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Abstract

Trade restrictions are often used as (a) a first-best policy to manipulate the terms-of-
trade, or (b) a second-best policy to correct misallocation in domestic industries. We an-
alyze the (in)effectiveness of trade restrictions at achieving these goals. To this end, we
derive sufficient statistics formulas for first-best and second-best trade taxes in an impor-
tant class of multi-industry, multi-country trade models where misallocation occurs due
to scale economies or profits. Guided by these formulas, we estimate the key parameters
that govern the gains from policy in these frameworks. Our estimates reveal that (i) the
gains from terms-of-trade manipulation are relatively small; (ii) trade policy is remarkably
ineffective at correcting misallocation in domestic industries; (iii) a unilateral adoption of
domestic industrial policies is also ineffective as it causes immiserizing growth; but (iv) in-
dustrial policies that are coordinated via deep trade agreements, deliver welfare gains that
exceed those of any non-cooperative policy alternative.

1 Introduction

The United States is likely to adopt an explicit industrial policy in the coming decade.
Similar developments are well underway in other countries (Aiginger and Rodrik (2020)). With
industrial policy back on the scene, we are witnessing a revival of old-but-questionable trade
policy practices: governments are turning to protectionist trade policy measures to pursue
their industrial policy objectives. This approach is distinctly manifested in the United States’
National Trade Council’s mission or in the Chinese, Made in China 2025, initiative.1

*We are grateful to James Anderson, Adina Ardelean, Dominick Bartelme, Kerem Cosar, Arnaud Costinot,
Farid Farrokhi, Harald Fadinger, Fabio Ghironi, David Hummels, Kala Krishna, Konstantin Kucheryavyy, Danial
Lashkari, Nuno Limao, Gary Lyn, Ralph Ossa, James Rauch, Andrés Rodríguez-Clare, Kadee Russ, Peter Schott,
Alexandre Skiba, Anson Soderbery, Robert Staiger, Jonathan Vogel and conference participants at the Midwest
Trade Meetings, Chicago Fed, UECE Lisbon Meetings, 2017 NBER ITI Summer Institute, 2019 WCTW, Indiana
University, Purdue University, SIU, IBA, Boston College, University of Mannheim, and University of Michigan for
helpful comments and suggestions. We thank Nicolas de Roux and Santiago Tabares for providing us with data
on the Colombian HS10 product code changes over time. We are grateful to Fabio Gomez for research assistance.
Lugovskyy thanks Indiana University SSRC for financial support. All errors are our own.

1See Bhagwati (1988) and Irwin (2017) for a historical account of trade restrictions being used by governments
to promote their preferred industries. One prominent example dates back to 1791, when Alexander Hamilton
approached Congress with “the Report on the Subject of Manufactures,” which encouraged the implementation of
protective tariffs and industrial subsidies. These policies were intended to help the US economy catch up with
Britain’s economy.
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These developments have resurfaced some old but unresolved policy questions: (i) Is
trade policy an effective tool for correcting misallocation in domestic industries? (ii) If not,
should governments correct misallocation, unilaterally, with industrial subsidies, or (iii) should
they coordinate their industrial policies via deep trade agreements?

Despite recent advances in quantitative trade theory, the existing literature offers little
guidance on these imminent questions. Traditional theories that speak to these questions are
typically confined to partial equilibrium, two-good×two-country models that overlook key
policy considerations. The quantitative route has proven equally-elusive, as we lack credible
estimates for the parameters that govern the gains from trade and industrial policy.2

To fill this gap, we present a full analytical characterization of optimal trade/industrial
policy in an important class of multi-industry, multi-country quantitative trade models where
misallocation occurs due to scale economies or profits. Guided by our theory, we estimate the
key parameters that govern the gains from trade and industrial policy in these frameworks. We
then plug these estimated parameters into our optimal policy formulas to quantify the gains
from trade and industrial policy across 43 major economies.

Our estimation delivers several stark predictions: (i) trade taxes/subsidies are an inef-
fective second-best policy at correcting misallocation in the domestic economy; (ii) unilateral
industrial policy can be equally futile, as it triggers immiserizing growth in most countries; but
(iii) industrial policies that are coordinated via deep trade agreements, deliver welfare gains
that exceed those of any non-cooperative policy alternative.

Section 2 presents our theoretical framework. Our baseline model is a generalized multi-
industry Krugman (1980) model that features a non-parametric utility aggregator across in-
dustries and a nested CES utility aggregator within industries. This structure has an appealing
property wherein the degrees of firm-level and country-level market power are allowed to di-
verge. We analyze both the restricted and free entry cases of the model to distinguish between
the short-run and long-run consequences of policy. With a basic reinterpretation of parameters,
our framework also nests (a) a multi-industry Melitz (2003) model with a Pareto productiv-
ity distribution, and (b) a multi-industry Eaton and Kortum (2002) model with industry-level
Marshallian externalities.

Section 3 derives sufficient statistics formulas for first-best and second-best trade and indus-
trial taxes/subsidies. To summarize these formulas, note that a non-cooperative government
can use policy to correct two margins of inefficiency in our framework:

i. Unexploited terms-of-trade (ToT) gains vis-à-vis the rest of the world.

ii. Allocative inefficiency, which stems from sub-optimal domestic production in high-returns-
to-scale (or high-profit) industries.3

2As we elaborate shortly, the gains from optimal policy are governed by (1) industry-level trade elasticities,
and (2) industry-level scale elasticities. A vibrant literature is already devoted to the estimation trade elasticities.
Scale elasticities, however, have received less attention. More importantly, we lack a technique to estimate both the
trade and scale elasticities in a mutually consistent way. Our theory indicates that mutually consistent estimates
are crucial for obtaining credible estimates for the gains from policy.

3The link between the degree of scale economies and firm-level market power has deep roots in the literature.
Under free entry and monopolistic competition the following relationship holds (Hanoch (1975) and Helpman
(1984)): elasticity of firm-level output w.r.t. input cost = firm-level markup.
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Under the first-best optimal policy schedule, trade taxes/subsidies solely target the ToT margin—
i.e., they are misallocation-blind. A mix of export subsides and import taxes are applied to ex-
tract the national-level optimal mark-up on exports and the national-level optimal mark-down
on imports. First-best industrial subsidies, meanwhile, only correct allocative inefficiency.
They are Pigouvian subsidies that equal the inverse of the industry-level scale elasticity (or
markup) and restore allocative efficiency in the domestic economy.

Our second-best trade policy formulas concern scenarios in which governments are reluctant
to use industrial subsidies. This reluctance, which is prevalent in practice, can be driven by
either political pressures or institutional barriers.4 Second-best trade taxes/subsidies are com-
posed of two parts: a standard ToT-improving component and a misallocation-correcting compo-
nent. The latter component restricts imports and subsidizes exports in high-returns-to-scale
industries in an attempt to mimic first-best industrial subsidies.

Second-best trade policies are subject to a crucial but previously-overlooked trade-off: Restor-
ing allocative efficiency with trade policy often worsens one’s ToT. This trade-off limits the
effectiveness of trade policy as a second-best misallocation-correcting measure—beyond what
is already implied by the targeting principle. Similar arguments apply to third-best import taxes,
which are relevant when the use of both export and domestic subsidies is restricted.5

The flip side of this trade-off is that a unilateral adoption of Pigouvian industrial subsidies
can worsen welfare via immiserizing growth; because unilateral Pigouvian subsidies (that are
not paired with trade taxes) can severely worsen a country’s ToT. To avoid these adverse ToT
effects, countries should coordinate their industrial subsidies via a deep trade agreement. In
this process, they abolish trade taxes and forgo ToT gains from policy, but benefit from correc-
tive industrial subsidies in the rest of the world. If the extent of misallocation is sufficiently
large, such an agreement will deliver welfare gains that dominate those of any non-cooperative
policy—even if non-cooperation does not trigger retaliation by trading partners.

Section 6 estimates the structural parameters that govern the gains from policy in our
framework. Our optimal policy formulas indicate that the gains from policy depend on (i)
industry-level trade elasticities that govern the scope for ToT manipulation, and (ii) industry-
level scale elasticities that govern the extent of misallocation. We develop a new methodology
that simultaneously estimates these parameters using transaction-level trade data.

Our estimation involves fitting a structural firm-level import demand function to the uni-
verse of Colombian import transactions from 2007 to 2013. Our data covers 226,288 exporting
firms from 251 different countries. The main advantage of our approach is its unique ability to
separately identify the degree of firm-level market power (that determines the scale elasticity)
from the degree of national-level market power (that determines the trade elasticity).

The firm-level nature of our empirical strategy exposes us to an uncharted identification
challenge. Standard estimations of import demand are often conducted with country-level
data and use tariffs as an exogenous instrument to recover the underlying demand parame-

4Trade policy has been regularly used—in place of industrial policy—to promote critical industries (Bhagwati
(1988); Harrison and Rodríguez-Clare (2010); Irwin (2017)). Relatedly, see Lane (2020) for a historical account of
various industrial policy practices around the world.

5Second-best import tariff have served as a focal point in the trade policy literature. We show that second-best
import tariffs feature an additional uniform component that mimics a uniform export tax. Based on the Lerner
symmetry, this uniform term is redundant when export tax-cum-subsidies are applicable.
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ters. This identification strategy is not fully-applicable to our firm-level estimation. To attain
identification, we instead compile a comprehensive database on monthly exchange rates. We
interact aggregate movements in monthly bilateral exchange rates with (lagged) monthly firm-
level export sales to construct a shift-share instrument that measures exposure to exchange rate
shocks at the firm-product-year level.

Section 7 combines our micro-level estimates, our optimal policy formulas, and macro-level
data from the 2014 World Input-Output Database to quantify the gains from policy across 43
major economies. Our main findings can be summarized as follows:

i. The pure gains from ToT manipulation are relatively small. Suppose a country imple-
ments its first-best (non-cooperative) trade and industrial policy schedule and the rest
of the world does not retaliate. In that case, the average country can raise its real GDP
by 1.5% under restricted entry and by 2.6% under free entry. However, only one-third
of these gains are driven by ToT improvements. The remaining is driven by restoring
allocative efficiency in the domestic economy.

ii. Trade policy is remarkably ineffective at correcting misallocation in domestic industries.
Under restricted entry, second-best export subsidies and import taxes can raise the real
GDP by only 0.59% for the average country. This amounts to only 39% of the gains attain-
able under the fist-best policy schedule. Third-best import taxes are even less effective
as a standalone policy, raising the real GDP by a mere 0.46%. These numbers conform to
our previous assertion that restoring allocative efficiency with trade policy worsens the
ToT—making trade policy a futile misallocation-correcting policy choice.

iii. Unilateral industrial subsides are equally ineffective at tackling misallocation, as they
triggers immiserizing growth in most countries. To provide number, unilateral (Pigou-
vian) industrial subsides reduce the average country’s real GDP by 0.25% under re-
stricted entry and by 0.70% under free entry.6

iv. A multilateral adoption of corrective policies via a deep trade agreement, delivers welfare
gains that are larger than the first-best non-cooperative policy for most countries. This is
true even if non-cooperation does not trigger retaliation by trading partners. To provide
numbers, the gains from deep cooperation are on average 0.2% percentage points higher
than the gains from the first-best non-cooperative policy. In other words, governments
are better off forgoing the ToT gains from policy in return for importing more-efficiently-
produced goods from the rest of the world.

Related Literature

The literature on optimal policy in multi-industry, multi-country quantitative trade mod-
els with scale economies or markup distortions is surprisingly thin. In a concurrent paper,
Bartelme, Costinot, Donaldson, and Rodriguez-Clare (2019) characterize optimal policy for a
small open economy in a multi-sector Ricardian model with Marshallian externalities.7 By

6These losses result from the ToT-worsening effects of Pigouvian subsides. Finding (iii) highlights a benefit of
international coordination that is often overlooked in standard critiques of global governance (e.g., Rodrik (2019)).

7Relatedly, Haaland and Venables (2016) characterize optimal policy for a small open economy in 2-sector×2-
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comparison, our optimal policy formulas extend to a large economy, speak to both short- and
long-run trade-offs, and accommodate arbitrary cross-demand effects. We also present a novel
characterization of optimal policy under political economy pressures and input-output link-
ages. These results complement Costinot, Rodríguez-Clare, and Werning (2016), who charac-
terize optimal firm-level trade policy in a single-sector two-country Melitz model. Our theory
is also related to Campolmi, Fadinger, and Forlati (2018) who study trade policy in a two-
sector Melitz-Pareto model with two symmetric countries. The aforementioned paper does
not explicitly derive optimal policy formulas, but presents a novel welfare decomposition that
elucidates the trade-offs facing countries when joining shallow and deep trade agreements.8

Our second-best trade policy formulas speak to an old literature that distinguishes between
the ToT and firm-delocation rationales for trade policy (e.g., Venables (1987); Ossa (2011)). Our
work enriches the existing theories in two ways: First, our theory applies to an important class
of quantitative multi-country, multi-industry trade models.9 This feature makes it amenable
to state of the art quantitative analysis. Second, we look beyond only import tariffs, and char-
acterize second-best export subsidies that have received limited attention in the past.10

Our theory builds heavily on Kucheryavyy, Lyn, and Rodríguez-Clare (2016) to establish
isomorphism between our baseline model and other workhorse models in the literature. Kuch-
eryavyy et al. (2016) identify the trade and scale elasticities as key determinants of the gains
from trade. We estimate these two elasticities and demonstrate that the same set of elasticities
govern the optimal design of trade and industrial policies.

Our estimation of the scale and trade elasticities exhibits key differences from the prior lit-
erature. Above all, our approach separately identifies the degree of firm-level market power
(the scale elasticity) from country-level market power (the trade elasticity). The prior litera-
ture, in comparison, has devoted most of its attention to estimating the trade elasticity, with
the scale elasticity often normalized to either zero or the inverse of the trade elasticity.11 A
notable exception is Bartelme et al. (2019), who concurrent with us have developed a strat-
egy to estimate the product of scale and trade elasticities. Their approach has the advantage of
detecting industry-level Marshallian externalities but relies on the assumption that there are

country Krugman and Melitz-Pareto models. A novel feature of Haaland and Venables (2016) is that labor can
exhibit imperfect sectoral mobility—a feature that mimics diseconomies of scale at the sector level.

8Outside multi-industry models, Demidova and Rodriguez-Clare (2009) and Felbermayr, Jung, and Larch
(2013) characterize optimal tariffs in a single industry Melitz-Pareto model. The single industry assumption en-
sures that the market equilibrium is efficient (Dhingra and Morrow (2019) and that import and export taxes are
equivalent by the Lerner symmetry. As such, the first-best allocation can be reached with only import taxes.

9As indicated earlier, we extend our first-best optimal policy formulas to a setup with arbitrary input-output
networks. Recently, Lashkaripour (2020b) and Caliendo, Feenstra, Romalis, and Taylor (2021) have extended the
small open economy case of our second-best optimal tariff formulas to accommodate input-output linkages. These
extensions suggest that input-output linkages dampen the optimal second-best tariffs.

10Our paper also relates to a growing literature that analyzes trade policy from the lens of quantitative or new
trade theories—e.g., Costinot and Rodríguez-Clare (2014); Campolmi, Fadinger, and Forlati (2014); Costinot, Don-
aldson, Vogel, and Werning (2015); Bagwell and Lee (2018); Caliendo, Feenstra, Romalis, and Taylor (2015); Demi-
dova (2017); Beshkar and Lashkaripour (2019, 2020). These papers focus on a wide range of policy issues that are
strictly different from those studied in this paper. As such, they either (a) abstract from scale economies (or markup
distortions) and do not speak to second-best scenarios, (b) are partial equilibrium in nature, or (c) characterize the
marginal welfare effects of piecemeal tariff reforms rather than the optimal tariff rate.

11See Broda and Weinstein (2006), Simonovska and Waugh (2014), Caliendo and Parro (2015), Soderbery (2015),
and Feenstra, Luck, Obstfeld, and Russ (2018) for different approaches to estimating the trade elasticity. Benassy
(1996) was one of the first scholars to criticize the normalization of the scale elasticity, noting that such a normal-
ization creates an arbitrary link between firm-level and country-level market power.
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no diseconomies of scale due to industry-specific factors of production. Our approach can-
not detect Marshallian externalities but has the advantage of separately identifying the trade
elasticity from the scale elasticity and is robust to the presence of industry-specific factors of
production.

Several studies have used the exact hat-algebra methodology to study the consequences
of counterfactual tariff reductions (Costinot and Rodríguez-Clare (2014); Caliendo and Parro
(2015); Ossa (2014, 2016); Spearot (2016)). We contribute to these studies by combining the exact
hat-algebra technique with sufficient statistics tax formulas. Doing so simplifies the analysis
of optimal policy, allowing us to bypass some of the most important computational challenges
facing the past literature. Our quantitative analysis of deep trade agreements, meanwhile,
has less precedent in the literature. Our closest counterpart is Ossa (2014), who quantifies the
gains from an agreement whereby countries cooperate in setting second-best corrective import
tariffs. We contribute to Ossa (2014) by analyzing cooperation in first-best corrective policies.
Doing so enables us to highlight a previously-neglected tension between the corrective and
ToT gains from taxation.

Finally, our paper is related to a vibrant literature that studies the effects of trade openness
on misallocation (e.g., De Blas and Russ (2015); Edmond, Midrigan, and Xu (2015); Baqaee
and Farhi (2019)). These studies indicate that tariff liberalization can occasionally exacerbate
misallocation. We contribute to this literature by highlighting a previously-unknown tension
between optimal tariff restrictions and misallocation in domestic industries.

2 Theoretical Framework

Our baseline model is a generalized multi-industry, multi-country Krugman model with
non-parametric preferences. In Section 5 we show that our theory readily applies to alterna-
tive models featuring firm-selection à la Melitz–Chaney and external economies of scale à la
Kucheryavyy et al. (2016). We also extend our theory later to accommodate arbitrary input-
output networks and political economy pressures.

We consider a world economy consisting of multiple countries and industries. Countries
are indexed by of i, j, n ∈ C. Industries are indexed by g, k ∈ K. Industries can differ in
fundamentals such as the degree of scale economies or trade elasticity. Each country i ∈ C

is populated by Li individuals who supply one unit of labor inelasticity. Labor is the sole
primary factor of production in each economy. Workers cannot relocate between countries but
are perfectly mobile across industries within a country, and are paid a country-wide wage, wi.

2.1 Preferences

Each good in our model is indexed by a triplet, which signifies its location of production
(origin), it location of final consumption (destination), and the industry under which the good
is classified. To give an example: Good “ji, k” denotes a good corresponding to origin country
j–destination country i–industry k.

Cross-Industry Demand. The representative consumer in country i ∈ C faces a vector of
industry-level consumer price indexes P̃i = {P̃i,k}, where index P̃i,k ≡ P̃i,k(P̃1i,k, ..., P̃Ni,k) aggre-
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gates over industry k goods sourced from various origins. The consumer choses their demand
for industry-level bundles Qi ≡ {Qi,k} to maximize a non-parametric utility function subject to
a budget constraint. This choice yields an indirect utility, which is a function of the consumer’s
income, Yi, and the vector of industry-level “consumer” price indexes in market i, P̃i:

Vi
(
Yi, P̃i

)
= max

Qi

Ui(Qi) s.t. ∑
k∈K

P̃i,kQi,k = Yi. (1)

Throughout this paper, the tilde notation on price is used to distinguish between “consumer”
and “producer” prices. The former includes taxes, whereas the latter does not. Problem 1
yields an industry-level Marshallian demand function, which we denote by Qi,k = Di,k

(
Yi, P̃i

)
.

This function tracks how (given prices and total income) consumers allocate their expenditure
across industries. A special case of our general cross-industry demand function is the Cobb-
Douglas case, wherein Ui(Qi) = ∏k∈K Qei,k

i,k implying that Qi,k = ei,kYi/P̃i,k.

Within-Industry Demand. Each industry-level bundle aggregates over various origin-specific
composite varieties: Qi,k ≡ Qi,k(Q1i,k, ..., QNi,k). Each origin-specific composite variety, itself,
aggregates over multiple firm-level varieties: Qji,k ≡ Qji,k(qji,k), where qji,k =

{
qji,k (ω)

}
ω∈Ωj,k

is a vector with each element qji,k (ω) denoting the quantity consumed of firm ω’s output.12

We assume that the within-industry utility aggregator, has a nested-CES structure, which en-
ables us to abstract from variable markups and direct our attention to the scale-driven and
profit-shifting effects of policy.

Assumption (A1). The within-industry utility aggregator is nested-CES:

Qi,k =

(
∑
j∈C

Q
σk−1

σk
ji,k

) σk
σk−1

,

where Qji,k is a CES-composite of firm-level varieties from origin country j:

Qji,k =

(∫
ω∈Ωj,k

ϕji,k(ω)
1

γk qji,k (ω)
γk−1

γk dω

) γk
γk−1

.

We assume that γk ≥ σk > 1. The constant demand shifter ϕji,k(ω) accounts for variety ω’s perceived
quality in destination i.

Given (A1), the demand for national-level variety ji, k (origin country j–destination country
i–industry k) is given by

Qji,k =
(

P̃ji,k/P̃i,k
)−σk Qi,k, (2)

where P̃ji,k and P̃i,k respectively denote the origin-specific and industry-level CES price in-
dexes.13 Recall that Qi,k denotes industry-level demand, which is given by Qi,k = Di,k

(
Yi, P̃i

)
.

12Ωj,k denotes the set of all firms serving industry k from origin j. As we elaborate later, if we introduce firm-
selection effects into the model, only a sub-set of firms in set Ωj,k serve each market. In that case, Ωji,k ⊂ Ωj,k will
denote the set of firms serving market i from country j.

13Namely, P̃ji,k =
(

∑ω∈Ωji,k
ϕji,k(ω) p̃ji,k (ω)1−γk

) 1
1−γk and P̃i,k =

(
∑j∈C P̃1−σk

ji,k

) 1
1−σk .
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The demand facing individual firms from country j is, accordingly, given by

qji,k (ω) = ϕji,k(ω)

(
p̃ji,k (ω)

P̃ji,k

)−γk
(

P̃ji,k

P̃i,k

)−σk

Di,k
(
Yi, P̃i

)
. (3)

Importantly, the above parmaterization of demand allows for the firm-level and national-level
degrees of market power to diverge, with γk governing the degree of firm-level market power
and σk governing the degree of national-level market power in industry k.

Elasticity of Demand Facing National-Level Varieties. Following Equation 2, the demand
for aggregate variety ji, k is a function of total income in market i, Yi, and the entire vector of
origin×industry-specific consumer price indexes in that market: Namely, Qji,k = Dji,k

(
Yi, P̃i

)
.

To keep track of changes in demand, we define the elasticity of demand for national-level
variety ji, k w.r.t. to the price of variety ni, g as follows:

ε
(ni,g)
ji,k ≡

∂ lnDji,k(Yi, P̃i)

∂ ln P̃ni,g
∼ price elasticity of demand

Under Cobb-Douglas preferences (i.e., zero cross-substitutability between industries), the national-
level demand elasticities are fully determined by the upper-tier CES parameter σk and national-
level expenditure shares. Specifically, ε

i,g
ji,k = 0 if g 6= k, while

ε ji,k ∼ ε
(ji,k)
ji,k = −1− (σk − 1)(1− λji,k); ε

(i,k)
ji,k = (σk − 1)λi,k ( 6= j),

where λji,k ≡ P̃ji,kQji,k/ ∑ P̃i,kQi,k denotes the (within-industry) share of expenditure on ji, k.
In the presence of cross-substitutability between industries, the demand elasticity will feature
an additional term that accounts for cross-industry demand effects.

In our setup, optimal policy internalizes the entire matrix of own- and cross-demand elas-
ticities. To present our optimal policy formulas concisely, we use the following matrix notation
to track the elasticity of demand w.r.t. goods sourced from various origins and industries.

Definition (D1). Let K = |K| denote the number of industries. The K× K matrix E(ni)
ji describes the

elasticity of demand for origin j ∈ C goods w.r.t. the price of origin n ∈ C goods in market i across all
industries:

E(ni)
ji ≡


ε
(ni,1)
ji,1 ... ε

(ni,K)
ji,1

...
. . .

...

ε
(ni,1)
ji,K · · · ε

(ni,K)
ji,K

 .

To simplify the notation, we use Eji ∼ E(ji)
ji to denote the elasticity of origin j goods w.r.t.

origin j prices, and use the K× (N− 1)K matrix, E(−ii)
ji =

[
E(ni)

ji

]
n 6=i

, to summarize the elasticity

of demand for origin j goods w.r.t. price of all import varieties in market i (i.e., all varieties
source from any origin n 6= i). Important for our analysis, Eji is an invertible matrix—the proof
of which is provided in Appendix E using the primitive properties of Marshallian demand.

2.2 Production and Firms

Each economy i ∈ C is populated with a mass Mi,k = |Ωi,k| of single-product firms in
industry k ∈ K that compete under monopolistic competition. Labor is the only factor of
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production. Firm entry into industry k is either free or restricted. Under restricted entry, Mi,k =

Mi,k is invariant to policy. Under free entry, a pool of ex-ante identical firms can pay an entry
cost wi f e

k to serve industry k from origin i. After paying the entry cost, each firm ω ∈ Ωi,k draws
a productivity z(ω) ≥ 1 from distribution Gi,k (z), and faces a marginal cost τij,kwi/z (ω) for
producing and delivering goods to destination j ∈ C, where τij,k denotes a flat iceberg transport
cost. Collecting these assumptions, the “producer” price index of composite good ij, k (which
aggregates over firm-level varieties associated with origin i–destination j–industry k) is given by

Pij,k =
γk

γk − 1
āij,kwi M

− 1
γk−1

i,k . (4)

In the above formulation, āij,k = τij,k
[∫ ∞

1 zγk−1dGi,k(z)
] 1

1−γk encompasses all price components
(excluding the markup) that are invariant to policy.14 To streamline the presentation of our
theory, we follow Kucheryavyy et al. (2016) and refer to 1/(γk − 1) = −∂ ln Pij,k/∂ ln Mi,k as
the industry-level scale elasticity:

µk ≡
1

γk − 1
∼ scale elasticity ∼ markup

Following Equation 4, µk represents both (a) the constant markup over marginal cost in in-
dustry k (i.e., 1 + µk = γk

γk−1 ), and (b) the elasticity at which variety-adjusted TFP increases
with industry-level employment Li,k (noting that Li,k ∝ Mi,k).15 The equivalence between the
industry-level markup and scale elasticity is not a universal property, but a specific feature of
our baseline Krugman model.16 While this feature simplifies our notation going forward, it is
not consequential to the theoretical results that follow. As shown in Section 5, our analytical
formulas for optimal policy extend to alternative models with external economies of scale or
firm-selection (à la Melitz (2003)) in which the scale elasticity and markup levels diverge.

Expressing Producer Prices in terms of Profit-Adjusted Wages

In our framework, net profits (if any) are rebated back to the workers. Considering this
feature, we can streamline the presentation of our theory by expressing producer prices in
terms of profit-adjusted wages, ẁi, which are defined as follows:

ẁi ≡ (1 + µi)wi ∼ profit-adjusted wage.

In the above definition, µi denotes economy i’s average profit margin across all industries:

µi =


∑g∈K ∑j∈C

µk
1+µk

Pij,kQij,k

∑g∈K ∑j∈C
1

1+µk
Pij,kQij,k

if entry is restricted

0 if entry is free
. (5)

Under free entry, profits are drawn to zero, resulting in µi = 0. Under restricted entry, the
average profit margin is positive and depends on the industrial composition of country i’s

14The invariance of āij,k follows from the implicit assumption that firms face no fixed exporting cost. This as-
sumption rules out firm-selection in our baseline model. But as elaborated in Section 5, our baseline model is
isomorphic to a model that admits firm-selection as long as the productivity distribution, Gi,k(z), is Pareto.

15With free entry and constant markups, it follows immediately that Li,k = c̄i,k Mi,k where c̄i,k is a constant.
16The equivalence between the scale elasticity and markup holds under more general models that assume free

entry and monopolistic competition. More specifically, under these two assumptions: elasticity of firm-level output
w.r.t. input cost = firm-level markup (Hanoch (1975); Helpman (1984)).
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output—more sales in high-markup (high-µ) industries implies a higher µi.
Appealing to our definitions for ẁi and µk, we can restructure Equation 4 to express the

producer price of good ij, k (origin i–destination j–industry k) as a function of origin i’s profit-
adjusted wage rate:

Pij,k =


$ij,k

1+µk
1+µi

ẁi if entry is restricted

$′ij,k

[
∑j∈C āij,kQij,k

]− µk
1+µk ẁi if entry is free

. (6)

In the above formulation, $ij,k = āij,k M̄−µk
i,k and $′ij,k = āij,k(1 + µk)

(
µk/ f e

k

) −µk
1+µk are constant

price shifters; and ∑j∈C

[
āij,kQij,k

]
denotes origin i–industry k’s effective output.17 As we explain

shortly, the above formulation of producer prices is useful for tracking the gains from policy in
an open economy. The gains from firm-delocation channel through changes in ∑j∈C

[
āij,kQij,k

]
,

while the gains from profit-shifting channel through changes in µi.

2.3 The Instruments of Policy

The government in country i has access to a complete set of revenue-raising trade and
domestic policy instruments, including

i. import tax, tji,k, applied to all goods imported from origin j 6= i in industry k;

ii. export subsidy, xij,k, applied to all goods sold to market j 6= i in industry k;

iii. industrial subsidy, si,k, applied to industry k’s output irrespective of where it is sold;

iv. consumption taxes, which are redundant given the availability of the other tax instru-
ments and normalized to zero hereafter.

Our specification of policy is quite flexible as it accommodates import subsidies or export taxes
(−1 ≤ t < 0 or −1 ≤ x < 0) as well as production taxes (−1 ≤ s < 0). A formal proof for
the redundancy of consumption taxes is provided in Appendix A. There is a simple intuition
behind this result: Country i ∈ C has access to 2(N − 1) + 2 different tax instruments in each
industry (where N ≡ |C| denotes the number of countries). These 2(N− 1)+ 2 tax instruments
can directly manipulate 2(N − 1) + 1 consumer price indexes: N − 1 export prices, N − 1
import prices, and one price associated with the domestically-produced and consumed variety
(namely, P̃ii,k). So, by construction, one of the 2(N − 1) + 2 tax instruments in each industry is
redundant. Here, we treat the industry-level consumption tax as a redundant instrument.18

17Under free entry, the total entry cost paid by the Mi,k entrants should equal gross profits. That is,

wi f e
k Mi,k = ∑

j∈C

[
µk

1 + µk
Pij,kQij,k

]
= µkwi M

−µk
i,k ∑

j

[
āij,kQij,k

]
,

where the last line follows from replacing for Pij,k based on 4. The above equation implies that

Mi,k=
(

µk ∑j

[
āij,kQij,k

]
/ f e

k

) 1
1+µk . Plugging this expression back into 4 yields the formulation under Equation 6.

18With more than two countries (N > 2), Country i has access to 2(N − 1) + 2 instruments per industry. These
instruments can manipulate 2(N − 1) + 1 price variables, which implies the same redundancy.
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The non-redundant tax instruments create a wedge between consumer price indexes, {P̃ji,k}
and producer price indexes, {Pji,k}, as follows:

P̃ji,k =
1 + tji,k

(1 + xji,k)(1 + sj,k)
Pji.k, ∀j, i ∈ C, k ∈ K. (7)

These tax instruments also generate/exhaust revenue for the tax-imposing country. The com-
bination of all taxes imposed by country i ∈ C produce a tax revenue equal to

Ri =

industrial subsidies︷ ︸︸ ︷
∑

k∈K

((
1

1 + si,k
− 1
)

Pii,kQii,k

)
+ ∑

k∈K

∑
j 6=i

(
tji,k

(1 + xji,k)(1 + sj,k)
Pji,kQji,k +

[
1

(1 + xij,k)(1 + si,k)
− 1
]

Pij,kQij,k

)
︸ ︷︷ ︸

import taxes + export subsidies

. (8)

Tax revenues are rebated to the consumers in a lump-sum fashion. After we account for tax
revenues, total income in country i equals the sum of profit-adjusted wage payments, ẁiLi =

(1 + µi)wiLi, and tax revenues. Namely, Yi = ẁiLi +Ri, where Ri can be positive or negative
depending on whether country i’s policy consists of net taxes or subsidies.

2.4 General Equilibrium

For convenience, we refer to profit-adjusted wages as just wages going forward, using w ≡
{ẁi} to denote the global vector of wages. We also assume throughout the paper that the un-
derlying parameters of the model are such that the necessary and sufficient conditions for the
uniqueness of equilibrium are satisfied.19 To present our theory, we express all equilibrium
outcomes—expect for wages—as a function of global taxes (x, t, and s), treating wages w as
given. As detailed in Appendix E, this formulation derives from solving a system that im-
poses all equilibrium conditions aside from the labor market clearing conditions. For future
reference, we outline this formulation of equilibrium variables below.

Notation. For a given vector of taxes and wages T = (t, x, s; w), equilibrium outcomes Yi(T), Pji,k(T),
P̃ji,k(T), Qji,k(T) are determined such that (i) producer prices are characterized by 6; (ii) consumer
prices are given by 7; (iii) industry-level consumption choices are a solution to 1 with demand for
national-level varieties, Qji,k, given by 2; and (iv) total income (which dictates total expenditure by
country i) equals profit-adjusted wage payments plus tax revenues:

Yi(T) = ẁiLi +Ri(T),

where tax revenuesRi(T) are described by Equation 8.

Considering the above formulation of equilibrium variables, welfare, too, can be expressed
as a function of taxes and wages as follows:

Wi (t, x, s; w) ≡ Vi
(
Yi(t, x, s; w), P̃i(t, x, s; w)

)
.

Note that w is itself an equilibrium outcome. So, a vector T = (t, x, s; w) is feasible insofar as w

19Following Kucheryavyy et al. (2016), this assumption holds automatically in the two country case, given that
γk ≥ σk per (A1). Otherwise, it will hold if trade costs are sufficiently small.
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is the equilibrium wage consistent with t, x, and s. Related to this point, our goal in this paper
is to study problems where the government in i choses T = (t, x, s; w) to maximize Wi (T)
subject to feasibility. So, to fix ideas, we define the set of feasible policy–wage vectors below.

Definition (D2). The set of feasible policy–wage vectors, F, consists of any vector T = (t, x, s; w)

where w satisfies the labor market clearing condition in every country, given t, x, and s:

F =

{
T = (t, x, s; w) | ẁiLi = ∑

k∈K

∑
j∈C

[
Pij,k(T)Qij,k(T)

]
; ∀i ∈ C

}
.

There is a basic reason for why we formulate equilibrium outcomes as a function of T =

(t, x, s; w) instead of just (t, x, s). This choice of formulation allows us to articulate an important
intermediate result regarding the equivalence of policy equilibria. This result, which is stated
below, simplifies our theoretical derivation of optimal policy to a great degree.

Lemma 1. [Equivalence of Policy Equilibria] For any a and ã ∈ R+ (i) if T = (1 + ti, t−i,1 +

xi, x−i, 1 + si, s−i; ẁi, w−i) ∈ F, then T′ = (a(1 + ti), t−i, a(1 + xi), x−i, 1
ã (1 + si), s−i; a

ã ẁi, w−i) ∈
F. Moreover, (ii) welfare is preserved under T and T′: Wn(T) = Wn(T′) for all n ∈ C.

The above lemma is proven in Appendix B. It is a basic extension of the Lerner symmetry
to an environment where domestic taxes are also applicable. It implies that there are multiple
optimal tax combinations for each country i, which simplifies our forthcoming task of charac-
terizing the optimal policy. To give some detail: The contribution of general equilibrium wage
and income effects to the optimal tax schedule is often summarized in uniform tax shifters.
The redundancy established by Lemma 1, simplifies the task of handling of these uniform tax
shifters to a great degree.

3 Sufficient Statistics Formulas for Optimal Policy

In this section, we derive sufficient statistics formulas for optimal trade and industrial
taxes/subsidies. These formulas are later employed to quantify the gains from policy across
many different countries. Before proceeding to the derivation, let us briefly discuss the differ-
ent rationales for policy intervention in our setup. From the perspective of a non-cooperative
government, taxes can correct two margins of inefficiency:

a) Unexploited terms-of-trade (ToT) gains vis-à-vis the rest of the world, and

b) Misallocation in domestic industries due to the cross-industry heterogeneity in markups
or scale elasticities.

Improving the ToT will always lead to a Pareto sub-optimal outcome; because such a correction
has a beggar-thy-neighbor effect that transfers surplus from the rest of the world to the tax-
imposing economy. Correcting allocative inefficiency, however, is Pareto improving. There
is sub-optimal global output in high-profit or high-returns-to-scale (high-µ) industries. When
this type of distortion is corrected, consumers all around the world reap the benefits.
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Table 1: Summary of Key Variables

Variable Description

P̃ji,k Consumer price index (origin j–destination i–industry k)

Pji,k Producer price index (origin j–destination i–industry k)

Yi Total income in country i

Ri Total tax revenue in country i (Equation 8)

wi and ẁi pure and profit-adjusted wage rates in country i: ẁi = (1 + µi)wi

xji,k Export subsidy applied to good ji, k (if j 6= i)

tji,k Import tax applied on good ji, k (if j 6= i)

si,k Industrial subsidy applied to all goods from origin i–industry k

λji,k Within-industry expenditure share (good ji, k): P̃ji,kQji,k/ ∑ P̃i,kQi,k

rji,k Within-industry sales share (good ji, k): Pji,kQji,k/ ∑ι Pjι,kQjι,k

ei,k Industry-level expenditure share (destination i–industry k)

ρi,k Industry-level sales share (origin i–industry k)

µk industry-level markup ~ industry-level scale elasticity

µi Average profit margin in origin i (Equation 5)

σk Cross-national CES parameter ~ (1 + trade elasticity)

ε
(ni,g)
ji,k Elasticity of demand for good ji, k w.r.t. the price of ni, g

ωji,k Inverse of good ji, k’s supply elasticity (Equation 28)

3.1 Optimal Cooperative Policy

As a useful benchmark, we first characterize the optimal cooperative policy in our frame-
work. Such a policy maximizes global welfare, as defined by a population-weighted sum of
welfare across all countries:

max
(t,x,s;w)∈F

∑
i∈C

δiWi (t, x, s; w) .

It is straightforward to show that the solution to above problem involves zero trade taxes and
Pigouvian subsidies that restore marginal-cost-pricing in all countries:

t∗ji,k = x∗ji,k = 0 ∀ji, k; 1 + s∗i,k = 1 + µk ∀i, k (9)

The above characterization applies to both the free and restricted entry cases, and is analogous
to the cooperative policy structure studied in Bagwell and Staiger (2001).20 It can be supported
as the solution to a multi-country Nash bargaining game with side transfers. The assertion that
cooperative policy restores global allocative efficiency is an artifact of non-politically-weighted
welfare functions. Indeed, the above policy schedule corresponds to what would be imple-
mented under a deep trade agreement. As we discuss in Section 5, industrial subsidies offered
by politically-motivated governments can worsen allocative efficiency at a global level, with-
out necessarily improving the tax-imposing country’s ToT.

20Despite apparent similarities, the gains from cooperative policy are larger under free entry where optimal
policy corrects distortions due to sub-optimal entry decisions—we elaborate on this point in Section 7.
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3.2 First-Best Unilaterally Optimal Policy

We now characterize the unilaterally optimal policy schedule for a non-cooperative country
i ∈ C. We consider cases where country i choses tax vectors ti ≡ {tji,k}, xi ≡ {xij,k}, and
si ≡ {si,k}, taking policy choices in the rest of the world as given—i.e., t−i = x−i = s−i = 0.
Accordingly, we hereafter express equilibrium variables as a function of only country i’s taxes.
Noting this minor switch in notation, country i’s first-best policy solves the following problem:

max
(ti ,xi ,si ;w)

Wi (ti, xi, si; w) s.t. (ti, xi, si; w) ∈ F (P1).

We analytically solve Problem (P1) under both the restricted and free entry cases. We perceive
the restricted entry case to be a more appropriate benchmark if governments are concerned
with short-run gains from policy. The free entry case, on the other hand, is more relevant if
governments are concerned with long-run gains. These two cases exhibit an important dif-
ference: Producer prices respond differently to contractions in export supply under restricted
and free entry. Below, we elaborate on this difference.

