µi

(1 + τ̄i)(1 + µg)

Pij,g

P̃ij,g

)
P̃ij,gQij,gε

(ij,k)
ij,g

]

∑
g∈K

∑
n ̸=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∆̃′

i(P̃i, w)

(
∂Yi(P̃i; w)

∂ ln P̃ij,k

)
w,P−ij,k

= 0, (81)

where ∆̃′
i(P̃i; w) is given by Equation 79.

Solving the System of First-Order Conditions

First, note that we can solve the system specified by Equation 78 independent of 81. To solve the
system of Equations 78, we can rely on the intermediate observation that if(

1 − 1 + µi
1 + µ

)
⊙ Pii ⊙ Qii · ε

(ji,k)
ii + ∑

n ̸=i

[(
P̃ni − (1 + τ̄i)(1 + Ωni)⊙ Pni

)
⊙ Qni · ε

(ji,k)
ni

]
= 0, (82)
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then, to a first-order approximation around µk ≈ µi, ∆̃′
i(µ) ≈ 0. So, the optimal choice of P̃∗∗

ji (and
the implied tariff vector) can be determined by solving Equation 82 instead of 78.88 Before moving
forward, though, let us clarify the vector notation used to express Equation 82. The vector operators
“·” and “⊙” are respectively the inner product and element-wise product operators. The K × 1 vector
1+µi
1+µ =

[
1+µi
1+µk

]
k

is composed of industry-level The K × 1 vectors P̃ni =
{

P̃ni,k
}

k and Qni = {Qni,k}k

encompass the consumer price and quantity associated with all of country i’s import goods for origin
n ̸= i. Analogously, ε

(ji,k)
ni =

{
ε
(ji,k)
ni,g

}
g

encompasses the elasticity of demand for each the goods

imported from n w.r.t. the price of ji, k.
We simplify Equation 82 in three steps: First, by noting that P̃ii = Pii and appealing to Cournot’s

aggregation, ∑ȷ∈C

[
P̃ȷi ⊙ Qȷi · ε

(ji,k)
ȷi

]
= −P̃ji,kQji,k, we can rewrite Equation 82 as

1 + µi
1 + µ

⊙ P̃ii ⊙ Qii · ε
(ji,k)
ii + (1 + τ̄i) ∑

n ̸=i

[
(1 + Ωni)⊙ Pni ⊙ Qni · ε

(ji,k)
ni

]
+ P̃ji,kQji,k = 0. (83)

Second, we invoke the Slutsky Equation,89 to rewrite the first two term in the above equation. Specifi-
cally, taking note that

ηii,g = ηji,k = 1 Slutsky Equation
−−−−−−−−−−−→

P̃ni,gQni,gε
(ji,k)
ni,g = P̃ji,kQji,kε

(ni,g)
ji,k .

We can reduces the F.O.C. described under Equation 83 to

1 + ∑
g

[
1 + µg

1 + µi
ε
(ii,g)
ji,k

]
+ (1 + τ̄i)∑

g
∑
n ̸=i

[
(1 + ωni,g)

Pni,g

P̃ni,g
ε
(ni,g)
ji,k

]
= 0. (84)

Lastly, we use the Marshallian demand function’s homogeneity of degree zero property, whereby ηji,k +

∑ȷ,g ε
(ȷi,g)
ji,k = 1 + ∑ȷ,g ε

(ȷi,g)
ji,k = 0. Invoking this property we rewrite Equation 84 as follows

∑
g

[(
1 −

1 + µg

1 + µi

)
ε
(ii,g)
ji,k

]
+ ∑

g
∑
n ̸=i

[(
1 − (1 + τ̄i)(1 + ωni,g)

Pni,g

P̃ni,g

)
ε
(ni,g)
ji,k

]
= 0.

The above equation, which should hold for all ji, k ̸= ii, k specifies a system of FOCS that can be
expressed in matrix no notation as


ε
(ii,1)
1i,1 · · · ε

(ii,1)
Ni,K

...
. . .

...

ε
(ii,K)
1i,1 · · · ε

(ii,K)
Ni,K


︸ ︷︷ ︸

E(ii)
−ii


1 − µ1

µi
...

1 − µK
µi

+


ε
(1i,1)
1i,1 · · · ε

(1i,1)
i−1i,k ε

(1i,1)
i+1i,k · · · ε

(1i,1)
Ni,K

...
. . . . . .

...

ε
(Ni,K)
1i,1 · · · ε

(Ni,K)
i−1i,k ε

(Ni,K)
i+1i,k · · · ε

(Ni,K)
Ni,K


︸ ︷︷ ︸

E−ii


1 − (1 + τ̄i)(1 + ωni,g)

P1i,1
P̃1i,1

...
1 − (1 + τ̄i)(1 + ωni,g)

PNi,K
P̃Ni,K

 = 0.

(85)

Following the proof of Lemma 7 from Appendix E, we can easily show the matrix E(ii)
−ii is invertible.

We can, thus, invert the system specified by Equation 85 to produce the following formula for optimal
import price wedges: [

(1 + τ̄i)(1 + ωji,k)
Pji,k

P̃∗∗
ji,k

]
j,k

= 1 + E−1
−ii E(ii)

−ii

[
1 − 1 + µk

1 + µi

]
k

, (86)

88Note that Equation 82 is essentially 78 with ∆̃′
i(.) set to zero.

89Recalling that eji,k = P̃ji,kQji,k/Yi denotes the share of expenditure on ji, k, the Slutsky equation can be formally stated
as

[Slutsky equation] eii,gε
(ji,k)
ii,g + eji,keii,gηii,g = eji,kε

(ii,g)
ji,k + eii,geji,kηji,k.

95



where, to be clear, E−ii ≡
[
E(ji)

ni

]
j,n ̸=i

and Ẽ(ii)
−ii ≡

[
E(ii)

ni

]
n ̸=i

are respectively (N − 1)K × (N − 1)K and

(N − 1)K × K matrixes of demand elasticities. Note that the optimal choice w.r.t. P̃ji, ensures that
∆̃′

i(.) ≈ 0. Hence, the system of F.O.C. specified by Equation 81, transforms to the exact same system
we solved in Appendix E. Without repeating the details of our prior derivation, the optimal export
price wedges are given by[

Pij,k

P̃∗∗
ij,k

(1 + τ̄i)
−1

]
j,k

= E−1
ij E(−ij)

ij

(
1(N−1)K + Ω−ii

)
, (87)

where 1(N−1)K is a N(K − 1)× 1 column vector of ones; Ω−ii =
[
Ωni,g

]
n ̸=i,g is a N(K − 1)× 1 vector of

(inverse) export supply elasticities; and E(−ij)
ij and Eij have the same description as in Appendix E. The

“∗∗” notation is used to highlight the fact that we are solving for second-best price wedges. Next, we
can recover the optimal (second-best) import tax and export subsidy rates from the optimal (second-
best) price wedges implies by Equations 86 and 87. Specifically, noting the following relationships,

1 + t∗∗ji,k =
P̃∗∗

ji,k

Pji,k
; 1 + x∗∗ij,k =

Pij,k

P̃∗∗
ij,k

;

country i’s unilaterally second-best trade tax schedule can be expressed as follows:

[import tariff] 1 + t∗∗ij = (1 + τ̄i)
(
1 + Ωji

)
⊘
(

1 + E−1
−ii E(ii)

−ii

[
1 − 1 + µk

1 + µi

]
k

)
[export subsidy] 1 + x∗∗ij = −(1 + τ̄i)

(
E−1

ij E(−ij)
ij (1 + Ω−ii)

)
⊙
[

1 + µk

1 + µi

]
k

.

To conclude the proof we can invoke the multiplicity of the optimal trade tax schedules (Lemma
1). As in Theorem 1, this feature indicates that the value assigned to τ̄i is redundant. In particular,
following Lemma 1, we can multiply (1 + τ̄i) in the above equation with any non-negative tax shifter
1 + t̄i ∈ R+, and maintain optimality. That being the case, the exact value assigned to τ̄i is redundant
and the following describes all possible optimal tax schedules:aa

[import tariff] 1 + t∗∗ij = (1 + t̄i)
(
1 + Ωji

)
⊘
(

1 + E−1
−ii E(ii)

−ii

[
1 − 1 + µk

1 + µi

]
k

)
[export subsidy] 1 + x∗∗ij = −(1 + t̄i)

(
E−1

ij E(−ij)
ij (1 + Ω−ii)

)
⊙
[

1 + µk

1 + µi

]
k

.

J Proof of Theorem 3

Theorem 3 concerns the second-best case where the government in i can choose only P̃ji, which
is the vector of import prices (i.e., P̃i =

{
P̃ji
}

). To prove this theorem we capitalize on two results
from Appendix I: First, the F.O.C. derived w.r.t. P̃ji,k ∈ P̃ji does not change with the unavailability
of P̃ij from the government’s policy set P̃i. Hence, the F.O.C. w.r.t. P̃ji,k is described by Equation 78
even if P̃ij,k /∈ P̃i. Second, recall from Appendix that we were able to solve the system specified by 78
independent of the F.O.C. w.r.t. P̃ij. Invoking these two observations, the formula for optimal tariff in
the case studied by Theorem 3 is given by 86:

1 + t∗∗∗ji = (1 + τ̄i)
(
1 + Ωji

)
⊘
(

1 + E−1
−ii E(ii)

−ii

[
1 − 1 + µk

1 + µi

]
k

)
.

Unlike Theorem 2, through, τ̄i is no longer redundant. Since export taxes (or equivalently P̃ij) are ex-
cluded from the government’s policy set, we can no longer invoke the multiplicity implied by Lemma
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1. Instead, we have to formally characterize, τ̄i, starting from its definition:

τ̄i ≡

(
∂Wi(.)
∂ ln wi

)
P̃i ,w−i

(
∂Vi(.)

∂Yi

)−1

(
∂Ti(P̃i, w)/∂ ln wi

)
P̃i ,w−i

. (88)

Also, recall that Wi(P̃i; w) = Vi(Yi(P̃i; w), P̃ii, P̃ji), where P̃ji ∼ P̃−ii ≡
{

P̃ji,k
}

j ̸=i,k while income equals

wage payments, plus profits, plus import tax revenues: Yi = (1+ µi)wiLi +
(
P̃ji − Pji

)
·Qji. Borrowing

from the results in Appendixes E and I, the numerator in Equation 88 can be unpacked as follows:(
∂Wi(.)
∂ ln wi

)
P̃i ,w−i

(
∂Vi
∂Yi

)−1
=

(
∂Yi

∂ ln wi

)
P̃i ,w−i

+

(
∂Vi
∂Yi

)−1 ∂Vi(Yi,, P̃i)

∂ ln P̃ii
· ∂ ln P̃ii

∂ ln wi

= µiwi Li +

(
∂µi

∂ ln wi

)
P̃i ,w−i

wi Li +
(
P̃−ii − P−ii

)
·
(

∂Q−ii
∂ ln wi

)
P̃i ,w−i

− Pii · Qii

= ∑
n ̸=i

[Pin · Qin] +

(
1 −

µi
µ

)
⊙ Pii ·

(
∂Qii

∂ ln wi

)
P̃i ,w−i

+
(
P̃ii − P−ii

)
·
(

∂Q−ii
∂ ln wi

)
P̃i ,w−i

. (89)

To be clear about the notation, µi
µ ≡

[
µi
µk

]
k

, while ⊙ and · respectively denote inner and element-wise
products of equal-sized vectors, i.e., a · b = ∑n anbn and a ⊙ b = [anbn]n. Next, we move on to

characterizing the denominator of Equation 88. Noting that T(P̃i, w) ≡ ∑j ̸=i

[
Pji · Qji − Pij · Qij

]
, we

can borrow from the results in Appendixes E and I to unpack the aforementioned term as follows:

(
∂Ti(.)
∂ ln wi

)
P̃i ,w−i

=

 ∂

∂ ln wi
∑
j ̸=i

[
Pji · Qji − Pij · Qij

]
P̃i ,w−i

= P−ii ·
(

∂Q−ii
∂ ln wi

)
P̃i ,w−i

− ∑
j ̸=i

[(
∂Pij · Qij

∂ ln wi

)
P̃i ,w−i

]
. (90)

Plugging Equations 89 and 90 back into the expression for τ̄i yields the following:

τ̄i =
∑n ̸=i [Pin · Qin] +

(
1 − µi

µ

)
⊙ Pii ·

(
∂Qii

∂ ln wi

)
P̃i ,w−i

+
(
P̃ii − P−ii

)
·
(

∂Q−ii
∂ ln wi

)
P̃i ,w−i

P−ii

(
∂Q−ii
∂ ln wi

)
P̃i ,w−i

− ∑j ̸=i

[(
∂Pij·Qij
∂ ln wi

)
P̃i ,w−i

] . (91)

We can further simplify the above expression by invoking the F.O.C. described by Equation 83. This
equation indicates that the following relationship ought to hold at the optimum P̃i = P̃∗∗∗

i :

∑
j ̸=i

∑
k

(1 − µi
µ

)
⊙ Pii ·

(
∂Qii

∂ ln P̃ji,k

)
P̃∗∗∗

i ,w−i

+
(
P̃−ii − (1 + τ̄i)P−ii

)
·
(

∂Q−ii

∂ ln P̃ji,k

)
P̃∗∗∗

i ,w−i

 = 0.

Now, we will rearrange and simplify the above relationship in such a way that will help us simply
Equation 91. To this, we invoke the property that the Marshallain demand function is homogeneous
of degree zero. Combining this property with the fact that ∂ ln Yi

∂ ln wi
≈ ∂ ln P̃ii,k

∂ ln wi
= 1, we can simplify the

above as follows:(
1 − µi

µ

)
⊙ Pii ·

(
∂Qii

∂ ln wi

)
P̃i ,w−i

+
(
P̃ii − (1 + τ̄i)P−ii

)
·
(

∂Q−ii

∂ ln wi

)
P̃i ,w−i

= 0.

Using the above equation, we can cancel out the mirroring expressions in the numerator and denom-
inator of Equation 91. Doing so reduces and simplifies the expression for τ̄i to the following:

τ̄i =
−∑n ̸=i (Pin · Qin)

∑j ̸=i

[(
∂Pij·Qij
∂ ln wi

)
P̃i ,w−i

] =
−1

∑j ̸=i
[
Xij ·

(
IK + Eij

)
1K
] . (92)

The K × 1 vector Xij =
[
χij,k

]
k is compose of export shares, which are defined as χij,k ≡ Pij,kQij,k

∑n ̸=i Pin·Qin
.

To provide some intuition, the denominator of the above equation corresponds to the elasticity of
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international demand for origin i’s labor. As such, τ̄i can be interpreted as country i’s optimal markup
on its wage rate in international (non-i) markets.

K Optimal Policy under IO Linkages (Theorem 4)

We first present a formal description of equilibrium under input-output (IO) linkages. We use the
C superscript to denote final consumption goods and the I superscript to denote intermediate inputs.
To given an example: QC

ji,k denotes the quantity of a “final” goods associated with origin j–destination
i–industry k, while QI

ji,k denotes the quantity of an “intermediate” goods associated with origin j–
destination i–industry k. Without loss of generality, we assume that good ji, k exhibits the same price
irrespective of whether it is used as a final good or an intermediate input good: P̃ji,k ∼ P̃C

ji,k = P̃I
ji,k.

On the production side, we impose no restrictions on how intermediate inputs are aggregated in
the production process. We, however, assume that the share of labor in production is constant and
equal to 1 − ᾱi,k for each origin i–industry k. To track the demand for inputs, we use Yi,k to denote the
gross revenue associated with origin i–industry k. Correspondingly, ᾱi,kYi,k denotes origin i–industry k’s
total expenditure on intermediate inputs.

Marshallian Demand under IO Linkages

We suppose that overall demand for good ji, k, which is the sum of final good demand based on
utility maximization and input demand based on cost minimization, is given by the following demand
function

Qji,k = QI
ji,k + QC

ji,k = Dji,k(Ei, P̃i),

where Ei = Yi + ∑g ᾱi,gYi,g denotes market i’s total expenditure on final and intermediate input

goods. To make the notation consistent with our previous derivations, we use ε
(ni,g)
ji,k and ηji,k to de-

note the price and income elasticities associated with the IO-augmented Marshallian demand function
Dji,k(Ei, P̃i).

General Equilibrium under IO Linkages

As in the baseline model, we express all equilibrium outcomes (except for wages) as a function of
global taxes (x, t, and s), treating wages w ≡ {wi}i as given. This formulation derives from solving a
system that imposes all equilibrium conditions aside from the labor market clearing conditions. We
formally outline this formulation below.