General Equilibrium Export Supply Elasticity

The terms-of-trade gains from policy, in our framework, channel through changes in the
price of imported and exported goods. The government in i ∈ C cannot directly dictate the
producer price of say good, ji, k, that is imported from origin j 6= i. Instead, it can deflate
ji, k’s producer price (Pji,k) indirectly by contracting or expanding its export supply (Qji,k). The
contraction in Qji,k also affects the producer price of goods supplied by other locations through
general equilibrium linkages. To track these effects, we define the general equilibrium export
supply elasticity of good ji, k as follows:

ωji,k ≡
1

rji,kρj,k
∑
g

[
ẁiLi

ẁjLj
ρi,g

(
∂ ln Pii,g

∂ ln Qji,k

)
w,Ti

+ ∑
n 6=i

ẁnLn

ẁjLj
rni,gρn,g

(
∂ ln Pni,g

∂ ln Qji,k

)
w,Ti

]
.

In the above definition, Ti ≡ (ti, xi, si) denotes country i’s vector of taxes and subsidies, while
rni,g ≡ Pni,gQni,g/ ∑ι Pnι,gQnι,g and ρn,g ≡ ∑ι Pnι,gQι,g/ẁnLn respectively denote the good-specific
and industry-wide sales shares associated with origin n. As defined above, ωji,k describes how
the producer prices linked to economy i respond to a change in Qji,k. Correspondingly, it em-
bodies different economic forces under the free and restricted entry cases, as we detail below.

Under restricted entry, producers prices from origin j ∈ C are fully determined by the
(profit-adjusted) wage rate, ẁj, and the aggregate profit margin, µj (see Equation 6). Policy,
thus, has two distinct effects on producer prices under restricted entry: One effect that channels
through wages, w; and another that channels through aggregate profit margins. To explain the
latter, hold w constant: contracting the export supply of good ji, k with taxes will alter all
producer prices associated with origin j through a change in origin j’s aggregate profit margin,
µj. The change in µj derives from the fact that industries have differential markup margins,
and that taxing good ji, k alters the industrial composition of output in origin j ∈ C.

Under free entry, producer prices from origin j ∈ C are determined by the wage rate,
ẁj, and the origin j–industry k-specific scale of production. So, aside from wage-related ef-
fects, policy has a second effect on producer prices that channels through industry-level scale
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economies. To elaborate, consider an import tax on good ji, k (origin j–destination i–industry
k). Such a tax contracts the supply of ji, k and the scale of production in origin j–industry k.
Given Equation 6, this contraction in scale increases the entire vector of producer price indexes
associated with origin j–industry k—all through additional firm entry.

In both cases, ωji,k describes how expanding or contracting good ji, k’s export supply im-
pacts country i’s terms-of-trade via either profit-shifting or industry-level scale economies.
Importantly, ωji,k can be characterized (to a first-order approximation) as a simple function of
sales shares, scale elasticities, and Marshallian demand elasticities (see Appendix E):21

ωji,k ≈



(
1−

1+µj
1+µk

)
∑g rji,gρj,g

1+∑g ∑ι 6=i

[
1+
(

1−
1+µj
1+µg

)
rjι,gρj,gε jι,g

] if entry is restricted

− µk
1+µk

rji,k

1− µk
1+µk

∑ι 6=i rjι,kε jι,k

[
1− µk

1+µk

wi Li
wj Lj

∑n 6=i
ρi,krin,k
ρj,krjn,k

ε
(jn,k)
in,k

]
if entry is free

.

(10)
The above formulation for ωji,k is quite intuitive: Under restricted entry, ωji,k governs the rela-
tionship between export supply and the average markup paid on imports. Accordingly, ωji,k

is non-zero only when industries exhibit differential markup levels. Otherwise, ωji,k collapses
to zero as the average markup (or profit margin) paid on imports is constant and invariant to
changes in export supply, i.e., µj = µk = µ =⇒ ωji,k = 0. Under free entry, ωji,k regulates the
terms-of-trade gains from policy that channel through scale economies. Accordingly, in the
limit where industries operate based on constant-returns to scale, ωji,k once again collapses to
zero—namely, limµk→0 ωji,k = 0.22

Our Dual Approach to Characterizing Optimal Policy

Our characterization of optimal policy employs the dual approach and is presented in Ap-
pendix E. The derivation is relatively involved, occupying around 20 pages and utilizing sev-
eral intermediate lemmas. Below, we provide a bullet point summary of our approach:

a) We first simplify Problem (P1) by reformulating it into a problem where country i’s gov-
ernment chooses the vector of prices Pi =

{
P̃ii, P̃ji, P̃ij

}
associated with its own economy.

Country i’s optimal tax/subsidy schedule T∗i ≡ (t∗i , x∗i , s∗i ) is then recovered from the
optimal price vector P∗i .

b) The second step characterizes the first-order conditions (F.O.C.) associated with coun-
try i’s reformulated optimal policy problem. This step uses two tricks to overcome the
complications associated with general equilibrium analysis: First, we use the envelope
conditions associated with optimal demand choices to net out redundant behavioral re-
sponses. Second, we identify additional neutrality conditions that are specific to Problem

21The above approximation derives from Wu, Yin, Vosoughi, Studer, Cavallaro, and Dick’s (2013) first-order
approximated inverse of a diagonally-dominant matrix. Figure (2) in Appendix E illustrates the precision of this
approximation. The same appendix also presents an exact (approximation-free) formulation for ωji,k.

22Note that ωji,k can be negative under free entry if σk is sufficiently small. Intuitively, each origin j–industry k
exhibits a “backward-falling” supply curve, which implies that expanding the supply of ji, k deflates the producer
price index associated with origin j–industry k via increased firm entry.
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(P1). Most importantly, we observe that the terms in the F.O.C.s that account for general
equilibrium wage and income effects are redundant at the optimum.

c) The last step of our derivation combines the F.O.C.s and solves them simultaneously
as part of one system. In this process, we first appeal to the multiplicity of optimal
tax/subsidy schedules (Lemma 1) to eliminate uniform tax shifters, which are difficult
to characterize but redundant from a welfare standpoint. We then appeal to well-known
properties of the Marshallian demand function (e.g., Cournot aggregation and homogeneity
of degree zero) to prove that our system of F.O.C.s is invertible and has a unique solution.

The above steps lead us to simple sufficient statistics formulas for unilaterally optimal policy.
The following theorem presents these formulas.

Theorem 1. Country i’s optimal policy is unique up to two uniform tax shifters 1+ s̄i and 1+ t̄i ∈ R+,
and is implicitly given by

[domestic subsidy] 1 + s∗i,k = (1 + µk)(1 + s̄i)

[import tax] 1 + t∗ji,k = (1 + ωji,k)(1 + t̄i)

[export subsidy] 1 + x∗ij = −E−1
ij E(−ij)

ij (1 + t∗i ) ;

where ωji,k denotes the inverse of good ji, k’s supply elasticity as given by 10, while Eij ∼ E(ij)
ij and

E(−ij)
ij denote matrixes of Marshallian demand elasticities as defined under (D1).23

The uniform tax shifters, s̄i, and t̄i account for the multiplicity of optimal policy equilibria
(as indicated by Lemma 1). These shifters can be assigned any arbitrary value, provided that
1 + s̄i and 1 + t̄i ∈ R+. For instance, if we assign a sufficiently high value to t̄i and s̄i, the opti-
mal policy will involve import tariffs, export subsidies, and industrial subsidies. Conversely, if
we assign a sufficiently low value to t̄i and s̄i, the optimal policy will involve import subsidies,
export taxes, and industrial production taxes.

Intuition Behind Optimal Tax Formulas. Theorem 1 states that country i’s unilaterally op-
timal policy consists of (1) Pigouvian subsidies that restore marginal cost pricing in economy
i; (2) import taxes/subsidies that exploit country i’s collective import market power, deliv-
ering an optimal mark-down on the producer price Pji,k of imported goods; and (3) export
taxes/subsidies that exploit country i’s collective export market power, charging an optimal
mark-up on the consumer price P̃ij,k of exported goods.

When evaluating Theorem 1, note that Marshallian demand elasticities, ε
(ni,g)
ji,k , are fully-

determined by expenditure shares, λji,k, and σk. Likewise, the export supply elasticity, ωji,k,
is fully-determined by sales shares, rji,k, scale elasticities, µk, and Marshallian demand elas-
ticities. As such, Theorem 1 characterizes optimal policy in terms of three sets of sufficient
statistics: (i) observable shares, rij,k, and λij,k, (ii) industry-level trade elasticities, σk − 1, and

23To be clear, E(−ij)
ij =

[
E(nj)

ij

]
n 6=i

is a K× (N − 1)K matrix and 1 ≡ 1(N−1)K×1 is a column vector of ones. Also,

in the general case with asymmetric income elasticities of demand, Eij should be replace with Ẽij ≡ [
eij,g
eij,k

ε
(ij,k)
ij,g ]g,k.

Otherwise , the symmetry of the Slutsky matrix implies that eij,g
eij,k

ε
(ij,k)
ij,g = ε

(ij,g)
ij,k , which implies that Eij = Ẽij.
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(iii) industry-level scale elasticities, µk. This particular feature of Theorem 1 greatly simplifies
our quantitative analysis of optimal policy in Section 7.

A canonical special case of our model is the multi-industry Armington model, in which
µk = 0 for all k ∈ K. Under this special case, ωji,k = 0 for all ji, k and optimal import tariffs
are uniform, i.e., t∗ji,k = t̄i for all ji, k. This result can be understood as follows: Absent scale
economies or profits, import tariffs cannot impact the producer price of imported goods on a
good-by-good basis. At best, import taxes can induce a uniform reduction in import prices
(per origin j) by deflating w−i relative to wi. This uniform reduction, though, can be perfectly
mimicked with a uniform increase in export taxes per destination j. As such, optimal import
taxes are either uniform or redundant by choice of t̄i = 0.

A notable feature of the optimal policy schedule is that x∗ij,k depends on the entire matrix
of own- and cross-price demand elasticities associated with good ij, k. The explanation is that
x∗ij,k (in Theorem 1) corresponds to the optimal markup of a multi-product monopolist. To
better understand this point, assign t̄i = 0, in which case x∗ij,k acts as a tax on good ij, k (rather
than a subsidy). The optimal tax rate on ij, k is equal to the optimal mark-up on that good
if country i’s government was pricing its exports as a multi-product monopolist rather than
an individual single-product firm. The difference is that the government’s optimal pricing
decision internalizes the effect of raising P̃ij,k on its sales of other products in destination j.

Finally, note the resemblance between t∗ji,k (as implied by Theorem 1) and the traditional op-
timal tariff formula. In both cases, the optimal tariff rate is related to the inverse of foreign’s ex-
port supply elasticity. Our formula, however, is based on a general equilibrium multi-country
model rather than a traditional partial equilibrium two-country model. This distinction aside,
ωjn,k in our model describes a backward falling supply curve that stems from increasing returns
to scale at the industry level. In traditional models, ωjn,k describes an upward-sloping supply
curve resulting from diseconomies of scale. As such, our model is consistent with a possibly
negative ωjn,k, which conforms to recent evidence in Farrokhi and Soderbery (2020).

Special Case with Cobb-Douglas Preferences. To gain deeper intuition about Theorem 1,
consider a special case where preferences are Cobb-Douglas across industries. In that case, the
formulas specified by Theorem 1 reduce to24

[domestic subsidy] 1 + s∗i,k = (1 + µk)(1 + s̄i)

[import tax] 1 + t∗ji,k = (1 + ωji,k)(1 + t̄i)

[export subsidy] 1 + x∗ij,k =
(σk − 1)∑n 6=i

[
(1 + ωni,k)λnj,k

]
1 + (σk − 1)(1− λij,k)

(1 + t̄i), (11)

A well-known special case of the above formula is the single-industry×two-country formula in
Gros (1987). To demonstrate this, drop the industry subscript k and reduce the global economy

24In the Cobb-Douglas case: (a) ε
(ij,k)
nj,k = −σk1n=j + (σk − 1)λij,k and (b) ε

(ij,k)
nj,g = 0 if g 6= k. Plugging the

expression for ε jι,k into Equation 6, the inverse of the export supply under restricted entry is given by

ωji,k =

(
1− µj

µk

)
∑g rji,gρj,g

1 + ∑ι 6=i

[
1−

(
1− µj

µk

)
rjι,k

(
1 + (σk − 1)(1− λjι,k)

)] .

The parmaterization of ωji,k under free entry can be derived in a similar fashion.
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into two countries, i.e., C = {i, j}. Noting that 1− λij = λjj in the two-country case, we can
deduce from the above formulas that

1 + t∗ji
1 + x∗ij

= 1 +
1

(σ− 1)λjj
.

By the Lerner symmetry, export and import taxes are equivalent in the single-industry model.25

Hence, without loss of generality, we can set x∗ij = 0 and arrive at the familiar-looking optimal
tariff formula in Gros (1987), i.e., t∗ji = 1/(σ− 1)λjj.

The Cobb-Douglas case of Theorem 1 is also a strict generalization of the formula derived
concurrently by Bartelme et al. (2019) for a small open economy with multiple sectors. Specif-
ically, enforcing the small open economy assumption—i.e., setting ωji,k ≈ λij,k ≈ 0; λjj,k ≈ 1—
our optimal policy formulas in the Cobb-Douglas case reduce to:

1 + s∗i,k = 1 + µk; t∗ji,k = 0; 1 + x∗ij,k =
σk − 1

σk
. (12)

3.3 Second-Best Unilaterally Optimal Trade Taxes

Suppose the government in i ∈ C cannot use domestic subsidies due to say institutional
barriers or political pressures. It is optimal, in that case, to use trade taxes as a second-best pol-
icy to restore allocative efficiency in the domestic economy. In this section, we derive analytic
formulas for second-best optimal trade taxes in such circumstances. Country i’s optimal policy
problem, in this case, includes an added constraint that si = 0:

max
(ti ,xi ,si ;w)

Wi (ti, xi, si; w) s.t.

(ti, xi, si; w) ∈ F

si = 0
(P2).

Using the dual approach discussed earlier, we analytically solve Problem (P2) and derive
sufficient statistics formulas for second-best optimal trade taxes. The following proposition
presents these formulas, with a formal proof provided in Appendix F.

Theorem 2. Suppose industrial subsidies si are unavailable to the government: Second-best optimal
trade taxes are unique up to a uniform tax shifter t̄ ∈ R+ and are implicitly given by:

[import tariff] 1 + t?ji = (1 + t̄i) (1 + Ωji)�
(

1 + E−1
−ii E(ii)

−ii

[
1− 1 + µk

1 + µi

]
k

)
[export subsidy] 1 + x?ij = −(1 + t̄i)

(
E−1

ij E(−ij)
ij (1 + Ω−ii)

)
�
[

1 + µk

1 + µi

]
k

,

where Ωji =
[
ωji,k

]
k is a vector of (inverse) export supply elasticities as given by 10; µi denotes the

output-weighted average markup in economy i as described by 5; and E−ii, E(ii)
−ii , Eij, and E(−ij)

ij are
matrixes of Marshallian demand elasticities as defined under Definition (D1).26

Theorem 2 asserts that, when governments cannot use industrial subsidies, (i) the opti-
mal export subsidy is adjusted to promote exports in high-returns-to-scale (high-µ) industries,

25The Lerner symmetry is a special case of the equivalence result presented under Lemma 1. Also, note that the
market equilibrium is efficient in the single industry Krugman model studied by Gros (1987). As such, the optimal
industrial subsidy can be also normalized to zero, i.e., s∗i = 0.

26Letting N and K denote the number of countries and industries: E−ii ∼ E(−ii)
−ii =

[
E(i)

ni

]
n 6=i, 6=i

is a square (N−
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and (ii) the optimal import tax is adjusted to restrict import competition in high-returns-to-
scale (high-µ) industries. Intuitively, the government’s objective when solving (P2) is to mimic
Pigouvian industrial subsidies with trade taxes/subsidies. To reach this objective, import taxes
and export subsidies should increase in high-returns-to-scale industries relative to the first-best
benchmark. While these adjustments promote domestic production in high-µ industries, they
cannot perfectly replicate the first-best outcome due to a lack of sufficient policy instruments.27

Special Case with Cobb-Douglas Preferences. We can invoke the Cobb-Douglas assump-
tion to further elucidate the second-best tax formulas under Theorem 2. Under this assump-
tion, there are zero cross-demand effects between industries and the optimal policy formulas
specified by Theorem 2 can be simplified as follows:

[import tariff] 1 + t?ji,k =
1 + (σk − 1)λii,k

1 + 1+µi
1+µk

(σk − 1)λii,k

1st-best︷ ︸︸ ︷
(1 + t∗ji,k)

[export subsidy] 1 + x?ij,k =
1 + µk

1 + µi
(1 + x∗ij,k)︸ ︷︷ ︸

1st-best

,

where 1 + t∗ji,k = (1 + ωji,k)(1 + t̄i) and 1 + x∗ji,k =
(σk−1)∑n 6=i[(1+ωni,k)λnj,k]

1+(σk−1)(1−λij,k)
(1 + t̄i) denote the

first-best optimal rate (Equation 11). For a small open economy, the formulas further reduce to

1 + t?ji,k =
1 + (σk − 1)λii,k

1 + 1+µi
1+µk

(σk − 1)λii,k
(1 + t̄i); 1 + x?ij,k =

1 + µk

1 + µi

(
σk − 1

σk

)
(1 + t̄i).

In summary, the above formulas indicate that second-best import taxes are higher in (1) in-
dustries with a greater-than-average markup, and (2) industries in which country i has a
comparative advantage (i.e., high-(σk − 1)λii,k industries). These two properties allow second-
best import taxes to mimic Pigouvian subsidies to the best extent possible. Likewise, second-
best export subsidies feature a misallocation-correcting component that favors industries with a
higher-than-average scale elasticity or markup.

Importantly, if the markup or scale elasticity is uniform across industries (i.e., µk = µ = µi),
the above formulas yield the first-best or purely ToT-improving tax rate—i.e., t?ji,k = t∗ji,k and
x?ij,k = x∗ij,k. The intuition is that the Krugman model without cross-industry markup hetero-
geneity is efficient; leaving no room for policy interventions to restore allocative efficiency.

Third-Best Import Taxes. Now suppose that in addition to industrial subsidies, the use of ex-
port subsidies is also restricted. The government’s optimal policy problem in this case features
two additional constraints, si = xi = 0:

1)K × (N − 1)K matrix, where E(i)
ni ≡

[
ε
(i,g)
ni,k

]
k,g

as defined under Definition (D1). Likewise, E(−ij)
ij =

[
E(nj)

ij

]
n 6=i

and E(ii)
−ii =

[
E(ii)

ni

]
n 6=i

are respectively K× (N− 1)K and (N− 1)K×K matrixes. In all the equations, 1 ≡ 1(N−1)K×1

is a columns vector of ones. Meanwhile, Ω−ii =
[
ωni,k

]
n 6=i,k is a (N − 1)K × 1 vector; and the operators � and �

denote element-wise multiplication and division.
27As noted earlier, the government needs at least 2(N − 1)K + 1 tax instruments (per industry) to achieve the

first-best outcome. In homogeneous good models, though, trade taxes can fully mimic industrial subsidies, because
fewer instruments suffice to achieve the first-best.
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max
(ti ,xi ,si ;w)

Wi (ti, xi, si; w) s.t.

(ti, xi, si; w) ∈ F

si = xi = 0
(P3).

Some variation of the above problem has been studied by an expansive literature on optimal
tariffs. Though, nearly all existing studies are limited to partial equilibrium two-by-two mod-
els. Here, we use the same dual approach described earlier to analytically solve Problem (P3)
within our multi-country, multi-industry general equilibrium framework. Our derivation, as
before, yields simple sufficient statistics formulas for optimal third-best import taxes. The fol-
lowing theorem presents these formulas, with a formal proof provided in Appendix G.

Theorem 3. Suppose both industrial and export subsidies are unavailable to the government: Third-
best optimal import taxes are uniquely given by:

1 + t?ji = (1 + τ̄?
i ) (1 + Ωji)�

(
1 + E−1

−ii E(ii)
−ii

[
1− 1 + µk

1 + µi

]
k

)
where τ̄?

i =
[
−∑g,s ∑j 6=i χij,g

(
1 + ε

(ij,s)
ij,g

)]−1
is a uniform tariff shifter that represents the elasticity

of international demand for country i’s labor (with χij,g ≡ Pij,gQij,g/ ∑n 6=i Pin ·Qin denoting export
shares). µi denotes the output-weighted average markup in economy i as described by 5; and E−ii and
E(ii)
−ii are matrixes of Marshallian demand elasticities as defined under Definition (D1).

Unlike Theorems 1 and 2, the third-best optimal tariff schedule identified by Theorem 3
is unique. That is because the multiplicity implied by Lemma 1 no longer applies when both
export and industrial subsidies are restricted to zero. Nevertheless, the third-best tariff speci-
fied by Theorem 3 differs from the second-best tariffs (in Theorem 2) by only a uniform tariff
shifter, 1 + τ̄?

i . So, barring the uniform component, 1 + τ̄?
i , we can understand the above for-

mula based on the same intuition provided under Theorem 2.
The uniform tariff component, 1 + τ̄?

i , compensates for the unavailability of export tax-
cum-subsidies to the government. By the Lerner symmetry, which is implicit in Lemma 1,
import taxes can perfectly mimic a uniform export tax. This ability was previously redundant
(under Theorems 1 and 2) because export taxes/subsidies were directly applicable, and there
was no point in using other instruments to mimic them. But since export taxes are restricted
under Problem (P3), it is optimal to uniformly raise all tariffs by a factor 1 + τ̄i, using them as
a second-best substitute for optimal export taxes/subsidies.

4 Tension between ToT and Misallocation-Correcting Objectives

Following Theorems 2 and 3, second-best trade policies pursue two main objectives: (a)
contract exports in nationally-differentiated (low-σ) industries, and (b) promote domestic pro-
duction in high-returns-to-scale (high-µ) industries. The former improves the ToT and the
latter corrects allocative inefficiency. Second-best trade policies are, therefore, plagued by a
possible tension: If Covk(σk, µk) < 0, improving allocative efficiency with trade taxes wors-
ens the ToT. That is, reaching objective (b) undermines objective (a). The opposite holds if
Covk(σk, µk) > 0, but we hereafter focus on the case where Covk(σk, µk) < 0, because it is sup-
ported by our forthcoming estimation. Importantly, the tension described above, diminishes
the efficacy of trade taxes as a second-best misallocation-correcting measure—beyond what is
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implied by the targeting principle (Bhagwati and Ramaswami (1963)).28

Proposition 1. If the industry-level trade and scale elasticities are negatively correlated, i.e., Covk(σk,µk)<0,
then restoring allocative efficiency with “trade policy” worsens a country’s ToT. This tension diminishes
the efficacy of trade taxes as a second-best misallocation-correcting policy measure, beyond what is al-
ready implied by the targeting principle.

The above proposition has a notable flip side: If Covk(σk, µk) < 0, a unilateral adop-
tion of Pigouvian subsidies will worsen the ToT, resulting in possibly adverse welfare con-
sequences. This outcome is a basic manifestation of immiserizing growth (Bhagwati, 1958).
If Covk(σk, µk) < 0, Pigouvian subsidies (that restore marginal-cost-pricing) expand domestic
output in high-σ industries. These are nationally-differentiated industries in which countries
enjoy significant export market power. Raising output and, correspondingly, exports in these
industries can worsen the ToT to the point of triggering immiserizing growth. This tension
reveals that unilateralism in industrial policies is unlikely to succeed. We unpack this issue in
the following subsection, shedding new light on the gains from deep trade agreements.

Avoiding Immiserizing Growth via Deep Trade Agreements

Proposition 1 indicated that, when Covk(σk, µk) < 0, trade taxes are a poor second-best
measure for correcting misallocation in domestic industries. A unilateral adoption of cor-
rective industrial policies can be equally futile, as it may trigger immiserizing growth. The
remedy is that countries either (a) pair industrial subsidies with trade taxes that are globally
inefficient, or (b) coordinate their industrial policies via a deep trade agreement.

To elaborate on choice (b), recall that corrective industrial subsidies expand overall pro-
duction in high-µ industries. The ToT rationale for policy, meanwhile, requires that countries
contract export sales in low-σ industries. So, if Covk(σk, µk) < 0, corrective industrial subsi-
dies worsen the ToT as they inadvertently expand export sales in the wrong (low-σ) industries
from a ToT standpoint. This tension can be resolved if other countries, too, adopt corrective
subsidies and concurrently expand their export sales in the same low-σ industries.

To put it differently, corrective (Pigouvian) industrial subsidies in the rest of the world
have a positive externality on economy i. These externalities imply that joining deep trade
agreements is beneficial beyond concerns about retaliation by trading partners. To articulate
this point, we can compare the gains from the first-best non-cooperative policy (choice a) to the
gains from multilateral cooperation (choice b), using the following decomposition:29

Wi(s∗i , 0, 0 | s−i = s∗−i)

Wi(s∗i , t∗i , x∗i | s−i = 0)
=

Wi(s∗i , 0, 0 | s−i = s∗−i)

Wi(s∗i , t∗i , x∗i | s−i = s∗−i)︸ ︷︷ ︸
forgone ToT gains

×
Wi(s∗i , t∗i , x∗i | s−i = s∗−i)

Wi(s∗i , t∗i , x∗i | s−i = 0)︸ ︷︷ ︸
spilled-over corrective gains

.

28Relatedly, when trade taxes are restricted, governments will use industrial subsidies as a second-best instru-
ment to improve their ToT. Moving from the first-best to the second-best production tax-cum-subsidy schedule, in
that case, improves the ToT inefficiency at the expense of worsening allocative efficiency.

29To clarify the notation, Wi(s∗i , t∗i , x∗i | s−i = 0) denotes country i’s welfare under the first-best non-cooperative
policy as characterized by Theorems 1. Wi(s∗i , 0, 0 | s−i = s∗−i) denotes i’s welfare under a deep trade agreement
that prohibits trade taxes but implements Pigouvian subsidies all over the world. The above decomposition is
theoretically grounded in the fact that t∗ and x∗ only target the ToT inefficiency, whereas s∗ only targets allocative
inefficiency under the first-best polict schedule.
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The term labeled “forgone ToT gains” concerns the loss in welfare when trade taxes are abol-
ished as part one’s commitments to the deep agreement. The “spilled-over corrective gains,”
account for the gains that accrue to economy i when the rest of the world restore efficiency in
their domestic economies. Extrapolating from Theorem 1, we can verify that:

a) The foregone ToT gains are determined primarily by Avgk(1/(σk − 1));

b) The spilled-over corrective gains are determined primarily by Vark(µk).30

Therefore, if Vark(µk) is sufficiently large relative to Avgk(1/(σk − 1)), it is beneficial for coun-
tries to forgo ToT gains and, in return, reap the benefits of corrective subsidies in the rest of
world. These arguments are summarized in the following proposition.

Proposition 2. (i) If Covk(σk, µk) < 0, a unilateral adoption of corrective industrial policies (without
trade taxes) worsens the ToT and may trigger immiserizing growth. However, if Vark(µk) is sufficiently
large relative to Avgk(1/(σk − 1)), (ii) a multilateral adoption of corrective industrial policies via deep
trade agreements delivers welfare gains that dominate those of any non-cooperative policy alternative.
This latter assertion holds even if non-cooperation does not prompt retaliation by trading partners.

In light of Propositions 1 and 2, the optimal implementation of industrial policy and the re-
sulting gains depend crucially on σk and µk. We later develop a methodology to estimate these
crucial policy parameters. But before moving on to the estimation, we briefly discuss how our
theory readily applies to other canonical trade models or extends to richer environments with
political pressures and input-output linkages.

5 Extensions and Application to other Canonical Models

In this section, we first show that our theoretical results readily apply to two other canonical
trade models. We then extend our baseline theoretical results to richer environments featuring
input-output linkages and political economy pressures.

5.1 Application to Other Canonical Trade Models

The optimal policy formulas specified by Theorems 1-3 apply to two other canonical trade
models. Though, parameters σk and µk in these formulas adopt different interpretations, which
reflects the different micro-foundation underlying these frameworks.

The Eaton-Kortum model with Marshallian externalities. As in Kucheryavyy et al. (2016),
consider a multi-industry Eaton and Kortum (2002) model where production in each industry
is subject to agglomeration economies. Let ψk denote the constant agglomeration elasticity in
industry k, and let θk denotes the industry-level Eaton-Kortum Fréchet shape parameter. Theo-
rem 1 characterizes the optimal policy in this model under the following reinterpretation of pa-
rameters: µEK

k = ψk and σEK
k = 1 + θk. The tension between the ToT and misallocation-correcting

rationales for policy—as outlined by Proposition 1—extends to this model if Covk(ψk, θk) < 0.

30To establish these points, consider two extreme cases: First, suppose Vark(µk) ≈ 0, in which case Theorem 1
indicate that s∗−i ≈ 0 by choice of shifter s̄i, implying zero “spilled-over corrective gains.” Second, consider the
case where σk → ∞, in which case t∗i ≈ x∗i ≈ 0 by choice of shifter t̄i, implying zero “foregone ToT gains.”
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The fact that our theory readily extends to the Eaton-Kortum model is an artifact of the iso-
morphism established in Kucheryavyy et al. (2016). We extend this isomorphism result in Ap-
pendix C, demonstrating that the nested-CES import demand function implied by (A1) may
analogously arise from within-industry specialization á la Eaton-Kortum.

The Melitz-Pareto model. Consider a multi-industry Melitz (2003) model that features the
same nested-CES demand function specified by (A1). Suppose the firm-level productivity
distribution is Pareto in each industry with a shape parameter, ϑk. Appendix D establishes
that the Melitz-Pareto model is isomorphic to our baseline Krugman model insofar as macro-
level representation is concerned. Hence, Theorem 1 characterizes the optimal policy in the
Melitz-Pareto model under the following reinterpretation of parameters: (1) µMelitz

k = (ϑk +

1)/(µkϑk − 1) if entry is restricted and µMelitz
k = ϑk is entry is free; and (2) σMelitz

k = 1 +

ϑk/
[
1 + ϑkµk

(
1

µk(σk−1) − 1
)]

. This mapping indicates that we need to estimate parameter ϑk,
in addition to σk and µk, to quantify the gains from policy under firm-selection effects—a pro-
cedure we formally undertake and elaborate on in Section 7.

5.2 Extension #1: Accounting for Input-Output Networks

Suppose production employs both labor and intermediate inputs, which are distinguished
from final goods by superscript I . Cost minimization entails that the producer price of good
ij, k (origin i–destination j–industry k) depends on (i) the wage rate in origin i and (ii) the price
of all intermediate inputs, P̃Ii ≡ {P̃Inj,k}, available to firms in origin i. Namely,

Pij,k = ρ̄ij,kCi,k(wi, P̃Ii )Q
− µk

1+µk
i,k , (13)

where Ci,k(.) is a homogeneous of degree one cost function w.r.t. wi and P̃Ii .31 The depen-
dence of Pij,k on origin i–industry k’s effective output, Qi,k ≡ ∑j∈C

[
āij,kQij,k

]
, accounts for

scale economies under free entry. The formal definition of general equilibrium in the presence
of input-output (IO) linkages is presented in Appendix H. The same appendix characterizes
optimal policy using our previously-described dual approach, while appealing to additional
supply-side envelope conditions.32 Our characterization indicates that optimal industrial sub-
sidies and import taxes are IO-blind—i.e., they are described by the same formulas as in The-
orem 1. The intuition is that after fixing the price of exported goods with export subsidies, im-
port tariffs and industrial subsidies have no impact on prices in the rest of the world. For these
policies to affect prices in the rest of the world, they need to propagate through re-exportation.
But any possible gains the channel through re-exportation, will be already internalized by the
optimal choice w.r.t. export subsidies. Consistent with this intuition, optimal export subsidies
depend on the fraction of export value that is reimported via the global IO network. Putting

31Without loss of generality, we assume that good ji, k can be used as either an intermediate input or a final
consumption good, with taxes being applied on a good irrespective of the intended final use, i.e., P̃Iij,k = P̃ij,k. This
assumption is innocuous, because we can fragment every industry k into a final good version k′ and an intermediate
good version k′′. Since we do not impose any restrictions on the number of industries, our theory extends to the
case where differential taxes are imposed on fragments k′ and k′′.

32Beshkar and Lashkaripour (2020) borrow the dual approach developed in this paper to derive analogous
formulas for optimal trade taxes in a perfectly competitive model with diseconomies of scale and input-output
linkages. These formulas are then used to compute the cost of a global trade war.
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the pieces together, country i’s first-best optimal policy under IO linkages is given by:

[domestic subsidy] 1 + s∗i,k = (1 + µk)(1 + s̄i)

[import tax] 1 + t∗ji,k = (1 + ωji,k)(1 + t̄i)

[export subsidy] 1 + x∗ij = −E−1
ij

[
E(−ij)

ij (1 + t∗i ) + Λij(1 + t̄i)
]

,

where Λij ≡
[
Λij,k

]
k, with Λij,k denoting the fraction of good ij, k’s value that is reimported

via the IO network.33 The above formula indicates that export subsidies are relatively higher
on upstream industries for which the subsidy is partially passed back to domestic consumers.
This detail aside, the ToT-improving motive for policy still requires a contraction of exports in
low-σ industries, whereas the misallocation-correcting motive asks for an expansion of output
in high-µ industries. So, unless downstream industries exhibit a systemically lower σ, Propo-
sition 1 maintains its validity. That is, if Covk(σk, µk) < 0, improving allocative efficiency with
trade policy worsens the ToT.

5.3 Extension #2: Accounting for Political Economy Pressures

A possible challenge to Proposition 1 is that optimal policy choices are often influenced by
political pressures. To address this concern, we follow Ossa’s (2014) adaptation of Grossman
and Helpman (1994). In particular, our baseline analysis assumed that the government in coun-
try i maximizes Wi ≡ Vi(wiLi +Ri + Πi, P̃i), where Πi ≡ µiwiLi denotes total profits in econ-
omy i. Now, we assume instead that the government maximizes a politically-weighted welfare
function, Wi ≡ Vi(wiLi +Ri + ∑k πi,kΠi,k, P̃i); where πi,k is the political economy weight as-
signed to industry k’s profits (with ∑k πi,k/K =1). It follows trivially from Theorem 1 that the
first-best optimal policy in the political setup is given by

[domestic subsidy] 1 + s∗i,k = (1 + µPi,k)(1 + s̄i)

[import tax] 1 + t∗ji,k = (1 + ωji,k)(1 + t̄i)

[export subsidy] 1 + x∗ij = −E−1
ij E(−ij)

ij (1 + t∗i ) ;

where µPi,k = µk
πi,k−(1−πi,k)µk

is the political economy-adjusted markup of industry k. Considering
the above formulas: if Covk(πi,k, µk)<0, the optimal policy may tax high-µ industries to the
detriment of social welfare. In that case, even if Covk(σk, µk) > 0, the misallocation-correcting
and ToT motives for trade taxation will clash. However, if Covk(πi,k, µk)≥0 Proposition 1 re-
mains valid despite political economy pressures.34

6 Estimating the Key Policy Parameters

It should be clear by now that computing the gains from policy requires credible estimates
for (i) the industry-level trade elasticities, σk − 1, which reflect the degree of national-level mar-

33If country i is a small open economy, Λij,k ≈ 0. Correspondingly, optimal policy formulas for a small open
economy under IO linkages perfectly overlap with the baseline formulas specified under Equation 12.

34The above formula has another basic implication: When governments are politically-motivated, their policy
objectives may no longer align insofar as domestic policies are concerned. In particular, some governments may
assign a greater weight to low-profit industries such as agriculture. These political economy considerations can
prompt governments to subsidize and promote the wrong domestic industries from the perspective of the rest of
the world. This concern is at the root of some existing opposition to industrial policy.
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ket power in industry k; and (ii) the industry-level scale elasticities, µk = 1/(γk − 1), which
reflect the degree of firm-level market power in industry k. The trade literature has paid con-
siderable attention to estimating σk, but less attention has been devoted to disentangling µk

(or γk) from σk. Instead, µk is often disciplined according to following two normalizations: (i)
µk = 1/(σk − 1) in monopolistically competitive models, and (ii) µk = 0 in perfectly compet-
itive models.35 The latter normalization eliminates market imperfections. The former allows
researchers to pin down µk based on existing estimates for the trade elasticity. But as noted by
Benassy (1996), such a choice creates an arbitrary link between the market power of individual
firms and the national-level market power in each industry.36

To credibly analyze the ToT-improving and misallocation-reducing gains from policy, we need
to (a) estimate σk and µk, and (b) make sure that these estimates are mutually-consistent. To
this end, we propose a new methodology that simultaneously estimates σk and µk from the
same data.37 Our approach involves fitting the structural firm-level import demand function
implied by A1 to the universe of Colombian import transactions from 2007–2013. We outline
this approach below, starting with a description of the data used in our estimation.

Data Description. Our estimation uses data on import transactions from the Colombian Cus-
toms Office for the 2007–2013 period.38 The data include detailed information about each
transaction, such as the Harmonized System 10-digit product category (HS10), importing and
exporting firms, f.o.b. (free on board) and c.i.f. (customs, insurance, and freight) values of
shipments in US dollars, quantity, unit of measurement (of quantity), freight in US dollars, in-
surance in US dollars, value-added tax in US dollars, country of origin, and weight. A unique
feature of this data set is that it reports the identities of all foreign firms exporting to Colom-
bia, allowing us to define import varieties as firm-product combinations—in comparison, most
papers focusing on international exports to a given location typically treat varieties as more ag-
gregate country-product combinations. Table 5 (in the appendix) reports a summary of basic
trade statistics in our data.39

When working with the above data set, we face two challenges: First, exporters are not
identified by a unique standardized ID. Instead, they are identified by a name, a number,
and an address.40 We deal with this problem by standardizing the spelling and the name
lengths along with utilizing information on firms’ phone numbers, with details are provided

35See Ossa (2016) and Costinot and Rodríguez-Clare (2014) for a synthesis of the previous literature.
36Beyond the trade policy literature, De Loecker and Warzynski (2012), Edmond et al. (2015), and De Loecker,

Goldberg, Khandelwal, and Pavcnik (2016) use firm-level production data to estimate the degree of firm-level
market power within industries. The production-side approach implicitly pins down µk without determining σk.
The challenge for trade policy analysis is to jointly estimate σk and µk with the same data.

37In the presence of firm-selection effects, our estimated parameters are necessary but not sufficient to pin down
the trade and scale elasticities. In addition to our estimated parameters, we need information on the shape of the
Pareto productivity distribution—see Appendixes D and P for details.

38The data is obtained from DATAMYNE, a company that specializes in documenting import and export trans-
actions in Americas. For more detail, please see www.datamyne.com.

39Our estimation also employs data on monthly average exchange rates, which are taken from the Bank of
Canada: http://www.bankofcanada.ca/rates/exchange/monthly-average-lookup/.

40The identification of the Colombian importing firms is standardized by the national tax ID number. For the
foreign exporting firms, the data provide the name of the firm, phone number, and address. The names of the
firms are not standardized, and thus there are instances in which the name of a firm and its address are recorded
differently (e.g., using abbreviations, capital and lower-case letters, dashes, etc.).
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in Appendix I Second, for some products, Colombia has been changing the HS10 classification
between 2007 and 2013. Fortunately, the Colombian Statistical Agency, DANE, has kept track
of these changes,41 and we utilized this information to concord the Colombian HS10 codes
over time. In the process, we follow the guidelines provided by Pierce and Schott (2012) for
the concordance of the U.S. HS10 codes over time.42 Overall, changes in HS10 codes between
2007 and 2013 affect a very small portion (less than 0.1%) of our dataset.

6.1 Estimating Equation

Since we are focusing on one importer, we hereafter drop the importer’s subscript i and add
a year subscript t to account for the time dimension of our data. With this switch in notation,
the demand facing firm ω located in country j and supplying product k in year t is given by:

qj,kt (ω) = ϕj,kt(ω)

(
p̃j,kt(ω)

P̃j,kt

)−γk
(

P̃j,kt

P̃kt

)−σk

Qkt, (14)

Note that subscript k has been used thus far to reference industries. But in our empirical anal-
ysis, k will designate the most disaggregated industry/product category in our dataset, which
is an HS10 product category. The quadruplet “ωjkt” therefore denotes a unique imported va-
riety corresponding to firm ω–country of origin j–HS10 product k–year t. Rearranging Equation
14, we can produce the following equation

qj,kt (ω) =ϕjkt(ω) p̃j,kt(ω)−σk λj,kt (ω)
1− σk−1

γk−1 P̃σk
kt Qkt, (15)

where λj,kt (ω) denotes the share of expenditure on firm ω conditional on buying good k from
country of origin j,

λj,kt (ω) ≡ ϕj,kt(ω)

(
p̃j,kt(ω)

P̃j,kt

)1−γk

=
p̃j,kt(ω)qj,kt(ω)

∑ω′∈Ωj,kt
p̃j,kt(ω′)qj,kt(ω′)

.

Taking logs from Equation 15, noting that µk ≡ 1/(γk − 1), and letting x̃(ω) ≡ p̃(ω)q(ω)

denote sales, yields the following firm-level import demand function:

ln x̃j,kt(ω) = (1− σk) ln p̃j,kt(ω) + [1− µk(σk − 1)] ln λj,kt (ω) + δkt + ϕj,kt(ω), (16)

where δkt ≡ ln Pσk
kt Qkt can be treated as a product-year fixed effect. We assume that ϕjkt(ω) =

ϕ̄j,k(ω) + ϕωjkt can be decomposed into a time-invariant firm×product-specific quality compo-
nent, ϕ̄j,k(ω), and a time-varying component ϕωjkt, that encompasses (i) idiosyncratic vari-
ations in consumer taste, (ii) measurement errors, and (iii) omitted variables that account
for dynamic demand optimization. To eliminate ϕ̄j,k(ω) from the estimating equation, we
employ a first-difference estimator, which also drops observations pertaining to one-time ex-
porters. We deem the first-difference estimator appropriate given the possibility that ϕωjkt’s
are sequentially correlated. As a robustness check, we also report estimation results based on
a two-ways fixed effects estimator in Appendix L.43 Stated in terms of first-differences, our

41We thank Nicolas de Roux and Santiago Tabares for providing us with this information.
42To preserve the industry identifier of the product codes, and in contrast to Pierce and Schott (2012), we try to

minimize the number of the synthetic codes. The concordance data and do files are provided in the data appendix.
43Following Boehm, Levchenko, and Pandalai-Nayar (2020), the first-difference estimation offers a partial rem-

26



estimating equation takes the following form

∆ ln x̃j,kt(ω) = (1− σk)∆ ln p̃j,kt (ω) + [1− µk(σk − 1)]∆ ln λj,kt (ω) + ∆δkt + ∆ϕωjkt, (17)

where ∆ϕωjkt, crudely speaking, represents a variety-specific demand shock; and ∆δkt is a
product-year fixed effect.44 Of the remaining variables, ∆ ln p̃j,kt(ω) and ∆ ln x̃j,kt(ω) are di-
rectly observable for each import variety, while changes in the within-national market share,
∆ ln λj,kt (ω), can be calculated using the universe of firm-level sales to Colombia.45

As noted earlier, k indexes an HS10 product category in Equation 17. To conduct our forth-
coming quantitative analysis, however, we need to estimate σk and µk for 14 broadly-defined
industries based on the World Input-Output Database (WIOD) classification. Considering this,
we pool all HS10 products belonging to the same WIOD industry κ together, and estimate
Equation 17 on this pooled sample assuming that σk and µk are uniform across products within
the same industry (i.e., µk = µκ and σk = σκ for all k ∈ Kκ). In principle, we can also estimate
the import demand function separately for each HS10 product category to attain HS10-level
elasticities. However, such elasticities will be of little use for our quantitative policy analysis,
as multi-country data on trade, production, and expenditure shares are scarce at such levels of
disaggregation.

Before moving forward, a discussion regarding the role of µk(σk − 1) in Equation 17 is
in order. µk(σk − 1) = σk−1

γk−1 corresponds to the spread between the national-level and firm-
level degrees of market power. Broadly speaking, variety ωjkt is (i) either imported from a
thick market like China in which case it competes with many other Chinese varieties, hence
a low λj,kt (ω), or (ii) it is imported from a thin market like Taiwan where it competes with a
few other Taiwanese varieties, hence a high λj,kt (ω). If—after controlling for prices—varieties
originating from thick markets generate lower sales, it should be the case that goods from
the same origin country are relatively more substitutable. Accordingly, our import demand
function identifies this case as one where 1 > σk−1

γk−1 = µk(σk − 1) > 0.46

6.2 Identification Strategy

The identification challenge we face is that ∆ ln p̃j,kt (ω) and ∆ ln λj,kt (ω) are endogenous
variables that can covary with the demand shock, ∆ϕωjkt.47 Traditional country-level import
demand estimations overcome a similar challenge by instrumenting for prices with plausibly

edy for omitted variable bias and reverse causality due to endogenous policy choices. Both of these issues pose
a serious challenge to traditional log-level estimations of import demand. Depending on the application, though,
the first-difference estimator may not necessarily identify the desired long-run elasticity. As detailed in Appendix
L, this limitation is less severe in our firm-level estimation—as we explicitly control for the extensive margin of
trade and utilize the cross-sectional variation in firm-level price and demand changes within product-year cells. We
illustrate this point formally in Appendix L by re-estimating Equation 16 in levels and comparing the estimation
results to the baseline values. This point notwithstanding, our theoretical model accommodates both the free- and
restricted-entry cases and, therefore, speaks to various policy horizons.

44In the previous version of the paper, we included all observations that reported a non-missing ∆ ln p̃j,kt. Some
of our industry-level estimates, however, display sensitivity to outlier observations. Considering this, our current
estimation trims the sample to exclude observations that report a price change, ∆ ln p̃j,kt, above the 99th percentile
or below the 1st percentile of HS10 product code k in year t.

45Some readers may notice parallels between our estimating equation and the nested demand function analyzed
in Berry (1994); but given the structure of our data, we adopt a distinct identification strategy.

46Note that only µk(σk − 1) ≤ 1 is consistent with our earlier assumption on the uniqueness of the equilibrium.
As we will see shortly, this condition is satisfied by our estimated parameter values.

47Another challenge is that unit price data may be contaminated with measurement errors, as they are averaged

27



exogenous tariff rates.48 This strategy, however, does not suit our firm-level estimation, because
tariffs discriminate by country-of-origin but not across firms from the same country.

To achieve identification, we need to construct a firm×origin×product×year-specific cost
shifter that is uncorrelated with ∆ϕωjkt. To this end, we capitalize on the monthly frequency
of import transactions in our data. We compile an external database on aggregate monthly
exchange rates and interact the monthly variation in aggregate exchange rates with the lagged
monthly composition of firm-level exports to construct the following shift-share instrument:

zj,kt(ω) =
12

∑
m=1

x̃j,kt−1(ω; m)

x̃j,kt−1(ω)
∆Ejt(m).

In the above expression, ∆Ejt(m) ≡ Ejt(m)− Ejt(m− 1) denotes the change in country j’s ex-
change rate with Colombia in month m of year t; x̃j,kt−1(ω; m) denotes the month m sales of
firm ω (from origin country j in product category k) in the prior year, t− 1; and x̃j,kt−1(ω) =

∑12
m=1 x̃j,kt−1(ω; m) denotes firm ω’s total annual export sales in t − 1. Crudely speaking,

zj,kt(ω) measures the firm×origin×product×year-specific exposure to exchange rate shocks. The
idea being that aggregate exchange rate movements have differential effects on different firms
depending on the monthly composition of their prior export activity to Colombia.49 Encourag-
ingly, this idea is backed by the fact that z and ∆ ln p̃ exhibit a strong and statistically significant
correlation in our data. Appendix J illustrates this point using the example of two U.S.-based
exporting firms.

Our instrument utilizes lagged monthly sales, x̃jkt−1(ω, m) = x̃( p̃jkt−1(ω, m); ...), which
depend on lagged prices and other market-level indexes. Therefore, the exclusion restriction,
Corr [z, ∆ϕ] = 0, hinges on two identifying assumptions:

(a1) Prior price-setting decisions are orthogonal to concurrent demand shocks:
Corr

[
p̃jkt−1(ω), ∆ϕωjkt

]
= 0.

(a2) National-level exchange rate movements are orthogonal to variety-level demand
shocks: Corr

[
∆Ejt(m), ∆ϕωjkt

]
= 0.

These assumptions can be challenged if there are cross-inventory linkages or if individual ex-
port varieties account for a significant fraction of a country’s total exports to Colombia. We
will discuss and address these identification challenges in Section 6.4.

Instruments for ∆ ln λj,kt (ω). Following Khandelwal (2010), we construct two standard in-
struments for the annual variation in the within-national market shares: (i) annual changes in
the total number of origin j firms serving the Colombian market in product category k, and
(ii) changes in the total number of HS10 product categories actively served by firm ω in year
t. These count measures will be correlated with ∆ ln λj,kt (ω) but uncorrelated with ∆ϕωjkt if

across many transactions. Following Berry (1994), this type of measurement error is fairly innocuous when dealing
with log-linear demand functions. Furthermore, our instrumental variable approach will handle measurement
errors, provided that lagged monthly sales patterns are uncorrelated with concurrent measurement errors.

48A prominent example is Caliendo and Parro (2015) who use tariff data to identify the trade elasticity.
49One can draw parallels between our instrument and the widely-used Bartik instrument. The latter builds on

the idea that different regions are affected differentially by national labor market shocks depending on their initial
industrial composition of the local labor market.
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variety-level entry and exit occurs prior to, or independent of, the demand shock realization of
competing varieties. As noted by Khandelwal (2010), this assumption is widely-invoked when
estimating discrete choice demands curves—see also Berry, Levinsohn, and Pakes (1995).50

6.3 Estimation Results

The industry-level estimation results are reported in Table 2. We also report estimation
results corresponding to a pooled sample of all industries in Table 7 of the appendix. This
table also compares the 2SLS and OLS estimates to ensure that our IV strategy is operating in
the expected direction. Our estimates point to an average trade elasticity of σ− 1 = 3.6 and an
average scale elasticity of µ ≈ 0.19. Our pooled estimation yields a heteroskedasticity-robust
Kleibergen-Paap Wald rk F-statistic of 95. Hence, we can reject the null of weak instruments
given the Stock-Yogo critical values. A similar, albeit weaker, argument applies to the industry-
level estimation.

The industry-level elasticities reported in Table 2 display considerable variation across in-
dustries. The estimated scale elasticity or markup margin is highest in the ’Electrical & Optical
Equipment’ (µ = 0.45) and ’Petroleum’ (µ = 1.7) industries; both of which are associated
with high R&D or fixed costs. The estimated scale elasticity is lowest in ’Agricultural & Min-
ing’ (µ = 0.14) and ’Machinery’ (µ = 0.10) industries. Furthermore, with the exception of
’Agriculture & Mining,’ we cannot reject the prevalence of scale economies. The finding that
returns-to-scale are negligible in the agricultural sector aligns with a large body of evidence
on the inverse farm-size productivity (IFSP) relationship—see Sen (1962) and subsequent ref-
erences to IFSP.

Our industry-level trade elasticity estimates, σk − 1, also display some novel properties. To
our knowledge, our estimation is the first to identify the industry-level trade elasticities using
(i) firm-level data, and (ii) while controlling for intra-national cross-demand effects. Qualita-
tively speaking, our estimated trade elasticities are similar in magnitude to those estimated by
Simonovska and Waugh (2014) but slightly lower than those estimated by Caliendo and Parro
(2015). Aside from the firm-level nature of our estimation, these differences may be driven by
the fact that instead of controlling for f.o.b. prices with exporter fixed effects, we directly use
data on f.o.b. price levels.

Importantly, our estimates indicate that µk(σk − 1) = σk−1
γk−1 < 1 in nearly all industries.

This finding rejects the arbitrary link often assumed between the firm-level and national-level
degrees of market power in the literature.51 Our estimates also indicate that Covk(σk, µk) < 0,

50Although trade taxes count as a weak instrument in our firm-level estimation, we nonetheless include them
as an additional instrument to comply with the literature. These taxes include applied ad-valorem tariffs and the
Columbian value-added tax (VAT). We exclude the VAT in the ’Transportation’ and ’Petroleum’ industries since
the VAT in these industries discriminates by the method of delivery and level of luxury, both of which may be
correlated with ∆ϕωjkt.

51In other words, our estimation rejects the independence of irrelevant alternatives (IIA) because product varieties or
technologies are less differentiated intra-nationally than inter-nationally. While the IIA assumption has garnered
considerable attention in the industrial organization literature, the trade literature has only recently tested this
assumption against data. Redding and Weinstein (2016) estimate an international demand system that relaxes the
IIA assumption by accommodating heterogeneous taste across consumers. Adao, Costinot, and Donaldson (2017)
estimate a trade model that (unlike standard CES models) permits varieties from certain countries to be closer
substitutes. Our results contribute to this emerging literature by highlighting another aspect of the trade data that
is at odds with the IIA assumption.
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which empirically confirms the innate tension between the ToT-improving and misallocation-
correcting motives for trade taxation, as highlighted by Proposition 1.

Table 2: Industry-level estimation results

Estimated Parameter

Sector ISIC4 codes σk − 1 σk−1
γk−1 µk Obs. Weak

Ident. Test

Agriculture & Mining 100-1499 6.212 0.875 0.141 11,962 2.51
(2.112) (0.142) (0.167)

Food 1500-1699 3.333 0.883 0.265 20.042 6.00
(0.815) (0.050) (0.131)

Textiles, Leather & Footwear 1700-1999 3.413 0.703 0.207 126,483 63.63
(0.276) (0.020) (0.022)

Wood 2000-2099 3.329 0.899 0.270 5,962 1.76
(1.331) (0.181) (0.497)

Paper 2100-2299 2.046 0.813 0.397 37,815 2.65
(0.960) (0.216) (0.215)

Petroleum 2300-2399 0.397 0.698 1.758 4,035 2.03
(0.342) (0.081) (1.584)

Chemicals 2400-2499 4.320 0.915 0.212 134,413 42.11
(0.376) (0.027) (0.069)

Rubber & Plastic 2500-2599 3.599 0.582 0.162 107,713 7.22
(0.802) (0.041) (0.039)

Minerals 2600-2699 4.561 0.847 0.186 28,197 3.19
(1.347) (0.096) (0.129)

Basic & Fabricated Metals 2700-2899 2.959 0.559 0.189 155,032 16.35
(0.468) (0.024) (0.032)

Machinery 2900-3099 8.682 0.870 0.100 266,628 8.54
(1.765) (0.080) (0.065)

Electrical & Optical Equipment 3100-3399 1.392 0.631 0.453 260,207 17.98
(0.300) (0.015) (0.099)

Transport Equipment 3400-3599 2.173 0.289 0.133 86,853 5.09
(0.589) (0.028) (0.036)

N.E.C. & Recycling 3600-3800 6.704 0.951 0.142 70,974 8.51
(1.133) (0.100) (0.289)

Notes. Estimation results of Equation (17). Standard errors in parentheses. The estimation is conducted with HS10
product-year fixed effects. All standard errors are simultaneously clustered by product-year and by origin-product,
which is akin to the correction proposed by Adao, Kolesár, and Morales (2019). The weak identification test
statistics is the F statistics from the Kleibergen-Paap Wald test for weak identification of all instrumented variables.
The test for over-identification is not reported due to the pitfalls of the standard over-identification Sargan-Hansen
J test in the multi-dimensional large datasets pointed by Angrist, Imbens, and Rubin (1996).

6.4 Challenges to identification

Our man identifying assumptions, (a1), and (a2), can be challenged under certain circum-
stances. Below, we discuss these challenges and present additional evidence to address them.
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Within-Cluster Correlation in Error Terms. Adao et al. (2019) show that identification based
on shift-share instruments exhibits an over-rejection problem if regression errors are cross-
correlated. In the context of our estimation, this problem will arise if demand shocks are cor-
related across firm-origin-product-year varieties with a similar monthly export composition. To
handle this issue, we adopt a conservative two-way clustering of standard errors by product-
year and origin-product. Clustering standard errors this way is akin to the correction proposed
by Adao et al. (2019).

Cross-Inventory Effects. Lags in inventory clearances can challenge our identifying assump-
tions on two fronts. First, firms’ optimal pricing decisions may be forward-looking, which
violates assumption (a1). To address this concern, we reconstruct our shift-share instrument
using 4 lags instead of 1. If inventories clear in at most 4 years, we can deduce that pric-
ing decisions do not internalize expected demand shocks beyond the 4-year mark. Hence,
Corr

[
p̃jkt−4(ω), ∆ϕωjkt

]
= 0, and the new instrument will satisfy the exclusion restriction.

The trade-off is that using such an instrument amounts to losing more observations, as the
instrument can be constructed for firms that continuously export in the 4 different years. The
top panel of Figure 4 (in Appendix K) compares estimation results under this alternative in-
strument to the baseline results. The ordering and magnitude of the estimated elasticities are
rather preserved across industries. More importantly, the new estimation retains the negative
correlation between σk and µk, which is the key assumption underlying Proposition 1.

Second, with cross-inventory effects, ∆ϕωjkt may encompass omitted variables that govern
firms’ dynamic inventory management decisions. One of these omitted variables is presum-
ably the exchange rate. If so, Corr

[
∆Ejt(m), ∆ϕωjkt

]
6= 0, and our identifying assumption (a2)

will be violated. To address this concern, we reestimate Equation 17 while directly controlling
for the annual change in the exchange rate, ∆Ejt. Even if changes in inventory-related demand
depend on the changes in exchange rate, we can still assert that E

[
zj,kt(ω) ∆ϕωjkt | ∆Ejt

]
= 0—

i.e., the exclusions restriction is satisfied with the added control, ∆Ejt. The middle panel of
Figure 4 (in Appendix K) compares estimation results from this alternative specification to the
baseline results. Reassuringly, the ordering and magnitude of the estimated elasticities are
preserved under the new specification; and so is the negative correlation between σk and µk.

Export Varieties with Significant Market Share. Our identification can come under chal-
lenge if individual varieties account for a significant fraction of a country’s sales to Colombia.
In such a case, variety-specific demand shocks can influence the bilateral exchange between the
Colombian Peso and the origin country’s currency, thereby violating identifying assumption
(a2). This concern, however, does not apply to our sample of exporters. The variety with the
highest 99th percentile within-national market share accounts for only 0.1% of the origin coun-
try’s total exports to Colombia. The variety with the highest 90th percentile within-national
market share accounts for only 0.0008% of the origin country’s total exports to Colombia.

One may remain concerned about large multi-product firms that export multiple product
varieties to Colombia in a given year. Consider, for instance, a multi-product firm ω that ex-
ports goods k and g to Colombia in year t. If demand shocks are correlated across varieties sup-
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plied by this firm (i.e., E
[
∆ϕωjkt ∆ϕωjgt

]
6= 0), Assumption (a2) may be violated despite each

variety’s market share being infinitesimally small. To address this issue, we reestimate Equa-
tion 17 on a restricted sample that drops excessively large firms with a total within-national
market share that exceeds 0.1%. The bottom panel of Figure 4 (in Appendix K) compares esti-
mation results from the trimmed sample to the baseline results. Encouragingly, the ordering
and magnitude of the estimated elasticities are preserved across industries. The new estima-
tion also retains the negative correlation between σk and µk.

6.5 Plausibility of Estimates

Before moving on to the quantitative analysis, let us briefly discuss the plausibility of our
estimates. We do so by exploring their macro-level implications and by benchmarking them
against alternative estimates in the literature.

Plausibility from the Lens of Macro-Level Predictions. Our estimated elasticities deliver
sharp predictions about the cross-national income-size elasticity. As pointed out by Ramondo,
Rodríguez-Clare, and Saborío-Rodríguez (2016), the factual relationship between real per capita
income and population size (i.e., the income-size elasticity) is negative and statistically in-
significant. Quantitative trade models featuring the normalization µ(σ− 1) = σ−1

γ−1 = 1, how-
ever, predict a strong and positive income-size elasticity that remains significant even after the
introduction of domestic trade frictions. Ramondo et al. (2016) call this observation the income-
size elasticity puzzle. Considering this puzzle, in Appendix M we compute the income-size
elasticity implied by our estimated value of σ−1

γ−1 ≈ 0.67. Encouragingly, we find that our es-
timated value for σ−1

γ−1 completely resolves the aforementioned puzzle. In other words, our
micro-estimated elasticities are consistent with the macro-level cross-national relationship be-
tween population size and real per capita income.

Comparison to Industry-Specific Estimates in the Literature. Reassuringly, our estimates
align closely with well-known industry-level case studies. Take, for example, our elasticity es-
timates for the ’Petroleum’ industry, which appear somewhat extreme. First, our estimate for
σk aligns with the consensus in the Energy Economics literature that national-level demand for
petroleum products is price-inelastic.52 Second, our estimated µk for the ’Petroleum’ industry
closely resembles existing estimates in the Industrial Organization literature. Considine (2001),
for instance, estimates µ ≈ 2 using detailed data on the U.S. petroleum industry. Moreover,
our finding that the ’Petroleum’ industry is the most scale-intensive industry is consistent with
the finding in Antweiler and Trefler (2002), which is based on more aggregated data. Likewise,
consider the ’Transportation’ or auto industry, where our estimated µk = 0.13 implies an opti-
mal markup of 13%. This estimate aligns with existing estimates from various industry-level
studies. Recently, Coşar, Grieco, Li, and Tintelnot (2018) have estimated markups for the auto
industry that range between roughly 6% to 13%. Previously, Berry et al. (1995) have estimated
markups of around 20% in the U.S. auto industry using data from 1971-1990.

52See Pesaran, Smith, and Akiyama (1998) for specific estimates and Fattouh (2007) for a survey of this literature.
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Comparison to Bartelme et al. (2019). Concurrent with us, Bartelme et al. (2019, BCDR) have
developed an alternative methodology to estimate the scale elasticity. In particular, they esti-
mate the elasticity of export sales with respect to industry-level employment, namely αBCDR

k .
From the lens of gravity trade models, this elasticity assumes the following interpretation:

αBCDR
k = (ψk + µk) (σk − 1)− βk,

where ψk denotes the industry-level agglomeration elasticity and βk denotes the share of industry-
specific factors in total production.

BCDR’s estimation implicitly assumes that there are no are industry-specific factors of pro-
duction, which amounts to βk = 0. They borrow estimates for the trade elasticity, σk − 1, from
several sources in the literature and recover the scale elasticity as µk + ψk = αBCDR

k /(σk − 1).
The advantage of their approach is that it detects Marshallian (or agglomeration) externalities.
The advantages of our approach are two-fold: (a) we separately identify σk from µk;53 and
(b) our estimates are robust to the presence of industry-specific factors of production, i.e., our
identification does not rely on βk = 0.54 These differences can also explain why we estimate
a larger scale elasticity than BCDR in some industries. Consider, for instance, the ’Petroleum’
industry where we estimate a considerably larger scale elasticity than BCDR. This difference
can be driven by the ’Petroleum’ industry employing a large amount of industry-specific fac-
tors of production, like natural resources or offshore platforms. This situation corresponds to
a high βk that can attenuate the estimates in BCDR relative to ours.

7 Quantifying the Gains from Policy

As a final step, we use our estimated values for µk and σk to quantify the gains from trade
and industrial policy for a wide range of countries. Before outlining our quantitive approach,
we describe the macro-level data used to discipline our quantitative model.

Trade, Production, and Tariff Data. We take macro-level data on domestic and international
production and expenditure from the 2014 World Input-Output Database (WIOD, Timmer,
Erumban, Gouma, Los, Temurshoev, de Vries, Arto, Genty, Neuwahl, Francois, et al. (2012)).
This database spans 56 industries and 43 countries plus an aggregate of the rest of the world.
The list of countries in the sample includes all 27 members of the European Union plus 16 other
major economies—all of which are listed in Table 3. Following Costinot and Rodríguez-Clare
(2014), we aggregate the 56 WIOD industries into 15 traded industries (for which we have
estimated µk and σk) plus a service sector. Details for our industry aggregation are reported in
Table 8 of the appendix. Our baseline analysis normalizes µk = 0 and σk = 11 for all service-
related industries. In Appendix P, however, we test the sensitivity of our results to alternative
normalization choices. Finally, we complement the WIOD data with matching data on applied
tariffs from the UNCTAD-TRAINS database. In this process, we closely follow the cleaning

53As noted in Appendix D, in the presence of selection effect, our approach can identify the scale elasticity only
up-to an externally estimated trade elasticity. Second, our approach can identify the scale elasticity even when
there are diseconomies of scale at the industry-level.

54Our estimation of µk and σk relies solely on Assumption (A1). Our estimates are, thus, compatible with an
arbitrary production function that admits multiple (and possibly industry-specific) factors of production.
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and matching procedure described in Kucheryavyy et al. (2016).55

7.1 Mapping Optimal Policy Formulas to Data

The sufficient statistics formulas provided by Theorems 1-3, let us compute the gains from
optimal policy free of numerical optimization. This feature is particularly advantageous, be-
cause numerical optimization routines (like MATLAB’s FMINCON) have well-know limitations
when applied to non-linear models with many free-moving variables.56 Below, we present
the procedure by which the gains from policy are computed using our optimal policy formu-
las. We present our procedure for the case of first-best policies under free entry—a similar
procedure can be applied to the other cases with small modifications.

To map our theory to data, we need to take a stance on the cross-industry utility aggregator.
As is common in literature, we assume a Cobb-Douglas parmaterization, Ui (Qi) = ∏k Qei,k

i,k .
As explained earlier, we posses data on observable shares, national accounts, and applied
taxes. We use D =

{
λji,k, rji,k, ei,k, ρi,k, Yi, wiLi, xij,k, tji,k, si,k

}
j,i,k to denote such data.57 We have

estimated the trade and scale elasticity across many industries, and use Θ = {σk, µk} to denote
our set of estimated parameters.

The main idea behind our procedure is to express optimal tax/subsidy formulas in changes
and solve them alongside equilibrium conditions. To this end, we use the exact hat-algebra
notation, whereby ẑ = z∗/z denotes the change in a generic variable when moving from the
factual value, z, to the counterfactual value under optimal policy, z∗.

As discussed under Theorem 1, country i’s first-best policy schedule in the Cobb-Douglas
case is described by the following formulas:

1 + s∗i,k = 1 + µk; 1 + t∗ji,k = 1 + ω∗ji,k; 1 + x∗ij,k =
(σk − 1)∑n 6=i

[
(1 + ω∗ni,g)λ

∗
nj,k

]
1 + (σk − 1)(1− λ∗ij,k)

;

where the “∗” superscript indicates that a variable is being evaluated in the counterfactual
optimal policy equilibrium. Using the hat-algebra notation and our expression for the good-
specific supply elasticity, ωji,k (Equation 10), we can write the above formulas in changes as

55To make the final data consistent with our theoretical model, we need to purge it from trade imbalances. We,
therefore, rebalance our raw data using the procedure described in Costinot and Rodríguez-Clare (2014).

56Costinot and Rodríguez-Clare (2014) note that computing optimal policy via numerical optimization can be-
come increasingly burdensome when dealing with many free-moving tax instruments. Their optimal tariff analysis
is, therefore, limited to a uniform tariff applied to all industries (see P. 227 and the discussion following Figure 4.1)

57As explained in Section 2, under free entry, the number of firms operating in origin n–industry k can be ex-
pressed as Mi,k = m̄i,kρi,k, where m̄i,k is composed of parameters and variables that are invariant to policy. We can,
therefore, use ρi,k to track scale economies that channel through entry—as detailed under Equation 6.
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follows:58

[optimal import tax] 1 + t∗ji,k =
− µk

1+µk
r̂ni,krni,kΦ′ni,k

1− µk
1+µk

∑ι 6=i
(
r̂nι,krnι,k

[
1 + (σk − 1)(1− λ̂nι,kλnι,k)

])
[optimal export subsidy] 1 + x∗ij,k =

(σk − 1)∑n 6=i

[
(1 + t∗ni,g)λ̂nj,kλnj,k

]
1 + (σk − 1)(1− λ̂ij,kλij,k)

,

[change in taxes] 1̂ + si,k =
1 + µk

1 + si,k
; 1̂ + tji,k =

1 + t∗ji,k
1 + tji,k

; ̂1 + xij,k =
1 + x∗ij,k
1 + xij,k

.

(18)

Since the rest of world is passive, then 1̂ + sn,k = ̂1 + tjn,k = ̂1 + xnj,k = 1 for all n 6= i. To
determine the change in expenditure shares, λ̂ji,k, we need to determine the change in con-
sumer price indexes. Invoking the CES structure of within-industry demand, we can express
the change in market i–industry k’s consumer price index as

[price indexes] ˆ̃Pi,k = ∑
n∈C

λni,k

[
̂1 + tni,k

( ̂1 + xni,k)(1̂ + sn,k)
ŵnρ̂

−µk
n,k

]1−σk
 1

1−σk

. (19)

Recall that ρn,k = Ln,k/Ln denotes industry k’s sales share in origin n, which—under free
entry—is equal to the share of origin n’s workers employed in that industry. The above for-
mulation uses the fact that, by free entry, M̂i,k = ρ̂i,k. Given ˆ̃Pi,k, we can calculate the change in
expenditure and revenue shares as follows:

[expenditure shares] λ̂ji,k =

[
1̂ + tji,k

( ̂1 + xji,k)(1̂ + sj,k)
ŵjρ̂

−µk
j,k

]1−σk

ˆ̃Pσk−1
i,k

[revenue shares] r̂ji,k =

(
1̂ + tji,k

̂1 + xji,k

λ̂ji,kŶi

)(
∑

n∈C

̂1 + tjn,k

̂1 + xjn,k

λ̂jn,kŶn

)−1

. (20)

The change in the wage rate, ŵi, and industry-level sales shares, ρ̂i,k, are dictated by the labor
market clearing (LMC) condition, which ensures that industry-level sales match wage pay-
ments, industry by industry:

[LMC] ρ̂i,kρi,kŵiwiLi = ∑
j∈C

[
(1 + x∗ij,k)(1 + s∗i,k)

1 + t∗ij,k
λ̂ij,kλij,kej,kŶjYj

]
; ∑

k∈K

ρ̂i,kρi,k = 1. (21)

The change in national expenditure, Ŷi, is governed by the balanced budget (BB) condition,
which ensures that total expenditure matches total income from wage payments and tax rev-
enues:

[BB] ŶiYi =ŵiwiLi − ∑
k∈K

[
s∗i,kλ̂ii,kλii,kei,kŶiYi

]
+∑

j 6=i
∑

k∈K

(
t∗ji,k

1 + t∗ji,k
λji,kλ̂ji,kei,kŶiYi +

1− (1 + x∗ij,k)(1 + s∗i,k)

1 + t∗ij,k
λij,kλ̂ij,kej,kŶjYj

)
. (22)

58The multiplier Φ′ni,k = 1−
(

1− 1
µk

)
(σk − 1)∑ι 6=i

[
r̂iι,kriι,k
r̂ji,krji,k

λ̂jι,kλjι,k

]
ρ̂i,kρi,kŵiwi Li
ρ̂j,kρj,kŵjwj Lj

accounts for cross-demand ef-
fects in foreign markets—see Equation 10 from Section 3.
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Equations 18-22 represent a system of 2N + NK+(2(N − 1) + 1)K independent equations and
unknowns. The independent unknown variables are ŵi (N unknowns), Ŷi (N unknowns), ρ̂i,k

(NK unknowns), 1̂ + si,k (K unknowns), 1̂ + tji,k ((N − 1)K unknowns), and ̂1 + xij,k ((N − 1)K
unknowns). Solving the aforementioned system is possible with information on observable
data points, D, and estimated parameters, Θ ≡ {µk, σk}. Once we solve this system, the wel-
fare consequences of country i’s optimal policy are automatically determined. The following
proposition outlines this result.

Proposition 3. Suppose we have data on observable shares, national accounts, and applied taxes,
D =

{
λji,k, rji,k, ei,k, ρi,k, Yi, wiLi, xij,k, tji,k, si,k

}
j,i,k

, and information on structural parameters, Θ ≡
{µk, σk}. We can determine the economic consequences of country i’s optimal policy by calculating
X =

{
Ŷi, ŵi, ρ̂i,k, 1̂ + si,k, 1̂ + tji,k, ̂1 + xij,k

}
as the solution to the system of Equations 18-22. After

solving for X, we can fully determine the welfare consequence of country i’s optimal policy as

Ŵn = Ŷn/ ∏
k∈K

ˆ̃Pen,k
n,k , (∀n ∈ C)

where ˆ̃Pn,k is determined by Equation 19 as a function of X and data, D.

To take stock, the optimization-free procedure described by Proposition 3 simplifies the
task of computing the gains from first-best trade and industrial policies. A similar procedure
can be used (in combination with Theorems 2 and 3) to compute the gains from second-best
trade policies—see Appendix N. Without Proposition 3, we would have to rely on numerical
optimization to recover country i’s optimal policy.59 As noted earlier, numerical optimization
can become increasingly difficult-to-implement when dealing with many free-moving policy
variables. Furthermore, in many instances, obtaining credible results from numerical opti-
mization requires specialized commercial solvers like SNOPT or KNITRO. Propositions 3’s
optimization-free procedure allows us to bypass any such complications, delivering notable
gains in both computational speed and accuracy.

7.2 The Gains from First- and Second-Best Non-Cooperative Policies

Table 3 reports the gains from optimal non-cooperative policies under free and restricted
entry. In all cases, the welfare gains are computed assuming the rest of the world does not
retaliate. The first column of each panel reports the gains from the first-best non-cooperative
tax schedule (Theorems 1). The second column reports the gains from second-best optimal
import and export taxes/subsidies (Theorem 2). The third column reports the gains from third-
best optimal import taxes (Theorem 3).

We can draw two general conclusions from Table 3. First, the gains from ToT manipulation
are relatively small. This is partly evident from the fact that when governments are restricted
to only trade taxes, the resulting gains are significantly smaller than the first-best case. We can
also directly verify that pure ToT gains account for less than 1/3 of the total gains from first-best
policy, which average around 1.5% under restricted entry and 2.6% under free entry.60

59Such a problem is typically formulated as a Mathematical Programming with Equilibrium Constraints (MPEC)
problem–see Ossa (2014) for further details.

60Note that the gains from policy are larger under free entry than restricted entry, despite similar optimal tax
rates. This nuanced observation suggests that firm-delocation gains from policy dominate the profit-shifting gains.
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Table 3: The Gains from Optimal Non-Cooperative Policies

Restricted Entry Free Entry

Country 1st best
2nd best

trade taxes
3rd best

import taxes
1st best

2nd best
trade taxes

3rd best
import taxes

AUS 0.82% 0.20% 0.16% 2.08% 0.54% 0.31%
AUT 1.22% 0.65% 0.48% 1.38% 1.18% 0.58%
BEL 1.21% 0.67% 0.49% 1.60% 0.94% 0.53%
BGR 1.94% 0.65% 0.52% 3.46% 1.90% 0.81%
BRA 1.78% 0.25% 0.22% 4.03% 0.63% 0.34%
CAN 1.50% 0.43% 0.30% 3.16% 1.22% 0.44%
CHE 0.94% 0.56% 0.45% 1.24% 0.75% 0.49%
CHN 1.61% 0.26% 0.23% 3.18% 0.39% 0.27%
CYP 1.56% 0.60% 0.57% 5.10% 1.55% 1.34%
CZE 1.66% 0.94% 0.59% 2.11% 1.79% 0.76%
DEU 1.58% 0.75% 0.53% 2.62% 1.45% 0.65%
DNK 1.06% 0.54% 0.43% 1.35% 0.88% 0.46%
ESP 1.40% 0.53% 0.41% 2.29% 1.05% 0.46%
EST 1.06% 0.58% 0.40% 2.49% 1.42% 0.53%
FIN 1.28% 0.51% 0.42% 1.77% 0.84% 0.44%
FRA 1.12% 0.45% 0.33% 1.93% 1.15% 0.50%
GBR 1.02% 0.48% 0.40% 1.97% 1.04% 0.56%
GRC 1.65% 0.55% 0.50% 2.51% 1.03% 0.61%
HRV 0.89% 0.53% 0.43% 1.22% 0.74% 0.49%
HUN 2.22% 1.13% 0.66% 4.01% 2.56% 1.00%
IDN 1.78% 0.30% 0.25% 4.24% 1.46% 0.46%
IND 1.72% 0.38% 0.33% 3.13% 1.12% 0.36%
IRL 0.82% 0.67% 0.47% 1.12% 0.93% 0.39%
ITA 1.39% 0.46% 0.37% 2.50% 0.98% 0.47%
JPN 1.43% 0.38% 0.27% 2.76% 0.79% 0.42%
KOR 2.12% 0.77% 0.57% 2.66% 1.69% 0.70%
LTU 2.31% 0.85% 0.69% 3.06% 1.38% 0.77%
LUX 0.96% 0.87% 0.84% 1.43% 1.19% 1.05%
LVA 0.76% 0.46% 0.36% 1.24% 0.78% 0.45%
MEX 2.10% 0.59% 0.40% 4.80% 1.41% 0.74%
MLT 1.19% 0.84% 0.78% 1.92% 1.36% 1.01%
NLD 1.21% 0.63% 0.48% 1.68% 0.93% 0.52%
NOR 1.03% 0.35% 0.26% 1.58% 0.77% 0.36%
POL 2.07% 0.73% 0.60% 3.86% 1.67% 0.80%
PRT 1.82% 0.63% 0.53% 3.62% 1.73% 0.76%
ROU 1.90% 0.75% 0.63% 3.72% 1.73% 0.95%
RUS 2.24% 0.29% 0.23% 4.55% 1.36% 0.31%
SVK 2.03% 1.10% 0.76% 3.21% 2.29% 1.10%
SVN 1.34% 0.87% 0.65% 2.69% 1.30% 0.88%
SWE 1.10% 0.55% 0.45% 1.49% 0.80% 0.47%
TUR 1.36% 0.51% 0.41% 2.89% 1.39% 0.60%
TWN 2.09% 0.68% 0.52% 2.90% 1.89% 0.75%
USA 1.40% 0.28% 0.23% 2.90% 0.81% 0.29%
Average 1.48% 0.59% 0.46% 2.64% 1.23% 0.61%

Note: The data source is the 2014 World Input-Output Database (WIOD, Timmer et al. (2012)). The 1st best policy
is characterized by Theorem 1; 2nd best trade taxes are characterized by Theorem 2; and 3rd best import taxes are
characterized by Theorem 3.
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Second, trade taxes are a poor second-best substitute for industrial subsidies. This con-
clusion can be drawn from the fact that trade taxes alone can replicate only a third of the
welfare gains attainable under the first-best policy choice.61 Under restricted entry, for in-
stance, the fist-best policy increases welfare by 1.5% on average, whereas second-best trade
taxes/subsidies increase welfare by only 0.6%. Third-best import taxes (that are not paired
with export subsidies) are even less effective. Similar results apply to the free entry case. This
outcome derives from fact that, based on our estimated parameter values, Covk(σk, µk) < 0.
Hence, following Proposition 1, there is an innate tension between improving the ToT and
restoring allocate efficiency with trade policy. This tension renders second-best trade taxes as
an ineffective tool for both correcting misallocation and improving the ToT.

7.3 The Immiserizing Growth Effects of Industrial Policy

As detailed in Section 4, a unilateral adoption of corrective industrial subsidies can worsen
welfare, if (i) these subsidies are not paired with appropriate trade tax measures, or (ii) or
similar corrective subsides are not implemented in the rest of the world. The intuition is that a
unilateral application of corrective (i.e. Pigouvian) industrial subsidies will improve allocative
efficiency but worsen the ToT, thereby triggering immiserizing growth. Table 4 reports the extent
of this problem. The unilateral case corresponds to a scenario where a country unilaterally
implements (Pigouvian) industrial subsidies without raising any trade taxes. The multilateral
case corresponds to a coordinated adoption of industrial subsidies via a deep trade agreement.

The results in Table 4 suggest that, for the average country, the ToT losses from unilaterally
applying corrective industrial subsidies outweigh the misallocation-improving gains. That
is, industrial policy triggers immezerising growth when carried out unilaterally. This result
highlights the importance of international coordination in industrial policies. The failure of in-
ternational coordination can deter most countries from undertaking corrective subsidies that
are ultimately beneficial—a point that has been overlooked by existing critiques of global gov-
ernance (e.g., Rodrik (2019)).

Table 4: Industrial Policy and Immiserizing Growth
Restricted Entry Free Entry

Unilateral Coordinated Unilateral Coordinated

Gains from Corrective
Industrial Subsidies

-0.25% 1.20% -0.70% 3.22%

Note: The data source is the 2014 World Input-Output Database (WIOD, Timmer et al. (2012)). The columns titled
unilateral reports welfare gains when a country unilaterally adopts industrial subsidies that restore marginal cost
pricing in the domestic economy. The columns titled multilateral reports welfare gains when all countries simulta-
neously adopt industrial subsidies that restore marginal cost pricing globally. The average gains are calculated as
the simple average across all 43 countries in the WIOD sample.