Notation. For a given vector of taxes and wages T = (t, x, s; w), equilibrium outcomes Yi(T), Yi,k(T), Pji,k(T),
P̃ji,k(T), Qji,k(T) are determined such that (i) producer prices are characterized by 13; (ii) consumer prices
are given by 7; (iii) Consumption and input demand choices are given by Dji,k(Ei, P̃i), where Ei = Yi +

∑g ᾱi,gYi,g; (iv) net income (which dictates total final good expenditure by country i) equals wage payments
plus tax revenues: Yi = wiLi +Ri,90 where Ri are described by 8 and (v) gross industry-level revenues are
given by Yi,g = ∑n Pin,kQin,k.

As in the baseline model, w is itself an equilibrium outcome. So, a vector T = (t, x, s; w) is feasible
insofar as w is the equilibrium wage, consistent with t, x, and s. So, to fix ideas we define the set of
feasible policy–wage vectors as follows.

90Note that net profits are equal top zero (i.e., Πi = 0) as we are focusing on the case of free entry.
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Definition (D2-IO). The set of feasible policy–wage vectors, F, consists of any vector T = (t, x, s; w) where w
satisfies the labor market clearing condition in every country, given t, x, and s:

F =

{
T = (t, x, s; w) | wiLi = ∑

j
∑

k
Qzij,k(T)− ∑

j
∑

k
PI

ji,k(T)Q
I
ji,k(T); ∀i ∈ C

}
.

Before moving on to the proof, two important details are in order: First, we can easily verify that
the labor market clearing condition specified by Definition D2-IO is equivalent to the balanced trade
condition. Second, under IO linkages, the choice w.r.t. taxes (or equivalently P̃i ≡

{
P̃ii, P̃ji, P̃ij

}
) may

affect the entire vector of producer prices,
{

Pnj,k
}

, through its effect on input prices. To track these
IO-related effects, let α

j,g
i,k denotes the (possibly variable) cost share of intermediate inputs from origin

j× industry g used in the output of origin i× industry k. By Shepherd’s Lemma, the direct effect of
raising input price P̃I

ji,g on the producer price Pij,k can be expressed as follows:

[Shepherd’s Lemma]

(
∂ ln Pij,k(P̃i; w)

∂ ln P̃I
ji,g

)
P−ji,g,w

= α
j,g
i,k . ∀(ȷ, j, i ∈ C); ∀(g, k ∈ K).

We use the Shepherd’s Lemma in combination with our dual approach (from Appendix E) to charac-
terize the optimal policy schedule for each country i. Recall that the optimal policy problem in our
dual approach is reformulated as

max
P̃i

Wi(P̃i; w) ≡ Vi(Yi(P̃i; w), P̃i) s.t. (P̃i; w) ∈ FP,

where P̃i ≡
{

P̃ii, P̃ji, P̃ij
}

denotes the vector of consumer prices directly linked to economy i. The
feasible set FP is defined analogously to F. Below, we derive and solve the system of F.O.C. associated
with the above problem, building on the results introduced earlier under Appendix E.

Tax Neutrality under IO Linkages

Our baseline characterization of optimal policy relied on the tax neutrality result presented under
Lemma 1. An analogous (but slightly different) neutrality result holds under IO linkages. To present
this result, we use operatorC (.), which configures a uniform tax-shifter depending on whether the
taxed item is used for final consumption or intermediate input use. In particular, for an arbitrary
tax-shifter, ã ∈ R+, C (ã) = ã if the taxed item is a final good and C (ã) = 1 otherwise.

Lemma 9. [Tax Neutrality under IO Linkages] For any a and ã ∈ R+ (i) if T = (1+ ti, t−i,1+ xi, x−i, 1+
si, s−i; ẁi, w−i) ∈ F, then T′ = (a(1+ ti)/C (ã), t−i, a(1+ xi)/C (ã), x−i, (1+ si)C (ã), s−i; aẁi, w−i) ∈ F.
Moreover, (ii) welfare is preserved under T and T′: Wn(T) = Wn(T′) for all n ∈ C.

The above lemma is akin to Lemma 1, but differs in one basic detail. The neutrality of uniform
trade tax adjustments (i.e., the Lerner Symmetry) holds in the IO model without qualification. The
neutrality of uniform domestic tax adjustments holds the consumption side but not on the production
side. More specifically, a uniform increase in consumption taxes is welfare-neutral in the IO model.
Accordingly, the tax adjustments that apply via C (ã) are constructed to mimic a uniform consumption
tax hike. With the above background, we are now ready to derive and solve the system of F.O.C.s that
determine optimal policy under IO linkages.
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Step #1: Deriving the F.O.C. w.r.t. P̃ji,k and P̃ii,k ∈ P̃i

First, we derive the F.O.C. w.r.t. to import variety ji, k, supplied by origin j–industry k. Given that
Wi = Vi(Yi(P̃i; w), P̃C

ii , P̃C
ji), the F.O.C. w.r.t. P̃ji,k ∼ P̃I

ji,k ∼ P̃C
ji,k, holding P−ji,k ≡ P̃i − {P̃ji,k} constant,

can be stated as(
∂Wi

∂ ln P̃ji,k

)
P−ji,k

=
∂Vi(Yi, P̃C

i )

∂ ln P̃ji,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(P̃i; w)

∂ ln P̃ji,k

)
w,P−ji,k

+

(
∂Wi(P̃i, w)

∂w

)
P̃i

·
(

dw
d ln P̃ji,k

)
P−ji,k

= 0.

(93)
The right-hand side of the above equation can be characterized similar to Appendix E, with two dis-
tinctions: First, total demand for good ji, k is the sum of consumption plus input demand: Qji,k =

QC
ji,k + QI

ji,k. So, we have to distinguish between welfare effects that channel through consumption
and those that channel through input demand. Second, we need to account for the effect of a change
in input price P̃ji,k ∼ P̃I

ji,k on the producer prices associated with economy i. To this end, we can invoke
Shepherd’s Lemma, which implies that(

∂ ln Pij,k(P̃i; w)

∂ ln P̃I
ji,g

)
P−ji,g,w

= α
j,g
i,k . ∀ȷ, j, i ∈ C; g, k ∈ K.

Considering the above caveats, we can proceed as in Appendix E. By Roy’s identity, the first term on
the right-hand side of the F.O.C. (Equation 93) can be stated as

∂Vi(Yi, P̃C
i )

∂ ln P̃ji,k
= −P̃ji,kQC

ji,k

(
∂Vi

∂Yi

)
.

Next, consider the second term on the right-hand side of Equation 93, which accounts for income
effects. Recall that total income in country i equals the sum of wage payments plus import, production
and export tax revenues:

Yi(P̃i; w) = wiLi + ∑
n ̸=i

[(
P̃ni − Pni

)
· Qni

]
+
(
P̃ii − Pii

)
· Qii + ∑

n ̸=i

[(
P̃in − Pin

)
· Qin

]
.

The effect of P̃ji,k on import tax revenues can be derived and express exactly as in Appendix E:(
∂ ∑n ̸=i

[(
P̃ni − Pni

)
· Qni

]
∂ ln P̃ji,k

)
w,P−ji,k

= P̃ji,kQji,k +∑
g

∑
n ̸=i

(P̃ni,g − [1 + ωni,g]Pni,g
)

Qni,g

(
∂ ln Qni,g

∂ ln P̃ji,k

)
w,P−ji,k


(94)

The logic is that holding the vector of wages w and country i’s export prices P̃ij ∈ P̃i fixed, a change
in P̃ji,k has not effect on the producer price of imports Pji through the input-output network.

The effect of a change in P̃ji,k on country i’s production and export tax revenues can be formulated
as(
∂

∂ ln P̃ji,k

{(
P̃ii − Pii

)
· Qii,g + ∑

n ̸=i

[(
P̃in − Pin

)
· Qin

]})
w,P−ji,k

=∑
g

(P̃ii,g − Pii,g
)

Qii,g

(
∂ ln Qii,g

∂ ln P̃ji,k

)
w,P−ji,k

+ ∑
g

∑
n

Pin,gQin,g

( ∂Pin,g

∂ ln Qii,g

)
w,Pi

(
∂ ln Qii,g

∂ ln P̃ji,k

)
w,P−ji,k

+

(
∂ ln Pin,g

∂ ln P̃I
ji,k

)
w,P−ji,k

 ,

(95)

The above expression differs from Equation 96 (in Appendix E) in the last term on the second line.
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This term accounts for the effect of raising input price P̃ji,k ∼ P̃I
ji,k on the producer prices associated

with economy i. As explained above, we can appeal to Shephard’s lemma to simplify this extra term
as

∑
g∈K

∑
n∈C

Pin,gQin,g

(
∂ ln Pin,g

∂ ln P̃I
ji,k

)
P−ji,g,w

 = − ∑
g∈K

∑
n∈C

(
Qin,gPin,gα

j,k
i,g

)
= −P̃ji,kQI

ji,k.

Plugging the above expression back into Equation 95 and redoing the derivations covered in Ap-
pendix E, yields the following expression for the effect of P̃ji,k on country i’s production and export tax
revenues:(

∂

∂ ln P̃ji,k

{
∑
n

[(
P̃in − Pin

)
· Qin

]})
w,P−ji,k

= −P̃ji,kQI
ji,k + ∑

g

(P̃ii,g −
[

1 −
µg

1 + µg

])
Pii,gQii,g

(
∂ ln Qii,g

∂ ln P̃ji,k

)
w,P−ji,k

 .

(96)

where recall that
(
∂ ln Qii,g/∂ ln P̃ji,k

)
w,P−ji,k

encompasses price and income effects à la Equation 26 in

Appendix E. Combining Equations 94 and 96, and noting that P̃ji,kQji,k − P̃ji,kQI
ji,k = P̃ji,kQC

ji,k yields the
following expression that summarizes all the revenue-related welfare effects in the F.O.C.:(

∂Yi(Pi; w)

∂ ln P̃ji,k

)
w,P−ji,k

= P̃ji,kQC
ji,k + ∑

g
∑
n ̸=i

[(
P̃ni,g − [1 + ωni,g]Pni,g

)
Qni,gε

(ji,k)
ni,g

]

+ ∑
g

[(
P̃ii,g −

1
1 + µg

Pii,g

)
Qii,gε

(ji,k)
ii,g

]
+ ∆i(Pi, w)

(
∂Ei(Pi; w)

∂ ln P̃ji,k

)
w,P−ji,k

. (97)

The uniform term ∆i(.) accounts for circular income effects and is given by Equation 34 in Appendix
E. Finally, the last term on the right-hand side of Equation 93, which accounts for general equilibrium
wage effects, can be specified in the same exact way as in Appendix E:(

∂Wi(Pi, w)

∂w

)
Pi

·
(

dw
d ln P̃ji,k

)
P−ji,k

= −τ̄i ∑
g

∑
n ̸=i

Pni,gQni,g

(
∂ ln Qii,g

∂ ln P̃ji,k

)
w,P−ji,k

 ,

where τ̄i is given by Equation 36 in Appendix E. Combining the above expressions, the F.O.C. specified
by Equation 93 reduced to

[FOC w.r.t. P̃ji,k] ∑
n ̸=i

∑
g

[(
P̃ni,g

Pni,g
− (1 + τ̄i)(1 + ωni,g)

)
Pni,gQni,gε

(ji,k)
ni,g

]

+ ∑
g

[(
P̃ii,g

Pii,g
− 1

1 + µg

)
Pii,gQii,gε

(ji,k)
ii,g

]
+ ∆̃i(Pi, w)

(
∂Ei(Pi; w)

∂ ln P̃ji,k

)
w,P−ji,k

= 0,

(98)

where ∆̃i(.) is given by Equation 39 in Appendix E. Note that the above equation has an identical rep-
resentation to the F.O.C. in the baseline model. The intuition is that holding country i’s export prices
P̃ij ∈ Pi fixed, the choice w.r.t. P̃ji,k has no first-order effect on country i’s terms-of-trade channels
through the input-output network. If good ji, k is used as an input in export good in, g, any possible
terms-of-trade gains from taxing P̃ji,k will be internalized by the optimal choice w.r.t. P̃in,g. Further-
more, it is easy to check that Equation 98 characterizes the F.O.C. w.r.t. P̃ii,k ∈ Pi as long as we replace
ji, k with ii, k everywhere in that equation. Finally, as in Appendix E, we do not unpack the uniform
term τ̄i because the multiplicity of country i’s optimal tax schedule will render the exact value assigned
to τ̄i redundant.
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Step #2: Deriving the F.O.C. w.r.t. Pij,k ∈ P̃i

Consider export variety ij, k, which is sold to destination j ̸= i in industry k. Noting that Wi =

Vi(Yi(Pi; w), P̃C
ii , P̃C

ji), the F.O.C. w.r.t. P̃ij,k, holding P−ij,k ≡ Pi − {P̃ij,k} constant, can be stated as(
∂Wi

∂ ln P̃ij,k

)
P−ij,k

=
∂Vi(Yi, P̃i)

∂ ln P̃ij,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

+

(
∂Wi(Pi, w)

∂w

)
Pi

·
(

dw
d ln P̃ij,k

)
P−ij,k

= 0.

(99)

The first term as before accounts for direct price effects. This term is trivially equal to zero since
P̃ij,k /∈ P̃i. That is, since ij, k is not part of the domestic consumption bundle, raising its price has no
direct effect on consumer surplus in country i:

P̃ij,k /∈ P̃i =⇒ ∂Vi(Yi, P̃i)

∂ ln P̃ij,k
= 0. (100)

The second term in Equation 99 accounts for welfare effects that channel through tax revenues. Specif-
ically, Holding wages w fixed, the change in country i’s income amounts to the change in import,
domestic, and export tax revenues. The effect on import tax revenues can be expressed as follows:

(
∂ ∑n ̸=i

[(
P̃ni − Pni

)
· Qni

]
∂ ln P̃ij,k

)
w,P−ij,k

= ∑
g

∑
n ̸=i

(P̃ni,g − Pni,g
)

Qni,g

(
∂ ln Qni,g

∂ ln P̃ij,k

)
w,P−ij,k


− ∑

g
∑
n ̸=i

Pni,gQni,g

( ∂Pni,g

∂ ln Qnj,g

)
w,Pi

(
∂ ln Qnj,g

∂ ln P̃ij,k

)
w,P−ij,k

+

(
∂ ln Pni,g

∂ ln P̃I
ij,k

)
w,P−ij,k

 .

(101)

The above equation differs from Equation 44 in Appendix E in only the last term on the second line.
This term accounts for that fact that raising the price of input good ij, k can affect the entire vector of
producer prices in the rest of the world through input-output networks. Given Shephard’s lemma we
can simplify this term by noting that

Λij,k ≡ ∑
n ̸=i

∑
g∈K

Pni,gQni,g

(
∂Pni,g

∂P̃I
ij,k

)
w,P−ij,k

 /P̃ij,kQij,k

denotes the share of the export value associated with good ij, k that is reimported back into economy
i. Plugging the above expression back into 101 and repeating the derivation performed in Appendix
E, yields the following:(

∂ ∑n ̸=i
[(

P̃ni − Pni
)
· Qni

]
∂ ln P̃ij,k

)
w,P−ij,k

=− Λij,kP̃ij,kQij,k − ∑
g

∑
n ̸=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]

+ ∑
g

∑
n ̸=i

[(
P̃ni,g − [1 + ωni,g]Pni,g

)
Qni,gηni,g

] ( ∂ ln Ei

∂ ln P̃ij,k

)
w,P−ij,k

.

(102)
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Repeating the derivation in Appendix E, the effect of a change in P̃ij,k on country i’s production and
export tax revenues can be formulated as(

∂

∂ ln P̃ij,k
∑
n

[(
P̃in − Pin

)
· Qin

])
w,P−ij,k

= P̃ij,kQij,k + ∑
g

[(
P̃ij,g − [1 −

µg

1 + µg
]Pij,g

)
Qij,gε

(ij,k)
ij,g

]

+ ∑
g

[(
P̃ii,g −

1
1 + µg

Pii,g

)
Qii,gηii,g

](
∂ ln Ei

∂ ln P̃ij,k

)
w,P−ij,k

.

(103)

To be clear, holding P̃ji,k ∈ Pi fixed, a change in P̃ij,k has no effect on the input price faced by firm

located in i. That is,
(

∂Pni,g/∂P̃I
ij,k

)
w,P−ij,k

= 0. This point explains why the above expression is rather

identical to that derived in Appendix E. Combining Equations 102 and 99, we can express the sum of
all tax-revenue-related terms as(

∂Yi(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

=
(
1 − Λij,k

)
P̃ij,kQij,k+∑

g

[(
P̃ij,g − [1 −

µg

1 + µg
]Pij,g

)
Qij,gε

(ij,k)
ij,g

]

−∑
g

∑
n ̸=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∆i(Pi, w)

(
∂Ei(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

,

(104)

where ∆i(.) encompasses the terms accounting for circular income effects and is given by Equation
34. Taking note of the already-discussed distinctions between the present and baseline models and
repeating the derivations performed earlier in Appendix E, the last term in right-hand side of Equation
99) can be formulated as

(
∂Wi(.)