61This finding is distinct from Balistreri and Markusen (2009), who argue that optimal tariffs yield smaller gains
in the presence of positive firm-level markups. The above finding is a manifestation of Proposition 1, whereas
Balistreri and Markusen’s assertion is a special case of our Theorem 2. To see this, note that with one traded sector,
export and import taxes are equivalent. Invoking this equivalence, Theorem 2 posits that optimal tariffs (and their
implied gains) are strictly lower if the traded sector admits a higher markup than the non-traded sector.
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7.4 The Gains from Deep Trade Agreements

As detailed in Section (3), a deep trade agreement corresponds to a scenario where all
countries agree to (i) adopt corrective industrial subsidies, and (ii) abolish their beggar-thy-
neighbor trade taxes. By agreeing to join such an agreement, countries forgo the unilateral ToT
gains from policy but in return benefit from corrective subsidies in the rest of the word. Our
goal is to quantify how this trade-off is borne out in practice.62

Our estimation results are displayed in Figure (1). The x-axis in the aforementioned figure
corresponds to the gains from deep cooperation. The y-axis corresponds to the gains from the
first-best non-cooperative policy before retaliation. For most economies, the gains from deep
cooperation dominate those of the optimal non-cooperative policy. What is perhaps surprising
is that this outcome emerges even when non-cooperation does not trigger retaliation by trad-
ing partners. It reinstates our earlier finding that the ToT gains from policy are limited in scope.
In comparison, the extent of allocative inefficiency in the global economy is sizable, making it
beneficial for countries to forgo the ToT gains in exchange for importing more efficient va-
rieties. Also interestingly, the gains from deep cooperation favor small countries that have
a comparative disadvantage in high-returns-to-scale (or high-profit) industries, e.g., Estonia,
Malta, and Slovenia. The intuition is that these countries depend relatively more on imported
varieties in high-returns-to-scale industries and under deep cooperation, these industries are
subsidized across the globe.

Figure 1: Deep cooperation vs. first-best non-cooperative policy
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Note: The data source is the 2014 World Input-Output Database (WIOD, Timmer et al. (2012)). The gains from 1st
best non-cooperative policy are the gains when each country implements the policy characterized by Theorem 1 and
the rest of the world is passive. The gains from global cooperation correspond to a scenario where all countries forgo
trade taxation and apply industrial subsidies that restore marginal cost pricing.

62The gains from deep cooperation can be computed with the aid of the optimal policy formulas specified under
Equation 9 and the logic presented earlier under Section (7.1).
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7.5 Sensitivity Analysis

In Appendix P we recalculate the gains from policy under several alternative specifications.
First, we recompute the gains assuming that the data-generating process is a Melitz-Pareto
model. Second, we recompute the gains based on alternative values for σk and µk, which are
estimated via a two-ways fixed effects estimation (as reported in Appendix L). Lastly, we re-
compute the gains from policy under a more conservative set of values assigned to µk and σk

in services. In all cases, trade policy turns out to be a poor second-best instrument for resort-
ing allocative efficiency. Another noteworthy observation is that accounting for firm-selection
effects à la Melitz (2003), magnifies the gains from (first-best) optimal policies. However, these
greater gains are primarily driven by the larger misallocation-correcting gains. If anything,
second-best trade taxes/subsidies are even less effective at replicating the firs-best policy gains
in the presence of firm-selection into export markets.

What parameter values would produce larger gains from policy? We analyze this ques-
tion in Appendix Q. To this end, we build on the discussion in Section 4 that the gains from
optimal policy are increasing in two statistics: (i) the cross-industry variance of the scale elas-
ticities, Vark(µk), and (ii) the average of the (inverse) trade elasticities, Avgk (1/(σk − 1)). In
Appendix Q, we adjust our estimated parameter values to artificially increase both of theses
statistics. We then recompute the gains from policy under the artificially-higher values for
Vark(µk) and Avgk (1/(σk − 1)). The results are reported in Figure 9 of the same appendix.
They reveal that the gains from optimal policy nearly double for all countries if we artificially
increase Vark(µk) by a factor of about three. The policy gains for different countries, how-
ever, exhibit different degrees of sensitivity to an artificial increase in Avgk (1/(σk − 1)). For
larger countries like the U.S. or China, the gains from policy are significantly less sensitive to
Avgk (1/(σk − 1)). The intuition is that Vark(µk) governs the gains from correcting misalloca-
tion, whereas Avgk (1/(σk − 1)) regulates the extent to which countries can improve their ToT.
For large countries, where trade accounts for a smaller fraction of the GDP, there is less scope
for raising real GDP via ToT improvements. Hence, artificially increasing Avgk (1/(σk − 1))
has a relatively modest effect on the overall gains from policy in these countries.

8 Concluding Remarks

For centuries, scale economies have served as a justification for controversial trade and in-
dustrial policy practices. Yet we know surprisingly little about the actual empirics of trade and
industrial policy in increasing returns to scale industries. Against this backdrop, we took a
preliminary step toward identifying the force of industry-level scale economies using micro-
level trade data. Our estimates indicated that, trade restrictions are a poor second-best policy
for correcting misallocation that is rooted in industry-level scale economies. Unilateral indus-
trial policy can be equally ineffective, as it triggers immiserizing growth in most countries.
However, coordinated industrial policies deliver welfare gains that exceed that of any non-
cooperative policy alternative.

We used our micro-estimated scale elasticities to uncover a range of macro-level policy
implications, but our estimates have an even broader reach. Two implications, which we left
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out in the interest of space, merit closer attention. First, our scale elasticity estimates can help
disentangle the relative contribution of scale economies and Ricardian comparative advantage
to patterns of international specialization. This is an old question for which our empirical
understanding is surprisingly limited.

Second, our estimates can shed fresh light on the puzzlingly large income gap between rich
and poor countries. Economists have always hypothesized that a fraction of this income gap is
driven by rich countries specializing in high returns-to-scale industries. An empirical assess-
ment of such hypotheses has been previously impeded by a lack of comprehensive estimates
for industry-level scale elasticities. Our micro-level estimates pave the way for an empirical
exploration in this direction.
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Theoretical Appendix

A The Redundancy of Consumption Taxes

Without loss of generality suppose country i ∈ C imposes a full set of tax instruments, while the
rest of the world is passive. Now, consider any arbitrary combination of taxes (indexed by A) that
includes (i) industrial (or domestic production) subsidies, sA

i,k, (ii) domestic consumption taxes, τA
i,k,

(iii) import taxes, tA
ji,k, and (iv) export subsidies, xA

ij,k. This set of tax instruments –which includes
consumption taxes– produces the following wedges between producer and consumer price indexes
for various product varieties:

P̃A
ii,k =

1 + τA
i,k

1 + sA
i,k

Pii,k; P̃A
ji,k = (1 + tA

ji,k)(1 + τA
i,k)Pji,k; P̃A

ij,k =
1

(1 + xA
ij,k)(1 + sA

i,k)
Pij,k; (j 6= i)

Our claim here is that the same wedges can be replicated without appealing to consumption taxes, τi,k.
This claim can be established by considering an alternative tax schedule, B, which excludes consump-
tion taxes (i.e., 1 + τB

i,k = 0), but includes the following set of production subsidies, export subsidies,
and import taxes:

1 + sB
i,k =

1 + sA
i,k

1 + τ̄A
i,k

; 1 + tB
ji,k =

(
1 + tA

ji,k

) (
1 + τA

i,k

)
; 1 + xB

ij,k = (1 + xA
ij,k)(1 + τA

i,k)

It is straightforward to see that schedule B can reproduce the same wedge between producer and
consumer prices as the original schedule A (i.e., P̃A

= P̃B). In particular,

P̃B
ii,k =

1
1 + sB

i,k
Pii,k =

1 + τA
i,k

1 + sA
i,k

Pii,k = P̃A
ii

P̃B
ji,k = (1 + tB

ji,k)Pji,k = (1 + tA
ji,k)(1 + τA

i,k)Pji,k = P̃A
ji,k

P̃B
ij,k =

1
(1 + xB

ij,k)(1 + sB
i,k)

Pij,k =
1

(1 + xA
ij,k)(1 + sA

i,k)
Pij,k = P̃A

ij,k.

It also follows trivially that P̃B
nj,k = Pnj,k = P̃A

nj,k if n, j 6= i, because the rest of the world does not impose
taxes.63 This equivalence indicates that consumption taxes are redundant if the government has access
to the other three sets of instruments. Note that the same can be said about production subsidies.
More specifically, the effect of industry-level production subsidies can be perfectly replicated with
a combination of consumption taxes, import taxes, and export subsidies. However, due to product
differentiation, if two (of the 2(N− 1) + 2) tax instruments are restricted, the replication argument fails.
That is, if both production subsidies and consumption taxes are restricted, export subsidies and import
taxes cannot fully replicate their effect.

63Note, though, that the rest of world imposing or not imposing taxes, does not matter for the redundancy of consump-
tion taxes. The above argument can be easily extrapolated to the case where all countries impose arbitrary taxes.
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B Proof of Lemma 1

Consider two policy-wage combinations, T = (s, t, x; w), and T′ = (s′, t′, x′; w′), that differ in
uniform shifters a and ã ∈ R+:

1 + x′i = a (1 + xi) 1 + x′−i = 1 + x−i

1 + t′i = a (1 + ti) 1 + t′−i = 1 + t−i

1 + s′i = (1 + si) /ã 1 + s′−i = 1 + s−i

w′i = (a/ã)wi w′−i = w−i

.

Our goal is to prove that (i) if T ∈ F then T′ ∈ F, and (ii) Wn(T) = Wn(T′) for all n ∈ C. To prove these
claims, we appeal to two intermediate lemmas. The first lemma establishes the following: Suppose
equilibrium quantities are identical under policy-wage vectors T and T’ (i.e., Qjn,k(T′) = Qjn,k(T) for
all jn, k ). Then, the implied nominal income and price levels under T and T′ are the same up to a
scale. The second lemma is a standard result from consumer theory: It indicates the nominal income
and price levels implied by the first lemma confirm the original assumption that Qjn,k(T′) = Qjn,k(T)
for all jn, k. Below, we state and prove the first of these lemmas for any a ∈ R+.

Lemma 2. Qjn,k(T′) = Qjn,k(T) for all jn, k =⇒

P̃i (T′) = aP̃i (T) ; P̃−i (T′) = P̃−i (T)

Yi (T′) = aYi (T) ; Y−i (T′) = Y−i (T)

Proof. Our goal is to compute nominal income and consumer prices under T and T′ starting from the
assumption that Qjn,k(T′) = Qjn,k(T) for all jn, k. We start our proof with nominal prices: To simplify

the notation, define δjn,k(T) ≡ ρjn,kQj,k(T)
− µk

1+µk . Note that –by assumption– δjn,k(T) = δjn,k(T′) = δjn,k.
First, consider the price of a typical good ji, k imported by i from origin j 6= i. Using Equations 6 and
7, the consumer price of ji, k under combination T′ can be related to its price under T as follows:

P̃ji,k(T′) = δji,k
1 + t′ji,k

(1 + x′ji,k)(1 + s′j,k)
w′j = δji,k

a(1 + tji,k)

(1 + xji,k)(1 + sj,k)
wj = aP̃ji,k(T),

where the third equality follows from the fact that 1 + t′ji,k = a(1 + tji,k), while w′j = wj, x′ji,k = xji,k,
and s′j,k = sj,k (since wj ∈ w−i, xji,k ∈ x−i, and sj,k ∈ s−i). Second, consider a typical good ii, k that is
produced and consumed locally in country i. The consumer price of ii, k under combination T′ can be
related to its price under T as follows

P̃ii,k(T′) = δii,k
1

1 + s′i,k
w′i = δii,k

1
1
ã (1 + si,k)

× a
ã

wi = aP̃ii,k(T),

where the third equality follows from the fact that 1 + s′i,k = (1 + si,k)/ã and w′i = awi/ã. Third,
consider the price of a typical good ij, k export by i to destination market j 6= i. The consumer price of
ij, k under combination T′ can be related to its price under T as follows:

P̃ij,k(T′) = δij,k
1 + t′ij,k

(1 + x′ij,k)(1 + s′i,k)
w′i = δij,k

1 + tij,k

a(1 + x′ij,k)×
1
ã (1 + s′i,k)

× a
ã

wi = P̃ij,k(T),

where the third equality follows from the fact that 1 + x′ij,k = a(1 + xij,k), 1 + si,k = (1 + s′i,k)/ã, and
w′i = awi/ã; while t′ij,k = tji,k since tji,k ∈ t−i. Lastly, is follows trivially that P̃jn,k(T′) = P̃jn,k(T) if j and
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n 6= i. Considering that P̃i =
{

P̃ji, P̃ii
}

, the above equations establish that

P̃i
(
T′
)
= aP̃i (T) , P̃−i

(
T′
)
= P̃−i (T) .

Next, we turn to our claim about nominal income levels. To simplify the presentation, we hereafter use
X ≡ X(T) and X′ ≡ X(T′) to denote the value of a generic variable X under policy-wage combinations
T and T′. Keeping in mind this choice of notation, country i’s nominal income under T′, i.e., Y′i ≡
Yi(T′) is given by:

Y′i = w′i Li + ∑
k

[(
1

1 + s′i,k
− 1

)
P′ii,kQ′ii,k

]
+ ∑

k
∑
j 6=i

(
t′ji,k

(1 + x′ji,k)(1 + s′j,k)
P′ji,kQ′ji,k +

[
1

(1 + x′ij,k)(1 + s′i,k)
− 1

]
P′ij,kQ′ij,k

)

= w′i Li + ∑
k

[(
1− [1 + s′i,k]

)
P̃′ii,kQ′ii,k

]
+ ∑

k
∑
j 6=i

((
1− 1

1 + t′ji,k

)
P̃′ji,kQ′ji,k +

[
1

1 + t′ij,k
−

(1 + x′ij,k)(1 + s′i,k)

1 + t′ij,k

]
P̃′ij,kQ′ij,k

)
.

Note that, by assumption, policy-wage combinations T and T′ exhibit the same output schedule, i.e.,
Q′ii,k = Qii,k, Q′ji,k = Qji,k, and Q′ij,k = Qij,k. Also, recall that (T and T’ are constructed such that)
1 + t′ji,k = a(1 + tji,k), 1 + x′ij,k = a(1 + xij,k), 1 + si,k = (1 + s′i,k)/ã, and w′i = awi/ã, t′ij,k = tji,k.
Considering these relationships and plugging our earlier result that (i) P̃ii,k = aPii,k, (ii) P′ji,k = aP̃ji,k,
and (iii) P̃′ij,k = P̃ij,k into the above equation, yields the following expression for Y′i :

Y′i =
a
ã

wiLi + ∑
k

[(
1− 1

ã
(1 + si,k)

)
aP̃ii,kQii,k

]

+ ∑
j,k

[(
1− 1

a(1 + tji,k)

)
aP̃ji,kQji,k +

[
1

1 + tij,k
−

a(1 + xij,k)× 1
ã (1 + si,k)

1 + tij,k

]
P̃ij,kQij,k

]
.

Appealing to the balanced trade condition, ∑k ∑j 6=i

(
1

1+tji,k
P̃ji,kQji,k − 1

1+tij,k
P̃ij,kQij,k

)
= 0, and observ-

ing that (1 + si,k)P̃ii,k = Pii,k and (1+xij,k)(1+si,k)

1+tij,k
P̃ij,k = Pij,k, the above equation reduces to

Y′i =
a
ã

wiLi + a ∑
k

[
P̃ii,kQii,k + ∑

j 6=i
P̃ji,kQji,k

]
− a

ã ∑
k

[
Pii,kQii,k + ∑

j 6=i
Pij,kQij,k

]
.

Invoking the labor market clearing condition, wiLi −∑k ∑n Pijn,kQin,k = 0, the above equation further
simplifies as follows

Y′i = a ∑
k

[
P̃ii,kQii,k + ∑

j 6=i
P̃ji,kQji,k

]
= a [wiLi +Ri] = aYi,

where Ri ≡ Ri(T) denotes country i’s tax revenues under T. To bel clear, the third line, in the above
equation, follows from country i’s balanced budget condition (i.e., total expenditure = total income).
Turning to the rest of the world: The fact that Yn(T′) = Yn(T) for all n 6= i follows trivially from a
similar line of arguments–hence, establishing our claim about nominal income levels:

Yi
(
T′
)
= aYi (T) ; Y−i

(
T′
)
= Y−i (T)

Lemma 2 (proved above) starts from the assumption that Qjn,k(T′) = Qjn,k(T) for all jn, k. Our next
lemma indicates that this assumption is validated by the nominal income and price levels implied by
T and T′. Below, we state this lemma noting that it follows trivially from the Marshallian demand
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function, Qji,k = Dji,k(Yi, P̃i), being homogeneous of degree zero.

Lemma 3. ∀a ∈ R+:

P̃i (T′) = aP̃i (T)

Yi(T′) = aYi(T)
=⇒ Qji,k(T′) = Qji,k(T) for all ji, k

Together, Lemmas 3 and 2 establish that equilibrium quantities should be indeed identical under
policy-wage combinations T and T′—i.e., Qjn,k(T′) = Qjn,k(T) for all jn, k. Hence, if T ∈ F it follows
immediately that (i) T′ ∈ F, and (ii) Wn(T) = Wn(T′) for all n ∈ C, which is the claim of Lemma 1.

C Nested-Eaton and Kortum (2002) Framework

Here we show that the nested CES import demand function specified by Assumption (A1), can
also arise from within-product specialization à la Eaton and Kortum (2002). To this end, suppose that
each industry k is comprised of a continuum of homogenous goods indexed by ν. The sub-utility of
the representative consumer in country i with respect to industry k is a log-linear aggregator across
the continuum of goods in that industry:

Qi,k =
∫ 1

0
ln q̃i,k(ν)dν

As in our main model, country j hosts Mj,k firms indexed by ω, with Ωj,k denotes the set of all firms
serving industry k from country j.64 Each firm ω supplies good ν to market i at the following quality-
adjusted price:

p̃ji,k(ν; ω) = p̃ji,k (ω) /ϕ(ν; ω),

where p̃ji,k (ω) is a nominal price (driven by production costs) that applies to all goods supplied by
firm ω in industry k, while the quality component, ϕ(ν; ω), is good×firm-specific. Suppose for any
given good ν, firm-specific qualities are drawn independently from the following nested Fréchet joint
distribution:

Fk(ϕ(ν)) = exp

− N

∑
i=1

(
∑

ω∈Ωi,k

ϕ(ν; ω)−ϑk

) θk
ϑk

 ,

The above distribution generalizes the basic Fréchet distribution in Eaton and Kortum (2002). In par-
ticular, it relaxes the restriction that productivities are perfectly correlated across firms within the
same country. Instead, it allows for sub-national productivity differentiation and also for the degrees
of cross- and sub-national productivity differentiations (ϑk and θk, respectively) to diverge. A spe-
cial case of the distribution where ϑk −→ ∞ corresponds to the standard Eaton and Kortum (2002)
specification.

The above distribution also has deep theoretical roots. The Fisher–Tippett–Gnedenko theorem
states that if ideas are drawn from a (normalized) distribution, in the limit the distribution of the best
draw takes the form of a general extreme value (GEV) distribution, which includes the above Fréchet
distribution as a special case. A special application of this result can be found in Kortum (1997) who
develops an idea-based growth model where the limit distribution of productivities is Fréchet, with
ϕω,k reflecting the stock of technological knowledge accumulated by firms ω in category k.

Given the vector of effective prices, the representative consumer in county i (who is endowed

64The implicit assumption here is that entry is restricted, so that Mj,k is exogenous.
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with income Yi) maximizes their real consumption of each good, q̃i,k(ν) = ei,kYi/ p̃i,k(ν), by choosing
p̃i,k(ν) = minω{ p̃ji,k (ω)}. That being the case, the consumer’s discrete choice problem for each good
ν can be expressed as:

min
ω

p̃ji,k (ω) /z(ν; ω) ∼ max
ω

ln z(ν; ω)− ln p̃ji,k (ω) .

To determine the share of goods for which firm ω is the most competitive supplier, we can invoke the
theorem of “General Extreme Value.” Specifically, define G(p̃i) as follows

Gk(p̃i) =
N

∑
j=1

 ∑
ω∈Ωj,k

exp(−ϑk ln p̃ji,k (ω))


θk
ϑk

=
N

∑
j=1

 ∑
ω∈Ωj,k

p̃ji,k (ω)−ϑk


θk
ϑk

.

Note that Gk(.) is a continuous and differentiable function of vector p̃i ≡ { p̃ji,k (ω)} and has the
following properties:

a) Gk(.) ≥ 0;

b) Gk(.) is a homogeneous function of rank θk: Gk(ρp̃i) = ρθk Gk(p̃i) for any ρ ≥ 0;

c) limp̃ji,k(ω)→∞ Gk(p̃i) = ∞, ∀ω;

d) the m’th partial derivative of Gk(.) with respect to a generic combination of m variables p̃ji,k (ω),
is non-negative if m is odd and non-positive if m is even.

Manski and McFadden (1981) show that if Gk(.) satisfies the above conditions, and ϕ(ν; ω)’s are drawn
from

Fk(ϕ(ν)) = exp
(
−Gk(e− lnϕ)

)
= exp

− N

∑
j=1

 ∑
ω∈Ωj,k

ϕ(ν; ω)−ϑk


θk
ϑk

 ,

which is the exact same distribution specified above, then the probability of choosing variety ω is
equal to

πji,k(ω) =

(
p̃ji,k(ω)

θk

)
∂Gk(p̃i)
∂pji,k(ω)

Gk(p̃i)
=

p̃ji,k (ω) p̃ji,k (ω)ϑk−1
(

∑ω′∈Ωj,k
p̃ji,k (ω

′)−ϑk
) θk

ϑk
−1

∑N
n=1

(
∑ω′∈Ωj,k

p̃ji,k (ω′)
−ϑk
) θk

ϑk

Rearranging the above equation yields the following expression:

πji,k(ω) =

(
p̃ji,k (ω)

P̃ji,k

)−ϑk
(

P̃ji,k

P̃i,k

)−θk

,

where P̃ji,k ≡
[
∑ω′∈Ωj,k

p̃ji,k (ω
′)−ϑk

]−1/ϑk
and P̃i,k ≡

[
∑ P̃−θk

ji,k

]− 1
θk . Given the share of goods sourced

from firm ω, total sales of firm ω to market i, in industry k can be calculated as:

p̃ji,k(ω)qji,k(ω) = p̃ji,k(ω)
πji,k(ω)ei,kYi

p̃ji,k(ω)
=

(
p̃ji,k (ω)

P̃ji,k

)−ϑk
(

P̃ji,k

P̃i,k

)−θk

ei,kYi

which is identical to the nested-CES function specified by Assumption (A1), with γk − 1 = ϑk and
σk − 1 = θk.
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D Firm-Selection under Pareto

In this appendix, we outline the isomorphism between our baseline model and one that admits
selection effects. In doing so, we borrow heavily from Kucheryavyy et al. (2016) (KLR, hereafter). We
rely on three key assumptions, hereafter:

a) Within-industry demand is governed by the same nested-CES utility function presented under
Assumption (A1). As in the baseline mode, σk and γk respectively denote the upper- and lower-
tier elasticities of substitution.

b) The firm-level productivity distribution, Gi,k(z), is Pareto with shape parameter, ϑk.

c) The fixed “marketing” cost is paid in terms of labor in the destination market.

d) Taxes are applied before the markup, and operate as a cost-shifter.

Following KLR, we also assume that cross-industry utility aggregator is Cobb-Douglas, with ei,k de-
noting the constant share of country i’s expenditure on industry k. Following the derivation in KLR,
we can define the effective supply of production labor in country i as

L̃i =

[
1−∑

k
ei,k

(
ϑk − γk + 1

ϑkγk

)]
Li.

The labor market clearing condition is, accordingly, given by ∑ wiLi,k = wi L̃i. With regards to aggre-
gate markup levels, we can appeal to the well-known result that the profit margin in each industry is
constant and given by the following expression:

mark-up ~
∑n Pin,kQin,k

wiLi,k
=

ϑk − γk + 1
(ϑk + 1)(γk − 1)

.

With regards to aggregate demand functions, we can follow the derivation in Appendix B.2 of KLR to
express demand for national-level variety ji, k as

Qji,k =

(
P̃ji,k

P̃i,k

)−σMelitz
k

Qi,k,

where σMelitz
k ≡ 1+ϑk/

[
1 + ϑk

(
1

σk−1 −
1

γk−1

)]
denotes the trade elasticity under firm-selection. More-

over, we can show that national-level producer price indexes are given by the following formulation:

PMelitz
ij,k =

ρij,kwi if entry is restricted

ρ̄′ij,kwiQ
− ϑk

1+ϑk
i,k if entry is free

,

where ρ̄ij,k and ρ̄′ij,k are composed of structural parameters that are invariant to policy–this includes

ϑk that regulates firm selection.65 Abstracting from taxes, P̃i,k =
(

∑ P1−σk
ji,k

) 1
1−σk is the CES industry-

level consumer price index that shows up in indirect utility Vi(.). Referring to our earlier result about

65Unlike P̃i,k, the national-level indexes, P̃ji,k, are not the same as the CES price indexes defined in the main text, but this
is not problematic from the point of the isomorphism result we are seeking.
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constant markup margins, aggregate profits in country i given by

ΠMelitz
i =


∑k ∑j

(
ϑk−γk+1

(ϑk+1)(γk−1)

1+ ϑk−γk+1
(ϑk+1)(γk−1)

Pij,kQij,k

)
if entry is restricted

0 if entry is free

.

To fixe ideas, recall that we used µk to denote both (1) the scale elasticity under free entry, and (2)
the profit margin under restricted entry in the baseline model. This overlapping choice of notation
was motivated by the observation that in the generalized Krugman model, the scale elasticity (under
free entry) and the profit margin (under restricted entry) are identical: µFE

k = µRE
k = µk = 1/(γk − 1).

This equivalence, though, was not used to derive any of our theorems. Instead, it was only invoked to
simplify the presentation of our theorems. Evidently, under the Melitz-Pareto model the equivalence
between the scale elasticity and the profit margin crumbles. Taking note of this nuance, the Melitz-
Pareto model is isomorphic to our baseline model with the following reinterpretation of parameters:

µMelitz
k =

1/ϑk if entry is free
ϑkµk−1

1+ϑk
if entry is restricted

; σMelitz
k = 1 +

ϑk

1 + ϑkµk

(
1

µk(σk−1) − 1
) .

The Marshallian demand elasticities in the Melitz-Pareto model are accordingly given by the following
equations as a function σMelitz

k and expenditure shares:

ε
(ji,k)
ji,k = −1− (σMelitz

k − 1)
(
1− λji,k

)
; ε

(i,k)
ji,k = σMelitz

k λi,g

In the above expressions, µk and σk can be taken directly from our firm-level demand estimation.
Doing so, identifies the Melitz-Pareto model’s key parameters up to a Pareto shape parameter, ϑk. To
obtain an estimate for ϑk, we can estimate the trade elasticity, σMelitz

k − 1, using macro-level trade data
and standard techniques from the literature. Given the estimated trade elasticities, we can simply
recover ϑk by plugging our micro-level estimates for µk and σk into the expression for σMelitz

k .

D.1 The Case where Taxes are Applied After Markups

Our derivation, above, assumed that taxes are applied before the markup, and act as a cost shifter.
Below, we discuss how relaxing this assumption may affect the arguments listed above. To this end,
we focus on the spacial case where preferences are non-nested. Namely,

non-nested preferences ∼ σk = γk, ∀k ∈ K.

Following the Online Appendix 5 in Costinot and Rodríguez-Clare (2014), the trade elasticity in the
Melitz-Pareto model with non-nested preferences is described by the following formulation:

σMelitz
k =

1 + ϑk tax applied before markup
σ

σ−1 ϑ tax applied after markup
.

Appealing to the above formulation, we can show that Theorem 1 nests, as a special case, the opti-
mal tariff formula derived by Demidova and Rodriguez-Clare for a small open economy in a single-
industry×two-country Melitz-Pareto model. To demonstrate this, drop the industry subscript k and
reduce the global economy into two countries, i.e., C = {i, j}. Noting that 1− λij = λjj in the two-
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country case, we can deduce from the above formulation and Theorem 1 that

1 + t∗ji
1 + x∗ij

= 1 +
1

(σMelitz − 1)λjj
=

1
( σ

σ−1 ϑ− 1)λjj
.

By the Lerner symmetry, export and import taxes are equivalent in the single-industry model.66 Hence,
without loss of generality, we can set x∗ij = 0. Moreover, if country i is a small open economy, then
λjj ≈ 1. Combining these two observations, we can arrive at the familiar-looking optimal tariff for-
mula in Demidova and Rodriguez-Clare:

t∗ji =
σ−1

σ

ϑ− σ−1
σ

∼ small open economy w/ one traded sector.

E Proof of Theorem 1

Our proof proceeds in five steps. The first four steps characterize the optimal tax/subsidy sched-
ule for country i ∈ C under free entry. The last step demonstrates that this characterization can be
extrapolated to the case with restricted entry.

Step #1: Express Equilibrium Variables as function of Pi and w

Our goal is to characterize optimal policy for country i ∈ C assuming the rest of the world is
passive: t−i = x−i = s−i = 0. To simplify the proof, we reformulate country i’s optimal policy
problem as one where the government chooses the optimal consumer prices (rather than the actual
taxes) associated with its economy. By construction, country i’s optimal tax schedule can be recovered
from its optimal consumer-to-producer price ratios. The first step in reformulating the optimal policy
problem is to express equilibrium variables (e.g., Qji,k, Yi, etc.) as a function of (1) the vector of
consumer prices associated with economy i, Pi ≡

{
P̃ii, P̃ji, P̃ij

}
, where

P̃ii ≡ {Pii,k}k; P̃ji ≡
{

Pji,k
}

j 6=i,k ; P̃ij ≡
{

Pij,k
}

j 6=i,k (23)

and (2) the vector of national-level wage rates across the world,

w = {w1, ..., wN} .

The following lemma shows that our desired formulation of equilibrium variables follows from (a)
treating Pi and w as given, and(b) solving a system that satisfies all equilibrium conditions excluding
the labor market clearing condition.

Lemma 4. All equilibrium outcomes (excluding Pi and w) can be uniquely determined as a function of Pi ≡{
P̃ii, P̃ji, P̃ij

}
, and w.

Proof. As noted above, the proof follows from solving all equilibrium conditions excluding the equi-
librium expression for consumer prices, P̃ji,k (which are encompassed by Pi), and the country-specific
balanced trade conditions (which pin down w).67 Stated formally, we need to solve the following

66The Lerner symmetry is a special case of the equivalence result presented under Lemma 1. Also, note that the market
equilibrium is efficient in the single industry Krugman model studied by Gros (1987). As such, the optimal industrial
subsidy can be normalized to zero, i.e., s∗i = 0.

67Note that by Walras’ law, the balanced trade condition is equivalent to the labor market clearing condition in each
country.
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system treating Pi, and w as given:

[optimal pricing] Pjn,k = ρ̄ji,kwj

[
∑

i
āji,kQji,k

]− µk
1+µk

[optimal consumption] Qjn,k = Djn,k(Yn, P̃1n, ...P̃Nn)

[RoW imposes zero taxes] P̃jn,k = Pjn,k (P̃jn,k /∈ Pi); Yn = wnLn (n 6= i)

[Balanced Budget in i] Yi = wiLi +
(
P̃ii − Pii

)
·Qii +

(
P̃ij − Pij

)
·Qij +

(
P̃ji − Pji

)
·Qji,

where “·” denotes the inner product operator for equal-sized vectors (i.e., a · b = ∑n anbn). Since there
is a unique equilibrium, the above system is exactly identified in that it uniquely determines Pjn,k,
Qjn,k, and Yn as a function of Pi and w .

Following Lemma 4, we can express total income in country i, Yi, as well as the entire demand
schedule in that country as follows:

Yi ≡ Yi(Pi; w); Qji,k ≡ Qji,k(Pi; w) = Dji,k
(
Yi(Pi; w), P̃ii, P̃ji

)
.

Recall that Dji,k(.) denotes the Marshallian demand function facing variety ji, k. Taking note of the
above representation, our main objective is to reformulate country i’s policy problem as one where the
government chooses Pi (as opposed to directly choosing tax rates). This reformulation, though, needs
to take into account that w is an equilibrium outcome that implicitly depends on the choice of Pi. To
track this constraint, we define the (Pi; w) combinations that are feasible as follows.

Definition 1. A policy-wage combination (Pi; w) is feasible iff given Pi, the vector of wages, w, satisfies the
balanced trade condition in every country n ∈ C. In particular,

(Pi; w) ∈ FP ⇐⇒

∑j 6=n ∑k∈K

[
Pjn,k(Pi; w)Qjn,k(Pi; w)− Pnj,k(Pi; w)Qnj,k(Pi; w)

]
= 0 if n 6= i

∑j 6=n ∑K
k=1
[
Pji,k(Pi; w)Qjn,k(Pi; w)− P̃ij,kQnj,k(Pi; w)

]
= 0 if n = i

.

To elaborate on the above definition: The balanced trade condition for a generic country n ∈ C

can be expresses as ∑j 6=n,k

[
1

1+tjn,k
P̃nj,kQjn,k − 1

1+tnj,k
P̃nj,kQnj,k

]
. The expression for the balanced trade

condition, above, follows from the assumption that only country i imposes taxes and the rest of the
world is passive. We should emphasize one more time that by Walras’ law the satisfaction of the
balanced trade condition is analogous to the satisfaction of the labor market clearing condition in each
country. Relatedly, take note of the equivalence between FP and F–with the latter being defined in the
main text under Definition (D2). Taking note of these implicit details, we now proceed to reformulate
the optimal policy problem (P1).

Step #2: Reformulate the Optimal Tariff Problem

Before proceeding with the second step of the proof, we formally present our notation for partial
derivatives. We will rely heavily on this choice of notation, especially in the subsequent steps of the
proof where we derive the first-order conditions.
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Notation [Partial Derivative] Let f (x1, x2) be a function of two variables, where x2 = g(x1) is possibly an
implicit function of x1. We henceforth use(

∂ f (x1, x2)

∂x1

)
x2

=
∂ f (x1, x̄2)

∂x1

to denote the derivative of f (.) w.r.t. x1, treating x2 = x̄2 as a constant.68

Moving on with Step 2, recall the original formulation of the optimal policy problem (P1) from
Section 2:

max
Ti

Wi(Ti; w) s.t. (Ti; w) ∈ F (P1)

In the above formulation, Ti ≡ (ti, xi, si) denotes country i’s vector of taxes and F is defined according
to Definition (D2, Section 2) and analogously to FP. Our next intermediate result shows that Problem
(P1) can be alternatively cast as one where the government chooses the optimal vector of consumer
prices Pi associated with its economy. After determining P∗i , the optimal tax vectors, t∗i , x∗i , and s∗i can
be automatically recovered from the optimal consumer-to-producer price ratios.

Lemma 5. Country i’s vector of optimal taxes, {t∗i , x∗i , s∗i }, can be determined by solving the following problem
instead of (P1):

max
Pi

Wi(Pi; w) ≡ Vi(Yi(Pi; w), P̃i) s.t.

(Pi; w) ∈ FP

w−i = w−i,
(P̃1)

Proof. The proof consists of two parts. First, we can trivially verify that there is a one-to-one corre-
spondence between the optimal choice w.r.t. P∗i ≡

{
P̃∗ii, P̃∗ji, P̃∗ij

}
and T∗i ≡ {t∗i , x∗i , s∗i }. More specifi-

cally, given information on P∗i (and the accompanying wage vector w∗), we can uniquely recover the
optimal tax/subsidy rates using the following set of equations:

1 + t∗ji,k =
P̃∗ji,k

Pji,k(P
∗
i , w∗)

; 1 + x∗ij,k =
Pji,k(P

∗
i , w∗)/P̃∗ji,k

Pii,k(P
∗
i , w∗)/P̃∗ii,k

; 1 + s∗i,k =
Pii,k(P

∗
i , w∗)

P̃∗ii,k
.

The correspondence presented above, indicates an equivalence between choosing Pi versus choosing
Ti directly. That is,

max
Pi

Wi(Pi; w) s.t. (Pi; w) ∈ FP ∼ max
Ti

Wi(Ti; w) s.t. (Ti; w) ∈ F.

The next step is to show that the constraintw−i = w−i is non-binding at the optimum. With two coun-
tries, the constraint w−i = w−i is non-binding by Walras’ law, as wages in the rest of the world can
be normalized to zero by choice of numeraire. More generally, this constraint is non-binding based
on the targeting principle (Bhagwati and Ramaswami (1963)). In particular, fix the policy vector to
its optimal level, P∗i and assign wn ∈ w−i as the numeriare: Since Wi(Pi; w) = Vi(Yi(Pi; w); P̃i) and
P̃i ∈ Pi, the Envelope Theorem indicates that(

∂Wi(P
∗
i ; w)

∂w−i

)
wn

=
∂Vi(.)

∂Yi

(
∂Yi(P

∗
i ; w)

∂w−i

)
wn

.

68Based on the above notation and the chain rule, the full derivative of f (.) w.r.t. x1 is given by

d f (x1, x2)

dx1
=

(
∂ f (x1, x2)

∂x1

)
x2

+

(
∂ f (x1, x2)

∂x2

)
x2

dg(x1)

dx1
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But it is easy check from the lens of the Targeting Principe that
(

∂Yi(P
∗
i ;w)

∂w−i

)
wn

. Specifically, assigning

wn ∈ w−i as the numeriare, a change in wj/wn can affect Wi indirectly through its effect on country i’s
tax revenues, Ri. But it is easy to check in the spirit of Lemma 1 that any such effect can be perfectly
mimicked with an adjustment in the vector of export/import prices included in Pi. Hence, by the
targeting principle, any indirect gains from raising wj/wi will be already internalized by the optimal

choice, P∗i implying that
(

∂Yi(P
∗
i ;w)

∂w−i

)
wn

= 0.

The above lemma is significant for two reasons. First, it allows us to characterize the F.O.C. w.r.t.
consumer prices, allowing us to present them succinctly in terms of Marshallian demand elasticities.
Second, Lemma 5 allows us to derive the F.O.C. while treating w−i as given, knowing that the change
in both of these vectors are welfare-neutral at the optimum, P∗i .

Step #3. Deriving and Simplifying the System of First-Order Conditions

This step derives and solves the system of first-order necessary conditions (F.O.C.s) associated with
Problem P̃1. This system of F.O.C.s can be formally expressed as follows:

∇P̃Wi(Pi; w) +∇wWi ·
(

dw
dP̃

)
(Pi ;w)∈FP

= 0, ∀P̃ ∈ Pi.

where recall that Pi =
{

P̃ii, P̃ij, P̃ji
}

includes all consumer price variables associated with economy i.
To elaborate the right-hand side of the above equation consists of two terms, as implied by the chain
rule: The first term accounts for the change in welfare holding w fixed. The second term account for
the change in w w.r.t. P̃ ∈ Pi in order to satisfy feasibility.

Our characterization of optimal policy employs the dual approach, the presentation of which re-
lies heavily on Marshallian demand elasticities. So, for future reference, we formally define these
elasticities below.

Notation [Marshallian Demand Elasticities] Let Qji,k ≡ Dji,k(Yi, P̃i) denote the Marshallian demand
function facing variety ji, k. This demand function is characterized by the following set of demand elasticities:

ε
(ni,g)
ji,k ≡

∂ lnDji,k(Yi, P̃i)

∂ ln P̃ni,g
∼ price elasticity

ηji,k ≡
∂ lnDji,k(Yi, P̃i)

∂ ln Yi
∼ income elasticity,

where P̃i =
{

P̃1i, P̃2i, ..., P̃Ni
}

corresponds to the entire of vector of consumer prices in market i. Also, recall
from the main text that V(Yi, P̃i) denotes the indirect utility associated with the Marshallian demand function,
Dji,k(Yi, P̃i).

In what follows, we appeal the above definition to characterize the first-order condition w.r.t. each
element of Pi. We start with country i’s import prices, P̃ji, and then proceed to domestic and export
price instruments, P̃ii, and P̃ij.

Step 3.A: Deriving the F.O.C. w.r.t. P∗ji,k ∈ Pi.

Consider the price of import variety ji, k, supplied by origin j–industry k (where j 6= i). To present
the first-order necessary condition (F.O.C.) w.r.t. the price of ji, k, we use P−ji,k to denote all elements
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of Pi excluding P̃ji,k:

P−ji,k ≡ Pi − {P̃ji,k} ∼ entire policy vector excluding P̃ji,k

Next, recall that Wi(Pi; w) ≡ Vi(Yi(Pi; w), P̃ii, P̃ji) where income, Yi(Pi; w) = w̃iLi + Ri(Pi; w), is
dictated by the balanced budget condition. Applying the chain rule to Wi(Pi; w), the F.O.C. w.r.t. P̃ji,k

(holding the remaining elements of Pi constant) can be stated as follows:69

(
dWi(Pi; w)

d ln P̃ji,k

)
P−ji,k

=

(
∂Wi(Pi ;w)

∂P̃ji,k

)
w,P−ji,k︷ ︸︸ ︷

∂Vi(Yi, P̃i)

∂ ln P̃ji,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(Pi; w)

∂ ln P̃ji,k

)
w,P−ji,k

+

(
∂Wi(Pi; w)

∂w

)
Pi

·
(

dw
d ln P̃ji,k

)
P−ji,k

= 0

(24)

The first term on the right-hand side of the above equation accounts for the direct welfare effects of a
change in the price of good ji, k (holding Yi and Pi − {P̃ji,k} constant). The second term accounts for
welfare effects that channel through revenue-generation (holding w and Pi − {P̃ji,k} constant). The
last term accounts for general equilibrium wage effects. Below, we characterize each of these elements
one-by-one.

The term accounting for direct price effects can be simplified by appealing to Roy’s identity, ∂Vi/P̃ji,k
∂Vi/∂Yi

=

−Qji,k, which indicates that

[Roy’s identity]
∂Vi(Yi, P̃i)

∂ ln P̃ji,k
= −P̃ji,kQji,k

(
∂Vi

∂Yi

)
. (25)

To characterize
(
∂Yi(Pi; w)/∂ ln P̃ji,k

)
w,P−ji,k

, note that total income in country i (which dictates total

expenditure) is the sum of wage payments plus tax revenues:70

Yi(Pi; w) = wiLi + ∑
n 6=i

[(
P̃ni − Pni

)
·Qni

]
︸ ︷︷ ︸

import tax revenues

+
(
P̃ii − Pii

)
·Qii︸ ︷︷ ︸

production tax revenues

+ ∑
n 6=i

[(
P̃in − Pin

)
·Qin

]
︸ ︷︷ ︸

export tax revenues

,

Holding w and P−ji,k ≡ Pi−{P̃ji,k} fixed, P̃ji,k has no effect on wage payments:
(
∂wiLi/∂ ln P̃ji,k

)
w,P−ji,k

=

69We can alternatively formulate the above optimization problem using the method of Lagrange multipliers, and by
appealing to Lagrange sufficiency theorem. In that case the objective function can be formulated as follows:

max
Pi ,Yi
Li(Pi; w) = Vi(Yi, P̃i) + λy (Yi − w̃i Li −Ri(Pi; w)) .

The F.O.C.with respect to Yi entails that λY = ∂Vi(.)
∂Yi

. Hence, the F.O.C. with respect to P̃ji,k ∈ Pi can be expressed as

dLi(Pi; w)

d ln P̃ji,k
=

∂Vi(Yi, P̃i)

∂ ln P̃ji,k
+ λy

(
∂(w̃i Li +Ri(Pi; w))

∂ ln P̃ji,k

)
w,P−ji,k

+

(
∂Li(Pi; w)

∂w

)
Pi

·
(

dw
d ln P̃ji,k

)
P−ji,k

= 0,

which is equivalent to the F.O.C. expressed above.
70To be clear with regards to the notation: The operator “·” denotes the inner product of two equal-sized vectors. Also,

since we are focused on the free entry case, for now, the profit-adjusted wage rate is equal to the actual (unadjusted) wage
rate, i.e., w̃i = wi.
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0. The effect of P̃ji,k on import tax revenues can be unpacked as follows:

(
∂ ∑n 6=i

[(
P̃ni − Pni

)
·Qni

]
∂ ln P̃ji,k

)
= P̃ji,kQji,k + ∑

g
∑
n 6=i

(P̃ni,g − Pni,g
)

Qni,g

(
∂ ln Qni,g

∂ ln P̃ji,k

)
w,P−ji,k


−∑

g
∑
n 6=i

Pni,gQni,g

∑
 6=i

Pi,gQi,g

Pni,gQni,g

(
∂Pi,g

∂ ln Qni,g

)
w,Pi

+ ∑
`∈C

Pi`,gQi`,g

Pi`,gQi`,g

(
∂Pi`,g

∂ ln Qni,g

)
w,Pi

(∂ ln Qni,g

∂ ln P̃ji,k

)
w,P−ji,k

 .

(26)

The first term in the above expression accounts for the direct, arithmetic effect of P̃ji,k on import tax
revenues. The second term accounts for the change in revenue due to the change in country i’s import
demand schedule as a result of changing P̃ji,k ∈ P̃i. The change in demand can itself be decomposed
into two components:(

∂ ln Qni,g

∂ ln P̃ji,k

)
w,P−ji,k

=
∂ lnDni,g(P̃i, Yi)

∂ ln P̃ji,k︸ ︷︷ ︸
price effect

+
∂ lnDni,g(P̃i, Yi)

∂ ln Yi

(
∂ ln Yi

∂ ln P̃ji,k

)
w,P−ji,k︸ ︷︷ ︸

income effect

= ε
(ji,k)
ni,g + ηni,g

(
∂ ln Yi

∂ ln P̃ji,k

)
w,P−ji,k

,

(27)

where ε
(ji,k)
ni,g and ηni,g denote the Marshallian price and income elasticities of demand. The presence

of
(
∂ ln Yi/∂ ln P̃ji,k

)
w,P−ji,k

in the above expression, manifests the circular nature of our general equilib-
rium setup. We will not unpack this term for now. Instead, we show later that income effects sum up
to zero at the optimum.

The last term in Equation 26, accounts for scale effects: Noting that Pni,g = ρ̄ni,gwn [∑ι ānι,kQnι,k]
− µk

1+µk ,
a change in the export supply of good ni, g (due to a change in P̃ji,k) alters the scale of production in
origin n–industry g and the producer prices associated with that location. Due to cross demand effects,
this change also impacts the producer price of domestic suppliers as well as foreign suppliers outside
of origin n. To keep track of the general equilibrium scale effects, we use ωni,g to denote (the inverse
of) good ni, g’s export supply elasticity:

ωni,g ≡∑
 6=i

Pi,gQi,g

Pni,gQni,g

(
∂Pi,g

∂ ln Qni,g

)
w,Pi

+ ∑
`∈C

Pi`,gQi`,g

Pi`,gQi`,g

(
∂Pi`,g

∂ ln Qni,g

)
w,Pi

=
1

rji,kρj,k
∑
g

[
ẁiLi

ẁjLj
ρi,g

(
∂ ln Pii,g

∂ ln Qji,k

)
w,Pi

+ ∑
n 6=i

ẁnLn

ẁjLj
rni,gρn,g

(
∂ ln Pni,g

∂ ln Qji,k

)
w,Ti

]
∼ export supply elasticity

(28)

The second line in the above definition derives from the fact that
(

∂ ln Pi`,g
∂ ln Qji,k

)
w,Pi

=
(

∂ ln Pii,g
∂ ln Qji,k

)
w,Pi

for all

` ∈ C (as the price of origin i’s good sold to different locations differ in only a constant iceberg cost
shifter) and that sales shares for each origin n ∈ C are defined as follows:

rni,g ≡
Pni,gQni,g

∑ι∈C

(
Pnι,gQnι,g

) ∼ good-specific sales share; ρn,g =
∑ι∈C

(
Pnι,gQnι,g

)
ẁnLn

∼ industry-wide sales share.

For now, we do not unpack the supply elasticity, ωni,g. We relegate this task instead to Step #4 of the
proof, where we solve our full system of F.O.C.s. Using the above definition for ωni,g, we can simplify
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Equation 26 as follows:(
∂ ∑n 6=i

[(
P̃ni − Pni

)
·Qni

]
∂ ln P̃ji,k

)
w,P−ji,k

= P̃ji,kQji,k +∑
g

∑
n 6=i

(P̃ni,g − [1 + ωni,g]Pni,g
)

Qni,g

(
∂ ln Qni,g

∂ ln P̃ji,k

)
w,P−ji,k

 .

(29)
Moving on, the effect of a change in P̃ji,k on country i’s production and export tax revenues can be
unpacked as(

∂

∂ ln P̃ji,k

{(
P̃ii − Pii

)
·Qii,g + ∑

n 6=i

[(
P̃in − Pin

)
·Qin

]})
w,P−ji,k

=∑
g

(P̃ii,g − Pii,g
)

Qii,g

(
∂ ln Qii,g

∂ ln P̃ji,k

)
w,P−ji,k

−∑
g

∑
n

Pin,gQin,g

(
∂Pin,g

∂ ln Qii,g

)
w,Pi

(
∂ ln Qii,g

∂ ln P̃ji,k

)
w,P−ji,k

 . (30)

The first term in the above equation accounts for revenue effects that channel through a change in the
demand for domestic varieties (i.e., ii, g). The second term accounts for scale effects—i.e., a change in
Qii,g alters the scale of production in origin i–industry k, and the producer prices associated with coun-
try i in all export markets. To simplify the term accounting for scale effects, we invoke the following
observation, which follows from the Free Entry condition:71

∑
n

[
Pin,gQin,g

(
∂Pin,g

∂ ln Qii,g

)
w,Pi

]
= ∑

n

[
Pin,gQin,g

Pii,gQii,g

(
∂Pin,g

∂ ln Qii,g

)
w,Pi

]
Pii,gQii,g = (32)

= ∑
n

[
rin,g

rii,g

(
∂Pin,g

∂ ln Qii,g

)
w,Pi

]
Pii,gQii,g = −

µg

1 + µg
Pii,gQii,g,

The last line in the above equation follows from the fact that (a)
(

∂Pin,g
∂ ln Qii,g

)
w,Pi

= − µg
1+µg

rii,g, and (b)

∑n rin,g = 1, by construction. We can plug the above equation back into Equation 30 to simplify it as
follows:(

∂

∂ ln P̃ji,k

{
∑
n

[(
P̃in − Pin

)
·Qin

]})
w,P−ji,k

= ∑
g

(P̃ii,g −
[

1−
µg

1 + µg

]
Pii,g

)
Qii,g

(
∂ ln Qii,g

∂ ln P̃ji,k

)
w,P−ji,k

 .

(33)

Note that
(
∂ ln Qii,g/∂ ln P̃ji,k

)
w,P−ji,k

encompasses price and income effects as indicated by Equation
27. Combining Equations 29 and 33, we can express the sum of all tax revenue-related effects as(

∂Yi(Pi; w)

∂ ln P̃ji,k

)
w,P−ji,k

= P̃ji,kQji,k + ∑
g

∑
n 6=i

[(
P̃ni,g − [1 + ωni,g]Pni,g

)
Qni,gε

(ji,k)
ni,g

]

+ ∑
g

[(
P̃ii,g −

1
1 + µg

Pii,g

)
Qii,gε

(ji,k)
ii,g

]
+ ∆i(Pi, w)

(
∂Yi(Pi; w)

∂ ln P̃ji,k

)
w,P−ji,k

. (34)

71In particular, note that Pin,g = τin,gPii,g, where by Free Entry, Pii,g = ρ̄ii,gwiQ
− µg

1+µg

i,g , with Qi,g = ∑n āin,gQin,g denoting

country i’s effective output in industry g. Hence, holding w and Pi − {P̃ji,k} constant, we can show that

∑
n

( ∂ ln Pin,g

∂ ln Qij,g

)
w,P−ji,k

rin,g

rij,g

 = ∑
n

( ∂ ln Pii,g

∂ lnQi,g

∂ lnQi,g

∂ ln Qij,g

)
w,P−ji,k

rin,g

rij,g

 =
∂ ln Pii,g

∂ lnQi,g
= −

µg

1 + µg
, (31)

where the second line follows from the fact that ∂ lnQi,g/∂ ln Qij,g = rij,g, by definition.
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The uniform term ∆i(Pi) regulates the net force of (circular) general equilibrium income effects. It
correspondingly depends on the Marshallian income elasticities of demand:

∆i(Pi; w) ≡∑
g

∑
n 6=i

[(
P̃ni,g − [1 + ωni,g]Pni,g

)
Qni,gηni,g

]
+ ∑

g

[(
P̃ii,g −

1
1 + µg

Pii,g

)
Qii,gηii,g

]
. (35)

To characterize the general equilibrium wage effects in the F.O.C. (i.e., the last term on the right-hand
side of Equation 24), we invoke our earlier result under Lemma 5: By the targeting principle w−i is
welfare neutral at the optimum (i.e., Pi = P∗i ), which implies that(

∂Wi(P
∗
i ; w)

∂w

)
Pi

·
(

dw
d ln P̃ji,k

)
P−ji,k

=

(
∂Wi(P

∗
i ; w)

∂wi

)
w−i ,Pi

(
dwi

d ln P̃ji,k

)
w−i ,P−ji,k

.

That is, we can characterize the term that encompasses wage effects, treating w−i as given. Accord-
ingly, the term

(
dwi/d ln P̃ji,k

)
w−i ,P−ji,k

can be calculated by applying the Implicit Function Theorem to

country i’s balanced trade condition,72

[Balanced Trade] Ti (Pi, w) ≡ ∑
n 6=i

[
Pni(Pi; w) ·Qni,g(Pi; w)− P̃ni ·Qni,g(Pi; w)

]
,

while treating w−i = w̄−i as if it were given. This step yields the following equation(
d ln wi

d ln P̃ji,k

)
w−i ,P−ji,k

= −
(

∂Ti(Pi, w)

∂ ln P̃ji,k

)
w,P−ji,k

/
(

∂Ti(Pi, w)

∂ ln wi

)
w̄−i ,Pi

=

−∑n 6=i

[
(Pni �Qni) ·

(
∂ ln Qni
∂ ln P̃ji,k

)
w,P−ji,k

+ (Pni �Qni) ·
(

Ωni � ∂ ln Qni
∂ ln P̃ji,k

)
w,P−ji,k

]
(

∂Ti(Pi ,w)
∂ ln wi

)
w̄−i ,Pi

. (36)

where Ωni ≡ {ωni,k}k is a vector composed of export supply elasticities (as defined under Equation
28) and � denotes the element-wise product of two equal-sized vectors (i.e., a� b = [anbn]n). The
second line in the above equation follows from the fact that

(
∂ ln Qin,g(Pi, w)/∂ ln P̃ji,k

)
w,P−ji,k

= 0 if

n 6= i. That is, if we fix the vector of wages, w, the choice of P̃ji,k has no effect on the demand schedule
in the rest of the world. In other words, the only way the effect of P̃ji,k transmits to foreign markets is
through its effect on w. Now, define the importer-wide term, τ̄i, as follows:

τ̄i ≡

(
∂Wi(Pi ;w)

∂wi

)
w̄−i ,Pi

(
∂Vi(.)

∂Yi

)−1

(∂Ti(Pi, w)/∂ ln wi)w̄−i ,Pi

. (37)

Importantly, note that τ̄i does not feature an industry-specific subscript. Combining Equation 36 with

72To be clear about the notation, we can write country i’s balanced trade condition without appealing to the inner product
operator as follows:

Ti (Pi, w) ≡∑
g

∑
n 6=i

(
Pni,g(Pi, w)Qni,g(Pi, w)− P̃in,gQin,g(Pi, w)

)
= 0.

60



the expression for τ̄i, we can summarize the wage effects in the F.O.C. (Equation 24) as follows(
∂Wi(Pi; w)

∂w

)
Pi

·
(

dw
d ln P̃ji,k

)
P−ji,k

=−∑
g

∑
n 6=i

[
[1 + ωni,g]τiPni,gQni,gε

(ji,k)
ni,g

]

−∑
g

∑
n 6=i

[
[1 + ωni,g]τ̄iPni,gQni,gηni,g

] (∂Yi(Pi; w)

∂ ln P̃ji,k

)
w,P−ji,k

. (38)

Finally, plugging Equations 25, 34, and 38 back into the F.O.C. (Equation 24); yields the following
optimality condition w.r.t. to price instrument P̃ji,k ∈ Pi:

[FOC w.r.t. P̃ji,k] ∑
n 6=i

∑
g

[(
P̃ni,g

Pni,g
− (1 + τ̄i)(1 + ωni,g)

)
Pni,gQni,gε

(ji,k)
ni,g

]

+ ∑
g

[(
P̃ii,g

Pii,g
− 1

1 + µg

)
Pii,gQii,gε

(ji,k)
ii,g

]
+ ∆̃i(Pi; w)

(
∂Yi(Pi; w)

∂ ln P̃ji,k

)
w,P−ji,k

= 0.

(39)

The uniform term ∆̃i(.) is defined analogously to ∆i(.), but adjusts for the interaction of general equi-
librium wage and income effects:

∆̃i(Pi; w) ≡∑
g

∑
n 6=i

[(
P̃ni,g

Pni,g
− (1 + ωni,g)(1 + τ̄i)

)
Pni,gQni,gηni,g

]
+∑

g

[(
P̃ii,g

Pii,g
− 1

1 + µg

)
Pii,gQii,gηii,g

]
.

(40)
Before moving forward, a remark on the uniform term τ̄i is in order. We do not unpack this term
because the multiplicity of country i’s optimal tax schedule (per Lemma 1) will render the exact value
assigned to τ̄i as redundant. We will elaborate more on this point when we combine the F.O.C.s w.r.t.
all tax instruments in step #4 of the proof.

Step 3.B: Deriving the W.O.C. w.r.t. Pii,k ∈ Pi .

Next, we derive the F.O.C. w.r.t. to a locally produced and locally consumer variety ii, k. Recall
that the objective function can is given by Wi = Vi(Yi(Pi; w), P̃ii, P̃ji). The F.O.C. w.r.t. P̃ii,k, holding the
remaining elements of Pi (namely, P−ii,k ≡ Pi − {P̃ii,k}) constant, can be stated as(

dWi(Pi; w)

d ln P̃ii,k

)
P−ii,k

=
∂Vi(Yi, P̃i)

∂ ln P̃ii,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(Pi; w)

∂ ln P̃ii,k

)
w,P−ii,k

+

(
∂Wi(Pi; w)

∂w

)
Pi

·
(

dw
d ln P̃ii,k

)
P−ii,k

= 0.

(41)
Each element of the right-hand side can be characterized in a manner identical to Step 3.A. Specifically,
the first term can be simplified using Roy’s identity. The second term, which accounts for revenue-
raising effects can be characterized using cross-demand elasticities w.r.t. P̃ii,k instead of P̃ji,k. The same
goes for the last term accounting for general equilibrium wage effects. Repeating the derivations in
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Step 3.A, the F.O.C. characterized by Equation 41 can be unpacked as follows:

[FOC w.r.t. P̃ii,k] ∑
n 6=i

∑
g

[(
P̃ni,g

Pni,g
− (1 + τ̄i)(1 + ωni,g)

)
Pni,gQni,gε

(ii,k)
ni,g

]

+ ∑
g

[(
P̃ii,g

Pii,g
− 1

1 + µg

)
Pii,gQii,gε

(ii,k)
ii,g

]
+ ∆̃i(Pi; w)

(
∂Yi(Pi; w)

∂ ln P̃ii,k

)
w,P−ii,k

= 0,

(42)

where the uniform terms, ∆̃i(.), and τ̄i, have the same definition as that introduced under Equations
40 and 37.

Step 3.C: Deriving the W.O.C. w.r.t. P∗ij,k.

Finally, we derive the F.O.C. w.r.t. to export variety ij, k, which is sold to destination j 6= i in
industry k. Note again that the objective function is given by Wi = Vi(Yi(Pi; w), P̃ii, P̃ji). The F.O.C.
w.r.t. P̃ij,k, holding the remaining elements of Pi (namely, P−ij,k ≡ Pi − {P̃ij,k}) constant, can be stated
as(

dWi(Pi; w)

d ln P̃ij,k

)
P−ij,k

=
∂Vi(Yi, P̃i)

∂ ln P̃ij,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

+

(
∂Wi(Pi; w)

∂w

)
Pi

·
(

dw
d ln P̃ij,k

)
P−ij,k

= 0.

(43)

The first term as before accounts for the direct effect of a price change on consumer surplus. This term
is trivially equal to zero in this case, since P̃ij,k /∈ P̃i. That is, since ij, k is not part of the domestic
consumption bundle, raising its price has no direct effect on consumer surplus in country i:

P̃ij,k /∈ P̃i =⇒ ∂Vi(Yi, P̃i)

∂ ln P̃ij,k
= 0. (44)

The second term in Equation 43 accounts for the revenue-raising effects of a change in P̃ij,k ∈ Pi. To
unpack this term note that total income (or expenditure) in country i is dictated by the sum of wage
payments and tax revenues:

Yi(Pi; w) = wiLi + ∑
n 6=i

[(
P̃ni − Pni

)
·Qni

]
+
(
P̃ii − Pii

)
·Qii + ∑

n 6=i

[(
P̃in − Pin

)
·Qin

]
,

Hence, holding wages w constant, the change in country i’s income amounts to the change in import,
domestic, and export tax revenues. The effect on import tax revenues can be unpacked as follows:

(
∂ ∑n 6=i

[(
P̃ni − Pni

)
·Qni

]
∂ ln P̃ij,k

)
w,P−ij,k

=∑
g

∑
n 6=i

(P̃ni,g − Pni,g
)

Qni,g

(
∂ ln Qni,g

∂ ln P̃ij,k

)
w,P−ij,k


−∑

g
∑
n 6=i

Pni,gQni,gωnj,g

(
∂ ln Qnj,g

∂ ln P̃ij,k

)
w,P−ij,k

 . (45)

where ωnj,g is the export supply elasticity as defined by 28. The first term on the right-hand side
accounts for general equilibrium income effects: Specifically, a change in P̃ij,k can raise country i’s in-
come Yi through higher tax revenues, and alter the entire demand schedule, Qni,g = Dni,g(P̃i, Yi), in
the local market. The second term accounts for scale effects: To elaborate, a change in P̃ij,k distorts
origin i’s export supply schedule in market j ∈ C. This change alters the scale of production and
the producer prices associated with origin n–industry g that serves market j (this includes Pni,g which
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is associated with economy i). It also changes the scale of production and producer prices from for-
eign suppliers through cross-demand effects. These changes in international producer prices, impacts
country i’s terms-of-trade by changing its import tax revenues. Also, note that since the rest of the
world (including country j) is passive, their income is pinned to their wage rate and vector w. Hence,(
∂Yj/∂ ln P̃ij,k

)
w,P−ij,k

= 0, which implies that
(
∂ ln Qnj,g/∂ ln P̃ij,k

)
w,P−ij,k

= ∂ lnDnj,g(Ȳj, P̃j)/∂ ln P̃ij,k =

ε
(ij,k)
nj,g . Likewise, since P̃ij,k /∈ P̃i, its only effect on the demand schedule in the local market i is through

general equilibrium income effects. Putting these results together, we can posit that(
∂ ln Qnι,g

∂ ln P̃ij,k

)
w,P−ij,k

=


ε
(ij,k)
nj,g if ι = j

ηni,g

(
∂ ln Yi

∂ ln P̃ij,k

)
w,P−ij,k

if ι = i
.

Considering the above expressions and noting our earlier definition for ωni,g under Equation 28, Equa-
tion 45 can be simplified as(

∂ ∑n 6=i
[(

P̃ni − Pni
)
·Qni

]
∂ ln P̃ij,k

)
w,P−ij,k

= −∑
g

∑
n 6=i

[
ωnj,gPni,gQni,gε

(ij,k)
nj,g

]
+ ∑

g
∑
n 6=i

[(
P̃ni,g − [1 + ωni,g]Pni,g

)
Qni,gηni,g

] ( ∂ ln Yi

∂ ln P̃ij,k

)
w,P−ij,k

= −∑
g

∑
n 6=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∑

g
∑
n 6=i

[(
P̃ni,g − [1 + ωni,g]Pni,g

)
Qni,gηni,g

] ( ∂ ln Yi

∂ ln P̃ij,k

)
w,P−ij,k

.

(46)

The last line in the above equation follows from (1) the definition of ω, which entails that ωnj,grni,g =

ωni,grnj,g, and (2) the fact that rni,g/rnj,g = Pni,gQni,g/Pnj,gQnj,g, since the markup is uniform across
output sold to different destinations in the same industry.

The effect of a change in P̃ij,k on country i’s production and export tax revenues can be unpacked
as follows:73

(
∂

∂ ln P̃ij,k
∑
n

[(
P̃in − Pin

)
·Qin

])
w,P−ij,k

= ∑
g

(P̃ii,g − Pii,g
)

Qii,g

(
∂ ln Qii,g

∂ ln P̃ij,k

)
w,P−ij,k


+ P̃ij,kQij,k + ∑

g

(P̃ij,g − Pij,g
)

Qij,g

(
∂ ln Qij,g

∂ ln P̃ij,k

)
w,P−ij,k

+ ∑
g

∑
n

Pin,gQin,g

(
∂Pin,g

∂ ln Qij,g

)
w,Pi

(
∂ ln Qij,g

∂ ln P̃ij,k

)
w,P−ij,k

 .

(47)

The first term (in the first line) account for the effect on domestic tax revenues that channel through
general equilibrium income effects. The second term on the right-hand side (P̃ij,kQij,k) accounts for the
direct, arithmetic effect of P̃ij,k on export tax revenues. The third term account for revenue effects that
channel through a change in the demand for all varieties sold to destination j (i.e., ij, g). The last term
accounts for scale effects—i.e., a change in Qij,g alters the scale of production in origin i–industry g, and
modifies all the producer prices associated with that industry. As noted in Step 3.A, the last term in
Equation 47 can be simplified using the Free Entry condition, which entails that (See Equation 32):

∑
n∈C

[
Pin,gQin,g

(
∂Pin,g

∂ ln Qij,g

)
w,Pi

]
= −

µg

1 + µg
Pij,gQij,g,

Also, recall from our earlier discussion that since country j 6= i collects no tax revenues by assumption,

73To be clear, ∑n
[(

P̃in − Pin
)
·Qin

]
=
(
P̃ii − Pii

)
·Qii,g +∑n 6=i

[(
P̃in − Pin

)
·Qin

]
denotes the sum of domestic and export

tax revenues.
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(
∂Yj/∂ ln P̃ij,k

)
w,P−ij,k

= 0, which implies that
(
∂ ln Qnj,g/∂ ln P̃ij,k

)
w,P−ij,k

= ∂ lnDnj,g(Ȳj, P̃j)/∂ ln P̃ij,k =

ε
(ij,k)
nj,g . Plugging these expressions back into Equation 47 simplifies it as

(
∂

∂ ln P̃ij,k
∑
n

[(
P̃in − Pin

)
·Qin

])
w,P−ij,k

= P̃ij,kQij,k + ∑
g

[(
P̃ij,g − [1−

µg

1 + µg
]Pij,g

)
Qij,gε

(ij,k)
ij,g

]

+ ∑
g

[(
P̃ii,g −

1
1 + µg

Pii,g

)
Qii,gηii,g

](
∂ ln Yi

∂ ln P̃ij,k

)
w,P−ij,k

.

(48)

Combining Equations 46 and 48, we can express the sum of tax revenue-related effects as(
∂Yi(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

= P̃ij,kQij,k+∑
g

[(
P̃ij,g − [1−

µg

1 + µg
]Pij,g

)
Qij,gε

(ij,k)
ij,g

]

−∑
g

∑
n 6=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∆i(Pi; w)

(
∂Yi(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

, (49)

where ∆i(.) encompasses the terms accounting for circular income effects and is given by Equation 35.
No we turn to characterizing the general equilibrium wage effects in the F.O.C.—namely, the last term
on the right-hand side of Equation 24. To this end, we invoke our observation based on the targeting
principle (as stated under Lemma 5) that

(
∂Wi(.)

∂w

)
Pi
·
(

dw
d ln P̃ij,k

)
P−ij,k

=
(

∂Wi(.)
∂wi

)
w−i ,Pi

(
dwi

d ln P̃ij,k

)
w−i ,P−ij,k

.

The term
(

dwi
d ln P̃ji,k

)
w−i ,P−ji,k

can be calculated by applying the Implicit Function Theorem to country i’s

balanced trade condition,

[Balanced Trade] Ti (Pi, w) ≡ ∑
n 6=i

[
Pni(Pi; w) ·Qni,g(Pi; w)− P̃ni ·Qni,g(Pi; w)

]
,

while treating w−i = w̄−i as given. This application yields the following equation (Notation: Ωnj ≡{
ωnj,k

}
k is a vector composed of export supply elasticities, while � and · denotes the element-wise

and inner products of two equal-sized vectors):(
d ln wi

d ln P̃ij,k

)
w−i ,P−ij,k

= −
(

∂Ti(Pi, w)

∂ ln P̃ij,k

)
w,P−ij,k

/
(

∂Ti(Pi, w)

∂ ln wi

)
w̄−i ,Pi

=

−P̃ij,kQij,k −
(

P̃ij �Qij

)
·
(

∂ ln Qij

∂ ln P̃ij,k

)
w,P−ij,k

+ ∑n 6=i

[
(Pni �Qni) ·

(
∂ ln Qni
∂ ln P̃ij,k

+ Ωnj �
∂ ln Qnj

∂ ln P̃ij,k

)
w,P−ij,k

]
(

∂Ti(Pi ,w)
∂ ln wi

)
w̄−i ,Pi

(50)

The numerator in the second line of the above equation is composed of three terms: The first term
accounts for the arithmetic effect of P̃ji,k on country i’s trade balance. The second term account for own-
and cross-price effects that are specific to market j—the market to which good ij, k is being exported.
The last term accounts for scale effects: Specifically, a change in P̃ij,k interacts with the balanced trade
condition by modifying the producer of a generic good ni, g imported from origin i–industry g. As
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before, define the uniform importer-wide term, τ̄i, as follows

τ̄i ≡

(
∂Wi(Pi ;w)

∂wi

)
w̄−i ,Pi

(
∂Vi(.)

∂Yi

)−1

(∂Ti(Pi, w)/∂ ln wi)w̄−i ,Pi

. (51)

Combining Equation 50 with the expression for τ̄i, we can summarize the wage effects in the F.O.C.
(Equation 24) as follows:

(
∂Wi(.)

∂w

)
Pi

·
(

dw
d ln P̃ij,k

)
P−ij,k

= τ̄i P̃ij,kQij,k + ∑
g

[
τ̄i P̃ij,gQij,gε

(ij,k)
ij,g

]

−∑
g

∑
n 6=i

[
τ̄iωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
−∑

g
∑
n 6=i

[
[1 + ωni,g]τ̄iPni,gQni,gηni,g

] (∂Yi(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

. (52)

Finally, plugging Equations 44, 49, and 52 back into the F.O.C. (Equation 43); and dividing all the
expressions by (1 + τ̄i) yields the following optimality condition w.r.t. to price instrument P̃ij,k ∈ Pi:

[FOC w.r.t. P̃ij,k] P̃ij,kQij,k+∑
g

[(
1− 1

(1 + τ̄i)(1 + µg)

Pij,g

P̃ij,g

)
P̃ij,gQij,gε

(ij,k)
ij,g

]

−∑
g

∑
n 6=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∆̃i(Pi, w)

(
∂Yi(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

= 0, (53)

where ∆̃i(.) is defined as in Equation 40. Also, we are not unpacking the term τ̄i, for the same reasons
discussed under Step 3.A.

Step #4: Solving the System of F.O.C.s and Establishing Uniqueness

To determine the optimal tax schedule we need to collect the each of first order conditions and
simultaneously solve them under one system. For the ease of reference, we will restate the F.O.C.
w.r.t. to each element of Pi below. Following Equations 39 and 42, the F.O.C. w.r.t. P̃`i,k ∈ Pi (where
` = i or ` = j 6= i) is given by the following equation:

(1) ∑
n 6=i

∑
g

[(
1− (1 + τ̄i)(1 + ωni,g)

Pni,g

P̃ni,g

)
eni,gε

(`i,k)
ni,g

]
+

∑
g

[(
1− 1

1 + µg

Pii,g

P̃ii,g

)
eii,gε

(`i,k)
ii,g

]
+∆̃i(Pi; w)

(
∂ ln Yi(Pi; w)

∂ ln P̃`i,k

)
w,P−`i,k

= 0.

where eni,g = P̃ni,gQni,g/Yi denotes the (unconditional) expenditure share on good ni, g. Likewise,
dividing Equation 53 by P̃ij,kQij,k, the F.O.C. w.r.t. export price P̃ij,k ∈ Pi is given by the following
equation:

(2) 1 + ∑
g

[(
1− 1

(1 + µg)(1 + τ̄i)

Pij,g

P̃ij,g

)
eij,g

eij,k
ε
(ij,k)
ij,g

]

−∑
n 6=i

∑
g

[
ωni,g

enj,g

eij,k
ε
(ij,k)
nj,g

]
+∆̃i(Pi, w)

Yi

Yj

(
∂ ln Yi(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

= 0.

Going forward note two points: First, the system of F.O.C.s labeled (1) can be solved independent of
(2). Second, if we establish that the unique solution to System (1) is the trivial solution, then it follows
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immediately that ∆̃i(P
∗
i ; w) = 0–that is, circular income effects are welfare neutral at the optimum

under the trivial solution.
To establish uniqueness, note that for any P̃ ∈ Pi, the prohibitive rate, i.e., P̃ → ∞, satisfies the

necessary conditions specified by Equations (1) and (2). But prohibitive prices are trivially suboptimal
because they eliminate the good from consumption basket without raising any revenue to compensate
the consumers. So, we hereafter restrict attention to non-prohibitive prices whereby eni,g > 0 for all
ni, g. Taking note of this observation, we now how that System (1) has a unique trivial solution. To
this, end we express System (1) in matrix notation, under the assumption that ∆̃i(P

∗
i , w) = 0. As noted

earlier, this assumption will be automatically justified if it turns our that the resulting system admits
a unique trivial solution. This step, yields the following matrix equation:


e1i,1ε

(1i,1)
1i,1 · · · eNi,ε

(1i,1)
Ni,1 · · · e1i,Kε

(1i,1)
1i,K · · · eNi,Kε

(1i,1)
Ni,K

...
. . . . . .

...

e1i,1ε
(Ni,K)
1i,1 · · · eNi,ε

(Ni,K)
Ni,1 · · · e1i,Kε

(Ni,K)
1i,K · · · eNi,Kε

(Ni,K)
Ni,K


︸ ︷︷ ︸

Ẽi



1− (1 + ω1i,k)(1 + τ̄i)
P1i,1
P̃?

1i,k
...

1− 1
1+µk

Pii,k
P̃?

ii,k
...

1− (1 + ωNi,k)(1 + τ̄i)
PNi,k
P̃?

Ni,k


k

= 0.

To establish that the above equation exhibits a unique, trivial solution it suffices to show that the
demand-adjusted elasticity matrix, Ei =

[
eji,kε

(ni,g)
ji,k

]
jk,ng

is non-singular. The following intermediate

lemma establishes this result using the primitive properties of the Marshallian demand function.

Lemma 6. The NK× NK matrix Ẽi ≡
[
eji,kε

(ni,g)
ji,k

]
jk,ng

is non-singular.

Proof. We can appeal to Proposition 2.E.2 in Mas-Colell, Whinston, Green, et al. (1995), which indicates
that the Marshallian demand function satisfies eji,k =| eji,kε

(ji,k)
ji,k | −∑n,g 6=j,k | eni,gε

(ji,k)
ni,g |—a property

often referred to as Cournot aggregation. Since eji,k > 0 (as we have ruled out prohibitive prices),
Cournot aggregation ensures the matrix Ẽi is strictly diagonally dominant. The Lèvy-Desplanques
Theorem (Horn and Johnson (2012)), accordingly, ensures that Ẽi is non-singular. The lower bound on
det(Ẽi) follows trivially from Gerschgorin’s circle theorem. Specifically, following Ostrowski (1952),

| det
(

Ẽi

)
|≥∏

j∈C

∏
k∈K

∣∣∣eji,kε
(ji,k)
ji,k

∣∣∣− ∑
(n,g) 6=(j,k)

∣∣∣eni,gε
(ji,k)
ni,g

∣∣∣
 = ∏

j∈C

∏
k∈K

eji,k > 0.

Appealing to above lemma, it is immediate that the unique solution to the above matrix equation
is indeed the trivial solution, given by:

P̃∗ji,k
Pji,1

= (1 + ωji,k)(1 + τ̄i);
P̃∗ii,k
Pii,k

=
1

1 + µg
. (54)

It is straightforward to check that the above solution constitutes a global maximum by contradiction.
To present the logic: Since limP̃i→∞ Wi(Pi, w) → 0, the above solution identifies a vector of consumer
prices at home, P̃∗i ∈ P∗i , that yields a strictly higher welfare level than prohibitive prices. As such, P∗i
cannot constitute a global minimum.
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With the aid of the above result, we can proceed to solving System (2), knowing that ∆̃i(P
∗
i , w) = 0.

To this end, let us economize on the notation by defining χ as follows:

χij,k ≡
1

(1 + µg)(1 + τ̄i)

Pij,g

P̃ij,g
.

Invoking this minor switch of notation, the F.O.C. specified by System (2) implies the following opti-
mality condition:

1 + ∑
g

(1− χij,g
) eij,gε

(ij,k)
ij,g

eij,k

−∑
n 6=i

∑
g

ωni,g
enj,gε

(ij,k)
nj,g

eij,k

 = 0. (55)

To simplify the above expression we will appeal to the Cournot aggregation property–a well-known
primitive property of Marshallian demand as discussed earlier (see Mas-Colell et al. (1995)):

[Cournot aggregation] 1 + ∑
g

[
eij,g

eij,k
ε
(ij,k)
ij,g

]
= −∑

n 6=i
∑
g

[
enj,g

eij,k
ε
(ij,k)
nj,g

]
.

Next, combine the above expression with Equation 55, while noting that by Slutsky’s equation enj,g
eij,k

ε
(ij,k)
nj,g =

ε
(nj,g)
ij,k if ηni,g = 1 for all ni, g. Performing these steps yields the following:

−∑
g

[
χij,gε

(ij,g)
ij,k

]
−∑

n 6=i
∑
g

[
(1 + ωni,g)ε

(nj,g)
ij,k

]
= 0 ∀(ij, k).

We can rewrite the above equation in matrix algebra as follows:

− EijXij − E(−ij)
ij

(
1(N−1)K + Ωi

)
= 0, (56)

where Xij ≡
[
χij,k

]
k is a K× 1 vector. The K×K matrix Eij ∼ E(ij)

ij ≡
[
ε
(ij,g)
ij,k

]
encompasses the own- and

cross-price elasticities between the different varieties sold by origin i to market j—see Definition (D1).
Analogously, E(−ij)

ij ≡
[
ε
(nj,g)
ij,k

]
k,n 6=i,g

is a K × (N − 1)K matrix summarizing the cross-price elasticity

of market j’s demand between varieties sold by origin i and all other (non-i) origin countries. Ωi ≡[
ωni,g

]
n,g is a (N − 1)K × 1 vector of all import good-specific inverse supply elasticities. To invert the

above system we need to establish that Eij is non-singular, which is done under the following lemma.

Lemma 7. The K× K matrix Eij ≡
[
ε
(ij,g)
ij,k

]
k,g

is non-singular.

Proof. The proof proceeds similar to Lemma 6: The Marshallian demand function’s homogeneity of
degree zero implies that | ε

(ij,k)
ij,k |= ηij,k + ∑n,g 6=i,k | ε

(nj,g)
ij,k |. Based on this property, since ηij,k > 0,

the matrix Eij is strictly diagonally dominant. The Lèvy-Desplanques Theorem (Horn and Johnson
(2012)), therefore, ensures that Eij is non-singular.

Following the above lemma we can invert the system specified by Equation 56 to obtain the optimal
level of Xij =

[
χij,k

]
k:

X∗ij = −E−1
ij E(−ij)

ij

(
1(N−1)K + Ωi

)
. (57)

Next, there remains the task of recovering the optimal tax/subsidy rates from the optimal price
wedges implies by Equations 54 and 57. Noting the following relationship between taxes/subsidies
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and price wedges,

1 + t∗ji,k =
P̃ji,k

Pji,k
; 1 + s∗i,k =

Pii,k

P̃∗ii,k
; 1 + xij,k =

Pij,k/P̃∗ij,k
Pii,k/P̃∗ii,k

;

country i’s unilaterally optimal tax schedule can be expressed as follows:

[domestic subsidy] 1 + s∗i,k = 1 + µk

[import tariff] 1 + t∗ji,k = (1 + ωji,k)(1 + τ̄i)

[export subsidy] 1 + x∗ij = −E−1
ij E(−ij)

ij (1 + t∗i ) . (58)

The last step is to invoke the multiplicity of optimal tax schedules as indicated by Lemma 1. Doing
so indicates that the uniform term τ̄i is redundant and need not be unpacked. To elaborate, Lemma 1
indicates that any policy schedule that includes an import tax equal to (1 + t̄i ∈ R+)

1 + tji,k = (1 + ωji,k)(1 + τ̄i)(1 + t̄i)

is also optimal, since it delivers an identical level of welfare to the original optimal policy schedule
specified by 58. As such, the exact value assigned to τ̄i is redundant for a welfare standpoint. This
is why we did not unpack the term τ̄i earlier in Step #3. Lemma 1 indicates that there is another
dimension of multiplicity, whereby any uniform shift in domestic production subsidies (paired with
a proportional adjustment to wi) preserves the equilibrium. Considering these points, the optimal
policy schedule (after accounting for all dimensions of multiplicity) is given by:

[domestic subsidy] 1 + s∗i,k = (1 + µk)(1 + s̄i)

[import tariff] 1 + t∗ji,k = (1 + ωji,k)(1 + t̄i)

[export subsidy] 1 + x∗ij = −E−1
ij E(−ij)

ij (1 + t∗i ) ,

where 1 + s̄i = 1 + t̄i ∈ R+ are arbitrary tax shifters. What remains is a formal characterization of the
good-specific supply elasticity, ωji,k, which is presented below.