∂w

)
Pi

·
(

dw
d ln P̃ij,k

)
P−ij,k

= τ̄i(1 − Λij,k)P̃ij,kQij,k + ∑
g

[
τ̄i P̃ij,gQij,gε

(ij,k)
ij,g

]

−∑
g

∑
n ̸=i

[
τ̄iωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
− ∑

g
∑
n ̸=i

[
[1 + ωni,g]τ̄iPni,gQni,gηni,g

] (∂Ei(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

. (105)

Finally, plugging Equations 100, 104, and 105 back into the F.O.C. (Equation 99); and dividing by
(1 + τ̄i) yields the following optimality condition w.r.t. to price instrument P̃ij,k:

[FOC w.r.t. P̃ij,k] (1 − Λij,k)P̃ij,kQij,k+∑
g

[(
1 − 1

(1 + τ̄i)(1 + µg)

Pij,g

P̃ij,g

)
P̃ij,gQij,gε

(ij,k)
ij,g

]

−∑
g

∑
n ̸=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∆̃i(Pi, w)

(
∂Ei(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

= 0,

(106)

where ∆̃i(.) is defined as in Equation 39. Also, we are not unpacking the term τ̄i, for the same reasons
discussed earlier.

Step #3: Solving the System of F.O.C.s and Establishing Uniqueness

To determine the optimal tax schedule we need to collect the system of first order conditions and
simultaneously solve them under one system. For the ease of reference, we will restate the F.O.C. w.r.t.
to each element of Pi below. Following Equation 98, the F.O.C. w.r.t. P̃ℓi,k (where ℓ = i or ℓ = j ̸= i),
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can be expressed as

(1) ∑
n ̸=i

∑
g

[(
1 − (1 + τ̄i)(1 + ωni,g)

Pni,g

P̃ni,g

)
eni,gε

(ℓi,k)
ni,g

]
+

∑
g

[(
1 − 1

1 + µg

Pii,g

P̃ii,g

)
eii,gε

(ℓi,k)
ii,g

]
+∆̃i(Pi, w)

(
∂ ln Ei(Pi; w)

∂ ln P̃ℓi,k

)
w,P−ℓi,k

= 0.

where eni,g = P̃ni,gQni,g/Yi denotes the expenditure share on good ni, g. Following Equation 106, the
F.O.C. w.r.t. export price P̃ij,k is given by

(2) 1 − Λij,k + ∑
g

[(
1 − 1

(1 + µg)(1 + τ̄i)

Pij,g

P̃ij,g

)
eij,g

eij,k
ε
(ij,k)
ij,g

]

− ∑
n ̸=i

∑
g

[
ωni,g

enj,g

eij,k
ε
(ij,k)
nj,g

]
+∆̃i(Pi, w)

Ei

Ej

(
∂ ln Ei(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

= 0.

First, note that the system of F.O.C.s (1) Appealing to above lemma, it immediately follows that the
unique solution to the above equation is the trivial solution given by:

P̃∗
ji,k

Pji,1
= (1 + ωji,k)(1 + τ̄i);

P̃∗
ii,k

Pii,k
=

1
1 + µg

. (107)

With the aid of the above result, we can proceed to solving System (2), knowing that ∆̃i(P
∗
i , w) = 0.

To this end, let us economize on the notation by defining

χij,k ≡
1

(1 + µg)(1 + τ̄i)

Pij,g

P̃ij,g
.

Appealing to this choice of notation the F.O.C. specified by System (2) implies the following optimality
condition:

1 − Λij,k + ∑
g

(1 − χij,g
) eij,gε

(ij,k)
ij,g

eij,k

− ∑
n ̸=i

∑
g

ωni,g
enj,gε

(ij,k)
nj,g

eij,k

 = 0. (108)

To simplify the above expression we will use a well-know result from consumer theory, namely, the
Cournot aggregation, which implies:

[Cournot aggregation] 1 + ∑
g

[
eij,g

eij,k
ε
(ij,k)
ij,g

]
= − ∑

n ̸=i
∑
g

[
enj,g

eij,k
ε
(ij,k)
nj,g

]
.

Combining the above expression with Equation 108 and noting that by Slutsky’s equation enj,g
eij,k

ε
(ij,k)
nj,g =

ε
(nj,g)
ij,k (if ηni,g = 1 for all ni, g), yields the following:

−∑
g

[
χij,gε

(ij,g)
ij,k

]
− ∑

n ̸=i
∑
g

[
(1 + ωni,g)ε

(nj,g)
ij,k

]
= 0 ∀(ij, k).

We can formulate the above equation in matrix algebra as

−EijXij − E(−ij)
ij

(
1(N−1)K + Ωi

)
− Λij = 0, (109)

where Xij ≡
[
χij,k

]
k and Λij ≡

[
Λij,k

]
k are K × 1 vectors. The K ×K matrix Eij ∼ E(ij)

ij ≡
[
ε
(ij,g)
ij,k

]
encom-

passes the own- and cross-price elasticities between the different varieties sold by origin i to market
j. Analogously, E(−ij)

ij ≡
[
ε
(nj,g)
ij,k

]
k,n ̸=i,g

is a K × (N − 1)K matrix of cross-price elasticities between va-

rieties sold by i and by all other origin countries in market j. Ωi ≡
[
ωni,g

]
n,g is a (N − 1)K × 1 vector
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of inverse export supply elasticities associated with domestic market i. To invert the system specified
by Equation 109 we can use our result (from Appendix E) that Eij is non-singular, which yields the

following formulation for X∗
ij =

[
χ∗

ij,k

]
k
:

X∗
ij = −E−1

ij

[
E(−ij)

ij

(
1(N−1)K + Ωi

)
+ Λij

]
. (110)

Now, we can recover the optimal tax/subsidy rates from the optimal price wedges implies by Equa-
tions 107 and 110. Specifically, noting that

1 + t∗ji,k =
P̃ji,k

Pji,k
; 1 + s∗i,k =

P̃∗
ii,k

Pii,k
; 1 + xij,k =

P̃∗
ij,k/Pij,k

P̃∗
ii,k/Pii,k

;

country i’s unilaterally optimal tax schedule can be expressed as follows:

[domestic subsidy] 1 + s∗i,k = 1 + µk

[import tariff] 1 + t∗ji,k = (1 + ωji,k)(1 + τ̄i)

[export subsidy] 1 + x∗ij = −E−1
ij

[
E(−ij)

ij (1 + Ωi) + Λij

]
(1 + τ̄i).

The last step, is to invoke the multiplicity of optimal tax schedules provided by Lemma 9. Given
the multiplicity of optimal import tax and export subsidies, the uniform trade tax-shifter, τ̄i, is re-
dundant. Following Lemma 1, any tax schedule that satisfies 1 + t̃∗ji,k =

(
1 + t∗ji,k

)
1+t̄i
1+τ̄i

and 1 + x̃∗ij,k =(
1 + x∗ij,k

)
1+t̄i
1+τ̄i

, and where 1+ t̄i ∈ R+, is also optimal. As such the exact value assigned to τ̄i is redun-
dant. This explains why we did not unpack the term τ̄i in Step #3. There is also another dimension of
multiplicity whereby any uniform shift in final good production subsidies (paired with a proportional
adjustments final good import tariffs and export subsidies) preserves the equilibrium. Accounting for
both dimensions of multiplicity, the optimal policy schedule is given by:

[domestic subsidy] 1 + s∗i,k = (1 + µk) (1 + s̄C
i )

−1

[import tax] 1 + t∗ji,k = (1 + ωji,k) (1 + t̄i) (1 + s̄C
i )

[export subsidy] 1 + x∗ij = −E−1
ij

[
E(−ij)

ij (1 + t∗i ) + Λij(1 + t̄i)(1 + s̄C
i )
]

,

where s̄C
i is an arbitrary tax shifter that assumes a positive value if the taxed item is a final good and

zero otherwise. Also, recall that the elements of Λij ≡
[
Λij,k

]
k correspond to the fraction of good ij, k

that is reimported via the IO network.

L Proof of Propositions 1 and 2

This appendix provides a formal proof for Propositions 1 and 2. The former asserts that, if Cov (σk, µk) <

0 , piecemeal trade policy interventions that seek to improve the terms-of-trade (relative to Laissez-
Faire) worsen misallocation and vice versa. The latter asserts that, if Cov (σk, µk) < 0, a unilateral im-
plementation of efficient industrial subsidies in country i (without reciprocity by partners) can harm
welfare through adverse terms-of-trade effects.

Proposition 1. Suppose country i is initially in an equilibrium where the government has imple-
mented a uniform (possibly zero) import tariff or export tax. If existing taxes are zero then the econ-
omy is essentially operating under Laissez-Faire. Our goal is to prove the following: If Cov (µk, σk) <

0, then any adjustment to trade policy that seeks to improve allocative efficiency (relative to the base-

105



line equilibrium) worsens country i’s terms of trade (ToT) and vice versa. Since a uniform import tariff
is equivalent to a uniform export tax by the Lerner symmetry, we can without loss of generality focus
on the case where the initial trade policy consists of a (possibly zero) uniform export tax. We first
present our proof for the case of restricted entry, but extend it later to account for free entry. To econ-
omize on the notation, we hereafter use 1 + x̃ ∼ (1 + x)−1 to denote the export tax counterpart of
export subsidy, x.91

Welfare Accounting under Piecemeal Policy Change—As an intermediate step, we first characterize the
change in welfare in response to a piecemeal trade policy change, decomposing the welfare impacts
into changes in allocative efficiency and terms of trade. When preferences are homothetic, the change
in country i’s welfare in response to an adjustment to export taxes, {d ln (1 + x̃i,k)}k, is the sum of
corresponding income and price effects.92 Namely,

d ln Wi = d ln Yi − ∑
k

∑
n

λni,kei,kdlnP̃ni,k. (111)

To formalize the tension between allocative efficiency and terms of trade succinctly, suppose that
country i is sufficiently small so that its piecemeal trade policy reform has a negligible impact on
relative wages and labor allocations in the rest of the world. In that case, d ln P̃ii,k = d ln wi and
dlnP̃ni,k ≈ 0 for all n ̸= i. Under theses assumptions, the price effects in Equation 111 reduce to

∑k ∑n λni,kei,kdlnP̃ni,k = λiid ln wi, where λii ≡ ∑k λii,kei,k denotes the aggregate domestic expenditure
share in country i. Next we characterize income effects, dln Yi. For this, note that nominal income in
country i is the sum of wage income, profits, and net revenues associated with export tax. In particular,

Yi = ∑
k
[(1 + µk) ρi,k]wiLi + ∑

n ̸=i
∑

k
[x̃i,kPin,kQin,k] ,

where x̃i,k is the export tax on industry k goods, which is uniform in the baseline equilibrium (i.e.,
x̃i,k = x̄i) but is subsequently adjusted to improve allocative efficiency. Taking full derivatives of the
above expression yields

d ln Yi =
(

1 − πX
i

) [
d ln

(
∑

k
(1 + µk) ρi,k

)
+ d ln wi

]

+ πX
i ∑

n ̸=i
∑

k

[
x̄iPin,kQin,k

∑n′,k′ x̄iPin′,k′Qin′,k′

(
∂ ln Pin,k

∂ ln wi
d ln wi +

∂ ln Qin,k

∂ ln P̃in,k
dln (1 + x̃i,k)

)]
,

where πX
i ≡ ∑n ̸=i ∑k [x̃i,kPin,kQin,k] /Yi denotes the share of export tax revenues in total revenues. One

can immediately verify that the change in the (employment-weighted) aggregate profit margin is

d ln

(
∑

k
(1 + µk) ρi,k

)
= ∑

k

[
ρi,k ·

(
1 + µk

1 + µi

)
d ln ρi,k

]
,

where µi ≡ ∑k [µkρi,k], recall, is our short-hand notation for the aggregate profit margin in country i.
Notice that ∂ ln Pin,k/∂ ln wi = 1 under restricted entry and ∂ ln Qin,k/∂ ln P̃in,k = −σk, since country i
is a small open economy. Invoking these points, we can simplify the expression for d ln Yi as

d ln Yi = d ln wi +
(

1 − πX
i

)
∑

k

[
ρi,k ·

(
1 + µk

1 + µi

)
d ln ρi,k

]
− πX

i ∑
k
[χi,k · σk d ln (1 + x̃i,k)] , (112)

where χi,k ≡ Pin,kQin,k/ ∑n′,k′ [Pin′,k′Qin′,k′ ] denotes the share of industry k goods in country i’s export

91Note that a positive export tax is akin to an negative export subsidy and vice versa—i.e., x < 0 =⇒ x̃ > 0.
92To be clear, we assume that the baseline export tax policy does not discriminate between destination markets, with xi,k

denoting the export tax applied to all export good in industry k.
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revenues. To economize on the notation we henceforth use Eω [.] and Covω (.) to denote the cross-
industry mean and covariance with weights, {ωi,k}k, that satisfy ∑k ωi,k = 1. Considering this choice
of notation, suppose the piecemeal trade policy reform is mean-preserving—i.e., Eχ [dln(1 + x̃i,k)] ∼
∑k [χi,kd ln (1 + x̃i,k)] = 0. To put it verbally, the tax reform raises export taxes on some industries and
lowers it on others, while preserving the sales-weighted average export tax rate. Under this presup-
position, the last term in the above equation amounts to the covariance between σk and dln (1 + x̃i,k).
In particular,

∑
k
[χi,k · σkd ln (1 + x̃i,k)] ∼ Eχ [σkd ln (1 + x̃i,k)]

= Eχ [σkd ln (1 + x̃i,k)]− Eχ [σk] · Eχ [d ln (1 + x̃i,k)]︸ ︷︷ ︸
=0

∼ Covχ (σk , d ln (1 + x̃i,k)) .

As a matter of accounting, ∑k ρi,kdln ρi,k = 0, so the same logic implies that the second term on the
right-hand side of Equation 112 is also the covariance between the change in industry-level employ-
ment share, d ln ρi,k, and the industry-level markup (relative to the mean):

∑
k

[
ρi,k

(
1 + µk

1 + µi

)
d ln ρi,k

]
∼ Covρ

(
1 + µk

1 + µi
, d ln ρi,k

)
.

Substituting for the above expressions in Equation 112 and plugging the simplified expression for
d ln Yi back into our original welfare formula (Equation 111) delivers,

d ln Wi =
(

1 − πX
i

)
Covρ

(
1 + µk

1 + µi
, d ln ρi,k

)
︸ ︷︷ ︸

Allocative Efficiency

+

Terms of Trade︷ ︸︸ ︷[
−πX

i Covχ (σk, d ln (1 + x̃i,k)) + (1 − λii)d ln wi

]
,

(113)
echoing the welfare decomposition provided by Baqaee and Farhi (2019) and Atkin and Donaldson
(2021). To offer intuition for this choice of decomposition, the term labeled Allocative Efficiency is analo-
gous to the deviation form Hulten’s (1978) formula in an inefficient closed economy. More specifically
suppose country i was a closed economy hit with a labor productivity shock, d ln Ai,k. Following the
same steps as above, the welfare impact of this shock can be decomposed as

d ln Wclosed
i =

Hulten︷ ︸︸ ︷
∑ [ρi,kdln Ai,k] + Covρ

(
1 + µk

1 + µi
, d ln ρi,k

)
,

where the deviation from Hulten (1978) reflects changes to allocative efficiency. Likewise, Terms of
Trade effects in Equation 113 are analogous to deviations from Hulten (1978) if country i were open to
trade but efficient. In accordance with this logic, the Terms of Trade effects in Equation 113 disappear if
Country i is closed, in which case πX

i = 1 − λii = 0. Relatedly, Allocative Efficiency effects disappear if
the economy is efficient, in which case (1 + µk) / (1 + µi) = 1.

Tension between Allocative Efficiency & Terms of Trade—An export policy shock, {d ln (1 + x̃i,k)}k, that
seeks to improve allocative efficiency must reallocate workers from low- to high-µ industries so that
Covρ

(
1+µk
1+µi

, d ln ρi,k

)
> 0. If demand is elastic and well-behaved, this type of reallocation requires that

industry-level export tax reductions to be positively correlated with markups, i.e., Covχ

(
1+µk
1+µi

, d ln (1 + x̃i,k)
)
<

0. Accordingly, if Cov (σk, µk) < 0, the export tax changes will be positively correlated with the trade
elasticity, Covχ (σk, d ln (1 + x̃i,k)) > 0. As such, an export tax reform that improves Allocative Efficiency
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(relative to the status quo) worsens the Terms of Trade through the term Covχ (σk, d ln (1 + x̃i,k)). Now,
consider the remaining Terms of Trade term that accounts for general equilibrium wage effects. Con-
sidering that Covχ (σk, d ln (1 + x̃i,k)) > 0, the desired export tax alteration consists of raising taxes
in high-trade elasticity industries (where export sales are more-sensitive to tax hikes) paired with an
proportional tax reduction in low-trade elasticity industries (where export sales are less-responsive to
tax cuts). This alternation will, by design, lower overall export sales by country i—resonating with the
conventional Ramsey rule. The reduction in export sales will in turn deflate demand for country i’s
labor and its wage rate relative to rest of the world (i.e., d ln wi < 0 ). That is, the second Terms of Trade
term is also negative when the export tax reform attempts to improve Allocative Efficiency relative to the
status quo. To take stock: Suppose Cov (σk, µk) < 0 and country i is initially in a equilibrium involving
uniform (or zero) export/import taxes. In that case, improving Allocative Efficiency via piecemeal trade
policy adjustments, {d ln (1 + x̃i,k)}, coincides with a worsening of the terms of trade.

Second-Best Trade Policies are Industry-Blind in Krugman (1980)—When preferences are Cobb-Douglas
across industries, country i’s second-best trade policy is given by (see Section 3):

[2nd-best import tariff] 1 + t∗∗ji,k =
1 + (σk − 1) λii,k

1 + 1+µi
1+µk

(σk − 1) λii,k

(
1 + ωji,k

)
(1 + t̄i)

[2nd-best export subsidy] 1 + x∗∗ij,k =
1 + µk

1 + µi

(
(σk − 1)

(
1 − λij,k

)
1 + (σk − 1)

(
1 − λij,k

)) (1 + t̄i) ,

where t̄i us a uniform trade tax shifter that accounts for the multiplicity of optimal policy schedules
(see Lemma 1). Following Alvarez and Lucas (2007), if country i is a small open economy, then λij,k =

λii,k = ωji,k → 0. Moreover, if we assume that the firm- and country-level degrees of market power
are identical à la Krugman (1980), we have 1 + µk = σk

σk−1 . Consolidating these two points, we get
the following formula for the 2nd-best trade policy of a small open economy in the multi-industry
Krugman (1980) model:

1 + t∗∗ji,k = 1 + t̄i; 1 + x∗∗ij,k =
σk

σk − 1

(
σk − 1

σk

)
1 + t̄i

1 + µi
= (1 + t̄i)

(
1 − 1

σi

)
,

where 1
σi

= ∑k ρi,k
1
σk

is the sales-weighted average (inverse) trade elasticity. Evidently, the optimal
2nd-best trade policy consists of a uniform import tariff or export subsidy, which is blind to inter-
industry misallocation and industry-level export market power. The logic is that any attempt at ex-
ploiting industry-level export market power exacerbates inter-industry misallocation and vice versa—
leaving the government with no choice but to abandon these targeted policy aspirations. This consid-
eration leads to industry-blind optimal trade taxes that solely manipulate the relative aggregate wage
(wi/w−i) in country i’s favor, with minimal reshuffling of resources across industries.

Proposition 2. Suppose country i is initially operating under Laissez-Faire. The government has,
moreover, agreed (under a shallow treaty) to limit itself to the efficient or cooperative policy choice
specified in Section 3. Our goal is to show that a unilateral implementation of efficient industrial
subsidies by country i (without reciprocity by partners) causes a deterioration of country i’s terms of
trade (ToT) and even immiserizing growth. To this end, we build on the welfare accounting formulas
derived earlier. In particular, the welfare impacts of unilateral markup-correcting subsidies by country
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i (i.e., si = µ) can be written as

∆Wi =
∫ µ

si=0
d ln Wi,

where the change in welfare in response to modest industrial policy adjustments can, as earlier, be
decomposed as

d ln Wi =
(

1 − πS
i

)
Covρ

(
1 + µk

1 + µi
, d ln ρi,k

)
︸ ︷︷ ︸

Allocative Efficiency

+

Terms of Trade︷ ︸︸ ︷[
−πS

i Covχ (σk, d ln (1 + si,k)) + (1 − λii)d ln wi

]
.

The above equation can be derived analogously to Equation 113, with πS
i denoting the share of pro-

duction tax (or subsidy) revenues that are collected from foreign consumers. Intuitively, the fraction
of tax revenues collected from domestic consumers deliver income gains that are exactly offset by the
corresponding loss from price increases. Hence, the domestically-borne fraction of the tax revenue
does not contribute to welfare changes, d ln Wi, beyond general equilibrium impacts on inter-industry
labor allocation and wages.

Considering this background, we can specify the sign of the Allocative Efficiency and Terms of Trade
effects (in the above equation) in response to markup/scale-correcting subsidies. The efficient policy
(si,k = 0 → s′i,k = µk) subsidizes output in high-µ industries, relocates labor from the rest of the

economy to these industries, and thereby improves allocative efficiency, i.e., Covρ

(
1+µk
1+µi

, d ln ρi,k

)
.

But following the logic presented earlier: If Cov (σk, µk) < 0, it should be the case that along the
path of restoring marginal cost pricing, Covχ (σk, d ln (1 + si,k)) > 0 and d ln wi < 0—both of which
contribute to a deterioration of the ToT. In some cases, like the numerical example presented in Section
4.1, the deterioration of the ToT is larger than the corresponding allocative efficiency gains—leading
to immiserizing growth in country i.

Adverse Firm-Delocation Effects when Country i is Large—When country i is excessively large, a uni-
lateral adoption of corrective industrial policies worsens its ToT through an additional channel: firm-
delocation effects. To make this point, let υi,k ≡

(1−λii,k)ei,k
(1−λii)

denote the import share pertaining to industry
k. Suppose without loss of generality that Eυ [µk] = 0—since following Lemma 1, we can recalibrate
the level of markups and wages in the rest of the world without changing welfare. Our welfare de-
composition, in that case, takes the following form, internalizing the effect of country i’s policy on
entry and labor shares in the rest of the world:

d ln Wi =
(

1 − πS
i

)
Covρ

(
1 + µk

1 + µi
, d ln ρi,k

)
+

− πS
i Covχ (σk, d ln (1 + si,k)) + (1 − λii) [d ln wi + Covυ (µk, dlnρ−i,k)] .

Country i’s corrective subsidies, by design, relocate labor to high-µk industries in the local economy,
but have the opposite effect on labor allocation in the rest of the world. Put formally, Covρ

(
1+µk
1+µi

, d ln ρi,k

)
>

0, while Covυ (µk, dlnρ−i,k) < 0. Improving allocative efficiency with corrective subsidies, therefore,
worsens the ToT through an additional term Covυ (µk, dlnρ−i,k), which represents firm-delocation ef-
fects. The logic is that promoting output and entry in high-µ domestic industries, diminishes output
and entry in high-µ foreign industries—hence, the term firm-delocation. The reduction in foreign firm-
level varieties inflates the price of imports P−ii,k ∝ M−µk

−i,k , thereby worsening country i’s ToT.
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Empirical Appendix

M Cleaning the data on the identity/name of exporting firms

Utilizing the information on the identity of the foreign exporting firm is a critical part of our em-
pirical exercise. Unfortunately, the names of the exporting firms in our dataset are not standardized.
As a result, there are instances when the same firm is recorded differently due to using or not using the
abbreviations, capital and lower-case letters, spaces, dots, other special characters, etc. To standardize
the names of the exporting firms, we used the following procedure.93

1. We deleted all observations with the missing exporting names and/or zero trade values.
2. We capitalized firms names and their contact information (which is either email or phone num-

ber of the firm).
3. We eliminated abbreviation “LLC,” spaces, parentheses, and other special characters (. , ; / @ ‘ }

- & “) from the firms names.
4. We eliminated all characters specified in 3. above and a few others (# : FAX) from the contact

information.
5. We dropped observations without contact information (such as, "NOTIENE", "NOREPORTA",

"NOREGISTRA," etc.), with non-existent phone numbers (e.g., “0000000000”, “1234567890”, “1”),
and with six phone numbers which are used for multiple firms with different names (3218151311,
3218151297, 6676266, 44443866, 3058712865, 3055935515).

6. Next, we kept only up to first 12 characters in the firm’s name and up to first 12 characters in
the firm’s contact information (which is either email or phone number). In our empirics, we treat all
transaction with the same updated name and contact information as coming from the same firm.

7. We also analyzed all observations with the same contact information, but slightly different
name spelling. We only focused on the cases in which there are up to three different variants of the
firm name. For these cases, we calculated the Levenshtein distance in the names, which is the smallest
number of edits required to match one name to another. We treat all export observations as coming
from the same firm if the contact phone number (or email) is the same and the Levenshtein distance is
four or less.

Table 6: Summary Statistics of the Colombian Import Data.

Year

Statistic 2007 2008 2009 2010 2011 2012 2013

F.O.B. value (billion dollars) 30.77 37.26 31.39 38.41 52.00 55.79 56.92
C.I.F. value
F.O.B. value 1.08 1.07 1.05 1.06 1.05 1.05 1.05
C.I.F. + tax value

F.O.B. value 1.28 1.21 1.14 1.19 1.15 1.18 1.15

No. of exporting countries 210 219 213 216 213 221 224

No. of imported varieties 483,286 480,363 457,000 509,524 594,918 633,008 649,561

Notes: Tax value includes import tariff and value-added tax (VAT). The number of varieties corresponds to the number of
country-firm-product combination imported by Colombia in a given year.

93The corresponding Stata code is in the cleanFirmsNames.do.
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Figure 8: Monthly export shares and exposure to aggregate exchange rate shocks

Notes: The left panel reports the year-over-year change in the Peso-to-Dollar exchange rate for each month in 2009. The
right panel reports monthly export sales shares for the two largest US firms serving product code HS8431490000—namely,
Caterpillar and Machinery Corp. of America.

N Illustrative Example for our Instrumental Variable

This section presents an example to elucidate the logic behind our shift-share instrument, pre-
sented in Section 6. The example compares two major U.S. firms that dominate exports to Colombia
in product code HS8431490000 (PARTS AND ATTACHMENTS OTHER FOR DERRICKS). We have chosen
this product code because it features two of the biggest exporters to Colombia: "CATERPILLAR" and
"MACHINERY CORPORATION OF AMERICA."

The left panel of Figure 8 shows the year-over-year change in the Peso-to-Dollar exchange rate for
each month in 2008. The right panel plots monthly export shares for "CATERPILLAR" and "MACHIN-
ERY CORPORATION OF AMERICA" of HS8431490000. Notice that export patterns from "CATERPILLAR"
and "MACHINERY CORPORATION OF AMERICA" are markedly different. The former exports primar-
ily in the first half of the fiscal year, while the latter exports primarily in the second half. The prices
charged by these two firms are, thus, differentially affected by aggregate exchange rate shocks.

O Robustness Checks: Import Demand Estimation

This appendix reports three robustness checks that we described in Section 6. The first check
addresses the possibility that firms set prices in forward-looking manner. To restate the issue, when
there are lags in inventory clearances, firms’ optimal pricing decisions may be forward-looking. If
true, such price-setting behaviors can violate assumption (a1). To address this concern, we reconstruct
our shift-share instrument using 4 lags instead of 1. If inventories clear in at most 4 years, we can
deduce that pricing decisions do not internalize expected demand shocks beyond the 4 year mark. As
a result, E

[
p̃jkt−4(ω, m)∆ ln φωjkt

]
= 0, and this more-stringent instrument will satisfy the exclusion

restriction. The top panel in Figure 9 compares the estimated σk and µk under the new and baseline
estimations. Evidently, the ordering and magnitude of the estimated elasticities is rather preserved
across industries. More importantly, the new estimation retains the negative correlation between σk

and µk, which is the key assumption in Proposition 1.
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The second check addresses the possibility that, in the presence of cross-inventory effects, ∆ ln φωjkt

may encompass omitted variables that concern firms’ dynamic inventory management decisions.
These decisions internalize exchange rate movements, which may violate the identifying assumption
(a2), i.e., E

[
∆ ln Ejt(m)∆ ln φωjkt

]
̸= 0. To address this concern, we reestimate the firm-level import

demand function while directly controlling for changes on the annual exchange rate. In that case,
E
[
zjk,t(ω) ∆ ln φωjkt | ∆ ln Ejt

]
, and the exclusion restriction will be satisfied insofar as dynamic de-

mand optimization is a concern. The middle panel in Figure 9 compares the estimated σk and µkunder
the new and baseline estimations. Evidently, the ordering and magnitude of the estimated elastici-
ties is rather preserved across industries. More importantly, the new estimation retains the negative
correlation between σk and µk, which is the key assumption in Proposition 1.

The third check addresses large multi-product firms that export multiple product varieties to
Colombia in a given year. Suppose a multi-product firm ω exports many products including products
k and g to Colombia in year t. If demand shock are correlated across the varieties supplied by this
firm (i.e., E

[
∆ ln φωjkt ∆ ln φωjgt

]
̸= 0), Assumption (a2) may be violated despite each variety’s market

share being infinitesimally small. To address this issue, we reestimate the firm-level import demand
function on a restricted sample that drops excessively large firms with a within-national market share
that exceeds 0.1%. The bottom panel in Figure 9 compares the estimated σk and µkunder the new
and baseline estimations. Evidently, the ordering and magnitude of the estimated elasticities is rather
preserved across industries. More importantly, the new estimation retains the negative correlation
between σk and µk, which is the key assumption in Proposition 1.

P Estimating the Import Demand Function in Levels

Our preferred estimates for µk and σk are obtained by estimating a firm-level import demand func-
tion in first-differences—see Section 6. The first-difference approach for estimating elasticities in this
context can be traced back to the seminal work of Feenstra (1994) and Broda and Weinstein (2006)—
although both studies rely on country-level rather than firm-level data. Another body of literature
estimates the trade elasticity by fitting a country-level import demand function in log-levels, while
controlling for appropriate fixed effects (e.g., Hummels, Lugovskyy, and Skiba (2009); Caliendo and
Parro; Shapiro (2016)).

Recently, Boehm et al. (2020) have outlined the advantages and disadvantages of each approach:
On the one hand, the first-difference approach performs better at handling the identification challenge
poised by endogenous policy choices and omitted variable bias. On the other hand, the first difference
estimator—at least when applied to country-level data—may not necessarily identify the long-run
elasticity, which is the desired target for static trade models.

These issues pose a lesser problem for our firm-level estimation. We articulate this claim in two
steps. First, we detail the long- versus short-run dilemma identified by Boehm et al. (2020), and explain
why the same dilemma does not necessarily plague our firm-level estimation. Second, we establish
our claim empirically by re-estimating our firm-level import demand function in levels. This exer-
cise encouragingly confirms that our estimation in levels yields very similar results to our baseline
estimation in differences.
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Figure 9: Robustness checks to address challenges to the identification of σk and µk
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The dilemma facing country-level estimations. Country level trade flows—which are traditionally
used to estimate the trade elasticity—can be decomposed as follows:

X̃ji,k = Nji,k p̃ji,kqji,k

where X̃ji,k denotes gross sales corresponding to origin j–destination i–industry k; p̃ji,kqji,k denotes aver-
age sales per firm (i.e., the intensive margin) and Nji,k denotes the total mass of firms associated with
transaction ji, k (i.e., the extensive margin). Accordingly, the long-run trade elasticity is composed of
an extensive and an intensive margin component:

trade elasticity ∼
∂ ln X̃ji,k

∂ ln(1 + tji,k)
=

∂ ln Nji,k

∂ ln(1 + tji,k)︸ ︷︷ ︸
εn

+
∂ ln p̃ji,kqji

∂ ln(1 + tji,k)︸ ︷︷ ︸
εx

.

The issue raised by Boehm et al. (2020) concerns the fact that researchers do not separately observe
Nji,k and p̃ji,kqji,k in country-level datasets. A standard solution to this limitation is to assume away
firm-selection (i.e., set Nji,k = Nj,k). Under this assumption, one can recover the trade elasticity by
estimating an import demand function that controls for Nj,k with origin-industry fixed effects. Crudely
speaking, this solution is analogous to omitting the extensive margin component, i.e., setting εn = 0.

In practice, however, Nji,k may feature a bilateral element that accounts for firm-selection and
which varies with the bilateral tariff rate—even after we control for a full set of origin and destination
fixed effects. As noted above, traditional techniques that estimate the import demand function in levels
with origin/destination fixed effects, are unable to account for the bilateral nature of Nji,k. As such,
traditional log-level estimators often suffer from an omitted variable bias.