Characterizing the (Inverse) Export Supply Elasticity, ωji,k. To fix ideas, it is helpful to repeat the
definition of the export supply elasticity presented earlier:

ωji,k ≡
1

rji,kρj,k
∑
g

[
ẁiLi

ẁjLj
ρi,g

(
∂ ln Pii,g

∂ ln Qji,k

)
w,Pi

+ ∑
n 6=i

ẁnLn

ẁjLj
rni,gρn,g

(
∂ ln Pni,g

∂ ln Qji,k

)
w,Ti

]
, (59)

where rni,g = Pni,gQni,g/ ∑ι∈C

(
Pnι,gQnι,g

)
and ρn,g = ∑ι∈C

(
Pnι,gQnι,g

)
/ẁnLn respectively denote the

good ni, g-specific and industry-wide sales shares associated with origin n ∈ C. Also, note that the
producer price of good ni, g under free entry is given by Pni,g = τni,gPnn,g, where

Pnn,g = $̄nn,gwn ∑
ι∈C

[
ānι,gQnι,g

]− µg
1+µg ∀(n, g)
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To characterize ωji,k, we need to characterize
(

∂ ln Pni,g
∂ ln Qji,k

)
w,Ti

=
(

∂ ln Pii,g
∂ ln Qji,k

)
w,Ti

for each origin n–industry

g. To this end we can apply the Implicit Function Theorem to the following function:

Fni,g(Q1i,g, ..., QNi,g, P11,g, ..., PNN,g) = Pnn,g − $̄nn,gwn

āni,gQni,g + ∑
` 6=i

ān`,gQn`,g(τ−i` � P−i︸ ︷︷ ︸
P̃−i`

)


− µg

1+µg

= 0.

where τ−in � P−i ∼
{

τn,gP,g
}

 6=i,g denotes the vector of consumer prices in market n 6= i from all
origins aside from i. The above function implicitly characterizes the producer prices in each origin j–
industry g as a function of export supply levels to market i (i.e., Q1i,g, ..., QNi,g). Importantly, the above
function treats both P̄i and w as given, as all elements of P̄i are chosen directly the by the government
in i. Accordingly, the function Qnι,g(.) on the right-hand side derives from the Marshallian demand
function,

Qjn,g(τ−in � P−i︸ ︷︷ ︸
P̃−in

) = Dnι,g(P̃−in, P̃in, wnLn︸ ︷︷ ︸
Yn

),

treating P̃in ∈ Pi and wn ∈ w as given. This function accounts for the fact that any change in the
producer price of varieties associated with origin n–industry g will affect the consumer prices and
the demand schedule in all market excluding i. The reason is that prices in international markets
(excluding i) are not directly pinned down by the choice, Pi. For the sake of presentation, abstract from
cross-industry demand effects. Applying the Implicit Function Theorem to the system of equations
specified by Fni,g(.), yields the following:
(

∂ ln P11,k
∂ ln Q1i,k

)
w,Pi

· · ·
(

∂P11,k
∂ ln QNi,k

)
w,Pi

...
. . .

...(
∂ ln PNN,k
∂ ln Q1i,k

)
w,Pi

· · ·
(

∂PNN,k
∂ ln QNi,k

)
w,Pi

 = −


∂F1,k(.)

∂ ln P11,k
· · · ∂F1,k(.)

∂ ln PNN,k
...

. . .
...

∂FN,k(.)
∂ ln P11,k

· · · ∂FN,k(.)
∂ ln PNN,k


−1

︸ ︷︷ ︸
Ai


∂F1,k(.)

∂ ln Q1i,k
· · · ∂F1,k(.)

∂ ln QNi,k
...

. . .
...

∂FN,k(.)
∂ ln Q1i,k

· · · ∂FN,k(.)
∂ ln QNi,k

 .

(60)
The elements of the matrixes on the right-hand side of the above equation are given by

∂Fn,k(.)
∂ ln Pjj,k

= 1j=n + 1j 6=i
µg

1 + µg
∑
` 6=i

rn`,kε
(j`,k)
n`,k ;

∂Fn,k(.)
∂ ln Qji,k

= 1j=n
µg

1 + µg
rji,k.

It is straightforward to see that Ai is diagonally-dominant. Hence, we can apply the method proposed
by Wu et al. (2013) to characterize A−1

i to a first-order approximation around rji,k ≈ 0 (for j 6= i). Doing
so yields the following expression based on the matrix Equation 60:

(
∂ ln Pnn,g

∂ ln Qji,g

)
w,Pi

≈


− µg

1+µg rni,g

1+
µg

1+µg ∑ι 6=i rnι,gε
(nι,g)
nι,g

n = j
µg

1+µg rji,g

1+
µg

1+µg ∑ι 6=i rnι,gε
(nι,g)
nι,g

(
µg

1+µg
∑ι 6=i rnι,gε

(jι,g)
nι,g

)
n 6= j

Plugging the above expression back into the definition specified by Equation 59, while noting that
rni,g × rji,g ≈ 0 if j 6= i and n 6= i, yields the following approximation for the export supply elasticity:

ωji,k ≈
− µk

1+µk
rji,k

1 + µk
1+µk

∑ι 6=i rjι,kε jι,k

[
1− µk

1 + µk

wiLi

wjLj
∑
n 6=i

ρi,krin,k

ρj,krji,k
ε
(jn,k)
in,k

]
.
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Figure 2: The efficacy of the approximated ωji,k at predicting gains from policy

Note: the above simulation is based on a two country–two industry model with the following specifications: (2)
σ1 = σ2 = 5, (2) µ1 = 0.25 and µ2 = 0.5µ1; (3) expenditure shares are assigned the following values λ21,1 = 0.6,
λ12,1 = 0.25/δ, λ21,2 = 0.25; λ12,2 = 0.4/ρ where ρ is relative size.

For the sake of clarity, note that wi = ẁi under free entry—so, we can replace wi with ẁi every-
where in the above approximation. Figure 2 illustrates the goodness of our approximated ωji,k using a
rather conservative numerical example. We simulate a two-country×two-industry economy in which
trade is relatively open and the tax-imposing country is relatively large compared to the rest of the
world. We compute the actual gains from optimal policy for the tax-imposing country i, and compare
them to gains implied by (1) our approximated ωji,.k as well (2) the small open economy approxima-
tion, ωji,k ≈ 0. Evidently, our approximated value for ωji,k yields indistinguishable results relative to
approximation-free benchmark.74

Step #5. Extending the Derivation to the Restrict Entry Case

Equipped with a full characterization of optimal policy under free entry, we now switch attention
to the case of restricted entry. The main difference between the two cases is in how producer prices
vary with export supply: Under restricted entry, holding w = {ẁn} fixed, contacting the export supply
of good ni, g affects the producer prices associated with origin n through a uniform reduction in the
average markup µn. Namely,

Pni,g = $̄ni,g
1 + µk

1 + µn
ẁn =⇒

(
∂ ln Pni,g

∂ ln Qni,g

)
w,Pi

= −
(

∂ ln(1 + µn)

∂ ln Qni,g

)
w,Pi

,

74To be clear, the above approximation is only intended for the quantitative applications. It should not be viewed as a
limitation of our theory. The optimal tax formula derived earlier in combination with Equation 60 deliver an exact theoretical
specification for the first-best optimal policy schedule.
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where economy n’s (endogenously-determined) average profit margin is given by

1 + µn =
∑ι∈C ∑k∈K [Pnι,kQnι,k]

∑ι∈C ∑k∈K

[
1

1+µk
Pnι,kQnι,k

] .

Another difference is that non-tax-revenue income in country i is the sum of wage payments plus
profits. Stated formally, total income in country i can be specified as follows (notation: the operator “·”
denotes the inner product of two equal-sized vectors):

Yi(Pi; w) = (1 + µi)wiLi︸ ︷︷ ︸
ẁi Li

+ ∑
n 6=i

[(
P̃ni − Pni

)
·Qni

]
+
(
P̃ii − Pii

)
·Qii + ∑

n 6=i

[(
P̃in − Pin

)
·Qin

]
, (61)

In the above formulation, ẁiLi = (1 + µ̄i)wiLi, stands for the sum of wage payments plus profits.
With the background information provided above, we can recycle our earlier derivations from the

free entry case to characterize the F.O.C. w.r.t. each price instrument in Pi.

First-Order Condition w.r.t. P̃ji,k and P̃ii,k ∈ Pi. To fix ideas, recall from Step #3 of the proof that the
F.O.C. w.r.t. P̃ji,k ∈ Pi (where possibly j = i) is given by(

dWi(Pi; w)

d ln P̃ji,k

)
P−ji,k

=
∂Vi(Yi, P̃i)

∂ ln P̃ji,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(Pi; w)

∂ ln P̃ji,k

)
w,P−ji,k

+

(
∂Wi(Pi; w)

∂w

)
Pi

·
(

dw
d ln P̃ji,k

)
P−ji,k

= 0.

(62)
As before, P−ji,k ≡ Pi −

{
P̃ji,k
}

denotes the vector of country i’s price instruments excluding P̃ji,k.
Each term on the right-hand can be unpacked as in the free entry case, with one difference: holding
w constant, a change in good ji, k’s export supply affects the entire vector of prices from origin j.
Specifically, noting that Pji,g = $̄ji,g

1+µg
1+µj

wj, indicates that

(
∂ ln Pji,g

∂ ln Qji,k

)
w,Pi

= −
(

∂ ln(1 + µj)

∂ ln Qji,k

)
w,Pi

∀g ∈ K.

Noting this distinction, we now repeat the steps present earlier to unpack each term on the right-hand
side of Equation 62. By Roy’s identity, the first term on the right-hand side can be unpacked as follows:

∂Vi(Yi, P̃i)

∂ ln P̃ji,k
= −P̃ji,kQji,k

(
∂Vi

∂Yi

)
.

Recall that the second term on the right-hand side of Equation 62 accounts for the revenue-raising
effects of policy. Specifically, taking note of Equation 61, the effect on import tax revenues can be
unpacked as follows:

(
∂ ∑n 6=i

(
P̃ni − Pni

)
·Qni

∂ ln P̃ji,k

)
w,P−ji,k

= P̃ji,kQji,k + ∑
g

∑
n 6=i

(P̃ni,g − Pni,g
)

Qni,g

(
∂ ln Qni,g

∂ ln P̃ji,k

)
w,P−ji,k


− ∑

g∈K

∑
n 6=i

Pni,sQni,s ∑
s∈K

∑
 6=i

Pi,sQi,s

Pni,gQni,g

(
∂Pi,s

∂ ln Qni,g

)
w,Pi

+ ∑
`∈C

Pi`,sQi`,s

Pi`,gQi`,g

(
∂Pi`,s

∂ ln Qni,g

)
w,Pi

(∂ ln Qni,g

∂ ln P̃ji,k

)
w,P−ji,k

 .

(63)

As in the free entry case,
(
∂ ln Qni,g/∂ ln P̃ji,k

)
w,P−ji,k

encompasses demand adjustments that channel
through both price and income effects—see Equation 27. We can simplify the last term on the right-
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hand side of above equation, by appealing to our definition of the export supply elasticity:

ωni,g ≡
1

rji,kρj,k
∑
g

[
ẁiLi

ẁjLj
ρi,g

(
∂ ln Pii,g

∂ ln Qji,k

)
w,Pi

+ ∑
n 6=i

ẁnLn

ẁjLj
rni,gρn,g

(
∂ ln Pni,g

∂ ln Qji,k

)
w,Ti

]
. (64)

=
−1

rji,kρj,k

[
ẁiLi

ẁjLj

(
∂ ln(1 + µi)

∂ ln Qji,k

)
w,Pi

+ ∑
n 6=i

∑
g

(
ẁnLn

ẁjLj
rni,gρn,g

)(
∂ ln(1 + µn)

∂ ln Qji,k

)
w,Ti

]
(65)

The second line indicates our focus on the restricted entry case, wherein
(

∂ ln Pni,g
∂ ln Qji,k

)
w,Pi

=
(

∂ ln(1+µn)
∂ ln Qji,k

)
w,Pi

for all g. That is, holding w constant, producer prices from each origin change equal-proportionally
across all industries with the aggregate profit margin, 1 + µi. Plugging the above expression back
into Equation 63 yields the following expression that summarizes the (conditional) effect of policy on
import tax revenues:(

∂ ∑n 6=i
[(

P̃ni − Pni
)
·Qni

]
∂ ln P̃ji,k

)
w,P−ji,k

= P̃ji,kQji,k +∑
g

∑
n 6=i

(P̃ni,g − [1 + ωni,g]Pni,g
)

Qni,g

(
∂ ln Qni,g

∂ ln P̃ji,k

)
w,P−ji,k

 .

(66)
The effect of policy on export and domestic tax revenues can be unpacked as in Equation 30, which
was derived earlier for the free entry case. To simplify this equation under restricted entry, we can use
the following observation:

∑
n

[
Pin,gQin,g

(
∂Pin,g

∂ ln Qii,g

)
w,Pi

]
= − ∑

s∈K

∑
n∈C

[
Pin,sQin,s

Pii,gQii,g

(
∂ ln(1 + µi)

∂ ln Qii,g

)
w,Pi

]
Pii,gQii,g =

= ∑
s∈K

∑
n∈C

[
rin,sρi,s

rii,gρi,g

(
µ̄i − µg

1 + µg
rii,gρi,g

)]
Pii,gQii,g = −

(
1− 1 + µi

1 + µg

)
Pii,gQii,g,

To explain, the second line on the above equation follows from that fact that all prices associated with
economy i are included in the set Pi. So, holding Pi and wages w constant, the policy-induced change
in Qii,g has only a direct arithmetic effect on country i’s aggregate profit margin, i.e.,

(
∂ ln(1+µi)
∂ ln Qii,g

)
w,Pi

=

µ̄i−µg
1+µg

rii,gρi,g.75 Plugging the above equation back into Equation 30 yields the following equation de-
scribing the (conditional) effects of policy on export and domestic tax revenues:(

∂

∂ ln P̃ji,k

{
∑
n

[(
P̃in − Pin

)
·Qin

]})
w,P−ji,k

= ∑
g

(P̃ii,g −
1 + µi
1 + µg

Pii,g

)
Qii,g

(
∂ ln Qii,g

∂ ln P̃ji,k

)
w,P−ji,k

 .

(67)
Recall that

(
∂ ln Qni,g/∂ ln P̃ji,k

)
w,P−ji,k

, in the above equations, encompasses price- and income-related
demand adjustments—see Equation 27. Taking note of this detail, we can combine Equations 66 and
67 to arrive at the following expression that summarizes the (conditional) effect of raising P̃ji,k on

75Note that this argument does not extend to the aggregate profit margin in other countries. Changing the export supply
of say good ji, k with policy has a circular effect on origin j’s profit margin, µj, which occurs because the prices associated
with economy j 6= i are not pegged to Pi. Specifically, a change in Qji,k affects the entire vector of origin j’s prices outside of
market i. This change in prices affects the industrial composition of origin j’s output and µj in a circular fashion.
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country i’s tax revenues:(
∂Yi(Pi; w)

∂ ln P̃ji,k

)
w,P−ji,k

=P̃ji,kQji,k + ∑
g

∑
n 6=i

[(
P̃ni,g − [1 + ωni,g]Pni,g

)
Qni,gε

(ji,k)
ni,g

]

+ ∑
g

[(
P̃ii,g −

1 + µ̄i

1 + µg
Pii,g

)
Qii,gε

(ji,k)
ii,g

]
+ ∆i(Pi; w)

(
∂Yi(Pi; w)

∂ ln P̃ji,k

)
w,P−ji,k

,

where ∆i(.), as before, encapsulated the circular income effects. The expression for ∆i(.) is specified
analogously to Equation 35 with two amendments: (1) ωni,g is redefined according to 64; and (2)
1/(1 + µg) replaced with (1 + µi)/(1 + µg).76 Next, we unpack the last term on the right-hand side of
Equation 62, which accounts for general equilibrium wage effects. Repeating the steps presented for
the free entry case, while noting the differences discussed above, yields the following:(

∂Wi(Pi; w)

∂w

)
Pi

·
(

dw
d ln P̃ji,k

)
P−ji,k

=−∑
g

∑
n 6=i

[
τi(1 + ωni,g)Pni,gQni,gε

(ji,k)
ni,g

]
,

−∑
g

∑
n 6=i

[
τ̄i(1 + ωni,g)Pni,gQni,gηni,g

] (∂Yi(Pi; w)

∂ ln P̃ji,k

)
w,P−ji,k

where τ̄i is given by 37. Note that the above expression differs from the analogous expression derived
under free entry in the economic forces that regulate export supply elasticity, ωni,g. Under restricted
entry, the export supply elasticity governs the change in aggregate profit margins in response to dis-
tortions to export supply. Combining the various terms on the right-hand side of Equation 62, yields
the following simplified representation of the F.O.C. w.r.t. P̃ji,k ∈ Pi under restricted entry:

∑
n 6=i

∑
g

[(
P̃ni,g

Pni,g
− (1 + τ̄i)

)
Pni,gQni,gε

(ji,k)
ni,g

]

+ ∑
g

[(
P̃ii,g

Pii,g
− 1 + µi

1 + µg

)
Pii,gQii,gε

(ji,k)
ii,g

]
+ ∆̃i(Pi; w)

(
∂Yi(Pi; w)

∂ ln P̃ji,k

)
w,P−ji,k

= 0.

The uniform term ∆̃i(.) is described by Equation 40, but with ωni,g redefined according to 64 and
1/(1 + µg) replaced with (1 + µi)/(1 + µg).

First-Order Condition w.r.t. P̃ij,k (j 6= i). Now consider the F.O.C. w.r.t. the price of a generic export
good ij, k (where j 6= i). Recall from Step #3 that the F.O.C. w.r.t. P̃ij,k ∈ Pi is given by(

dWi(Pi; w)

d ln P̃ij,k

)
P−ij,k

=
∂Vi(Yi, P̃i)

∂ ln P̃ij,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

+

(
∂Wi(Pi; w)

∂w

)
Pi

·
(

dw
d ln P̃ij,k

)
P−ij,k

= 0.

(68)

76To be more specific, ∆i(.) is described by the following equation:

∆i(Pi; w) ≡∑
g

∑
n 6=i

[(
P̃ni,g − [1 + ωni,g]Pni,g

)
Qni,gηni,g

]
+ ∑

g

[(
P̃ii,g −

1 + µi
1 + µg

Pii,g

)
Qii,gηii,g

]
,

where µi > 0 and ωni,g ≡ ∑s∈K

[
rni,sρn,s
ρni,gρn,g

(
∂ ln Pni,s
∂ ln Qni,g

)
w,Pi

]
as we are focused on the restricted rather than free entry.
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where P−ij,k ≡ Pi−
{

P̃ij,k
}

denotes the vector of country i’s price instruments excluding P̃ij,k. Building
on our previous discussion, each term on the right-hand side is characterized by the same formulas
derived in Step #3, with two qualification: (1) The formulation assigned to ωni,g should be revised to
account for restricted entry (see Equation 10), (2) all equations should be adjusted to admit a non-zero
µj, as is required by restricted entry (see Equation 5).

Without repeating all the details from Step 3, we can unpack the terms on the right-hand side of
Equation 68 as follows: Since P̃ij,k /∈ P̃i is not part of the domestic consumer price index, ∂Vi(Yi, P̃i)/∂ ln P̃ji,k =

0. The second-term on the right-hand side of Equation 68 is given by:(
∂Yi(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

= P̃ij,kQij,k+∑
g

[(
P̃ij,g − [1−

µg

1 + µg
]Pij,g

)
Qij,gε

(ij,k)
ij,g

]

−∑
g

∑
n 6=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∆i(Pi; w)

(
∂Yi(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

,

where ωni,g is defined as in Equation 64, while ∆i(.) is given by Equation 35, with the necessary ad-
justments described earlier.The last term on the right-hand side of Equation 68 , which accounts for
general equilibrium wage effects, can be unpacked as

(
∂Wi(.)

∂w

)
Pi

·
(

dw
d ln P̃ij,k

)
P−ij,k

= τ̄i P̃ij,kQij,k + ∑
g

[
τ̄i P̃ij,gQij,gε

(ij,k)
ij,g

]

−∑
g

∑
n 6=i

[
τ̄iωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
−∑

g
∑
n 6=i

[
[1 + ωni,g]τ̄iPni,gQni,gηni,g

] (∂Yi(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

.

where τ̄i is given by 37. To be clear, the above formula differs from the one derived under free entry
in only how ωni,g is defined—see Equation 64. Combining the various terms on the right-hand side of
Equation 68, yields the following simplified representation of the F.O.C. w.r.t. P̃ij,k ∈ Pi:

P̃ij,kQij,k+ ∑
g∈K

[(
1− 1 + µi

(1 + τ̄i)(1 + µg)

Pij,g

P̃ij,g

)
P̃ij,gQij,gε

(ij,k)
ij,g

]

∑
g∈K

∑
n 6=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∆̃i(Pi, w)

(
∂Yi(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

= 0,

The uniform term ∆̃i(.) is described by Equation 40, but with ωni,g redefined according to 64 and
1/(1 + µg) replaced with (1 + µi)/(1 + µg).

Solving the system of F.O.C. Given the tight correspondence between the F.O.C.s derived under
the restricted and free entry cases, we can repeat the arguments as in step #4 to solve the system of
F.O.C.s and establish the uniqueness of the resulting solution. Doing so yield the following formula
for optimal taxes/subsidies under restricted entry:

[domestic subsidy] 1 + s∗i,k = (1 + µk)/(1 + µ̄i)

[import tariff] 1 + t∗ji,k = (1 + ωji,k)(1 + τ̄i)

[export subsidy] 1 + x∗ij = −E−1
ij E(−ij)

ij (1 + t∗i ) .
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Recall from Lemma 1 that there are two degrees of multiplicity associated with optimal policy sched-
ule. As a result, we need not to unpack the uniform terms τ̄i and µ̄i. Instead, for any arbitrary choice of
tax shifters 1+ s̄i and 1+ t̄i ∈ R+, the following tax/subsidy schedule represents an optimal solution:

[domestic subsidy] 1 + s∗i,k = (1 + µk)(1 + s̄i)

[import tariff] 1 + t∗ji,k = (1 + ωji,k)(1 + t̄i)

[export subsidy] 1 + x∗ij = −E−1
ij E(−ij)

ij (1 + t∗i ) .

The above formula is identical to that derived under free entry, with one qualification. The (inverse)
export supply elasticity ωji,k has a different interpretation under restricted entry, and is given by 64.
So, to conclude the proof, we characterize ωji,k under restricted entry next.

Characterizing the (Inverse) Export Supply Elasticity. Following Equation 64, the inverse of the
export supply elasticity under restricted entry is defined as

ωni,g =
−1

rji,kρj,k

[
ẁiLi

ẁjLj

(
∂ ln(1 + µi)

∂ ln Qji,k

)
w,Pi

+ ∑
n 6=i

∑
g

(
ẁnLn

ẁjLj
rni,gρn,g

)(
∂ ln(1 + µn)

∂ ln Qji,k

)
w,Ti

]
, (69)

where the second line follows from the fact that Pni,s = $̄ni,s
1+µs
1+µn

w̃n, which implies that
(

∂ ln Pni,s
∂ ln Qni,g

)
w,Pi

=

−
(

∂ ln(1+µn)
∂ ln Qni,g

)
w,Pi

. To unpack the above equation, note that (for a given Pi and w) the aggregate profit

margin implicitly solves the following equation:

Fn(µ, Qni) = (1 + µn)−
Pni(µn) ·Qni + ∑ι 6=i Pnι(µn) ·Qnι(µ−i)

1
1+µ � Pni(µn) ·Qni + ∑ι 6=i

1
1+µ � Pnι(µn) ·Qnι(µ−i)︸ ︷︷ ︸

gn(µn,Qni)

= 0.

As before, � and · respectively denote the inner and element-wise products of equal-sized vectors (i.e.,
a · b = ∑n anbn and a� b = [anbn]n), while with a slight abuse of notation, 1

1+µ ≡
[

1
1+µk

]
k
. The vector

Qni represents the export supply of goods from origin n 6= i to market i (which is fully determined by
Pi and w). Outside of market i, consumer prices are not directly pegged to Pi. So, holding ẁn ∈ w
and P̃iι ∈ Pi constant, a change in µi affects the producer and consumer price of goods supplied by
origin n to any market ι 6= i. Accordingly, Qnι(µ−i) ≡

{
Qnι,k(µ−i)

}
k in Equation XXX is implied by

Marshallian demand function (treating ẁn ∈ w and P̃iι ∈ Pi as given):

Qnι,k(µ−i) = Dnι,k(ẁιLι, P̃iι, P̃−iι(µ−i))

Taking note of this detail, we can compute
(
∂ ln(1 + µn)/∂ ln Qni,g

)
w,Pi

by applying the Implicit Func-
tion Theorem to the system of equations specified by Fn(µ, Qni). Namely,

∂ ln(1+µ1)
∂ ln Q1i

· · · ∂(1+µ1)
∂ ln QNi

...
. . .

...
∂ ln(1+µN)

∂ ln Q1i
· · · ∂(1+µN)

∂ ln QNi

 = −


∂F1(.)

∂ ln(1+µ1)
· · · ∂F1(.)

∂ ln(1+µN)
...

. . .
...

∂FN(.)
∂ ln(1+µ1)

· · · ∂FN(.)
∂ ln(1+µN)


−1 

∂F1
∂ ln Q1i

· · · ∂F1
∂ ln QNi

...
. . .

...
∂FN

∂ ln Q1i
· · · ∂FN

∂ ln QNi

 . (70)

Next, we characterize the elements of the matrixes on the right-hand side of the above equation. Con-

sidering that Fn(µ, Qni) = (1+ µn)− g(µ, Qni), we can unpack the elements of
[

∂Fi(.)
∂ ln(1+µj)

]
i,j

as follows.
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Using vector algebra we can show that if n 6= i, then

∂gn(µ, Qni)

∂ ln(1 + µn)
=

−Pni(µn) ·Qni −∑ι 6=i [Pnι(µn) ·Qnι(µn)]

1
1+µ � Pni(µn) ·Qni + ∑ι 6=i

[
1

1+µ � Pnι(µn) ·Qnι(µn)
]

︸ ︷︷ ︸
−(1+µn)

+
−∑ι 6=i [Pnι(µn) ·Qnι(µn)� εnι]

1
1+µ � Pni(µn) ·Qni + ∑ι 6=i

[
1

1+µ � Pnι(µn) ·Qnι(µn)
]

︸ ︷︷ ︸
−(1+µn)∑ι [rnι ·εnι ]

− (1 + µ̄i)


− 1

1+µ � Pni(µn) ·Qni −∑ι 6=i

[
1

1+µ � Pnι(µn) ·Qnι(µn)
]

1
1+µ � Pni(µn) ·Qni + ∑ι 6=i

[
1

1+µ � Pnι(µn) ·Qnι(µn)
]

︸ ︷︷ ︸
−1

−
∑ι 6=i

[
1

1+µ � Pnι(µn) ·Qnι(µn)� εnι

]
1

1+µ � Pni(µn) ·Qni + ∑ι 6=i

[
1

1+µ � Pnι(µn) ·Qnι(µn)
]

︸ ︷︷ ︸
(1+µn)∑ι

[
1

1+µ�rnι ·εnι

]


.

where εni ≡
[
ε
(ni,g)
ni,g

]
g

is a K × 1 vector of own-price elasticities of demand. rni ≡
[
rni,gρn,g

]
g is a

K × 1 vector of sales shares. The above derivation appeals to the definition of sales shares, whereby
rni,kρn,k =

Pni,kQni,k
∑j ∑g Pnj,gQnj,g

. Likewise, for any n and ` 6= i, we can

∂gn(µ, Qni)

∂ ln(1 + µ`)
=
−∑ι 6=i

[
Pnι(µn) ·Qnι(µn)� ε

(`ι)
nι

]
+ (1 + µ̄i)∑ι 6=i

[
1

1+µ � Pnι(µn) ·Qnι(µn)� ε
(`ι)
nι

]
1

1+µ � Pni(µn) ·Qni + ∑ι 6=i

[
1

1+µ � Pnι(µn) ·Qnι(µn)
] .

Combining the above two equations we can characterizes each element of the matrix
[

∂Fn(.)
∂ ln(1+µ`)

]
n,`

as

follows:
∂Fn(µ, Qni)

∂ ln(1 + µ`)
= (1 + µn)

[
1`=n + 1` 6=i ∑

k
∑
ι 6=i

[(
1− 1 + µn

1 + µk

)
rnι,kρn,kε

(`ι,k)
nι,k

]]

The elements of the matrix
[

∂Fn
∂ ln Q`i

]
n,`

can be unpacked with a similar logic. Specifically, if n 6= ` then
∂Fn

∂ ln Q`i
= 0. Otherwise, for any n ∈ C we can derive the following expression:

∂gn(µ, Qni)

∂ ln Qni,k
=

Pni,kQni,k
1

1+µ � Pni(µn) ·Qni + ∑ι 6=i

[
1

1+µ � Pnι(µn) ·Qnι(µn)
]

︸ ︷︷ ︸
(1+µn)rni,kρn,k

−
(1 + µn)

1
1+µk

Pni,kQni,k

1
1+µ � Pni(µn) ·Qni + ∑ι 6=i

[
1

1+µ � Pnι(µn) ·Qnι(µn)
]

︸ ︷︷ ︸
(1+µn)

1+µn
1+µk

rni,kρn,k

,

which, in turn, characterizes every element of matrix
[

∂Fn
∂ ln Q`i

]
n,`

as follows:

∂Fn(µ, Qni)

∂ ln Q`i,k
= 1`=n(1 + µn)

[(
1− 1 + µn

1 + µk

)
rni,kρn,k

]
.

As in the free entry case, it is immediate that Ãi ≡
[

∂Fi(.)
∂ ln(1+µj)

]
i,j

is diagonally dominant. So, we can

once again invoke we first-order approximation proposed by Wu et al. (2013) to characterize Ã−1
i .

Doing so and plugging the implied values of ∂ ln(1+µ1)
∂ ln Q1i

back into Equation 69, implies the following
approximation for the export supply elasticity under restricted entry:

ωni,g ≈
−
(

1− 1+µn
1+µg

)
∑k rni,kρn,k

1 + ∑k ∑ι 6=i

[
1 +

(
1− 1+µn

1+µk

)
rnι,kρn,kεnι,k

] .
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F Proof of Theorem 2

The proof of Theorem 2 has the same basic foundation as Theorem 1. We reformulate the optimal
policy problem, expressing equilibrium variables (e.g., Qji,k, Yi, etc.) as a function of (1) the vector of
consumer prices associated with economy i, excluding P̃ii, i.e., Pi ≡

{
P̃ji, P̃ij

}
;77 and (2) the vector of

national-level wage rates all over the world, w = {w1, ..., wN}. To implement this reformulation of
equilibrium variables, we need to solve the following system treating Pi, and w as given:

[optimal pricing] Pjn,k = ρ̄ji,kwj

[optimal consumption] Qjn,k = Djn,k(Yn, P̃1n, ...P̃Nn)

[RoW imposes zero taxes] P̃jn,k = Pjn,k (P̃jn,k /∈ Pi); Yn =

wn Ln+Πn︷ ︸︸ ︷
(1 + µ̄n)wnLn (n 6= i)

[Balanced Budget in i] Yi = (1 + µ̄i)wiLi +
(
P̃ij − Pij

)
·Qij +

(
P̃ji − Pji

)
·Qji

[avg. profit margin in j] 1 + µ̄j =
∑n∈C

[
Pjn ·Qjn

]
∑n∈C

[
Pjn ·

(
Qjn � (1 + µ)

)]
where “·” denotes the inner product operator for vectors of equal size. “�” denotes element-wise
division of equal-sized vectors, with µ ≡ {µk}k. Since there is a unique equilibrium, the above system
is exactly identified in that it uniquely determines Pjn,k(Pi; w), Qjn,k(Pi; w), Yn(Pi; w), and µ̄i(Pi; w) as
a function of Pi and w . Appealing to the above reformulation of the equilibrium, we can reformulate
the original optimal policy problem (P2) as follows.

Lemma 8. Country i’s vector of second-best trade taxes, {t?i , x?i }, can be determined by solving the following
problem:

max
Pi

Wi(Pi; w) ≡ Vi(Yi(Pi; w), P̃i) s.t. (Pi; w) ∈ FP (P̃2),

where the feasibility constraint is satisfied if, given Pi , the wage vector w satisfies balanced trade in each
country:

(Pi; w) ∈ FP ⇐⇒

∑j 6=n ∑k∈K

[
Pjn,k(Pi; w)Qjn,k(Pi; w)− Pnj,k(Pi; w)Qnj,k(Pi; w)

]
= 0 if n 6= i

∑j 6=n ∑K
k=1
[
Pji,k(Pi; w)Qjn,k(Pi; w)− P̃ij,kQnj,k(Pi; w)

]
= 0 if n = i

.

The system of F.O.C.’s underlying Problem (P̃2) can be expressed as follows:

∇P̃Wi(Pi; w) +∇wWi ·
(

dw
dP̃

)
(Pi ;w)∈FP

= 0, ∀P̃ ∈ Pi =
{

P̃ji, P̃ij
}

.

In what follows we characterize and simplify the system of F.O.C., building heavily on the results
presented in Appendix E.

Deriving the First-Order Condition w.r.t. P̃ji

Consider the consumer price index P̃ji,k ∈ Pi associated with a good imported by i from origin
j–industry k. The F.O.C. w.r.t. this price instrument can be stated as follows:

77Recall that vectors P̃ji ≡
{

P̃ji,k

}
j 6=i,k

and P̃ij ≡
{

P̃ij,k

}
j 6=i,k

encompass only the export and import prices associated with

economy i.
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(
dWi(Pi; w)

d ln P̃ji,k

)
P−ji,k

=
∂Vi(Yi, P̃i)

∂ ln P̃ji,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(Pi; w)

∂ ln P̃ji,k

)
w,P−ji,k

+

(
∂Wi(Pi; w)

∂w

)
Pi

·
(

dw
d ln P̃ji,k

)
P−ji,k

= 0,

(71)
where P−ji,k ≡ Pi −

{
P̃ji,k
}

denotes the vector of price instruments excluding P̃ji,k. The above equa-
tion is similar to what we characterized in Appendix E under restricted entry, with two distinctions:
First, country i’s government does not control the price of domestically produced and domestically
consumed varieties, i.e., P̃ii /∈ Pi. Second, country i’s income does not include domestic tax revenues:

Yi = (1 + µ̄i)wiLi +
(
P̃ij − Pij

)
·Qij +

(
P̃ji − Pji

)
·Qji.

Taking note of these two differences, we can build on the derivation in Appendix E to simplify Equa-
tion 71. By Roy’s identity, the first term on the right-hand side of Equation 71 can be stated as

∂Vi(Yi, P̃i)

∂ ln P̃ji,k
= −P̃ji,kQji,k

(
∂Vi

∂Yi

)
.

Without repeating the derivations, the second term on the right-hand side of Equation 71 reduces to(
∂Yi(Pi; w)

∂ ln P̃ji,k

)
w,P−ji,k

=P̃ji,kQji,k + ∑
g

∑
n 6=i

[(
P̃ni,g − (1 + ωni,g)Pni,g

)
Qni,gε

(ji,k)
ni,g

]

∑
g

[(
1− 1 + µ̄i

1 + µg

)
Pii,gQii,gε

(ji,k)
ii,g

]
+ ∆′i(Pi, w)

(
∂Yi(Pi; w)

∂ ln P̃ji,k

)
w,P−ji,k

where ∆′i(Pi; w) is a uniform term (without industry subscripts) and is given by

∆′i(Pi; w) ≡∑
g

∑
n 6=i

[(
P̃ni,g − (1 + ωni,g)Pni,g

)
Qni,gηni,g

]
+ ∑

g

[(
1− 1 + µ̄i

1 + µg

)
Pii,gQii,gηii,g

]
. (72)

To be clear, the above expressions can be derived by repeating the steps in Appendix E, while dropping
domestic tax revenues from the expression for income Yi. Likewise, the third term on the right-hand
side of Equation 71 can be stated as

(
∂Wi(.)

∂w

)
Pi

·
(

dw
d ln P̃ij,k

)
P−ij,k

= −∑
g

∑
n 6=i

[
(1 + ωni,g)τiPni,gQni,gε

(ji,k)
ni,g

]
−∑

g
∑
n 6=i

[
(1 + ωni,g)τ̄iPni,gQni,gηni,g

] (∂Yi(Pi; w)

∂ ln P̃ji,k

)
w,P−ji,k

,

where τ̄i is given by 83. Combining the above equations the F.O.C. specified by Equation 71 can be
simplified as

∑
n 6=i

∑
g

[(
P̃ni,g

Pni,g
− (1 + τ̄i)(1 + ωni,g)

)
Pni,gQni,gε

(ji,k)
ni,g

]

+ ∑
g

[(
1− 1 + µ̄i

1 + µg

)
Pii,gQii,gε

(ji,k)
ii,g

]
+ ∆̃′i(Pi, w)

(
∂Yi(Pi; w)

∂ ln P̃ji,k

)
w,P−ji,k

= 0, (73)

where ∆̃′i(Pi; w) is specified analogously to ∆′i(Pi, w), but features an adjustment for general equilib-
rium wage effects:

∆̃′i(Pi; w) ≡∑
g

∑
n 6=i

[(
P̃ni,g − (1 + τ̄i)(1 + ωni,g)Pni,g

)
Qni,gηni,g

]
+ ∑

g

[(
1− 1 + µ̄i

1 + µg

)
Pii,gQii,gηii,g

]
. (74)
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Deriving the First-Order Condition w.r.t. P̃ij

Now, consider the consumer price index P̃ij,k ∈ Pi associated with a good exported by i from
destination j–industry k. The F.O.C. w.r.t. this price instrument can be stated as follows:(

dWi(Pi; w)

d ln P̃ij,k

)
P−ij,k

=
∂Vi(Yi, P̃i)

∂ ln P̃ij,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

+

(
∂Wi(Pi; w)

∂w

)
Pi

·
(

dw
d ln P̃ij,k

)
P−ij,k

= 0.

(75)
where P−ij,k ≡ Pi −

{
P̃ij,k
}

denotes the vector of price instruments excluding P̃ij,k. As with the pre-
vious subsection, The above equation is similar to what we characterized in Appendix E, with two
distinctions: First, country i’s government does not control the price of domestically produced and
domestically consumed varieties, i.e., P̃ii /∈ Pi. Second, country i’s income does not include domestic
tax revenues. Noting these two distinctions, we can borrow from the derivation in Appendix E to
simplify Equation 75.

Namely, since P̃ij,k /∈ P̃i is not part of the domestic consumer price index in i, ∂Vi(Yi, P̃i)/∂ ln P̃ji,k =

0. So, the first term on the right-hand side of Equation 75 collapses to zero. Without repeating the
derivations from Appendix E, the second term on the right-hand side of Equation 75 reduces to(

∂Yi(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

=P̃ij,kQij,k + ∑
g

[(
P̃ij,g −

1 + µ̄i
1 + µg

Pij,g

)
Qij,gε

(ij,k)
ij,g

]
−∑

g
∑
n 6=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∆′i(Pi; w)

(
∂Yi(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

,

where ∆′i(Pi; w) is a uniform term without industry subscripts, as defined by Equation 72. To elab-
orate, the above expression can be derived by repeating the steps in Appendix E, while dropping
domestic tax revenues from the expression for income Yi. Likewise, the third term on the right-hand
side of Equation 75 can be stated as(

∂Wi(Pi; w)

∂w

)
Pi

·
(

dw
d ln P̃ij,k

)
P−ij,k

= τ̄i P̃ij,kQij,k + ∑
g

[
τ̄i P̃ij,gQij,gε

(ij,k)
ij,g

]

−∑
g

∑
n 6=i

[
τ̄iωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
−∑

g
∑
n 6=i

[
[1 + ωni,g]τ̄iPni,gQni,gηni,g

] (∂Yi(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

,

where τ̄i is given by 83. Combining the above equations the F.O.C. specified by Equation 75 can be
simplified as

P̃ij,kQij,k+ ∑
g∈K

[(
1− 1 + µi

(1 + τ̄i)(1 + µg)

Pij,g

P̃ij,g

)
P̃ij,gQij,gε

(ij,k)
ij,g

]

∑
g∈K

∑
n 6=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∆̃′i(Pi, w)

(
∂Yi(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

= 0, (76)

where ∆̃′i(Pi; w) is given by Equation 74.