Boehm et al. (2020) argue that we can overcome the omitted variable bias by estimating the country-
level import demand function in differences rather than levels. Under this approach, however, one
must employ long differences (over a sufficiently long time horizon) to credibly estimate the extensive
margin component, εn. Nonetheless, the long-difference estimator may still fall short if tariff changes
occur unevenly over the time-differencing horizon. In such cases, a correction must be applied to the
estimated trade elasticity to account for lumpy longitudinal tariff changes.

Importantly, these limitations do not plague our firm-level estimation. We directly observe firm-
level sales and need not to infer changes in Nji,k from changes in country level trade flows. Our data
explicitly encompasses information on Nji,k and our identification strategy relies on the cross-sectional
variation in firm-level variables within importer–HS10 product–year cells. With this level of disaggre-
gation, our estimation is closer in spirit to the Industrial Organization literature on markup estimation.
This literature routinely uses first difference estimators to recover markups (see, for example, equa-
tions 17-19 and related discussion in De Loecker and Warzynski (2012)). These markups estimates
have been routinely used to discipline steady state models in the Macroeconomics literature (e.g.,
Baqaee and Farhi (2020b)).

Re-estimating our firm-level import demand function in levels. Above, we presented a concep-
tual argument that (compared to traditional country-level estimations) firm-level estimations should
yield relatively similar results whether the import demand is estimated in levels or in first differences—
provided that appropriate instruments are employed to adequately handle reverse causality. To illus-
trate the same point empirically, we re-estimate our firm-level import demand function in levels with
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two-ways fixed effects. We then compare the two-ways-fixed-effects estimates for µk = 1
γk−1 and σk with

our baseline estimates. The estimating equation in log-levels can be expressed as follows:

ln x̃j,kt(ω) = (1 − σk) ln p̃j,kt (ω) +

[
1 − σk − 1

γk − 1

]
ln λj,kt (ω) + Dkt︸︷︷︸

HS10-year FE

+ φjk(ω)︸ ︷︷ ︸
HS10-firm FE

+ φωjkt. (114)

Recall that x̃ ≡ p̃q denotes gross firm-level sales value; p̃ denotes the consumer price which includes
taxes and tariffs; λj,kt(ω) denotes the within-origin j×product k expenditure share on firm-level variety
ω; Dkt accounts for product–year fixed effects, while φjk(ω) accounts for product-firm-origin fixed
effects. The above equation differs from our baseline estimating equation in that the firm-product
fixed effect, φjk(ω), is not differenced out. Instead the equation is estimated in levels.

As in the baseline case, we estimate the Equation (114) using a 2SLS estimator. To this end, we mod-
ify our original shift-share instrument to make it consistent with the fixed-effects estimation, which is
conducted in levels. The new instrument is calculated as follows

źj,kt(ω) =
12

∑
m=1

sj,kt−1 (ω, m) ln Ejt (m)

where sj,kt−1 (ω, m) denotes the lagged share of Month m sales in firm ω’s total annual export sales.
Ejt(m), as before, denotes the exchange rate (between Origin j’s currency and the Colombian Peso)
in Month m of the current year. The other instrumental variables are adjusted accordingly, to be
consistent with our estimation that is conducted in levels rather than in differences.

The estimation results are reported in Table 7. The estimated values for σk and µk =
1

γk
− 1 are en-

couragingly similar to the baseline (first-differences) estimates. Most importantly, the new estimation
quasi-maintains the ranking of industries in terms of the underlying degree of national-level market
power (σk) and firm-level market power. Later, in Appendix X, we recalculate the gains from optimal
policy using the newly-estimated µk’s and σk’s. Encouragingly, the implied gains are starkly similar
to those implied by our baseline estimates.

Q Comparison of Scale Elasticity Estimation Techniques

This appendix overviews the various approaches to scale elasticity estimation, offering some per-
spective on the advantages of our demand-based estimation technique. To provide a fair description
of the existing techniques, we use an extended theoretical framework that accommodates (i) scale
economies due to love-for-variety à la Krugman (1980), (ii) scale economies due to Marshallian exter-
nalities, and (iii) diseconomies of scale due to quasi-fixed factors of production. To this end, we begin
this appendix by introducing a richer firm-level production function that accommodates Marshallian
externalities and quasi-fixed inputs.

General Production Function—Firm ω located in origin i–industry k employs labor (L) and quasi-
fixed inputs (F) using the following production function:

qi,k (ω) = φi,k (ω)
(

Li,k (ω)1−βi,k Fi,k (ω)βi,k
)
× Lψk

i,k .

Quasi-fixed inputs (Fi,k (ω)) correspond to land, physical capital, or industry-specific human capital,
the supply of which is fixed at the industry-level, i.e., ∑ω Fi,k (ω) = Fi,k. The last term in the production
function accounts for Marshallian externalities, whereby the TFP of firm ω increases with industry-
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Table 7: Two-ways fixed effects estimation results

Estimated Parameter

Sector ISIC4 codes σk − 1 σk−1
γk−1 µk Obs. Weak

Ident. Test

Agriculture & Mining 100-1499 4.563 0.698 0.153 10,762 3.07
(1.739) (0.132) (0.089)

Food 1500-1699 2.476 0.927 0.374 17,594 5.01
(0.818) (0.050) (0.284)

Textiles, Leather & Footwear 1700-1999 3.256 0.685 0.210 110,925 59.94
(0.297) (0.023) (0.024)

Wood 2000-2099 2.093 0.893 0.427 5,282 2.12
(1.196) (0.191) (0.801)

Paper 2100-2299 7.858 0.895 0.114 35,058 2.65
(3.953) (0.154) (0.177)

Petroleum 2300-2399 0.397 0.698 1.758 3,675 2.53
(0.342) (0.081) (1.584)

Chemicals 2400-2499 4.738 0.913 0.193 127,946 29.71
(0.496) (0.031) (0.071)

Rubber & Plastic 2500-2599 4.025 0.664 0.165 101,730 9.95
(0.791) (0.062) (0.045)

Minerals 2600-2699 3.390 0.681 0.201 173,432 20.03
(0.453) (0.036) (0.035)Basic & Fabricated Metals 2700-2899

Machinery 2900-3099 4.402 0.710 0.161 257,788 19.88
(1.765) (0.080) (0.065)

Electrical & Optical Equipment 3100-3399 0.756 0.609 0.806 246,597 19.25
(0.300) (0.015) (0.099)

Transport Equipment 3400-3599 2.156 0.514 0.238 147,772 11.37
(0.462) (0.032) (0.053)N.E.C. & Recycling 3600-3800

Notes. Estimation results of Equation (16). Standard errors in parentheses. The estimation is conducted with HS10
product-year fixed effects. All standard errors are simultaneously clustered by product-year and by origin-product, which
is akin to the correction proposed by Adao et al. (2019). The weak identification test statistics is the F statistics from the
Kleibergen-Paap Wald test for weak identification of all instrumented variables. The test for over-identification is not
reported due to the pitfalls of the standard over-identification Sargan-Hansen J test in the multi-dimensional large datasets
pointed by Angrist et al. (1996).

wide employment, Li,k, at a constant elasticity ψk.

Aggregation of Firm-Level Prices into Industry-Level Prices Indexes—Cost-minimization and profit-
maximization imply that firm ω sets a price equal to pin,k (ω) =

(
γk

γk−1

)
dij,k

φi,k(ω)
w1−βk

i υ
βk
i,k Lψk

i,k . Variable
υi,k denotes the unit price of the quasi-fixed input in industry k, which per cost minimization satisfies
υi,k = 1−βk

βk

wi Li,k

Fi,k
. Supposing that preferences have a nested-CES parameterization (per Assumption

A1), we can use the logic in Section 2 to aggregate firm-level prices into industry-level price indexes
subject to free entry (Mi,k = Li,k/γk f e

k ). Doing so yields the following producer price index for goods
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associated with origin i–destination n–industry k,

Pin,k =

(
γk

γk − 1

)
τin,k

φi,k
wi L

−
(

1
γk−1+ψk

)
+βk

i,k , (115)

where φi encompasses constant parameters including (average) firm productivity. Our baseline Krug-
man model is a special case of this equation, in which ψk = βk = 0. Though, as we argue shortly, our
estimation of the scale elasticity is insensitive to βk = 0. Based on Equation 115, the scale of employ-
ment, Li,k, affects producer prices through increasing-returns to scale (i.e., Jacobian (love-for-variety) +
Marshallian externalities) and decreasing returns to scale due to quasi-fixed inputs. More specifically,
∂ ln Pin,k/∂ ln Li,k = −

(
1

γk−1 + ψk

)
+ βk, where the sub-elasticity

(
1

γk−1 + ψk

)
accounts for increasing-

returns to scale that disrupt allocative efficiency, while βk accounts for decreasing-returns to scale that
do not undermine allocative efficiency given equilibrium constraints. Hence, for policy analysis, it
is crucial to separately identify the former sub-elasticity from the latter—as the degree of allocative
inefficiency depends solely on the sub-elasticity

(
1

γk−1 + ψk

)
. The following remark formalizes this

point.

Remark 1. For policy evaluation, it is crucial to separately identify 1
γk−1 + ψk from βk. The logic is that if

1
γk−1 + ψk = 0, the market equilibrium is constrained-efficient irrespective of βk, and there is no scope for
improving allocative efficiency with policy. Correspondingly, the corrective gains from policy depend on the
following notion of scale elasticity that differs from the reduced-form elasticity, ∂ ln Pin,k

∂ ln Li,k
:

µk = (γk − 1)−1︸ ︷︷ ︸
Jacobian (love-for-variety)

+ ψk︸ ︷︷ ︸
Marshallian

∼ scale elasticity

The above remark is an immediate corollary of the First Welfare Theorem. In particular, letting
γk → ∞ and ψk = 0, our theoretical model reduces to a simple Arrow-Debreu model to which
the fundamental welfare theorems apply. Our emphasis on µk ̸= ∂ ln Pin,k/∂ ln Li,k, as we elaborate
shortly, speaks to one of the possible techniques for scale elasticity estimation, which infers µk from
the reduced-form elasticity, ln Pin,k/∂ ln Li,k.

Section 4 unveiled another consideration when estimating scale elasticities. We, in particular, ar-
gued that the cross-industry covariance between the scale elasticity (µk) and the trade elasticity (σk)
is a crucial determinant of policy outcomes in open economies. Hence, it is advantageous to estimate
these elasticities in a manner that ascertains mutual consistency.

Remark 2. Policy outcomes in open economies depend crucially on the cross-industry covariance between the
scale and trade elasticities, i.e., Cov (µk, σk). So, for policy evaluation, it is advantageous to jointly estimate µk

and σk in a way that ascertains mutual consistency.

Taking these remarks into consideration, we describe three techniques for estimating scale elastic-
ities and identify their advantages and disadvantages. We begin with the demand-based estimation
technique developed in Section 6 of this paper.

Technique 1: Firm-Level Demand Estimation

Firm-level demand estimation can identify the scale elasticity, insofar as scale effects are driven by
love-for-variety à la Krugman (1980). Demand estimation can also simultaneously identify the trade
elasticity, σk, which is advantageous considering Remark 2. To unpack these points, let us revert to our
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generalized Krugman model for a moment while retaining the assumption that production exhibits
diseconomies of scale (i.e., βi,k > 0). In this setting, which widely used for trade policy analysis, the
scale and trade elasticities become

µk =
1

γk − 1
∼ scale elasticity; σk ∼ trade elasticity.

The reason we can infer µk from demand parameters is that the scale elasticity in Krugman (1980)
reflects the extent of love-for-variety—the social benefits of which are not internalized by firms’ entry
decisions. Recall from Section 2 (Assumption A1) that the nested-CES demand function facing firm ω

can be written in terms of sales (x̃ ≡ p̃ × q) as follows

x̃ni,k (ω) = ξni,k (ω)

(
p̃ni,k (ω)

P̃ni,k

)1−γk
(

P̃ni,k

Pi,k

)1−σk

Yi,k.

One immediately notices that estimating the above function simultaneously determines the scale elas-
ticity (µk = 1/ (γk − 1)) and the trade elasticity (σk). To perform the estimation, we take inspiration
from Berry (1994) and rearrange and log-linearize the above demand function to obtain our estimating
equation:

ln x̃ni,k (ω) = (1 − σk) ln p̃i,k (ω) +

(
1 − σk − 1

γk − 1

)
lnλni,k (ω) + Di,k + ε in,k (ω) ,

where λni,k (ω) =
x̃in,k(ω)

∑ω′ x̃in,k(ω′) is firm ω’s observed conditional market share within nest (in, k); Di,k

account for importer-industry fixed effects; and the demand residual ε in,k (ω) encompasses good-
specific demand-shifters and measurement error. Our identification of the demand function relies
on a shift-share instrument that constitutes a firm-specific cost- or supply shifter—see Section 6 for
specific details.

Advantages and Disadvantages of Technique 1—The key advantage of our the demand-based estima-
tion technique (relative to supply-based alternatives) is that it simultaneously identifies σk and µk—
which is crucial following Remark 2. Moreover, our demand-based estimation (unlike supply-based
techniques) is robust to the presence of diseconomies of scale, as measured by βk. Our estimation tech-
nique is not merely limited to the Krugman (1980) model either, as it also identifies the scale elasticity
in the more general Melitz (2003)-Pareto setting (see Appendixes D and Q.1). A clear limitation of our
approach, on the other hand, is its inability to identify Marshallian externalities, as measured by ψk.

Technique 2: National Labor Content Supply Estimation

The genesis of this technique is the observation that the producer price index, Pin,k, can be regarded
as the of price of country i’s labor services in destination n. Under this interpretation, the product of
the trade and scale elasticity can be recovered from the labor content supply elasticity, ∂ ln Pin,k

∂ ln Li,k
, insofar

as production involves no quasi-fixed inputs (βk = 0). As for the actual estimation, the trick is that
even though aggregate price indexes (Pin,k) are unobserved, they can be proxied by aggregate sales.
To sketch out the logic, let X̃in,k = P̃in,kQin,k denote gross sales which satisfy the gravity equation in
our framework. In particular,

1
1 − σk

ln X̃in,k =

(
1

γk − 1
+ ψk − βk

)
ln Li,k + Di,k + Dn,k + ϕij,k,

where Di,k and Dn,k are labor-size-adjusted exporter and importer fixed effects and ϕin,k is the bilateral
resistance term. Suppose Di,k = D̃i + D̃k + εA

i,k and ϕin,k = ϕin + ϕnk + εB
in,k, where εA and εB are mean-
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zero. Appealing to the above equation and noting that 1
γk−1 + ψk = µk, we can produce the following

equation relating gross industry-level sales to employment size,
1

1 − σk
ln ∑

n
X̃in,k = (µk − βk) ln Li,k + Dk + Di + ε i,k, (116)

where Di ≡ D̃i + ln ∑n (exp (ϕin)) and Dk ≡ D̃k + ln ∑n [exp (ϕnk)] are country and industry fixed
effects, while the error term, ε i,k, collects εA

i,k (production cost shifters) and εB
in,k’s (trade cost shifters).

Notice that ε i,k is akin to a supply shock here, but this interpretation rests on the implicit assumption
that bilateral resistance terms have no demand-driven component. Importantly, the left-hand side
variable in Equation 116 can be regarded a proxy for the price of country i’s labor services in industry
k. To elucidate this connection, note that ∑n X̃in,k = P1−σk

ii,k ∑n

[
τni,kdni,k

(
P̃σk−1

n,k

)
Yn,k

]
where τni,k collects

all tax instruments associated with triplet in, k. It then follows that 1
1−σk

ln ∑n X̃in,k ∼ Pii,k + δn,k, where

δn,k ≡ ∑n

[
τni,kdni,k

(
P̃σk−1

n,k

)
Yn,k

]
can be broken down into components that are absorbed by Dk, Di,

and ε i,k. Putting the pieces together, Equation 116 can be regarded as a supply function for country i’s
labor services, with ε i,k representing idiosyncratic supply shocks.

One can utilize macro-level sales and employment data to estimate the following combination of
parameters based on Equation 116:

∂ ln ∑n X̃in,k

∂ ln Li,k
∼ (µk − βk) (σk − 1)

Identification in this case relies on plausibly exogenous demand-shifters that are orthogonal to ε i,k—
see Bartelme et al. (2019) for one such application. The product of the trade and scale elasticity can be,
subsequently, recovered from (µk − βk) (σk − 1) insofar as production involves no quasi-fixed inputs,
i.e., βk = 0. To isolate the scale elasticity (µk) from the trade elasticity (σk − 1), one must additionally
rely on externally-estimated values for the trade elasticities.