Solving the System of First-Order Conditions

First, note that we can solve the system specified by Equation 73 independent of 76. To solve the
system of Equations 73, we can rely on the intermediate observation that if(

1− 1 + µi
1 + µ

)
� Pii �Qii · ε

(ji,k)
ii + ∑

n 6=i

[(
P̃ni − (1 + τ̄i)(1 + Ωni)� Pni

)
�Qni · ε

(ji,k)
ni

]
= 0, (77)
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then, to a first-order approximation around µk ≈ µ̄i, ∆̃′i(µ) ≈ 0. So, the optimal choice of P̃∗ji (and
the implied tariff vector) can be determined by solving Equation 77 instead of 73.78 Before moving
forward, though, let us clarify the vector notation used to express Equation 77. The vector operators
“·” and “�” are respectively the inner product and element-wise product operators. The K× 1 vector
1+µ̄i
1+µ =

[
1+µ̄i
1+µk

]
k

is composed of industry-level The K × 1 vectors P̃ni =
{

P̃ni,k
}

k and Qni = {Qni,k}k

encompass the consumer price and quantity associated with all of country i’s import goods for origin
n 6= i. Analogously, ε

(ji,k)
ni =

{
ε
(ji,k)
ni,g

}
g

encompasses the elasticity of demand for each the goods

imported from n w.r.t. the price of ji, k.
We simplify Equation 77 in three steps: First, by noting that P̃ii = Pii and appealing to Cournot’s

aggregation, ∑∈C

[
P̃i �Qi · ε

(ji,k)
i

]
= −P̃ji,kQji,k, we can rewrite Equation 77 as

1 + µi
1 + µ

� P̃ii �Qii · ε
(ji,k)
ii + (1 + τ̄i) ∑

n 6=i

[
(1 + Ωni)� Pni �Qni · ε

(ji,k)
ni

]
+ P̃ji,kQji,k = 0. (78)

Second, we invoke the Slutsky Equation,79 to rewrite the first two term in the above equation. Specifi-
cally, taking note that

ηii,g = ηji,k = 1 Slutsky Equation
−−−−−−−−−−−→

P̃ni,gQni,gε
(ji,k)
ni,g = P̃ji,kQji,kε

(ni,g)
ji,k .

We can reduces the F.O.C. described under Equation 78 to

1 + ∑
g

[
1 + µg

1 + µ̄i
ε
(ii,g)
ji,k

]
+ (1 + τ̄i)∑

g
∑
n 6=i

[
(1 + ωni,g)

Pni,g

P̃ni,g
ε
(ni,g)
ji,k

]
= 0. (79)

Lastly, we use the Marshallian demand function’s homogeneity of degree zero property, whereby ηji,k +

∑,g ε
(i,g)
ji,k = 1 + ∑,g ε

(i,g)
ji,k = 0. Invoking this property we rewrite Equation 79 as follows

∑
g

[(
1−

1 + µg

1 + µ̄i

)
ε
(ii,g)
ji,k

]
+ ∑

g
∑
n 6=i

[(
1− (1 + τ̄i)(1 + ωni,g)

Pni,g

P̃ni,g

)
ε
(ni,g)
ji,k

]
= 0.

The above equation, which should hold for all ji, k 6= ii, k specifies a system of FOCS that can be
expressed in matrix no notation as


ε
(ii,1)
1i,1 · · · ε

(ii,1)
Ni,K

...
. . .

...

ε
(ii,K)
1i,1 · · · ε

(ii,K)
Ni,K


︸ ︷︷ ︸

E(ii)
−ii


1− µ1

µ̄i
...

1− µK
µ̄i

+


ε
(1i,1)
1i,1 · · · ε

(1i,1)
i−1i,k ε

(1i,1)
i+1i,k · · · ε

(1i,1)
Ni,K

...
. . . . . .

...

ε
(Ni,K)
1i,1 · · · ε

(Ni,K)
i−1i,k ε

(Ni,K)
i+1i,k · · · ε

(Ni,K)
Ni,K


︸ ︷︷ ︸

E−ii


1− (1 + τ̄i)(1 + ωni,g)

P1i,1
P̃1i,1

...
1− (1 + τ̄i)(1 + ωni,g)

PNi,K
P̃Ni,K

 = 0.

(80)

Following the proof of Lemma 7 from Appendix E, we can easily show the matrix E(ii)
−ii is invertible.

We can, thus, invert the system specified by Equation 80 to produce the following formula for optimal

78Note that Equation 77 is essentially 73 with ∆̃′i(.) set to zero.
79Recalling that eji,k = P̃ji,kQji,k/Yi denotes the share of expenditure on ji, k, the Slutsky equation can be formally stated

as
[Slutsky equation] eii,gε

(ji,k)
ii,g + eji,keii,gηii,g = eji,kε

(ii,g)
ji,k + eii,geji,kηji,k.
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import price wedges: [
(1 + τ̄i)(1 + ωji,k)

Pji,k

P̃?
ji,k

]
j,k

= 1 + E−1
−ii E(ii)

−ii

[
1− 1 + µk

1 + µ̄i

]
k

, (81)

where, to be clear, E−ii ≡
[
E(ji)

ni

]
j,n 6=i

and Ẽ(ii)
−ii ≡

[
E(ii)

ni

]
n 6=i

are respectively (N − 1)K × (N − 1)K and

(N − 1)K × K matrixes of demand elasticities. Note that the optimal choice w.r.t. P̃ji, ensures that
∆̃′i(.) ≈ 0. Hence, the system of F.O.C. specified by Equation 76, transforms to the exact same system
we solved in Appendix E. Without repeating the details of our prior derivation, the optimal export
price wedges are given by[

Pij,k

P̃?
ij,k

(1 + τ̄i)
−1

]
j,k

= E−1
ij E(−ij)

ij

(
1(N−1)K + Ω−ii

)
, (82)

where 1(N−1)K is a N(K− 1)× 1 column vector of ones; Ω−ii =
[
Ωni,g

]
n 6=i,g is a N(K− 1)× 1 vector of

(inverse) export supply elasticities; and E(−ij)
ij and Eij have the same description as in Appendix E. The

“?” notation is used to highlight the fact that we are solving for second-best price wedges. Next, we
can recover the optimal (second-best) import tax and export subsidy rates from the optimal (second-
best) price wedges implies by Equations 81 and 82. Specifically, noting the following relationships,

1 + t?ji,k =
P̃?

ji,k

Pji,k
; 1 + x?ij,k =

Pij,k

P̃?
ij,k

;

country i’s unilaterally second-best trade tax schedule can be expressed as follows:

[import tariff] 1 + t?ij = (1 + τ̄i)
(
1 + Ωji

)
�
(

1 + E−1
−ii E(ii)

−ii

[
1− 1 + µk

1 + µi

]
k

)
[export subsidy] 1 + x?ij = −(1 + τ̄i)

(
E−1

ij E(−ij)
ij (1 + Ω−ii)

)
�
[

1 + µk

1 + µi

]
k

.

To conclude the proof we can invoke the multiplicity of the optimal trade tax schedules (Lemma
1). As in Theorem 1, this feature indicates that the value assigned to τ̄i is redundant. In particular,
following Lemma 1, we can multiply (1 + τ̄i) in the above equation with any non-negative tax shifter
1 + t̄i ∈ R+, and maintain optimality. That being the case, the exact value assigned to τ̄i is redundant
and the following describes all possible optimal tax schedules:aa

[import tariff] 1 + t?ij = (1 + t̄i)
(
1 + Ωji

)
�
(

1 + E−1
−ii E(ii)

−ii

[
1− 1 + µk

1 + µ̄i

]
k

)
[export subsidy] 1 + x?ij = −(1 + t̄i)

(
E−1

ij E(−ij)
ij (1 + Ω−ii)

)
�
[

1 + µk

1 + µi

]
k

.

G Proof of Theorem 3

Theorem 3 concerns the second-best case where the government in i can choose only P̃ji, which
is the vector of import prices (i.e., Pi =

{
P̃ji
}

). To prove this theorem we capitalize on two results
from Appendix F: First, the F.O.C. derived w.r.t. P̃ji,k ∈ P̃ji does not change with the unavailability
of P̃ij from the government’s policy set Pi. Hence, the F.O.C. w.r.t. P̃ji,k is described by Equation 73
even if P̃ij,k /∈ Pi. Second, recall from Appendix that we were able to solve the system specified by 73
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independent of the F.O.C. w.r.t. P̃ij. Invoking these two observations, the formula for optimal tariff in
the case studied by Theorem 3 is given by 81:

1 + t?ji = (1 + τ̄i)
(
1 + Ωji

)
�
(

1 + E−1
−ii E(ii)

−ii

[
1− 1 + µk

1 + µ̄i

]
k

)
.

Unlike Theorem 2, through, τ̄i is no longer redundant. Since export taxes (or equivalently P̃ij) are ex-
cluded from the government’s policy set, we can no longer invoke the multiplicity implied by Lemma
1. Instead, we have to formally characterize, τ̄i, starting from its definition:

τ̄i ≡

(
∂Wi(.)
∂ ln wi

)
Pi ,w−i

(
∂Vi(.)

∂Yi

)−1

(∂Ti(Pi, w)/∂ ln wi)Pi ,w−i

. (83)

Also, recall that Wi(Pi; w) = Vi(Yi(Pi; w), P̃ii, P̃ji), where P̃ji ∼ P̃−ii ≡
{

P̃ji,k
}

j 6=i,k while income equals

wage payments, plus profits, plus import tax revenues: Yi = (1+ µ̄i)wiLi +
(
P̃ji − Pji

)
·Qji. Borrowing

from the results in Appendixes E and F, the numerator in Equation 83 can be unpacked as follows:(
∂Wi(.)
∂ ln wi

)
Pi ,w−i

(
∂Vi
∂Yi

)−1
=

(
∂Yi

∂ ln wi

)
Pi ,w−i

+

(
∂Vi
∂Yi

)−1 ∂Vi(Yi,, P̃i)

∂ ln P̃ii
· ∂ ln P̃ii

∂ ln wi

= µ̄iwi Li +

(
∂µ̄i

∂ ln wi

)
Pi ,w−i

wi Li +
(
P̃−ii − P−ii

)
·
(

∂Q−ii
∂ ln wi

)
Pi ,w−i

− Pii ·Qii

= ∑
n 6=i

[Pin ·Qin] +

(
1− µ̄i

µ

)
� Pii ·

(
∂Qii

∂ ln wi

)
Pi ,w−i

+
(
P̃ii − P−ii

)
·
(

∂Q−ii
∂ ln wi

)
Pi ,w−i

. (84)

To be clear about the notation, µ̄i
µ ≡

[
µ̄i
µk

]
k

, while � and · respectively denote inner and element-wise
products of equal-sized vectors, i.e., a · b = ∑n anbn and a � b = [anbn]n. Next, we move on to

characterizing the denominator of Equation 83. Noting that T(Pi, w) ≡ ∑j 6=i

[
Pji ·Qji − Pij ·Qij

]
, we

can borrow from the results in Appendixes E and F to unpack the aforementioned term as follows:

(
∂Ti(.)
∂ ln wi

)
Pi ,w−i

=

 ∂

∂ ln wi
∑
j 6=i

[
Pji ·Qji − Pij ·Qij

]
Pi ,w−i

= P−ii ·
(

∂Q−ii
∂ ln wi

)
Pi ,w−i

−∑
j 6=i

[(
∂Pij ·Qij

∂ ln wi

)
Pi ,w−i

]
. (85)

Plugging Equations 84 and 85 back into the expression for τ̄i yields the following:

τ̄i =
∑n 6=i [Pin ·Qin] +

(
1− µ̄i

µ

)
� Pii ·

(
∂Qii

∂ ln wi

)
Pi ,w−i

+
(
P̃ii − P−ii

)
·
(

∂Q−ii
∂ ln wi

)
Pi ,w−i

P−ii

(
∂Q−ii
∂ ln wi

)
Pi ,w−i

−∑j 6=i

[(
∂Pij·Qij
∂ ln wi

)
Pi ,w−i

] . (86)

We can further simplify the above expression by invoking the F.O.C. described by Equation 78. This
equation indicates that the following relationship ought to hold at the optimum Pi = P∗i :

∑
j 6=i

∑
k

(1− µ̄i

µ

)
� Pii ·

(
∂Qii

∂ ln P̃ji,k

)
Pi ,w−i

+
(
P̃−ii − (1 + τ̄i)P−ii

)
·
(

∂Q−ii

∂ ln P̃ji,k

)
Pi ,w−i

 = 0.

Now, we will rearrange and simplify the above relationship in such a way that will help us simply
Equation 86. To this, we invoke the property that the Marshallain demand function is homogeneous
of degree zero. Combining this property with the fact that ∂ ln Yi

∂ ln wi
≈ ∂ ln P̃ii,k

∂ ln wi
= 1, we can simplify the
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above as follows:(
1− µ̄i

µ

)
� Pii ·

(
∂Qii

∂ ln wi

)
Pi ,w−i

+
(
P̃ii − (1 + τ̄i)P−ii

)
·
(

∂Q−ii

∂ ln wi

)
Pi ,w−i

= 0.

Using the above equation, we can cancel out the mirroring expressions in the numerator and denom-
inator of Equation 86. Doing so reduces and simplifies the expression for τ̄i to the following:

τ̄i =
−∑n 6=i (Pin ·Qin)

∑j 6=i

[(
∂Pij·Qij
∂ ln wi

)
Pi ,w−i

] =
−1

∑j 6=i
[
Xij ·

(
IK + Eij

)
1K
] . (87)

The K × 1 vector Xij =
[
χij,k

]
k is compose of export shares, which are defined as χij,k ≡

Pij,kQij,k

∑n 6=i Pin·Qin
.

To provide some intuition, the denominator of the above equation corresponds to the elasticity of
international demand for origin i’s labor. As such, τ̄i can be interpreted as country i’s optimal markup
on its wage rate in international (non-i) markets.

H Optimal Tax Formulas under IO Linkages

We first present a formal description of equilibrium under input-output (IO) linkages. We use the
C superscript to denote final consumption goods and the I superscript to denote intermediate inputs.
To given an example: QCji,k denotes the quantity of a “final” goods associated with origin j–destination
i–industry k, while QIji,k denotes the quantity of an “intermediate” goods associated with origin j–
destination i–industry k. Without loss of generality, we assume that good ji, k exhibits the same price
irrespective of whether it is used as a final good or an intermediate input good: P̃ji,k ∼ P̃Cji,k = P̃Iji,k.

On the production side, we impose no restrictions on how intermediate inputs are aggregated in
the production process. We, however, assume that the share of labor in production is constant and
equal to 1− ᾱi,k for each origin i–industry k. To track the demand for inputs, we use Yi,k to denote the
gross revenue associated with origin i–industry k. Correspondingly, ᾱi,kYi,k denotes origin i–industry k’s
total expenditure on intermediate inputs.

Marshallian Demand under IO Linkages

We suppose that overall demand for good ji, k, which is the sum of final good demand based on
utility maximization and input demand based on cost minimization, is given by the following demand
function

Qji,k = QIji,k + QCji,k = Dji,k(Ei, P̃i),

where Ei = Yi + ∑g ᾱi,gYi,g denotes market i’s total expenditure on final and intermediate input

goods. To make the notation consistent with our previous derivations, we use ε
(ni,g)
ji,k and ηji,k to de-

note the price and income elasticities associated with the IO-augmented Marshallian demand function
Dji,k(Ei, P̃i).

General Equilibrium

As in the baseline model, we express all equilibrium outcomes (expect for wages) as a function of
global taxes (x, t, and s), treating wages w ≡ {wi}i as given. This formulation derives from solving a
system that imposes all equilibrium conditions aside from the labor market clearing conditions. We
formally outline this formulation below.
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Notation. For a given vector of taxes and wages T = (t, x, s; w), equilibrium outcomes Yi(T), Yi,k(T), Pji,k(T),
P̃ji,k(T), Qji,k(T) are determined such that (i) producer prices are characterized by 13; (ii) consumer prices
are given by 7; (iii) Consumption and input demand choices are given by Dji,k(Ei, P̃i), where Ei = Yi +

∑g ᾱi,gYi,g; (iv) net income (which dictates total final good expenditure by country i) equals wage payments
plus tax revenues: Yi = wiLi +Ri,80 where Ri are described by 8 and (v) gross industry-level revenues are
given by Yi,g = ∑n Pin,kQin,k.

As in the baseline model, w is itself an equilibrium outcome. So, a vector T = (t, x, s; w) is feasible
insofar as w is the equilibrium wage, consistent with t, x, and s. So, to fix ideas we define the set of
feasible policy–wage vectors as follows.

Definition (D2-IO). The set of feasible policy–wage vectors, F, consists of any vector T = (t, x, s; w) where
w satisfies the labor market clearing condition in every country, given t, x, and s:

F =

{
T = (t, x, s; w) | wiLi = ∑

j
∑

k
Qzij,k(T)−∑

j
∑

k
PIji,k(T)Q

I
ji,k(T); ∀i ∈ C

}
.

Before moving on to the proof, two important details are in order: First, we can easily verify that
the labor market clearing condition specified by Definition D2-IO is equivalent to the balanced trade
condition. Second, under IO linkages, the choice w.r.t. taxes (or equivalently Pi ≡

{
P̃ii, P̃ji, P̃ij

}
) may

affect the entire vector of producer prices,
{

Pnj,k
}

, through its effect on input prices. To track these
IO-related effects, let α

j,g
i,k denotes the (possibly variable) cost share of intermediate inputs from origin

j× industry g used in the output of origin i× industry k. By Shepherd’s Lemma, the direct effect of
raising input price P̃Iji,g on the producer price Pij,k can be expressed as follows:

[Shepherd’s Lemma]

(
∂ ln Pij,k(Pi; w)

∂ ln P̃Iji,g

)
P−ji,g,w

= α
j,g
i,k . ∀(, j, i ∈ C); ∀(g, k ∈ K).

We use the Shepherd’s Lemma in combination with our dual approach (from Appendix E) to charac-
terize the optimal policy schedule for each country i. Recall that the optimal policy problem in our
dual approach is reformulated as

max
Pi

Wi(Pi; w) ≡ Vi(Yi(Pi; w), P̃i) s.t. (Pi; w) ∈ FP,

where Pi ≡
{

P̃ii, P̃ji, P̃ij
}

denotes the vector of consumer prices directly associated with economy
i. The feasible set FP defined analogously to F. Below, we derive and solve the system of F.O.C.
associated with the above problem, building heavily on the results introduced earlier under Appendix
E.

Step #1: Deriving the F.O.C. w.r.t. P̃ji,k and P̃ii,k ∈ Pi

First, we derive the F.O.C. w.r.t. to import variety ji, k, supplied by origin j–industry k. Given that
Wi = Vi(Yi(Pi; w), P̃Cii , P̃Cji), the F.O.C. w.r.t. P̃ji,k ∼ P̃Iji,k ∼ P̃Cji,k, holding P−ji,k ≡ Pi − {P̃ji,k} constant,
can be stated as(

∂Wi

∂ ln P̃ji,k

)
P−ji,k

=
∂Vi(Yi, P̃Ci )

∂ ln P̃ji,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(Pi; w)

∂ ln P̃ji,k

)
w,P−ji,k

+

(
∂Wi(Pi, w)

∂w

)
Pi

·
(

dw
d ln P̃ji,k

)
P−ji,k

= 0.

(88)
80Note that net profits are equal top zero (i.e., Πi = 0) as we are focusing on the case of free entry.
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The right-hand side of the above equation can be characterized similar to Appendix E, with two dis-
tinctions: First, total demand for good ji, k is the sum of consumption plus input demand: Qji,k =

QCji,k + QIji,k. So, we have to distinguish between welfare effects that channel through consumption
and those that channel through input demand. Second, we need to account for the effect of a change
in input price P̃ji,k ∼ P̃Iji,k on the producer prices associated with economy i. To this end, we can invoke
Shepherd’s Lemma, which implies that(

∂ ln Pij,k(Pi; w)

∂ ln P̃Iji,g

)
P−ji,g,w

= α
j,g
i,k . ∀, j, i ∈ C; g, k ∈ K.

Considering the above caveats, we can proceed as in Appendix E. By Roy’s identity, the first term on
the right-hand side of the F.O.C. (Equation 88) can be stated as

∂Vi(Yi, P̃Ci )
∂ ln P̃ji,k

= −P̃ji,kQCji,k

(
∂Vi

∂Yi

)
.

Next, consider the second term on the right-hand side of Equation 88, which accounts for income
effects. Recall that total income in country i equals the sum of wage payments plus import, production
and export tax revenues:

Yi(Pi; w) = wiLi + ∑
n 6=i

[(
P̃ni − Pni

)
·Qni

]
+
(
P̃ii − Pii

)
·Qii + ∑

n 6=i

[(
P̃in − Pin

)
·Qin

]
.

The effect of P̃ji,k on import tax revenues can be derived and express exactly as in Appendix E:(
∂ ∑n 6=i

[(
P̃ni − Pni

)
·Qni

]
∂ ln P̃ji,k

)
w,P−ji,k

= P̃ji,kQji,k +∑
g

∑
n 6=i

(P̃ni,g − [1 + ωni,g]Pni,g
)

Qni,g

(
∂ ln Qni,g

∂ ln P̃ji,k

)
w,P−ji,k


(89)

The logic is that holding the vector of wages w and country i’s export prices P̃ij ∈ Pi fixed, a change
in P̃ji,k has not effect on the producer price of imports Pji through the input-output network.

The effect of a change in P̃ji,k on country i’s production and export tax revenues can be formulated
as(
∂

∂ ln P̃ji,k

{(
P̃ii − Pii

)
·Qii,g + ∑

n 6=i

[(
P̃in − Pin

)
·Qin

]})
w,P−ji,k

=∑
g

(P̃ii,g − Pii,g
)

Qii,g

(
∂ ln Qii,g

∂ ln P̃ji,k

)
w,P−ji,k

+ ∑
g

∑
n

Pin,gQin,g

( ∂Pin,g

∂ ln Qii,g

)
w,Pi

(
∂ ln Qii,g

∂ ln P̃ji,k

)
w,P−ji,k

+

(
∂ ln Pin,g

∂ ln P̃Iji,k

)
w,P−ji,k

 ,

(90)

The above expression differs from Equation 91 (in Appendix E) in the last term on the second line.
This term accounts for the effect of raising input price P̃ji,k ∼ P̃Iji,k on the producer prices associated
with economy i. As explained above, we can appeal to Shephard’s lemma to simplify this extra term
as

∑
g∈K

∑
n∈C

Pin,gQin,g

(
∂ ln Pin,g

∂ ln P̃Iji,k

)
P−ji,g,w

 = − ∑
g∈K

∑
n∈C

(
Qin,gPin,gα

j,k
i,g

)
= −P̃ji,kQIji,k.

Plugging the above expression back into Equation 90 and redoing the derivations covered in Ap-
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pendix E, yields the following expression for the effect of P̃ji,k on country i’s production and export tax
revenues:(

∂

∂ ln P̃ji,k

{
∑
n

[(
P̃in − Pin

)
·Qin

]})
w,P−ji,k

= −P̃ji,kQIji,k +∑
g

(P̃ii,g −
[

1−
µg

1 + µg

])
Pii,gQii,g

(
∂ ln Qii,g

∂ ln P̃ji,k

)
w,P−ji,k

 .

(91)

where recall that
(
∂ ln Qii,g/∂ ln P̃ji,k

)
w,P−ji,k

encompasses price and income effects à la Equation 27 in

Appendix E. Combining Equations 89 and 91, and noting that P̃ji,kQji,k− P̃ji,kQIji,k = P̃ji,kQCji,k yields the
following expression that summarizes all the revenue-related welfare effects in the F.O.C.:(

∂Yi(Pi; w)

∂ ln P̃ji,k

)
w,P−ji,k

= P̃ji,kQCji,k + ∑
g

∑
n 6=i

[(
P̃ni,g − [1 + ωni,g]Pni,g

)
Qni,gε

(ji,k)
ni,g

]

+ ∑
g

[(
P̃ii,g −

1
1 + µg

Pii,g

)
Qii,gε

(ji,k)
ii,g

]
+ ∆i(Pi, w)

(
∂Ei(Pi; w)

∂ ln P̃ji,k

)
w,P−ji,k

. (92)

The uniform term ∆i(.) accounts for circular income effects and is given by Equation 35 in Appendix
E. Finally, the last term on the right-hand side of Equation 88, which accounts for general equilibrium
wage effects, can be specified in the same exact way as in Appendix E:(

∂Wi(Pi, w)

∂w

)
Pi

·
(

dw
d ln P̃ji,k

)
P−ji,k

= −τi ∑
g

∑
n 6=i

Pni,gQni,g

(
∂ ln Qii,g

∂ ln P̃ji,k

)
w,P−ji,k

 ,

where τ̄i is given by Equation 37 in Appendix E. Combining the above expressions, the F.O.C. specified
by Equation 88 reduced to

[FOC w.r.t. P̃ji,k] ∑
n 6=i

∑
g

[(
P̃ni,g

Pni,g
− (1 + τ̄i)(1 + ωni,g)

)
Pni,gQni,gε

(ji,k)
ni,g

]

+ ∑
g

[(
P̃ii,g

Pii,g
− 1

1 + µg

)
Pii,gQii,gε

(ji,k)
ii,g

]
+ ∆̃i(Pi, w)

(
∂Ei(Pi; w)

∂ ln P̃ji,k

)
w,P−ji,k

= 0,

(93)

where ∆̃i(.) is given by Equation 40 in Appendix E. Note that the above equation has an identical rep-
resentation to the F.O.C. in the baseline model. The intuition is that holding country i’s export prices
P̃ij ∈ Pi fixed, the choice w.r.t. P̃ji,k has no first-order effect on country i’s terms-of-trade channels
through the input-output network. If good ji, k is used as an input in export good in, g, any possible
terms-of-trade gains from taxing P̃ji,k will be internalized by the optimal choice w.r.t. P̃in,g. Further-
more, it is easy to check that Equation 93 characterizes the F.O.C. w.r.t. P̃ii,k ∈ Pi as long as we replace
ji, k with ii, k everywhere in that equation. Finally, as in Appendix E, we do not unpack the uniform
term τ̄i because the multiplicity of country i’s optimal tax schedule will render the exact value assigned
to τ̄i redundant.
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Step #2: Deriving the W.O.C. w.r.t. P∗ij,k
Consider export variety ij, k, which is sold to destination j 6= i in industry k. Noting that Wi =

Vi(Yi(Pi; w), P̃Cii , P̃Cji), the F.O.C. w.r.t. P̃ij,k, holding P−ij,k ≡ Pi − {P̃ij,k} constant, can be stated as(
∂Wi

∂ ln P̃ij,k

)
P−ij,k

=
∂Vi(Yi, P̃i)

∂ ln P̃ij,k
+

∂Vi(Yi, P̃i)

∂Yi

(
∂Yi(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

+

(
∂Wi(Pi, w)

∂w

)
Pi

·
(

dw
d ln P̃ij,k

)
P−ij,k

= 0.

(94)

The first term as before accounts for direct price effects. This term is trivially equal to zero since
P̃ij,k /∈ P̃i. That is, since ij, k is not part of the domestic consumption bundle, raising its price has no
direct effect on consumer surplus in country i:

P̃ij,k /∈ P̃i =⇒ ∂Vi(Yi, P̃i)

∂ ln P̃ij,k
= 0. (95)

The second term in Equation 94 accounts for welfare effects that channel through tax revenues. Specif-
ically, Holding wages w fixed, the change in country i’s income amounts to the change in import,
domestic, and export tax revenues. The effect on import tax revenues can be expressed as follows:

(
∂ ∑n 6=i

[(
P̃ni − Pni

)
·Qni

]
∂ ln P̃ij,k

)
w,P−ij,k

= ∑
g

∑
n 6=i

(P̃ni,g − Pni,g
)

Qni,g

(
∂ ln Qni,g

∂ ln P̃ij,k

)
w,P−ij,k


−∑

g
∑
n 6=i

Pni,gQni,g

( ∂Pni,g

∂ ln Qnj,g

)
w,Pi

(
∂ ln Qnj,g

∂ ln P̃ij,k

)
w,P−ij,k

+

(
∂ ln Pni,g

∂ ln P̃Iij,k

)
w,P−ij,k

 .

(96)

The above equation differs from Equation 45 in Appendix E in only the last term on the second line.
This term accounts for that fact that raising the price of input good ij, k can affect the entire vector of
producer prices in the rest of the world through input-output networks. Given Shephard’s lemma we
can simplify this term by noting that

Λij,k ≡ ∑
n 6=i

∑
g∈K

Pni,gQni,g

(
∂Pni,g

∂P̃Iij,k

)
w,P−ij,k

 /P̃ij,kQij,k

denotes the share of the export value associated with good ij, k that is reimported back into economy
i. Plugging the above expression back into 96 and repeating the derivation performed in Appendix E,
yields the following:(

∂ ∑n 6=i
[(

P̃ni − Pni
)
·Qni

]
∂ ln P̃ij,k

)
w,P−ij,k

=−Λij,kP̃ij,kQij,k −∑
g

∑
n 6=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]

+ ∑
g

∑
n 6=i

[(
P̃ni,g − [1 + ωni,g]Pni,g

)
Qni,gηni,g

] ( ∂ ln Ei

∂ ln P̃ij,k

)
w,P−ij,k

.

(97)
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Repeating the derivation in Appendix E, the effect of a change in P̃ij,k on country i’s production and
export tax revenues can be formulated as(

∂

∂ ln P̃ij,k
∑
n

[(
P̃in − Pin

)
·Qin

])
w,P−ij,k

= P̃ij,kQij,k + ∑
g

[(
P̃ij,g − [1−

µg

1 + µg
]Pij,g

)
Qij,gε

(ij,k)
ij,g

]

+ ∑
g

[(
P̃ii,g −

1
1 + µg

Pii,g

)
Qii,gηii,g

](
∂ ln Ei

∂ ln P̃ij,k

)
w,P−ij,k

.

(98)

To be clear, holding P̃ji,k ∈ Pi fixed, a change in P̃ij,k has no effect on the input price faced by firm

located in i. That is,
(

∂Pni,g/∂P̃Iij,k
)

w,P−ij,k
= 0. This point explains why the above expression is rather

identical to that derived in Appendix E. Combining Equations 97 and 94, we can express the sum of
all tax-revenue-related terms as(

∂Yi(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

=
(
1−Λij,k

)
P̃ij,kQij,k+∑

g

[(
P̃ij,g − [1−

µg

1 + µg
]Pij,g

)
Qij,gε

(ij,k)
ij,g

]

−∑
g

∑
n 6=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∆i(Pi, w)

(
∂Ei(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

,

(99)

where ∆i(.) encompasses the terms accounting for circular income effects and is given by Equation
35. Taking note of the already-discussed distinctions between the present and baseline models and
repeating the derivations performed earlier in Appendix E, the last term in right-hand side of Equation
94) can be formulated as

(
∂Wi(.)

∂w

)
Pi

·
(

dw
d ln P̃ij,k

)
P−ij,k

= τ̄i(1−Λij,k)P̃ij,kQij,k + ∑
g

[
τ̄i P̃ij,gQij,gε

(ij,k)
ij,g

]

−∑
g

∑
n 6=i

[
τ̄iωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
−∑

g
∑
n 6=i

[
[1 + ωni,g]τ̄iPni,gQni,gηni,g

] (∂Ei(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

. (100)

Finally, plugging Equations 95, 99, and 100 back into the F.O.C. (Equation 94); and dividing by (1+ τ̄i)

yields the following optimality condition w.r.t. to price instrument P̃ij,k:

[FOC w.r.t. P̃ij,k] (1−Λij,k)P̃ij,kQij,k+∑
g

[(
1− 1

(1 + τ̄i)(1 + µg)

Pij,g

P̃ij,g

)
P̃ij,gQij,gε

(ij,k)
ij,g

]

−∑
g

∑
n 6=i

[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
+ ∆̃i(Pi, w)

(
∂Ei(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

= 0,

(101)

where ∆̃i(.) is defined as in Equation 40. Also, we are not unpacking the term τ̄i, for the same reasons
discussed earlier.

Step #3: Solving the System of F.O.C.s and Establishing Uniqueness

To determine the optimal tax schedule we need to collect the system of first order conditions and
simultaneously solve them under one system. For the ease of reference, we will restate the F.O.C. w.r.t.
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to each element of Pi below. Following Equation 93, the F.O.C. w.r.t. P̃`i,k (where ` = i or ` = j 6= i),
can be expressed as

(1) ∑
n 6=i

∑
g

[(
1− (1 + τ̄i)(1 + ωni,g)

Pni,g

P̃ni,g

)
eni,gε

(`i,k)
ni,g

]
+

∑
g

[(
1− 1

1 + µg

Pii,g

P̃ii,g

)
eii,gε

(`i,k)
ii,g

]
+∆̃i(Pi, w)

(
∂ ln Ei(Pi; w)

∂ ln P̃`i,k

)
w,P−`i,k

= 0.

where eni,g = P̃ni,gQni,g/Yi denotes the expenditure share on good ni, g. Following Equation 101, the
F.O.C. w.r.t. export price P̃ij,k is given by

(2) 1−Λij,k + ∑
g

[(
1− 1

(1 + µg)(1 + τ̄i)

Pij,g

P̃ij,g

)
eij,g

eij,k
ε
(ij,k)
ij,g

]

−∑
n 6=i

∑
g

[
ωni,g

enj,g

eij,k
ε
(ij,k)
nj,g

]
+∆̃i(Pi, w)

Ei

Ej

(
∂ ln Ei(Pi; w)

∂ ln P̃ij,k

)
w,P−ij,k

= 0.

First, note that the system of F.O.C.s (1) Appealing to above lemma, it immediately follows that the
unique solution to the above equation is the trivial solution given by:

P̃∗ji,k
Pji,1

= (1 + ωji,k)(1 + τ̄i);
P̃∗ii,k
Pii,k

=
1

1 + µg
. (102)

With the aid of the above result, we can proceed to solving System (2), knowing that ∆̃i(P
∗
i , w) = 0.

To this end, let us economize on the notation by defining

χij,k ≡
1

(1 + µg)(1 + τ̄i)

Pij,g

P̃ij,g
.

Appealing to this choice of notation the F.O.C. specified by System (2) implies the following optimality
condition:

1−Λij,k + ∑
g

(1− χij,g
) eij,gε

(ij,k)
ij,g

eij,k

−∑
n 6=i

∑
g

ωni,g
enj,gε

(ij,k)
nj,g

eij,k

 = 0. (103)

To simplify the above expression we will use a well-know result from consumer theory, namely, the
Cournot aggregation, which implies:

[Cournot aggregation] 1 + ∑
g

[
eij,g

eij,k
ε
(ij,k)
ij,g

]
= −∑

n 6=i
∑
g

[
enj,g

eij,k
ε
(ij,k)
nj,g

]
.

Combining the above expression with Equation 103 and noting that by Slutsky’s equation enj,g
eij,k

ε
(ij,k)
nj,g =

ε
(nj,g)
ij,k (if ηni,g = 1 for all ni, g), yields the following:

−∑
g

[
χij,gε

(ij,g)
ij,k

]
−∑

n 6=i
∑
g

[
(1 + ωni,g)ε

(nj,g)
ij,k

]
= 0 ∀(ij, k).

We can formulate the above equation in matrix algebra as

− EijXij − E(−ij)
ij

(
1(N−1)K + Ωi

)
−Λij = 0, (104)
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where Xij ≡
[
χij,k

]
k and Λij ≡

[
Λij,k

]
k are K× 1 vectors. The K×K matrix Eij ∼ E(ij)

ij ≡
[
ε
(ij,g)
ij,k

]
encom-

passes the own- and cross-price elasticities between the different varieties sold by origin i to market
j. Analogously, E(−ij)

ij ≡
[
ε
(nj,g)
ij,k

]
k,n 6=i,g

is a K × (N − 1)K matrix of cross-price elasticities between va-

rieties sold by i and by all other origin countries in market j. Ωi ≡
[
ωni,g

]
n,g is a (N − 1)K× 1 vector

of inverse export supply elasticities associated with domestic market i. To invert the system specified
by Equation 104 we can use our result (from Appendix E) that Eij is non-singular, which yields the

following formulation for X∗ij =
[
χ∗ij,k

]
k
:

X∗ij = −E−1
ij

[
E(−ij)

ij

(
1(N−1)K + Ωi

)
+ Λij

]
. (105)

Now, we can recover the optimal tax/subsidy rates from the optimal price wedges implies by Equa-
tions 102 and 105. Specifically, noting that

1 + t∗ji,k =
P̃ji,k

Pji,k
; 1 + s∗i,k =

P̃∗ii,k
Pii,k

; 1 + xij,k =
P̃∗ij,k/Pij,k

P̃∗ii,k/Pii,k
;

country i’s unilaterally optimal tax schedule can be expressed as follows:

[domestic subsidy] 1 + s∗i,k = 1 + µk

[import tariff] 1 + t∗ji,k = (1 + ωji,k)(1 + τ̄i)

[export subsidy] 1 + x∗ij = −E−1
ij

[
E(−ij)

ij (1 + Ωi) + Λij

]
(1 + τ̄i).

The last step, is to invoke the multiplicity of optimal tax schedules. Given the multiplicity of optimal
import tax and export subsidies, the term τ̄i becomes redundant. Following Lemma 1, any schedule
that satisfies 1 + t∗ji,k = (1 + ωji,k)(1 + τ̄i)(1 + t̄i), where 1 + t̄i ∈ R+, is also optimal. As such the exact
value assigned to τ̄i is redundant. This explains why we did not unpack the term τ̄i in Step #3. There
is also another dimension of multiplicity whereby any uniform shift in production subsidies (paired
with a proportional adjustment to wage) preserves the equilibrium. Considering these arguments, the
optimal policy schedule (accounting for all the dimensions of multiplicity) is given by:

[domestic subsidy] 1 + s∗i,k = (1 + µk)(1 + s̄i)

[import tariff] 1 + t∗ji,k = (1 + ωji,k)(1 + t̄i)

[export subsidy] 1 + x∗ij = −E−1
ij

(
E(−ij)

ij (1 + t∗i ) + Λij(1 + t̄i)
)

,

where 1 + s̄i = 1 + t̄i ∈ R+ are arbitrary tax shifters.

Data Appendix

I Cleaning the data on the identity/name of exporting firms

Utilizing the information on the identity of the foreign exporting firm is a critical part of our em-
pirical exercise. Unfortunately, the names of the exporting firms in our dataset are not standardized.
As a result, there are instances when the same firm is recorded differently due to using or not using the
abbreviations, capital and lower-case letters, spaces, dots, other special characters, etc. To standardize
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Table 5: Summary Statistics of the Colombian Import Data.

Year

Statistic 2007 2008 2009 2010 2011 2012 2013

F.O.B. value (billion dollars) 30.77 37.26 31.39 38.41 52.00 55.79 56.92
C.I.F. value
F.O.B. value 1.08 1.07 1.05 1.06 1.05 1.05 1.05
C.I.F. + tax value

F.O.B. value 1.28 1.21 1.14 1.19 1.15 1.18 1.15

No. of exporting countries 210 219 213 216 213 221 224

No. of imported varieties 483,286 480,363 457,000 509,524 594,918 633,008 649,561

Notes: Tax value includes import tariff and value-added tax (VAT). The number of varieties corresponds to the number of
country-firm-product combination imported by Colombia in a given year.

the names of the exporting firms, we used the following procedure.81

1. We deleted all observations with the missing exporting names and/or zero trade values.
2. We capitalized firms names and their contact information (which is either email or phone num-

ber of the firm).
3. We eliminated abbreviation “LLC,” spaces, parentheses, and other special characters (. , ; / @ ‘ }

- & “) from the firms names.
4. We eliminated all characters specified in 3. above and a few others (# : FAX) from the contact

information.
5. We dropped observations without contact information (such as, "NOTIENE", "NOREPORTA",

"NOREGISTRA," etc.), with non-existent phone numbers (e.g., “0000000000”, “1234567890”, “1”),
and with six phone numbers which are used for multiple firms with different names (3218151311,
3218151297, 6676266, 44443866, 3058712865, 3055935515).

6. Next, we kept only up to first 12 characters in the firm’s name and up to first 12 characters in
the firm’s contact information (which is either email or phone number). In our empirics, we treat all
transaction with the same updated name and contact information as coming from the same firm.

7. We also analyzed all observations with the same contact information, but slightly different
name spelling. We only focused on the cases in which there are up to three different variants of the
firm name. For these cases, we calculated the Levenshtein distance in the names, which is the smallest
number of edits required to match one name to another. We treat all export observations as coming
from the same firm if the contact phone number (or email) is the same and the Levenshtein distance is
four or less.