Advantages and Disadvantages of Technique 2—This technique can, in principle, detect Marshallian
externalities, but this advantage comes with limitations. Technique 2 cannot separately identify the
scale elasticity, µk, from βik—which is crucial following Remark 1. This limitation can be especially
problematic in industries like petroleum, mining, or heavy manufacturing that rely extensively on
quasi-fixed inputs (Morrison (2012)). Another drawback of this technique is its inability to isolate the
scale elasticity from the trade elasticity. So, to isolate the scale elasticity, one must rely on externally-
estimated trade elasticity values or vice versa—which, following Remark 2, is far from ideal insofar as
one seeks to use these elasticities for policy evaluation in open economies.

Technique 3: Production Function Estimation

This technique is an augmentation of the standard production function estimation technique. Sup-
pose we posses firm-level data on real output, qi,k (ω), and input quantities, Xi,k (ω) = {Li,k (ω) , Fi,k (ω) , ...}.
We can, then, estimate the following log-linear production function, which includes industry-level
employment as an additional covariate to identify the Marshallian component of the scale elasticity,
ψk:

ln qi,k (ω) = βk · ln Xi,k (ω) + ψk ln Li,k + ε i,k (ω) .

The residual term ε i,k (ω), in this specification, encompasses idiosyncratic firm productivity shifters
and measurement error. The above function can be all but impossible to estimate at scale given the
scarcity of firm-level data on real input and output quantities. To bypass this challenge, existing appli-
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cations of the production function technique often estimate an aggregate version of the above equation
that regresses industry-wide output, Qi,k = ∑ω qi,k (ω), on input quantities, Xi,k = ∑ω Xi,k (ω)—see
e.g., Basu and Fernald (1997). The scale elasticity is then recovered as µk = ∑ f

(
β f ,k
)
− 1, where f

indexes production inputs. Under this approach, Qi,k and Xi,k are calculated by deflating nominal
sales and cost data using price indexes calculated by statistical agencies. The identification challenges
relating to production function estimation of this sort are well-documented in the literature, so we
refer readers to Ackerberg, Caves, and Frazer (2015) for a comprehensive synthesis of these issues.

Advantages and Disadvantages of Technique 3—The production function technique can detect Mar-
shallian externalities, similar to Technique 2. It is also robust to the presence of quasi-fixed inputs, like
Technique 1. Despite these appealing properties, the production function technique exhibits crucial
limitations given its reliance on externally-constructed price indexes. This approach can credibly iden-
tify the scale elasticity, µk, only if the price indexes constructed by statistical agencies have adequately
accounted for product quality and love-for-variety—which is often not the case. Another disadvan-
tage of this approach is that it relies on domestic production data, meaning that the same data cannot
be used to identify the trade elasticity (σk − 1). Instead, one must rely on completely different data to
estimate (σk − 1), which can compromise mutual consistency as emphasized by Remark 2.

Q.1 Demand-Based Estimation: Krugman vs. Melitz

As discussed earlier, the demand parameters, γk, fully determine the markups and scale elasticities
in our baseline Krugman model (i.e., µk = 1

γk−1 ). Section 2 also noted that the relationship between
demand parameters and markups/scale elasticities is amended in richer environments. One such
canonical case is the Melitz-Pareto model where firms incur a fixed overhead cost to serve individual
markets. Following Appendix D, the markup and scale elasticities in this environment depend on the
shape of the Pareto firm-level productivity distribution, ϑk, in addition to demand parameter, γk. In
particular,

[Melitz-Pareto Model] µRE
k =

γkϑk

(γk − 1) (ϑk + 1)− ϑk
− 1 ∼ markup µFE

k =
1
ϑk

∼ scale elasticity

To provide some intuition, the adjusted markup, γkϑk
(γk−1)(ϑk+1)−ϑk

, corresponds to the gross markup,
γk

γk−1 , net of fixed cost payments. From a policy standpoint, the fraction of the markup paid to cover
fixed costs is not a source of misallocation. In fact, if fixed cost payments consume the entire gross
markup, the market equilibrium will be constrained efficient. We present a quantitative analysis of
the Melitz-Pareto model in Appendix X, elaborating more on the model’s implications. Below, we
discuss other settings in which the markup and scale elasticity values depend on factors other than
the demand parameter γk.

Q.2 Markups under Alternative Market Conducts

Our analysis thus far assumed that firms compete under monopolistic competition. Beyond this
case, markups depend not only on demand parameters but also the conduct parameter. The markup
associated with goods from origin i–industry k is, in particular, given by

µi,k = υi,k ×
γk

γk − 1
,
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where υi,k denotes the conduct parameter. Following Weyl and Fabinger (2013),(1) υi,k = 1 under
monopolistic or Bertrand competition, (2) υi,k = 0 under perfect competition,94 and (3) υi,k = 1/Ni,k

under Cournot competition. In the spirit of Berry et al. (1995) and Berry (1994), our main analysis
recovered markups from demand parameters by setting υi,k = 1. We also discussed, in detail, how
our optimal policy results change if we were to assume perfect or Bertrand competition instead.

Below, we discuss how our quantitative results may be be impacted by Cournot competition. The
crucial takeaway from our baseline markup estimation was that trade elasticities and markups are
negatively correlated across industries. This pattern may weaken or even reverse if the number of
firms,Ni,k, is systematically correlated with γk. We investigate this possibility, using the World Bank’s
EXPORTER DYNAMICS DATABASE (EDD) described in Fernandes, Klenow, Meleshchuk, and Pierola
(2018). The publicly-available version of the EDD features data on firm-level exports provided by
customs agencies from 60 countries for the 1997–2013 period. One of these datapoints is the number
of exporters per origin and HS6 product code, from which we can infer Ni,k. Using this information, we
update our baseline markup estimates as, µi,k = 1

Ni,k
× γk

γk−1 to make them compatible with Cournot
competition. We then regress the our estimated trade elasticity (σk − 1) on the Cournot-compatible
markup values to investigate wether the negative correlation is persevered.

The results reported in Table 8 indicate that the negative relationship between the trade elasticities
and firm-level markups are robust to relaxing the monopolistic competition assumption with Cournot
competition. The negative relationship becomes slightly weaker but remains significant and strong,
nonetheless. Note once more, this structural relationship is the crucial driving force behind our quanti-
tative findings that center around immiserizing growth. As detailed in Section 4, if Covk (σk, µi,k) < 0,
non-cooperative second-best trade policies are ineffective at correcting misallocation in domestic in-
dustries and cooperative domestic policies trigger immiserizing growth unless they are internationally
coordinated.

Table 8: The tension between ToT and sectoral misallocation under Cournot competition

dependent: trade elasticity (σk − 1)

µi,k =
1

Ni,k
× γk

γk−1 -0.138∗∗∗ -0.138∗∗∗ -0.279∗∗∗

(0.0111) (0.0111) (0.0157)

Year fixed effects No Yes Yes
Origin fixed effects No No Yes
Observations 3,221 3,221 3,221

Note: This paper relationship between the firm-level markup under Cournot competition, 1
Ni,k

× γk
γk−1 , and the

trade elasticity, σk − 1. Data for Ni,k are from the World Bank’s Exporter Dynamics Database. Parameters σk
and γk are from the demand estimation conducted in Section 6, where k denotes a WIOD industry. *** denotes
significant at the 1\% level.

Q.3 Scale Elasticities under Arbitrary Love-for-Variety

In our baseline Krugman model, there is a one-to-one link between the degree of firm-level market
power and the love-for-variety in each industry. Baqaee and Farhi (2020a) demonstrate that this link

94Likewise, under Bertrand competition with homogeneous sub-products, υi,k = 0.
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has deep root, beyond CES models. This tight link, however, can be broken by introducing arbitrary
love-for-variety into the CES demand aggregator à la Benassy (1996). In particular, suppose the sub-
national CES aggregator in industry k is adjusted as follows:

Qji,k =

(
Nςk

j,k ×
∫

ω∈Ωj,k

φji,k(ω)
1

γk qji,k (ω)
γk−1

γk dω

) γk
γk−1

.

Parameter ςk regulates the love-for-variety as measured by the number of firm-level varieties, Nj,k.
The above CES aggregator coincides with our baseline CES aggregator if ςk = 0. It is straightforward
to check that firm-level markups are unaffected by ςk, as individual firms treat Nj,k as given when
setting their prices. The scale elasticity, however, should be adjusted as follows:

[Krugman+Benassy] µk =
1

γk − 1
∼ markup 1+ψk =

(
1 +

1
γk − 1

)
(1 + ςk) ∼ scale leasticity

The optimal domestic subsidy in this case is 1+ s⋆k =
(

1 + 1
γk−1

)
(1 + ςk), and the gains from restoring

efficiency are, accordingly, amplified. Notice, markup heterogeneity is no longer necessary to justify
policy intervention. The heterogeneity in ςk is sufficient, which echos Epifani and Gancia’s (2011)
findings in a single-sector economy.

Estimating the love-for-variety parameter, ςk, with sales and price data is, however, challenging.
In our firm-level estimation, Nςk

j,k will appear as an origin-and-industry-specific demand shifter and will
be absorbed by our extensive set of fixed effects. Estimating ςk with national-level sales and price data
faces the same complications as external economies of scale. In particular, one cannot purge elasticity,
ςk, from the diseconomies of scale elasticity without explicit data on quasi-fixed factors of production.
As detailed in Section 6.5, the latter elasticity does not contribute to inefficiency and must be excluded
from the optimal Pigouvian subsidy.

R Examining the Plausibility of Estimates

In this Appendix we examine the plausibility of our estimated parameters from a different angle.
We show that when our estimated parameters are plugged into a workhorse trade model, they resolve
the income-size elasticity puzzle. This puzzle, as noted by Ramondo et al. (2016), concerns the fact that
a large class of quantitative trade models—including Krugman (1980), Eaton and Kortum (2001), and
Melitz (2003)—predict a counterfactually high income-size elasticity (i.e., the elasticity at which real
per capita income increases with population size). One straightforward remedy for this counterfac-
tual prediction is introducing domestic trade frictions into the aforementioned models. This treatment,
however, is only a partial remedy. As shown by Ramondo et al. (2016), even after controlling for di-
rect measures of internal trade frictions, the predicted income-size elasticity remains counterfactually
strong.

To test macro-level predictions, we first produce economically-representative estimates for σk and
µk. We do so by pooling data across all manufacturing and non-manufacturing industries and esti-
mating Equation 16 on theses two pooled samples.The estimation results are reported in Table 9, and
imply that σ ≈ 3.8 and σ−1

γ−1 ≈ 0.66 across manufacturing industries. For the sake of comparison, the
same table also reports estimates produced using the standard OLS estimator.

To understand the income-size elasticity puzzle, consider a single-industry version of the model
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Table 9: Pooled estimation results

Manufacturing Non-Manufacturing

Variable (log) 2SLS OLS 2SLS OLS

Price, 1 − σ -2.766*** 0.202*** -5.540*** 0.102***
(0.186) (0.003) (0.706) (0.006)

Within-national share, 1 − µ(σ − 1) 0.340*** 0.816*** 0.167*** 0.804***
(0.010) (0.002) (0.033) (0.009)

Weak Identification Test 259.90 ... 28.83 ...
Under-Identification P-value 0.00 ... 0.00 ...
Within-R2 ... 0.78 ... 0.73
N of Product-Year Groups 21,416 8,903
Observations 1,130,742 204,828

Notes: *** denotes significant at the 1% level. The Estimating Equation is (16). Standard errors in brackets are robust to
clustering within product-year. The estimation is conducted with HS10 product-year fixed effects. The reported R2 in
the OLS specifications correspond to within-group goodness of fit. Weak identification test statistics is the F statistics
from the Kleibergen-Paap Wald test for weak identification of all instrumented variables. The p-value of the under-
identification test of instrumented variables is based on the Kleibergen-Paap LM test. The test for over-identification is
not reported due to the pitfalls of the standard over-identification Sargan-Hansen J test in the multi-dimensional large
datasets pointed by Angrist et al. (1996).

presented in Section 2. Such a model implies the following expression relating country i’s real income
per worker or TFP (Wi = wi/Pi) to its structural efficiency, Ai, population size, Li, trade-to-GDP ratio,
λii, and a measure of internal trade frictions, τii:

Wi = γ Ai Lµ
i λ

− 1
σ−1

ii τ−1
ii . (117)

The standard Krugman model assumes extreme love-of-variety (or extreme scale economies), which
implies µ = 1/(σ − 1) and precludes internal trade frictions, which results in τii = 1. Given these two
assumptions, we can compute the real income per worker predicted by the standard Krugman model
and contrast it to actual data for a cross-section of countries.

For this exercise, we use data on the trade-to-GDP ratio, real GDP per worker, and population size
for 116 countries from the PENN WORLD TABLES in the year 2011. Given our micro-estimated trade
elasticity, σ − 1, and plugging τii = 1 as well as µ = 1/(σ − 1) into Equation 117, we can compute the
real income per worker predicted by the Krugman model. Figure 10 (top panel) reports these predicted
values and contrasts them to factual values. Clearly, there is a sizable discrepancy between the income-
size elasticity predicted by the standard Krugman model (0.36, standard error 0.03) and the factual
elasticity (-0.04, standard error 0.06). To gain intuition, note that small countries import a higher share
of their GDP (i.e., posses a lower λii), which partially mitigates their size disadvantage. However, even
after accounting for observable levels of trade openness, the scale economies underlying the Krugman
model are so strong that they lead to a counterfactually high income-size elasticity.

One solution to the income-size elasticity puzzle is introducing internal trade frictions into the
Krugman model (i.e., relaxing the τii = 1 assumption). Ramondo et al. (2016) perform this task using
direct measures of domestic trade frictions. Their calibration is suggestive of τii ∝ L0.17

i . Plugging this
implicit relationship into Equation 117 and using data on population size and trade openness, we com-
pute the model-predicted real income per worker and contrast it with actual data in Figure 10 (middle

123



panel). Expectedly, accounting for internal frictions shrinks the income-size elasticity. However, as
pointed out by Ramondo et al. (2016), the income-size elasticity remains puzzlingly large.

We ask if our micro-estimated scale elasticity can help resolve the remaining income-size elasticity
puzzle. To this end, in Equation 117, we set the scale elasticity to µ = α/(σ− 1) where α is set to 0.65 as
implied by our micro-level estimation. Then, using data on population size and trade-to-GDP ratios,
we compute the real income per capita predicted by a model that features both domestic trade frictions
and adjusted scale economies. Figure 10 plots these predicted values, indicating that this adjustment
indeed resolves the income-size elasticity puzzle. In particular, the income-size elasticity predicted by
the Krugman model with adjusted scale economies is statistically insignificant (0.02, standard error
0.03), aligning very closely with the factual elasticity.

S Mapping Second-Best Tax Formulas to Data

In this appendix, we present an analog to Proposition 3, but for second-best trade taxes under
restricted entry (as specified by Theorem 2). As in Section 7, we assume that preferences have a CES-
Cobb-Douglas parametrization. We use the “∗∗” superscript indicates that a variable is being evalu-
ated in the counterfactual second-best optimal policy equilibrium. We assume hereafter that countries
do not apply domestic subsidies in the factual equilibrium, i.e., sn,k = 0 for all n ∈ C. Using the hat-
algebra notation and the expression of the good-specific supply elasticity, ωji,k (Equation 10), we can
write the second-best tax formulas in changes as follows:

[optimal import tax] 1 + t∗∗ji,k =
1 + (σk − 1)λ̂ii,kλii,k

1 + 1+µ∗
i

1+µk
(σk − 1)λ̂ii,kλii,k

(
1 + ω∗∗

ji,k

)

[optimal export subsidy] 1 + x∗∗ij,k =
(σk − 1)∑n ̸=i

[
(1 + ω∗∗

ni,g)λ̂nj,kλnj,k

]
1 + (σk − 1)(1 − λ̂ij,kλij,k)

(
1 + µk

1 + µ∗∗
i

)
,

[change in taxes] 1̂ + si,k = 1; 1̂ + tji,k =
1 + t∗∗ji,k

1 + tji,k
; ̂1 + xij,k =

1 + x∗∗ij,k

1 + xij,k
. (118)

Since the rest of the world is passive in their use of taxes, 1̂ + sn,k = ̂1 + tjn,k = ̂1 + xnj,k = 1 for
all n ̸= i. To determine the change in expenditure shares, λ̂ji,k, we need to determine the change in
consumer price indexes. Invoking the CES structure of within-industry demand, we can express the
change in market i–industry k’s consumer price index as

[price indexes] ˆ̃Pi,k =
N

∑
n=1

λni,k

[
̂1 + tni,k

̂1 + xni,k

ŵn

]1−σk
 1

1−σk

. (119)

Given ˆ̃Pi,k, we can calculate the change in expenditure shares λ̂ji,k and revenue shares r̂ji,k as

[expenditure shares] λ̂ji,k =

[
1̂ + tji,k

̂1 + xji,k

ŵj

]1−σk

ˆ̃Pσk−1
i,k

[revenue shares] r̂ji,k =

(
̂1 + xji,k

1̂ + tji,k

λ̂ji,kŶi

)(
N

∑
n=1

̂1 + xjn,k

̂1 + tjn,k

λ̂jn,kŶn

)−1

. (120)
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Figure 10: Resolving the income-size elasticity puzzle

125



The change in wage rates, ŵi, and labor shares, ρ̂i,k, are dictated by the labor market clearing (LMC)
condition, which ensures that industry-level sales match wage payments:

[LMC] (1 + µ∗∗
i )ŵiwiLi = ∑

j∈C

∑
k∈K

[
1 + x∗∗ji,k

1 + t∗∗ji,k
λ̂ij,kλij,kej,kŶjYj

]
. (121)

where the output-weighted average markup in the counterfactual equilibrium is given by

1 + µ∗∗
i =

∑j∈C ∑k∈K

[
1+x∗∗ji,k
1+t∗∗ji,k

λ̂ij,kλij,kej,kŶjYj

]
∑j∈C ∑k∈K

[
1+x∗∗ji,k

(1+µk)(1+t∗∗ji,k)
λ̂ij,kλij,kej,kŶjYj

] . (122)

The change in national expenditure, Ŷi, is governed by the balanced budget (BB) condition, which
ensures that total expenditure matches total income from wage payments and tax revenues:

[BB] ŶiYi = +(1 + µ∗∗
i )ŵiwiLi + ∑

j ̸=i
∑
k

(
t∗∗ji,k

1 + t∗∗ji,k
λji,kλ̂ji,kei,kŶiYi +

1 − (1 + x∗∗ij,k)

1 + t∗∗ij,k
λij,kλ̂ij,kej,kŶjYj

)
. (123)

Equations 118-123 represent a system of 2N + NK+ 2(N − 1)K independent equations and unknowns.
The independent unknowns are, namely, ŵi (N unknowns), Ŷi (N unknowns), ρ̂i,k (NK unknowns),
1̂ + tji,k ((N − 1)K unknowns), and ̂1 + xij,k ((N − 1)K unknowns). Solving the aforementioned system
is possible with information on observable data points, D, and estimable parameters, Θ ≡ {µk, σk}.
Once we solve this system, the welfare consequences of country i’s optimal policy are also fully deter-
mined. The following proposition outlines this result.

Proposition 4. Suppose we have data on observable shares, national accounts, and applied taxes, D=
{

λji,k, rji,k, ei,k, Yi, wiLi, xij,k, tji,k
}

j,i,k,
and information on structural parameters, Θ ≡ {µk, σk}. We can determine the economic consequences of
country i’s second-best optimal policy by calculating X =

{
Ŷi, ŵi, ρ̂i,k, 1̂ + tji,k, ̂1 + xij,k

}
as the solution to the

system of Equations 118-123. After solving for X, we can fully determine the welfare consequence of country i’s
optimal policy as

Ŵn = Ŷn/ ∏
k∈K

ˆ̃Pen,k
n,k , (∀n ∈ C)

where ˆ̃Pn,k can be computed as function of X and data, D, using Equation 119.

T Additional Details about the World Input-Output Database

This appendix presents additional details about the World Input-Output Database analyzed in
Section 7. Table 10 describes our aggregation of WIOD industries into 16 industries. To summarize
the information in this table, we aggregate the ’Agriculture’ and Mining’ industries into one non-
manufacturing industry. We also follow Costinot and Rodríguez-Clare (2014) in two details: First, we
aggregate the ’Textile’ and ’Leather’ industries into one industry. Second, we lump all service-related
industries together treating them as one semi-non-tradable sector.

Following Proposition 3 in Section 7, we need data on observable shares, national accounts, and
applied taxes (D =

{
λji,k, rji,k, ei,k, ρi,k, Yi, wiLi, xij,k, tji,k, si,k

}
j,i,k) to compute the gains from policy. The

WIOD reports data on trade values, Xji,k ≡ Pji,kQji,k, for each origin j–destination i–industry k. The
aggregated version of the data covers N = 33 countries (including the rest of the world) and K = 16
industries. Below, we describe how each element in D is computed based on Xji,k and our estimated
values for µk. Assuming that countries impose no taxes under the status-quo, we can compute national
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income and the wage bill in each country i as follows:

Yi =
K

∑
k=1

N

∑
n=1

Xni,k; wiLi =

∑K
k=1 ∑N

n=1 Xin,k if entry is free

∑K
k=1 ∑N

n=1
1

1+µk
Xin,k if entry is restricted

Next, we can compute the within-industry and industry-level expenditure shares for each market i
based on the following calculations:

λji,k =
Xji,k

∑N
n=1 Xni,k

; ei,k =
∑N

n=1 Xni,k

∑g ∑N
n=1 Xni,g

=
∑N

n=1 Xni,k

Yi
.

Lastly, we can compute the within-industry revenue share and the industry-level labor share in each
country using the following equations:

rin,k =
Xin,k

∑N
n=1 Xin,g

; ρi,k =
∑N

n=1 Xin,k

∑K
g=1 ∑N

n=1 Xin,g
.

U Quantitative Analysis with Exact Formulas

Our optimization-free quantitative approach in Section 7 relied on approximate formulas for the
export supply elasticity. The same analysis, however, can also be conducted with exact formulas. In
this appendix, we demonstrate this point and show that both approaches deliver virtually identical
output. Though, our suggested approximation saves computation time to a notable degree.

As a starting point, we appeal to our exact formula for the (general equilibrium) export supply
elasticity,95

ωji,k ≡
1

rji,kρj,k

[
wiLi

wjLj
ρi,k

(
∂ ln Pii,k

∂ ln Qji,k

)
w,Y,P̃i

+ ∑
n ̸=i

wnLn

wjLj
rni,ρn,k

(
∂ ln Pni,k

∂ ln Qji,k

)
w,Y,P̃i

]
.

As detailed in Appendix,
(

∂ ln Pii,k
∂ ln Qji,k

)
w,Y,P̃i

is a partial derivate holding constant the vector of wages,

income, and “consumer” prices associated with economy i. The matrix consisting of these partial
derivatives can be evaluated by inverting a system of equations as specified by Equation 59. Namely,
(

∂ ln P11,k
∂ ln Q1i,k

)
w,Y,P̃i

· · ·
(

∂P11,k
∂ ln QNi,k

)
w,Y,P̃i

...
. . .

...(
∂ ln PNN,k
∂ ln Q1i,k

)
w,Y,P̃i

· · ·
(

∂PNN,k
∂ ln QNi,k

)
w,Y,P̃i

 = −


∂F1i,k(.)
∂ ln P11,k

· · · ∂F1i,k(.)
∂ ln PNN,k

...
. . .

...
∂FNi,k(.)
∂ ln P11,k

· · · ∂FNi,k(.)
∂ ln PNN,k


−1

︸ ︷︷ ︸
Ai


∂F1i,k(.)
∂ ln Q1i,k

· · · ∂F1i,k(.)
∂ ln QNi,k

...
. . .

...
∂FNi,k(.)
∂ ln Q1i,k

· · · ∂FNi,k(.)
∂ ln QNi,k

 .

where Fni,k(Qi,k, Pk) ≡ Pnn,k − ϱ̄nn,kwn
[
τni,kQni,k + ∑ℓ ̸=i τnℓ,kQnℓ,k

]− µk
1+µk = 0, with the corresponding

derivatives specified in Appendix E.
With the above background, we now explain how the quantitative procedure explained in Sec-

tion 7.1 can be re-done without appealing to approximation or numerical optimization. In summary,
one must now solve the exact optimal tax formulas in conjunction with the equilibrium condition in

95Notice, the above expression for ωji,k precludes cross-industry effects, given our Cobb-Douglas utility parameterization
across industries.
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Table 10: List of industries in the World Input-Output Database

WIOD Sector Sector’s Description Trade Ealsticity Scale Ealsticity

1 Agriculture, Hunting, Forestry and Fishing 6.227 0.143

2 Mining and Quarrying 6.227 0.143

3 Food, Beverages and Tobacco 2.303 0.393

4
Textiles and Textile Products

3.359 0.224
Leather and Footwear

5 Wood and Products of Wood and Cork 3.896 0.229

6 Pulp, Paper, Paper , Printing and Publishing 2.646 0.320

7 Coke, Refined Petroleum and Nuclear Fuel 0.397 1.758

8 Chemicals and Chemical Products 3.966 0.232

9 Rubber and Plastics 5.157 0.140

10 Other Non-Metallic Mineral 5.283 0.167

11 Basic Metals and Fabricated Metal 3.004 0.209

12 Machinery, Nec 7.750 0.120

13 Electrical and Optical Equipment 1.235 0.552

14 Transport Equipment 2.805 0.129

15 Manufacturing, Nec; Recycling 6.169 0.152

16

Electricity, Gas and Water Supply

11 0

Construction

Sale, Maintenance and Repair of Motor Vehicles and Motorcycles;
Retail Sale of Fuel

Wholesale Trade and Commission Trade, Except of Motor Vehicles
and Motorcycles

Retail Trade, Except of Motor Vehicles and Motorcycles; Repair of
Household Goods

Hotels and Restaurants

Inland Transport

Water Transport

Air Transport

Other Supporting and Auxiliary Transport Activities; Activities of
Travel Agencies

Post and Telecommunications

Financial Intermediation

Real Estate Activities

Renting of M&Eq and Other Business Activities

Education

Health and Social Work

Public Admin and Defence; Compulsory Social Security

Other Community, Social and Personal Services

Private Households with Employed Persons
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changes. The exact optimal tax/subsidy formulas can be expressed as

[optimal import tax] 1 + t∗ji,k = 1 +
1

r̂ji,kρ̂j,krji,kρj,k

[
ŵiwiLi

ŵjwjLj
ρ̂i,kρi,kκ∗

ij,k + ∑
n ̸=i

ŵnwnLn

ŵjwjLj
r̂ni,kρ̂n,krni,kρn,kκ∗

nj,k

]

[optimal export subsidy] 1 + x∗ij,k =
(σk − 1)∑n ̸=i

[
(1 + t∗ni,k)λ̂nj,kλnj,k

]
1 + (σk − 1)(1 − λ̂ij,kλij,k)

,

1̂ + si,k =
1 + µk

1 + si,k
; 1̂ + tji,k =

1 + t∗ji,k
1 + tji,k

; ̂1 + xij,k =
1 + x∗ij,k
1 + xij,k

. (A)

The variable κ∗
nj,k ≡

(
∂ ln Pnn,k
∂ ln Qji,k

)∗
w,Y,P̃i

refers to the partial price derivatives evaluated in the counter-

factual optimal policy equilibrium. The entire matrix of κ∗
nj,k’s can be recovered with information on

structural parameters and the change to observable share variables. Namely,
κ∗

11,k · · · κ∗
1N,k

...
. . .

...
κ∗

N1,k · · · κ∗
NN,k

 = −

IN −


a11,k · · · a1N,k

...
. . .

...
aN1,k · · · aNN,k




−1 
µk

1+µk
r1i,k r̂1i,k · · · 0
...

. . .
...

0 · · · µk
1+µk

rNi,k r̂Ni,k

 , (B)

where the elements of the first matrix on the right-hand side are

anj,k = 1j ̸=i
µk

1 + µk
∑
ℓ ̸=i

[(
1n=jσk − (σk − 1) λjℓ,kλ̂jℓ,k

)
rnℓ,k r̂nℓ,k

]
.

Solving Equations (A) and (B) alongside the equilibrium conditions specified by Equations 18-21 in
the main text determines the entire vector of counterfactual outcomes after the imposition of optimal
taxes/subsidies. The following proposition summarizes this point.

Proposition 5. Suppose we have data on observables, D =
{

λji,k, rji,k, ei,k, ρi,k, Yi, wiLi, xij,k, tji,k, si,k

}
j,i,k

, and

information on structural parameters, Θ ≡ {µk, σk}. We can determine the economic consequences of country
i’s optimal policy by calculating X =

{
Ŷi, ŵi, ρ̂i,k, 1̂ + si,k, 1̂ + tji,k, ̂1 + xij,k

}
as the solution to the system

of Equations consisting of (A) and (B) plus equilibrium conditions 18-21. After solving for X, we can fully
determine the welfare consequence of country i’s optimal policy as

Ŵi = Ŷi/ ∏
k∈K

ˆ̃Pei,k
i,k , (∀n ∈ C)

where ˆ̃Pi,k is determined by Equation 18 as a function of X and data, D.

Using Proposition 5, we recalculate the exact gains from optimal policy and compare them with the
baseline gains implied by our approximate formulas. The results are displayed in Table 11 for select
countries. These are relatively large countries for which our approximation is more suspect. One
immediately notices that our approximate formulas deliver identical numbers to the exact formulas.
The intuition, as explained in Appendix E, is that the matrix Ak =

[
anj,k

]
is sufficiently sparse. To put

these results in perspective, Table 11 also reports the gains implied by the small open economy optimal
policy formulas. These formulas are presented in Section 3. The small open economy assumption is
markedly more error-prone, as it attributes “zero” import market power to each country irrespective
of market size and import composition.
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Table 11: Gains from policy: exact vs. approximate optimal tax formulas

Exact Formula Approximated Formula Small Open Economy Formula

Country ∆W ∆W Error ∆W Error

BEL 1.3088% 1.3088% 0.00% 1.3007% 0.62%
DEU 1.7117% 1.7113% 0.02% 1.6885% 1.37%
NLD 1.3547% 1.3547% 0.00% 1.3450% 0.72%
NOR 1.1889% 1.1889% 0.00% 1.1757% 1.12%
USA 1.5283% 1.5278% 0.03% 1.5178% 0.69%

Note: The data source is the 2014 World Input-Output Database (WIOD, Timmer et al. (2012)). Policy outcomes in the small
open economy case are calculated using the optimal policy specification under 12.

V Elucidating the Tension between ToT and Misallocation

This appendix shows that the inefficacy of 2nd-best non-cooperative trade taxes stems from the
tension between terms-of-trade (ToT) and misallocation. Our quantitative analysis, recall, indicated
that 2nd-best trade taxes can replicate less than 40% of the gains from the 1st-best policy choice, which
combines trade taxes with Pigouvian subsidies. In what follows, we argue that this apparent lack of
efficacy is not a universal feature that merely reflects the targeting principle. Instead, it is an empirical
result based on our estimated trade and scale elasticity values.

To establish this point, we artificially raise Cov (σk, µk) and recompute the gains from 2nd-best
trade taxes. We then calculate the efficacy of 2nd-best trade taxes as the ratio of the corresponding
gains relative to the 1st-best policy choice. Each iteration maintains the estimated vector of trade
elasticities and adjusts the scale elasticities (or firm-level markups) to artificially inflate Cov (σk, µk)

relative to its estimated value. Throughout this appendix, we report results for the case of restricted
entry, noting that similar results hold under free entry.

The results reported in Figure 11 confirm that 2nd-best trade taxes become increasingly more effec-
tive as Cov (σk, µk) is artificially inflated. Under our estimated parameters, Cov (σk, µk) ≈ −0.60 and
2nd-best trade taxes can replicate less than 40% of the 1st-best gains from policy. When Cov (σk, µk)

is artificially raised to −0.35, 2nd-best trade taxes can replicate close to 60% of the gains from 1st-
best gains from policy. When Cov (σk, µk) is raised further to 0.30, the efficacy of 2nd-best trade taxes
improves to 80%. These results indicate that the inefficacy of 2nd-best trade taxes is not an exclusive
reflection of the targeting principle. While one expects a less-than-100% efficacy based on the targeting
principle, 2nd-best trade taxes become a remarkably weaker substitute for Pigouvian subsidies under
lower values of Cov (σk, µk).

We repeat the same exercise to elucidate the immiserizing growth effects of unilateral policy markup
correction. In particular, we artificially raise Cov (σk, µk) and recompute the consequences of unilat-
eral markup correction. Each iteration maintains the estimated vector of firm-level markups (or scale
elasticities) and adjusts the trade elasticities to artificially inflate Cov (σk, µk) relative to its estimated
value. This choice ensures that the degree of inter-industry misallocation remains approximately the
same despite the change in Cov (σk, µk).