J Illustrative Example for our Instrumental Variable

This section presents an example that highlights the workings of the shift-share instrument con-
structed in 6. The example corresponds to U.S. exports in product category HS8431490000 (PARTS

AND ATTACHMENTS OTHER FOR DERRIKS ETC.)—a product category that features one of the most
frequently imported varieties: machine parts from “CATERPILLAR.” The left panel of Figure 3 displays
how both the exchange rate and the average import tax rate paid by U.S. based firms varied consid-

81The corresponding Stata code is in the cleanFirmsNames.do.
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Figure 3: Monthly variations in national exchange rate, firm-specific exports, and import tax within a selected
product-country-year category.
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Notes: The left panel plots monthly variations in exchange rate and (value-weighted) average import tax for US-based firms
within product category HS8431490000-year 2009. The right panel plots monthly movements in export sales for the two
biggest US firms in product HS8431490000 in year 2009— namely, Caterpillar and Machinery Corp. of America.

erably on a monthly basis in 2009. The right panel plots the monthly variation in the export sales of
the two largest U.S. based firms within category HS8431490000 (namely, “CATERPILLAR” and “MA-
CHINERY CORP. OF AMERICA”). Given that the monthly composition of exports from “CATERPILLAR”
and “MACHINERY CORP. OF AMERICA” are markedly different, the two firms are affected differently
by aggregate movements in the monthly exchange rate.

K Robustness Checks: Import Demand Estimation

This appendix reports three robustness checks that we described in Section 6. The first check
addresses the possibility that firms set prices in forward-looking manner. To restate the issue, when
there are lags in inventory clearances, firms’ optimal pricing decisions may be forward-looking. If
true, such price-setting behaviors can violate assumption (a1). To address this concern, we reconstruct
our shift-share instrument using 4 lags instead of 1. If inventories clear in at most 4 years, we can
deduce that pricing decisions do not internalize expected demand shocks beyond the 4 year mark. As
a result, Corr

[
p̃jkt−4(ω, m), ∆ϕωjkt

]
= 0, and this more-stringent instrument will satisfy the exclusion

restriction. The top panel in Figure 4 compares the estimated σk and µk under the new and baseline
estimations. Evidently, the ordering and magnitude of the estimated elasticities is rather preserved
across industries. More importantly, the new estimation retains the negative correlation between σk

and µk, which is the key assumption in Proposition 1.
The second check addresses the possibility that, in the presence of cross-inventory effects, ∆ϕωjkt

may encompass omitted variables that concern firms’ dynamic inventory management decisions.
These decisions internalize exchange rate movements, which may violate the identifying assump-
tion (a2), i.e., Corr

[
∆Ejt(m), ∆ϕωjkt

]
6= 0. To address this concern, we reestimate the firm-level import

demand function while directly controlling for changes on the annual exchange rate. In that case,
E
[
zjk,t(ω) ∆ϕωjkt | ∆Ejt

]
, and the exclusion restriction will be satisfied insofar as dynamic demand

optimization is a concern. The middle panel in Figure 4 compares the estimated σk and µkunder the
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new and baseline estimations. Evidently, the ordering and magnitude of the estimated elasticities is
rather preserved across industries. More importantly, the new estimation retains the negative correla-
tion between σk and µk, which is the key assumption in Proposition 1.

The third check addresses large multi-product firms that export multiple product varieties to
Colombia in a given year. Suppose a multi-product firm ω exports many products including products
k and g to Colombia in year t. If demand shock are correlated across the varieties supplied by this firm
(i.e., E

[
∆ϕωjkt ∆ϕωjgt

]
6= 0), Assumption (a2) may be violated despite each variety’s market share be-

ing infinitesimally small. To address this issue, we reestimate the firm-level import demand function
on a restricted sample that drops excessively large firms with a within-national market share that ex-
ceeds 0.1%. The bottom panel in Figure 4 compares the estimated σk and µkunder the new and baseline
estimations. Evidently, the ordering and magnitude of the estimated elasticities is rather preserved
across industries. More importantly, the new estimation retains the negative correlation between σk

and µk, which is the key assumption in Proposition 1.

L Estimating the Import Demand Function in Levels

Our preferred estimates for µk and σk are obtained by estimating a firm-level import demand func-
tion in first-differences—see Section 6. The first-difference approach for estimating elasticities in this
context can be traced back to the seminal work of Feenstra (1994) and Broda and Weinstein (2006)—
although both studies rely on country-level rather than firm-level data. Another body of literature
estimates the trade elasticity by fitting a country-level import demand function in log-levels, while
controlling for appropriate fixed effects (e.g., Hummels, Lugovskyy, and Skiba (2009); Caliendo and
Parro; Shapiro (2016)).

Recently, Boehm et al. (2020) have outlined the advantages and disadvantages of each approach:
On the one hand, the first-difference approach performs better at handling the identification challenge
poised by endogenous policy choices and omitted variable bias. On the other hand, the first difference
estimator—at least when applied to country-level data—may not necessarily identify the long-run
elasticity, which is the desired target for static trade models.

These issues pose a lesser problem for our firm-level estimation. We articulate this claim in two
steps. First, we detail the long- versus short-run dilemma identified by Boehm et al. (2020), and explain
why the same dilemma does not necessarily plague our firm-level estimation. Second, we establish
our claim empirically by re-estimating our firm-level import demand function in levels. This exer-
cise encouragingly confirms that our estimation in levels yields very similar results to our baseline
estimation in differences.

The dilemma facing country-level estimations. Country level trade flows—which are traditionally
used to estimate the trade elasticity—can be decomposed as follows:

X̃ji,k = Nji,k p̃ji,kqji,k

where X̃ji,k denotes gross sales corresponding to origin j–destination i–industry k; p̃ji,kqji,k denotes aver-
age sales per firm (i.e., the intensive margin) and Nji,k denotes the total mass of firms associated with
transaction ji, k (i.e., the extensive margin). Accordingly, the long-run trade elasticity is composed of
an extensive and an intensive margin component:
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Figure 4: Robustness checks to address challenges to the identification of σk and µk
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trade elasticity ∼
∂ ln X̃ji,k

∂ ln(1 + tji,k)
=

∂ ln Nji,k

∂ ln(1 + tji,k)︸ ︷︷ ︸
εn

+
∂ ln p̃ji,kqji

∂ ln(1 + tji,k)︸ ︷︷ ︸
εx

.

The issue raised by Boehm et al. (2020) concerns the fact that researchers do not separately observe
Nji,k and p̃ji,kqji,k in country-level datasets. A standard solution to this limitation is to assume away
firm-selection (i.e., set Nji,k = Nj,k). Under this assumption, one can recover the trade elasticity by
estimating an import demand function that controls for Nj,k with origin-industry fixed effects. Crudely
speaking, this solution is analogous to omitting the extensive margin component, i.e., setting εn = 0.

In practice, however, Nji,k may feature a bilateral element that accounts for firm-selection and
which varies with the bilateral tariff rate—even after we control for a full set of origin and destination
fixed effects. As noted above, traditional techniques that estimate the import demand function in levels
with origin/destination fixed effects, are unable to account for the bilateral nature of Nji,k. As such,
traditional log-level estimators often suffer from an omitted variable bias.

Boehm et al. (2020) argue that we can overcome the omitted variable bias by estimating the country-
level import demand function in differences rather than levels. Under this approach, however, one
must employ long differences (over a sufficiently long time horizon) to credibly estimate the extensive
margin component, εn. Nonetheless, the long-difference estimator may still fall short if tariff changes
occur unevenly over the time-differencing horizon. In such cases, a correction must be applied to the
estimated trade elasticity to account for lumpy longitudinal tariff changes.

Importantly, these limitations do not plague our firm-level estimation. We directly observe firm-
level sales and need not to infer changes in Nji,k from changes in country level trade flows. Our data
explicitly encompasses information on Nji,k and our identification strategy relies on the cross-sectional
variation in firm-level variables within importer–HS10 product–year cells. With this level of disaggre-
gation, our estimation is closer in spirit to the Industrial Organization literature on markup estimation.
This literature routinely uses first difference estimators to recover markups (see, for example, equa-
tions 17-19 and related discussion in De Loecker and Warzynski (2012)). These markups estimates
have been routinely used to discipline steady state models in the Macroeconomics literature (e.g.,
Baqaee and Farhi (2020)).

Re-estimating our firm-level import demand function in levels. Above, we presented a concep-
tual argument that (compared to traditional country-level estimations) firm-level estimations should
yield relatively similar results whether the import demand is estimated in levels or in first differences—
provided that appropriate instruments are employed to adequately handle reverse causality. To il-
lustrate the same point empirically, we re-estimate our firm-level import demand function in levels
with two-ways fixed effects. We then compare the two-ways-fixed-effects estimates for µk and σk with our
baseline estimates. The estimating equation in log-levels can be expressed as follows:

ln x̃j,kt(ω) = (1− σk) ln p̃j,kt (ω)+ [1− µk(σk − 1)] ln λj,kt (ω) + δkt︸︷︷︸
HS10-year FE

+ ϕjk(ω)︸ ︷︷ ︸
HS10-firm FE

+ ϕωjkt. (106)

Recall that x̃ ≡ p̃q denotes gross firm-level sales value; p̃ denotes the consumer price which includes
taxes and tariffs; λj,kt(ω) denotes the within-origin j×product k expenditure share on firm-level variety
ω; δkt accounts for product–year fixed effects, while ϕjk(ω) accounts for product-firm-origin fixed
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effects. The above equation differs from our baseline estimating equation in that the firm-product
fixed effect, ϕjk(ω), is not differenced out. Instead the equation is estimated in levels.

As in the baseline case, we estimate the Equation (106) using a 2SLS estimator. To this end, we mod-
ify our original shift-share instrument to make it consistent with the fixed-effects estimation, which is
conducted in levels. The new instrument is calculated as follows

źj,kt(ω) =
12

∑
m=1

x̃j,kt−1(ω; m)

x̃j,kt−1(ω)
Ejt(m)

where x̃j,kt−1(ω; m)/x̃j,kt−1(ω) denotes the lagged share of Month m sales in firm ω’s total annual
export sales. Ejt(m), as before, denotes the exchange rate (between Origin j’s currency and the Colom-
bian Peso) in Month m of the current year. The other instrumental variables are adjusted accordingly,
to be consistent with our estimation that is conducted in levels rather than in differences.

The estimation results are reported in Table 6. The estimated values for σk and µk are encourag-
ingly similar to the baseline (first-differences) estimates. Most importantly, the new estimation quasi-
maintains the ranking of industries in terms of the underlying degree of national-level market power
(σk) and firm-level market power. Later, in Appendix P, we recalculate the gains from optimal policy
using the newly-estimated µk’s and σk’s. Encouragingly, the implied gains are starkly similar to those
implied by our baseline estimates.

M Examining the Plausibility of Estimates

In this Appendix we examine the plausibility of our estimated parameters from a different angle.
We show that when our estimated parameters are plugged into a workhorse trade model, they resolve
the income-size elasticity puzzle. This puzzle, as noted by Ramondo et al. (2016), concerns the fact that
a large class of quantitative trade models—including Krugman (1980), Eaton and Kortum (2001), and
Melitz (2003)—predict a counterfactually high income-size elasticity (i.e., the elasticity at which real
per capita income increases with population size). One straightforward remedy for this counterfac-
tual prediction is introducing domestic trade frictions into the aforementioned models. This treatment,
however, is only a partial remedy. As shown by Ramondo et al. (2016), even after controlling for di-
rect measures of internal trade frictions, the predicted income-size elasticity remains counterfactually
strong.

To test macro-level predictions, we first produce economically-representative estimates for σk and
µk. We do so by pooling data across all manufacturing and non-manufacturing industries and esti-
mating Equation 17 on theses two pooled samples.The estimation results are reported in Table 7, and
imply that σ− 1 ≈ 3.6 and σ−1

γ−1 ≈ 0.66 across manufacturing industries. For the sake of comparison,
the same table also reports estimates produced using the standard OLS estimator.

To understand the income-size elasticity puzzle, consider a single-industry version of the model
presented in Section 2. Such a model implies the following expression relating country i’s real income
per worker or TFP (Wi = wi/Pi) to its structural efficiency, Ai, population size, Li, trade-to-GDP ratio,
λii, and a measure of internal trade frictions, τii:

Wi = γ Ai Lµ
i λ
− 1

σ−1
ii τ−1

ii . (107)

The standard Krugman model assumes extreme love-of-variety (or extreme scale economies), which
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Table 6: Two-ways fixed effects estimation results

Estimated Parameter

Sector ISIC4 codes σk − 1 σk−1
γk−1 µk Obs. Weak

Ident. Test

Agriculture & Mining 100-1499 4.563 0.698 0.153 10,762 3.07
(1.739) (0.132) (0.089)

Food 1500-1699 2.476 0.927 0.374 17,594 5.01
(0.818) (0.050) (0.284)

Textiles, Leather & Footwear 1700-1999 3.256 0.685 0.210 110,925 59.94
(0.297) (0.023) (0.024)

Wood 2000-2099 2.093 0.893 0.427 5,282 2.12
(1.196) (0.191) (0.801)

Paper 2100-2299 7.858 0.895 0.114 35,058 2.65
(3.953) (0.154) (0.177)

Petroleum 2300-2399 0.397 0.698 1.758 3,675 2.53
(0.342) (0.081) (1.584)

Chemicals 2400-2499 4.738 0.913 0.193 127,946 29.71
(0.496) (0.031) (0.071)

Rubber & Plastic 2500-2599 4.025 0.664 0.165 101,730 9.95
(0.791) (0.062) (0.045)

Minerals 2600-2699 3.390 0.681 0.201 173,432 20.03
(0.453) (0.036) (0.035)Basic & Fabricated Metals 2700-2899

Machinery 2900-3099 4.402 0.710 0.161 257,788 19.88
(1.765) (0.080) (0.065)

Electrical & Optical Equipment 3100-3399 0.756 0.609 0.806 246,597 19.25
(0.300) (0.015) (0.099)

Transport Equipment 3400-3599 2.156 0.514 0.238 147,772 11.37
(0.462) (0.032) (0.053)N.E.C. & Recycling 3600-3800

Notes. Estimation results of Equation (17). Standard errors in parentheses. The estimation is conducted with HS10
product-year fixed effects. All standard errors are simultaneously clustered by product-year and by origin-product, which
is akin to the correction proposed by Adao et al. (2019). The weak identification test statistics is the F statistics from the
Kleibergen-Paap Wald test for weak identification of all instrumented variables. The test for over-identification is not
reported due to the pitfalls of the standard over-identification Sargan-Hansen J test in the multi-dimensional large datasets
pointed by Angrist et al. (1996).

implies µ = 1/(σ− 1) and precludes internal trade frictions, which results in τii = 1. Given these two
assumptions, we can compute the real income per worker predicted by the standard Krugman model
and contrast it to actual data for a cross-section of countries.

For this exercise, we use data on the trade-to-GDP ratio, real GDP per worker, and population size
for 116 countries from the PENN WORLD TABLES in the year 2011. Given our micro-estimated trade
elasticity, σ− 1, and plugging τii = 1 as well as µ = 1/(σ− 1) into Equation 107, we can compute the
real income per worker predicted by the Krugman model. Figure 5 (top panel) reports these predicted
values and contrasts them to factual values. Clearly, there is a sizable discrepancy between the income-
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Table 7: Pooled estimation results

Manufacturing Non-Manufacturing

Variable (log) 2SLS OLS 2SLS OLS

Price, 1− σ -3.588*** 0.202*** -4.658*** 0.104***
(0.221) (0.002) (0.504) (0.004)

Within-national share, 1− µ(σ− 1) 0.333*** 0.814*** 0.190*** 0.802***
(0.012) (0.001) (0.028) (0.003)

Weak Identification Test 94.84 ... 24.16 ...
Under-Identification P-value 0.00 ... 0.00 ...
Within-R2 ... 0.77 ... 0.73
N of Product-Year Groups 23,683 10,461
Observations 1,126,976 205,580

Notes: *** denotes significant at the 1% level. The Estimating Equation is (17). Standard errors in brackets are robust to
clustering within product-year. The estimation is conducted with HS10 product-year fixed effects. The reported R2 in
the OLS specifications correspond to within-group goodness of fit. Weak identification test statistics is the F statistics
from the Kleibergen-Paap Wald test for weak identification of all instrumented variables. The p-value of the under-
identification test of instrumented variables is based on the Kleibergen-Paap LM test. The test for over-identification is
not reported due to the pitfalls of the standard over-identification Sargan-Hansen J test in the multi-dimensional large
datasets pointed by Angrist et al. (1996).

size elasticity predicted by the standard Krugman model (0.36, standard error 0.03) and the factual
elasticity (-0.04, standard error 0.06). To gain intuition, note that small countries import a higher share
of their GDP (i.e., posses a lower λii), which partially mitigates their size disadvantage. However, even
after accounting for observable levels of trade openness, the scale economies underlying the Krugman
model are so strong that they lead to a counterfactually high income-size elasticity.

One solution to the income-size elasticity puzzle is introducing internal trade frictions into the
Krugman model (i.e., relaxing the τii = 1 assumption). Ramondo et al. (2016) perform this task using
direct measures of domestic trade frictions. Their calibration is suggestive of τii ∝ L0.17

i . Plugging
this implicit relationship into Equation 107 and using data on population size and trade openness, we
compute the model-predicted real income per worker and contrast it with actual data in Figure 5 (mid-
dle panel). Expectedly, accounting for internal frictions shrinks the income-size elasticity. However,
as pointed out by Ramondo et al. (2016), the income-size elasticity remains puzzlingly large.

We ask if our micro-estimated scale elasticity can help resolve the remaining income-size elasticity
puzzle. To this end, in Equation 107, we set the scale elasticity to µ = α/(σ− 1) where α is set to 0.65 as
implied by our micro-level estimation. Then, using data on population size and trade-to-GDP ratios,
we compute the real income per capita predicted by a model that features both domestic trade frictions
and adjusted scale economies. Figure 5 plots these predicted values, indicating that this adjustment
indeed resolves the income-size elasticity puzzle. In particular, the income-size elasticity predicted by
the Krugman model with adjusted scale economies is statistically insignificant (0.02, standard error
0.03), aligning very closely with the factual elasticity.
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Figure 5: Resolving the income-size elasticity puzzle
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N Mapping Second-Best Tax Formulas to Data

In this appendix, we present an analog to Proposition 3, but for second-best trade taxes under
restricted entry (as specified by Theorem 2). As in Section 7, we assume that preferences have a CES-
Cobb-Douglas parametrization. We use the “?” superscript indicates that a variable is being evaluated
in the counterfactual second-best optimal policy equilibrium. We assume hereafter that countries do not
apply domestic subsidies in the factual equilibrium, i.e., sn,k = 0 for all n ∈ C. Using the hat-algebra
notation and the expression of the good-specific supply elasticity, ωji,k (Equation 10), we can write the
second-best tax formulas in changes as follows:

[optimal import tax] 1 + t∗ji,k =
1 + (σk − 1)λ̂ii,kλii,k

1 + 1+µ∗i
1+µk

(σk − 1)λ̂ii,kλii,k

[optimal export subsidy] 1 + x∗ij,k =
(σk − 1)∑n 6=i

[
(1 + t∗ni,g)λ̂nj,kλnj,k

]
1 + (σk − 1)(1− λ̂ij,kλij,k)

(
1 + µk

1 + µ∗i

)
,

[change in taxes] 1̂ + si,k = 1; 1̂ + tji,k =
1 + t∗ji,k
1 + tji,k

; ̂1 + xij,k =
1 + x∗ij,k
1 + xij,k

. (108)

Since the rest of world is passive, 1̂ + sn,k = ̂1 + tjn,k = ̂1 + xnj,k = 1 for all n 6= i. To determine
the change in expenditure shares, λ̂ji,k, we need to determine the change in consumer price indexes.
Invoking the CES structure of within-industry demand, we can express the change in market i–industry
k’s consumer price index as

[price indexes] ˆ̃Pi,k =
N

∑
n=1

λni,k

[
̂1 + tni,k

̂1 + xni,k

ŵn

]1−σk
 1

1−σk

. (109)

Given ˆ̃Pi,k, we can calculate the change in expenditure shares λ̂ji,k and revenue shares r̂ji,k as

[expenditure shares] λ̂ji,k =

[
1̂ + tji,k

̂1 + xji,k

ŵj

]1−σk

ˆ̃Pσk−1
i,k

[revenue shares] r̂ji,k =

(
1̂ + tji,k

̂1 + xji,k

λ̂ji,kŶi

)(
N

∑
n=1

̂1 + tjn,k

̂1 + xjn,k

λ̂jn,kŶn

)−1

. (110)

The change in wage rates, ŵi, and labor shares, ρ̂i,k, are dictated by the labor market clearing (LMC)
condition, which ensures that industry-level sales match wage payments:

[LMC] (1 + µ̄∗i )ŵiwiLi = ∑
j∈C

∑
k∈K

[
1 + x∗ji,k
1 + t∗ji,k

λ̂ij,kλij,kej,kŶjYj

]
. (111)

where the output-weighted average markup in the counterfactual equilibrium is given by

1 + µ̄∗i =
∑j∈C ∑k∈K

[
1+x∗ji,k
1+t∗ji,k

λ̂ij,kλij,kej,kŶjYj

]
∑j∈C ∑k∈K

[
1+x∗ji,k

(1+µk)(1+t∗ji,k)
λ̂ij,kλij,kej,kŶjYj

] . (112)
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The change in national expenditure, Ŷi, is governed by the balanced budget (BB) condition, which
ensures that total expenditure matches total income from wage payments and tax revenues:

[BB] ŶiYi = +(1 + µ̄∗i )ŵiwiLi + ∑
j 6=i

(
t∗ji,k

1 + t∗ji,k
λji,kλ̂ji,kei,kŶiYi +

1− (1 + x∗ij,k)

1 + t∗ij,k
λij,kλ̂ij,kej,kŶjYj

)
. (113)

Equations 108-113 represent a system of 2N + NK+ 2(N− 1)K independent equations and unknowns.
The independent unknowns are, namely, ŵi (N unknowns), Ŷi (N unknowns), ρ̂i,k (NK unknowns),
1̂ + tji,k ((N− 1)K unknowns), and ̂1 + xij,k ((N− 1)K unknowns). Solving the aforementioned system
is possible with information on observable data points, D, and estimable parameters, Θ ≡ {µk, σk}.
Once we solve this system, the welfare consequences of country i’s optimal policy are also fully deter-
mined. The following proposition outlines this result.

Proposition 4. Suppose we have data on observable shares, national accounts, and applied taxes, D=
{

λji,k, rji,k, ei,k, Yi, wiLi, xij,k, tji,k
}

j,i,k,
and information on structural parameters, Θ ≡ {µk, σk}. We can determine the economic consequences of
country i’s second-best optimal policy by calculating X =

{
Ŷi, ŵi, ρ̂i,k, 1̂ + tji,k, ̂1 + xij,k

}
as the solution to the

system of Equations 108-113. After solving for X, we can fully determine the welfare consequence of country i’s
optimal policy as

Ŵn = Ŷn/ ∏
k∈K

ˆ̃Pen,k
n,k , (∀n ∈ C)

where ˆ̃Pn,k can be computed as function of X and data, D, using Equation 109.

O Additional Details about the World Input-Output Database

This appendix presents additional details about the World Input-Output Database analyzed in
Section 7. Table 8 describes our aggregation of WIOD industries into 16 industries. To summarize
the information in this table, we aggregate the ’Agriculture’ and Mining’ industries into one non-
manufacturing industry. We also follow Costinot and Rodríguez-Clare (2014) in two details: First, we
aggregate the ’Textile’ and ’Leather’ industries into one industry. Second, we lump all service-related
industries together treating them as one semi-non-tradable sector.

Following Proposition 3 in Section 7, we need data on observable shares, national accounts, and
applied taxes (D =

{
λji,k, rji,k, ei,k, ρi,k, Yi, wiLi, xij,k, tji,k, si,k

}
j,i,k) to compute the gains from policy. The

WIOD reports data on trade values, Xji,k ≡ Pji,kQji,k, for each origin j–destination i–industry k. The
aggregated version of the data covers N = 33 countries (including the rest of the world) and K = 16
industries. Below, we describe how each element in D is computed based on Xji,k and our estimated
values for µk. Assuming that countries impose no taxes under the status-quo, we can compute national
income and the wage bill in each country i as follows:

Yi =
K

∑
k=1

N

∑
n=1

Xni,k; wiLi =

∑K
k=1 ∑N

n=1 Xin,k if entry is free

∑K
k=1 ∑N

n=1
1

1+µk
Xin,k if entry is restricted

Next, we can compute the within-industry and industry-level expenditure shares for each market i
based on the following calculations:

λji,k =
Xji,k

∑N
n=1 Xni,k

; ei,k =
∑N

n=1 Xni,k

∑g ∑N
n=1 Xni,g

=
∑N

n=1 Xni,k

Yi
.
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Lastly, we can compute the within-industry revenue share and the industry-level labor share in each
country using the following equations:

rin,k =
Xin,k

∑N
n=1 Xin,g

; ρi,k =
∑N

n=1 Xin,k

∑K
g=1 ∑N

n=1 Xin,g
.

P Gains from Policy Under Alternative Assumptions

In this appendix we quantify the gains from optimal policy under three alternative scenarios, com-
paring them to the baseline gains reported in Section 7. In each case, we contrast the new policy gains
with the baseline gains along the two dimensions: First, in terms of the gains from first-best trade and
industrial policies. Second, in terms of the effectiveness of second-best trade taxes at replicating the
first-best outcome.

P.1 Gains Implied by the Melitz-Pareto Model

Suppose the data generating process is consistent with a Melitz-Pareto model that accommodates
firm-selection effects. In that case, Theorem 1 characterizes the optimal policy under the following
reinterpretation of parameters—see Appendix D:

µMelitz
k =


ϑk+1

µkϑk−1 if entry is restricted

ϑk if entry is free
; σMelitz

k = 1 +
ϑk

1 + ϑkµk

(
1

µk(σk−1) − 1
)

To compute the gains from policy we, therefore, need estimates for σk, µk, and ϑk. We have already
produced estimates for the former two parameters. To estimate ϑk, we can first recover σMelitz

k using
a standard gravity estimation à la Caliendo and Parro (2015). To explain the estiation procedure,
suppose tariffs are applied before markups and industrial and export subsidies are zero (xji,k = sj,k = 0
for all i, j, k). In that case, the national-level import demand function transforms into the following
industry-level gravity equation:82

X̃ji,k ≡ P̃ji,kQji,k = Φj,kΩi,kτ
1−σMelitz

k
ji,k (1 + tji,k)

1−σMelitz
k ,

where Φj,k ≡ LµMelitz
k

j,k ā1−σMelitz
k

j,k w1−σMelitz
k

j,k and Ωi,k ≡ ∑n

[
ān,kw1−σMelitz

k
n,k τ

1−σMelitz
k

ni,k (1 + tni,k)
1−σMelitz

k

]
ei,kYi,k can

be viewed as the exporter and importer fixed effects in the standard gravity estimation sense. To
produce our final estimating equation, we assume that iceberg trade costs are given by ln τji,k =

ln dji,k + ε ji,k, where (i) dji,k = dij,k is a systematic and symmetric cost component that accounts for
the effect of distance, common language, and common border, while (ii) ε ji,k is a random disturbance
term that represents any deviation from symmetry. Invoking this decomposition, we can produce the
following estimating equation for any triplet (j, i, n):

ln
X̃ji,kX̃in,kX̃nj,k

X̃ij,kX̃ni,kX̃jn,k
= −

(
σMelitz

k − 1
)

ln
(1 + tji,k)(1 + tin,k)(1 + tnj,k)

(1 + tij,k)(1 + tni,k)(1 + tjn,k)
+ ε jin,k.

82The assumption that tariffs are applied before markups, amounts to saying that tariffs act as a cost-shifter. Alternatively,
if tariffs are applied after markups, they act as a demand shifter. In the latter case, the elasticity of trade with respect to tariffs
diverges from the trade elasticity in its standard definition—see Costinot and Rodríguez-Clare (2014) for more details.
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Figure 6: The gains from policy under the Melitz-Pareto model

The left-hand side variable, in the above equation, is composed of observable national-level trade val-
ues in industry k. The right-hand side variable is composed of observable industry-level tariff rates.
The error term ε jin,k ≡ θk(ε ij,k − ε ji,k + ε in,k − εni,k + εnj,k − ε jn,k) encompasses any idiosyncratic varia-
tion in non-tariff barriers. Under the identifying assumption that applied tariff rates are orthogonal
to ε jin,k, i.e., Cov(tji,k, ε ji,k) = 0, we can estimate σMelitz

k by estimation the above equation with data
on trade values, X̃ji,k, and applied tariffs, tji,k, from the WIOD and TRAINS-UNCTAD datasets. Af-
ter estimating σMelitz

k , we can recover ϑk for our previously-estimated values for σk and µk (which are
reported in Table 2):

ϑk =
σ̂Melitz

k − 1

1− µk
(
σ̂Melitz

k − 1
) ( 1

µk(σk−1) − 1
) .

For the analysis that follows, we borrow the estimated values for σMelitz
k from Lashkaripour (2020a),

which is based on the 2014 WIOD and TRAINS-UNCTAD datasets. After pinning down all the nec-
essary parameters, we simply evaluate and plug σMelitz

k and µMelitz
k into our optimal tax formulas to

compute the gains from optimal policy. The process is akin to that outlined in Section 7. Importantly,
one should note that without our micro-level estimates for σk and µk, it is impossible to recover both
σMelitz

k and µMelitz
k from macro-level trade and tariff data.

The optimal policy gains implied by the Melitz-Pareto model are reported under Figure 6. The
results indicate that accounting for firm-selection (à la Melitz-Pareto) magnifies the gains from the
first-best trade and industrial policy schedule. Moreover, accounting for firm-selection dampens the
efficacy of second-best trade taxes at replicating the first-best policy gains. If anything, these results
indicate that our baseline claim that trade taxes are an ineffective second-best substitute for industrial
subsidies is strengthened once we account for firm-selection effects.
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Figure 7: The gains from policy under alternative estimates for σk and µk

P.2 Gains Implied by the Fixed-Effect Estimates for µk and σk

Our baseline estimation of the gains from policy in Section 7 utilized the first-difference estimates
for µk and σk—these estimates were reported under Table 2. In Appendix L (under Table 6), we re-
ported alternative estimates for µk and σk based on a two-ways fixed-effects estimation of the firm-
level import demand function. In this appendix, we recompute the gains from policy using these
alternative estimates for µk and σk.

The implied gains from optimal policy are reported under Figure 7. The fixed-effects estimates for
σk and µk imply (on average) smaller gains from first-best trade and industrial policies. This outcome
drives from two main factors: First, the fixed-effects estimates for µk exhibit smaller heterogeneity
across industries. As such, they imply a small degree of misallocation in the economy compared to
the baseline estimates. Second, the fixed-effects estimates for σk are generally smaller and imply larger
unilateral gains from terms-of-trade manipulation.

Another takeaway from Figure 7 is that second-best trade taxes exhibit a greater degree of efficacy
compared to the baseline case. This outcome reflects two issues: First, the corrective gains from pol-
icy are a smaller fraction of the overall first-best policy gains, once we plug the fixed-effects-estimated
values for σk and µk. Second, the fixed-effects-estimated values for σk and µk exhibit a smaller negative
correlation relative to the baseline estimates. As explained in Section 5, the less negative Covk(σk, µk),
the smaller the implicit tensions between the terms-of-trade-improving and corrective gains from
trade taxation—hence, the greater efficacy of second-best trade taxes.

P.3 Assigning Alternative Values to µk and σk for the Service Sector

Our estimation of σk and µk in Section 6 relied on transaction-level trade data, which is scarce for
(semi-non-traded) service industries. To address this issue, our baseline estimation of the gains from
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policy normalized the aforementioned parameters in service-related industries as follows:

σk = 11; µk = 0 if k ∈ Service

The value assigned to σk for service-related industries is less consequential for our estimated wel-
fare gains. The reason is that σk governs the gains from terms-of-trade manipulation. However, un-
der the status quo, there is little-to-no trade occurring in service industries. With little-to-no service
trade under the status quo equilibrium, the scope for terms-of-trade manipulation is limited in service
industries—all irrespective of the value assigned to σk.83

The value assigned to µk, however, can have a profound effect on the estimated gains from optimal
policy. To elaborate on this point, recall that one function of optimal policy (in our framework) is
to correct misallocation due to markup heterogeneity. The degree of misallocation can be crudely
measured as the cross-industry variance in markups, i.e., Vark(µk). Data indicate that the service
sector constitutes a non-trivial fraction of total output in each country. So, the value assigned to the
service sector’s µk is a non-trivial determinant of misallocation, as measured by Vark(µk).

As indicated above, our baseline analysis assumed that the service sector is perfectly competitive.
This assumption, which is rather standard in the quantitative trade literature, amounts to setting µk =

0 for any service-related industry, k. In this appendix, we contrast our baseline results with those
obtained under the alternative but extremely conservative assumption that µk in services equals the
average µk in traded (non-service) industries. This assumption is conservative because it artificially
deflates Vark(µk) and, accordingly, dampens the corrective gains from optimal policy.

The gains computed under our conservative treatment of the service sector are reported under
Figure 8. As expected, the gains from first-best policies are relatively lower under the conservative
treatment—simply because the conservative value assigned to the service sector markup artificially
lowers the degree of misallocation and the scope for policy intervention. Relatedly, second-best trade
taxes are also more successful at replicating the gains obtainable under the first-best policy schedule.
The intuition is that the corrective gains from policy constitute a smaller fraction of the first-best policy
gains under the conservative model. Hence, the inability of trade taxes to replicate corrective gains
becomes less consequential.

Q The Gains from Policy Under Artificial Parameter Values

Under what parameter values will our framework predict larger gains from policy? To answer this
question, we simulate an artificial economy (with artificial values assigned to σk and µk) to examine
the degree to which the gains from policy inflate under more extreme parameter values. Our theory
indicates that the gains from optimal policy are regulate by two key statistics:

a) The variance in the industry-level scale elasticities, Vark(µk).

83This outcome is an artifact of the CES parametrization of import demand. Specifically, in response to a change, τ̂, in
trade taxes, the post-tax-change expenditure shares remain zero if start as zero in the initial equilibrium—all irrespective of
the trade elasticity values. Stated in mathematical terms,

lim
λji,k→0

λ̂ji,k =
λji,k

(
τ̂ji,kŵj

)1−σk

∑n λni,k
(
τ̂ni,kŵn

)1−σk
= 0 ∀σk ≥ 1.

Since λji,k ≈ 0 in services, trade taxes have little-to-no ability at improving the terms-of-trade, as doing so requires policy to
shrink exports/imports in the service sector away from their factual level.
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Figure 8: The gains from policy when the service sector is modeled more conservatively

b) The average level of the (inverse) industry-level trade elasticities, Avgk(
1

σk−1 ).

The first statistic governs the extent to which countries can gain from restoring allocative efficiency.
To explain this statistic, we can appeal to the Hsieh and Klenow (2009) exact formula for distance
from the efficient frontier. Suppose σk = σ is uniform across industries, and that industry-wide pro-
ductivity levels and µk’s have a joint log-normal distribution. The distance from the frontier can be
approximated to a first-order as

Distance from efficient frontier ≈ 1
2
(σ− 1)Vark(ln µk).

The average level of µk is, however, inconsequential. To convey this point, suppose we multiply all the
markups by some number a ∈ R+. Since this change is akin to offering a uniform industrial subsidy
a to all industries, then it preserves real welfare based on Lemma 1.

The second statistic determines the degree of national-level market power and, thus, governs the
degree to which countries can gain from ToT manipulation. To explain this statistic succinctly, consider
a country that is sufficiently small in relation to the rest of the world. Following Theorem 1, the average
optimal trade tax for this country is given by

Avg. optimal trade tax ≈ Avgk

(
1

σk − 1

)
.

If σk → ∞ for all k, the average optimal trade tax approaches zero, leaving no room for unilateral ToT
improvements. Conversely, as σk approaches 1 the average optimal trade tax increases and so do the
implicit gains from unilateral trade restrictions.84

Noting the above background, we recompute the gains from policy by artificially increasing Vark(µk)

and decreasing Avg(σk), starting from our estimated vectors of {σk} and {µk}. The results are reported

84Since there is no choke price in our setup, the optimal export tax can approach infinity in the limit where σk → 1.
Introduce a choke price, then the optimal export tax will exhibit a limit-pricing formulation—see Costinot et al. (2015).
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in 9 for a select set of countries—namely, the United States, China, Indonesia, and Korea. The graph
indicates that the gains from policy nearly double if we artificially raise Vark(µk) by a factor of two.
A similar effect is borne out if we artificially lower Avg(σk) by a factor of about two. An apparent
pattern, here, is that the gains from policy exhibit similar sensitivity levels to Vark(µk) across all coun-
tries, but different sensitivity levels to Avg(σk). This pattern is expected, because Avg(σk) governs
the gains from ToT-improvement which are smaller (by design) for larger economies like the United
States or China. The gains for restoring allocative efficiency, however, depend less on size and more
on a country’s industrial pattern of specialization under the status quo—see Kucheryavyy et al. (2016)
for the role of specialization patterns.

These findings provide a platform to compare our estimated gains with alternatives in the litera-
ture. Our finding that the gains from restoring allocative efficiency are large sits well with the findings
in Baqaee and Farhi (2017) that eliminating sectoral markup-heterogeneity in the U.S. economy can
raise real GDP by 2.3%.85 Bartelme et al. (2019), however, estimate smaller gains from similar policies.
To understand these differences, note the formula for distance from the efficient frontier. Also note
that true value for the scale elasticity, µTrue

k = µk + ψk, where ψk denotes the elasticity of Marshallian
externalities. Accordingly, the true distance from the frontier can be approximated as follows:

LTrue ≈
1
2
(σ− 1)Vark(ln(ψk + µk))

Our analysis like Baqaee and Farhi (2017) sets ψk = 0, and measures the degree of allocative ineffi-
ciency as LLL≈ 1

2 (σ− 1)Var(ln µk). This approach can lead to an overstatement of L if ψk is negatively
correlated with firm-level market power, µk.86 In comparison and as noted in Section 6.4, the degree
of misallocation in BDCR’s analysis is measured as LBCDR≈ 1

2 (σ− 1)Var(ln(µk + ψk − βk
σ−1 )), where βk

is the share of industry-specific factors in production. This approach can understate L when there are
significant diseconomies of scale due to a high βk.

85This number corresponds to the average of the numbers reported in the last column of Table 2 in Baqaee and Farhi
(2017).

86Another issue is that we are assuming away selection effects in our quantitative analysis. In the presence of selection
effects, we can still use our estimates for σk and µk to identify the scale elasticity up-to an externally chosen trade elasticity.
Doing so, however, may lead to a lower or higher L.
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Figure 9: The gains from policy under artificially higher Vark(µk) and Avgk(
1

σk−1 )
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Note: The data source is the 2014 World Input-Output Database (WIOD, Timmer et al. (2012)). The 1st best policy is charac-
terized by Theorem 1 for the case of restricted entry.
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Table 8: List of industries in the World Input-Output Database

WIOD Sector Sector’s Description Trade Ealsticity Scale Ealsticity

1 Agriculture, Hunting, Forestry and Fishing 6.212 0.141

2 Mining and Quarrying 6.212 0.141

3 Food, Beverages and Tobacco 3.333 0.265

4
Textiles and Textile Products

3.413 0.207
Leather and Footwear

5 Wood and Products of Wood and Cork 3.329 0.270

6 Pulp, Paper, Paper , Printing and Publishing 2.046 0.397

7 Coke, Refined Petroleum and Nuclear Fuel 0.397 1.758

8 Chemicals and Chemical Products 4.320 0.212

9 Rubber and Plastics 3.599 0.162

10 Other Non-Metallic Mineral 4.561 0.186

11 Basic Metals and Fabricated Metal 2.959 0.189

12 Machinery, Nec 8.682 0.100

13 Electrical and Optical Equipment 1.392 0.453

14 Transport Equipment 2.173 0.133

15 Manufacturing, Nec; Recycling 6.704 0.142

16

Electricity, Gas and Water Supply

11 0

Construction

Sale, Maintenance and Repair of Motor Vehicles and Motorcycles;
Retail Sale of Fuel

Wholesale Trade and Commission Trade, Except of Motor Vehicles
and Motorcycles

Retail Trade, Except of Motor Vehicles and Motorcycles; Repair of
Household Goods

Hotels and Restaurants

Inland Transport

Water Transport

Air Transport

Other Supporting and Auxiliary Transport Activities; Activities of
Travel Agencies

Post and Telecommunications

Financial Intermediation

Real Estate Activities

Renting of M&Eq and Other Business Activities

Education

Health and Social Work

Public Admin and Defence; Compulsory Social Security

Other Community, Social and Personal Services

Private Households with Employed Persons
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