The results reported in Figure 12 indicate that immiserizing growth effects fade and even reverse
as Cov (σk, µk) is artificially inflated. Under our estimated parameters, where Cov (σk, µk) ≈ −0.60,
unilateral markup correction prompts immiserizing growth and lowers welfare. When Cov (σk, µk)
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Figure 11: 2nd-best trade taxes become more effective as Cov (µk, σk) is artificially inflated
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Note: The data source is the 2014 World Input-Output Database (WIOD, Timmer et al. (2012)). Each bar reports the average
welfare gains when countries implement their 1st-best policy without retaliation by partners. The artificial parameters are
constructed by fixing σ to its estimated values and adjusting µto artificially inflate Cov (µk, σk).

is artificially raised to −0.35, unilateral markup correction no longer triggers immiserizing growth.
When Cov (σk, µk) is raised further to 0.30, unilateral markup correction becomes a promising policy
choice as it restores allocative efficiency and improves the ToT at the same time.

W Country-Level Exposure to Immiserizing Growth

This appendix digs deeper into the immiserizing growth effects of unilateral industrial policy.
Recall from section sec: Tension that immiserizing growth presents a grave challenge to industrial
implementation in open economies. In Section 4, we reported the extent of immiserizing growth for
the average country. Here we unpack these numbers. First, by reporting immiserizing growth effects
on a country-by-country basis. Second, by highlighting that trade-to-GDP is a crucial determinant of
the extent to which countries experience immiserizing growth.

Figure 13 displays welfare consequences when countries implement corrective policies without
reciprocity by trading partners. The results in Figure 13 highlight two rudimentary points: First,
while most countries experience a deterioration of welfare, a few do not. But even for those few coun-
tries dampened gains from correcting misallocation than if they were operating as closed economies.
Second, trade-to-GDP (measured as the value of imports divided by GDP) is strongly associated with
the intensity at which countries experience immiserizing growth. Figure 13, moreover, reveals that
countries not experiencing immiserizing growth tend to trade relatively more with each other. Hence,
even if these countries adopt corrective industrial policies, it does not spare others from immiserizing
growth—hence the importance of multilateral coordination of corrective policies via deep agreements.
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Figure 12: Immiserizing growth effects diminish as Cov (µk, σk) is artificially inflated
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X Gains from Policy Under Alternative Assumptions

In this appendix we quantify the gains from optimal policy under three alternative scenarios, com-
paring them to the baseline gains reported in Section 7. In each case, we contrast the new policy gains
with the baseline gains along the two dimensions: First, in terms of the gains from first-best trade and
industrial policies. Second, in terms of the effectiveness of second-best trade taxes at replicating the
first-best outcome.

X.1 Gains Implied by the Melitz-Pareto Model

Suppose the data generating process is consistent with a Melitz-Pareto model that accommodates
firm-selection effects. In that case, Theorem 1 characterizes the optimal policy under the following
reinterpretation of parameters—see Appendix D:

1 + µMelitz
k =

1 + 1
ϑk

if entry is free
γkϑk

(γk−1)(ϑk+1)−ϑk
if entry is restricted

; σMelitz
k = 1 +

ϑk

1 + ϑk

(
1

σk−1 −
1

γk−1

) .

To compute the gains from policy we, therefore, need estimates for σk, γk, and ϑk. We have already
produced estimates for the former two parameters. To estimate ϑk, we can first recover σMelitz

k using
a standard gravity estimation à la Caliendo and Parro (2015). To explain the estimation procedure,
suppose tariffs are applied before markups and industrial and export subsidies are zero (xji,k = sj,k = 0
for all i, j, k). In that case, the national-level import demand function transforms into the following
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Figure 13: Higher Trade
GDP is associated with stronger immiserizing growth from unilateral corrective policies

Note: The data source is the 2014 World Input-Output Database (WIOD, Timmer et al. (2012)). The y-axis corresponds to
welfare gains when a country undertakes unilateral markup scale without reciprocity by partners.

industry-level gravity equation:96

X̃ji,k ≡ P̃ji,kQji,k = Φj,kΩi,kτ
1−σMelitz

k
ji,k (1 + tji,k)

1−σMelitz
k ,

where Φj,k ≡ LµMelitz
k

j,k ā1−σMelitz
k

j,k w1−σMelitz
k

j,k and Ωi,k ≡ ∑n

[
ān,kw1−σMelitz

k
n,k τ

1−σMelitz
k

ni,k (1 + tni,k)
1−σMelitz

k

]
ei,kYi,k can

be viewed as the exporter and importer fixed effects in the standard gravity estimation sense. To
produce our final estimating equation, we assume that iceberg trade costs are given by ln τji,k =

ln dji,k + ε ji,k, where (i) dji,k = dij,k is a systematic and symmetric cost component that accounts for
the effect of distance, common language, and common border, while (ii) ε ji,k is a random disturbance
term that represents any deviation from symmetry. Invoking this decomposition, we can produce the
following estimating equation for any triplet (j, i, n):

ln
X̃ji,kX̃in,kX̃nj,k

X̃ij,kX̃ni,kX̃jn,k
= −

(
σMelitz

k − 1
)

ln
(1 + tji,k)(1 + tin,k)(1 + tnj,k)

(1 + tij,k)(1 + tni,k)(1 + tjn,k)
+ ε jin,k.

The left-hand side variable, in the above equation, is composed of observable national-level trade val-
ues in industry k. The right-hand side variable is composed of observable industry-level tariff rates.
The error term ε jin,k ≡ θk(ε ij,k − ε ji,k + ε in,k − εni,k + εnj,k − ε jn,k) encompasses any idiosyncratic varia-
tion in non-tariff barriers. Under the identifying assumption that applied tariff rates are orthogonal to

96The assumption that tariffs are applied before markups, amounts to saying that tariffs act as a cost-shifter. Alternatively,
if tariffs are applied after markups, they act as a demand shifter. In the latter case, the elasticity of trade with respect to tariffs
diverges from the trade elasticity in its standard definition—see Costinot and Rodríguez-Clare (2014) for more details.
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Figure 14: The gains from policy under the Melitz-Pareto model

ε jin,k, i.e., E
[
tji,k ε ji,k

]
= 0, we can estimate σMelitz

k by estimation the above equation with data on trade
values, X̃ji,k, and applied tariffs, tji,k, from the WIOD and TRAINS-UNCTAD datasets. After estimat-
ing σMelitz

k , we can recover ϑk for our previously-estimated values for σk and µk (which are reported in
Table 3):

ϑk =
σ̂Melitz

k − 1

1 +
(
σ̂Melitz

k − 1
) ( 1

γk−1 −
1

σk−1

) .

For the analysis that follows, we borrow the estimated values for σMelitz
k from Lashkaripour (2020a),

which is based on the 2014 WIOD and TRAINS-UNCTAD datasets. After pinning down all the nec-
essary parameters, we simply evaluate and plug σMelitz

k and µMelitz
k into our optimal tax formulas to

compute the gains from optimal policy. The process is akin to that outlined in Section 7. Importantly,
one should note that without our micro-level estimates for σk and µk, it is impossible to recover both
σMelitz

k and µMelitz
k from macro-level trade and tariff data.

The optimal policy gains implied by the Melitz-Pareto model are reported under Figure 14. The
results indicate that accounting for firm-selection (à la Melitz-Pareto) magnifies the gains from the
first-best trade and industrial policy schedule. Moreover, accounting for firm-selection dampens the
efficacy of second-best trade taxes at replicating the first-best policy gains. If anything, these results
indicate that our baseline claim that trade taxes are an ineffective second-best substitute for industrial
subsidies is strengthened once we account for firm-selection effects.

X.2 Gains Implied by the Fixed-Effect Estimates for µk and σk

Our baseline estimation of the gains from policy in Section 7 utilized the first-difference estimates
for µk and σk—these estimates were reported under Table 3. In Appendix P (under Table 7), we re-
ported alternative estimates for µk and σk based on a two-ways fixed-effects estimation of the firm-
level import demand function. In this appendix, we recompute the gains from policy using these
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Figure 15: The gains from policy under alternative estimates for σk and µk

alternative estimates for µk and σk.
The implied gains from optimal policy are reported under Figure 15. The fixed-effects estimates for

σk and µk imply (on average) smaller gains from first-best trade and industrial policies. This outcome
drives from two main factors: First, the fixed-effects estimates for µk exhibit smaller heterogeneity
across industries. As such, they imply a small degree of misallocation in the economy compared to
the baseline estimates. Second, the fixed-effects estimates for σk are generally smaller and imply larger
unilateral gains from terms-of-trade manipulation.

Another takeaway from Figure 15 is that second-best trade taxes exhibit a greater degree of ef-
ficacy compared to the baseline case. This outcome reflects two issues: First, the corrective gains
from policy are a smaller fraction of the overall first-best policy gains, once we plug the fixed-effects-
estimated values for σk and µk. Second, the fixed-effects-estimated values for σk and µk exhibit a
smaller negative correlation relative to the baseline estimates. As explained in Section 5, the less
negative Covk(σk, µk), the smaller the implicit tensions between the terms-of-trade-improving and
corrective gains from trade taxation—hence, the greater efficacy of second-best trade taxes.

X.3 Assigning Alternative Values to µk and σk for the Service Sector

Our estimation of σk and µk in Section 6 relied on transaction-level trade data, which is scarce for
(semi-non-traded) service industries. To address this issue, our baseline estimation of the gains from
policy normalized the aforementioned parameters in service-related industries as follows:

σk = 11; µk = 0 if k ∈ Service

The value assigned to σk for service-related industries is less consequential for our estimated wel-
fare gains. The reason is that σk governs the gains from terms-of-trade manipulation. However, un-
der the status quo, there is little-to-no trade occurring in service industries. With little-to-no service
trade under the status quo equilibrium, the scope for terms-of-trade manipulation is limited in service
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Figure 16: The gains from policy when the service sector is modeled more conservatively

industries—all irrespective of the value assigned to σk.97

The value assigned to µk, however, can have a profound effect on the estimated gains from optimal
policy. To elaborate on this point, recall that one function of optimal policy (in our framework) is
to correct misallocation due to markup heterogeneity. The degree of misallocation can be crudely
measured as the cross-industry variance in markups, i.e., Vark(µk). Data indicate that the service
sector constitutes a non-trivial fraction of total output in each country. So, the value assigned to the
service sector’s µk is a non-trivial determinant of misallocation, as measured by Vark(µk).

As indicated above, our baseline analysis assumed that the service sector is perfectly competitive.
This assumption, which is rather standard in the quantitative trade literature, amounts to setting µk =

0 for any service-related industry, k. In this appendix, we contrast our baseline results with those
obtained under the alternative but extremely conservative assumption that µk in services equals the
average µk in traded (non-service) industries. This assumption is conservative because it artificially
deflates Vark(µk) and, accordingly, dampens the corrective gains from optimal policy.

The gains computed under our conservative treatment of the service sector are reported under
Figure 16. As expected, the gains from first-best policies are relatively lower under the conservative
treatment—simply because the conservative value assigned to the service sector markup artificially
lowers the degree of misallocation and the scope for policy intervention. Relatedly, second-best trade

97This outcome is an artifact of the CES parametrization of import demand. Specifically, in response to a change, τ̂, in
trade taxes, the post-tax-change expenditure shares remain zero if start as zero in the initial equilibrium—all irrespective of
the trade elasticity values. Stated in mathematical terms,

lim
λji,k→0

λ̂ji,k =
λji,k

(
τ̂ji,kŵj

)1−σk

∑n λni,k
(
τ̂ni,kŵn

)1−σk
= 0 ∀σk ≥ 1.

Since λji,k ≈ 0 in services, trade taxes have little-to-no ability at improving the terms-of-trade, as doing so requires policy to
shrink exports/imports in the service sector away from their factual level.
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taxes are also more successful at replicating the gains obtainable under the first-best policy schedule.
The intuition is that the corrective gains from policy constitute a smaller fraction of the first-best policy
gains under the conservative model. Hence, the inability of trade taxes to replicate corrective gains
becomes less consequential.

Y The Gains from Policy Under Artificial Parameter Values

Under what parameter values will our framework predict larger gains from policy? To answer this
question, we simulate an artificial economy (with artificial values assigned to σk and µk) to examine
the degree to which the gains from policy inflate under more extreme parameter values. Our theory
indicates that the gains from optimal policy are regulate by two key statistics:

i. The variance in the industry-level scale elasticities, Var [log µk].

ii. The average level of the (inverse) industry-level trade elasticities, E
[

1
σk−1

]
.

The first statistic governs the extent to which countries can gain from restoring allocative efficiency. To
explain this statistic, we can appeal to the Hsieh and Klenow (2009) exact formula for distance from
the efficient frontier. Considering that preferences are Cobb-Douglas across industries, the distance
from the efficient frontier in each country (net of trade effects) can be approximated to a first-order as

Distance from efficient frontier ≈ 1
2

Var [log µk] .

The average level of µk is, however, inconsequential. To convey this point, suppose we multiply all the
markups by some number a ∈ R+. Since this change is akin to offering a uniform industrial subsidy
a to all industries, then it preserves real welfare based on Lemma 1.

The second statistic determines the degree of national-level market power and, thus, governs the
degree to which countries can gain from ToT manipulation. To explain this statistic succinctly, consider
a country that is sufficiently small in relation to the rest of the world. Following Theorem 1, the average
optimal trade tax for this country is given by

Avg. optimal trade tax ≈ E

[
1

σk − 1

]
.

If σk → ∞ for all k, the average optimal trade tax approaches zero, leaving no room for unilateral ToT
improvements. Conversely, as σk approaches 1 the average optimal trade tax increases and so do the
implicit gains from unilateral trade restrictions.98

Noting the above background, we recompute the gains from policy by artificially increasing Var [log µk]

and decreasing E
[

1
σk−1

]
, starting from our estimated vectors of {σk} and {µk}. The results are re-

ported in 17 for a select set of countries—namely, the United States, China, Indonesia, and Korea. The
graph indicates that the gains from policy nearly double if we artificially raise Var [log µk] by a factor
of two. A similar effect is borne out if we artificially raise E

[
1

σk−1

]
by a factor of about two. An ap-

parent pattern, here, is that the gains from policy exhibit similar sensitivity levels to Var [log µk] across
all countries, but different sensitivity levels to E

[
1

σk−1

]
. This pattern is expected, because E

[
1

σk−1

]
governs the gains from ToT-improvement which are smaller (by design) for larger economies like the
United States or China. The gains for restoring allocative efficiency, however, depend less on size and

98Since there is no choke price in our setup, the optimal export tax can approach infinity in the limit where σk → 1.
Introduce a choke price, then the optimal export tax will exhibit a limit-pricing formulation—see Costinot et al. (2015).
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more on a country’s industrial pattern of specialization under the status quo—see Kucheryavyy et al.
(2016) for the role of specialization patterns.

These findings provide a platform to compare our estimated gains with alternatives in the litera-
ture. Our finding that the gains from restoring allocative efficiency are large sits well with the findings
in Baqaee and Farhi (2017) that eliminating sectoral markup-heterogeneity in the U.S. economy can
raise real GDP by 2.3%.99 Bartelme et al. (2019), however, estimate smaller gains from similar policies.
To understand these differences, note the formula for distance from the efficient frontier. Also note
that true value for the scale elasticity, µTrue

k = µk + ψk, where ψk denotes the elasticity of Marshallian
externalities. Accordingly, the true distance from the frontier can be approximated as follows:

LTrue ≈
1
2

Var [log (ψk + µk)]

Our analysis like Baqaee and Farhi (2017) sets ψk = 0, and measures the degree of allocative ineffi-
ciency as LLL≈ 1

2 Var [log (ψk + µk)]. This approach can lead to an overstatement of L if ψk is negatively
correlated with firm-level market power, µk.100 In comparison and as noted in Section 6.4, the degree
of misallocation in BDCR’s analysis is measured as LBCDR≈ 1

2 Var
[
log
(

µk + ψk − βk
σ−1

)]
, where βk is

the share of industry-specific factors in production. This approach can understate L when there are
significant diseconomies of scale due to a high βk.

99This number corresponds to the average of the numbers reported in the last column of Table 2 in Baqaee and Farhi
(2017).

100Another issue is that we are assuming away selection effects in our quantitative analysis. In the presence of selection
effects, we can still use our estimates for σk and µk to identify the scale elasticity up-to an externally chosen trade elasticity.
Doing so, however, may lead to a lower or higher L.
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Figure 17: The gains from policy under artificially higher Var [log µk] and E
[

1
σk−1

]
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Note: The data source is the 2014 World Input-Output Database (WIOD, Timmer et al. (2012)). The 1st best policy is charac-
terized by Theorem 1 for the case of restricted entry.
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