Profits, Scale Economies, and the Gains from Trade and Industrial Policy

November 2023

Ahmad Lashkaripour Indiana University Volodymyr Lugovskyy Indiana University

Industrial Policy is on the Rise Globally

Source: "The New Economics of Industrial Policy," Reka Juhasz, Nathan Lane and Dani Rodrik, NBER (2023), figure 3.1

Made in China 2025

 2015 Initiative to promote Chinese manufacturing via trade barriers and subsidies.

National Trade Council

- Created in *Dec 2016* to promote US manufacturing (later became OTMP).
- Proposed tariffs on goods imported from China to counter "Made in China 2025".

Made in China 2025

 2015 Initiative to promote Chinese manufacturing via trade barriers and subsidies.

National Trade Council

- Created in *Dec 2016* to promote US manufacturing (later became OTMP).
- Proposed tariffs on goods imported from China to counter "Made in China 2025".

These developments have resurfaced some old-but-unresolved policy questions:

- 1. is trade policy an effective tool for correcting inter-sectoral misallocation?
- 2. if not, should governments correct misallocation, *unilaterally*, with industrial subsidies to target industries?
- 3. or should they coordinate their industrial policies via deep trade agreements?

These developments have resurfaced some old-but-unresolved policy questions:

- 1. is trade policy an effective tool for correcting inter-sectoral misallocation?
- 2. if not, should governments correct misallocation, *unilaterally*, with industrial subsidies to target industries?
- 3. or should they coordinate their industrial policies via deep trade agreements?

These developments have resurfaced some old-but-unresolved policy questions:

- 1. is trade policy an effective tool for correcting inter-sectoral misallocation?
- 2. if not, should governments correct misallocation, *unilaterally*, with industrial subsidies to target industries?
- 3. or should they coordinate their industrial policies via deep trade agreements?

Step #1. characterize optimal trade and industrial policies in an important class of *multi-industry, multi-country* quantitative trade models where misallocation stems from scale economies or profit-generating markups

Step #2. estimate the structural parameters that govern the gains from trade and industrial policy in open economies

Step #3. leverage the estimated parameters and optimal policy formulas to measure the maximal gains from trade and industrial policy under various scenarios

Step #1. characterize optimal trade and industrial policies in an important class of *multi-industry, multi-country* quantitative trade models where misallocation stems from scale economies or profit-generating markups

Step #2. estimate the structural parameters that govern the gains from trade and industrial policy in open economies

Step #3. leverage the estimated parameters and optimal policy formulas to measure the maximal gains from trade and industrial policy under various scenarios

Step #1. characterize optimal trade and industrial policies in an important class of *multi-industry, multi-country* quantitative trade models where misallocation stems from scale economies or profit-generating markups

Step #2. estimate the structural parameters that govern the gains from trade and industrial policy in open economies

Step #3. leverage the estimated parameters and optimal policy formulas to measure the maximal gains from trade and industrial policy under various scenarios

This Paper: Overview of Findings

- 1. (2nd-best) Import tariffs and export subsidies are ineffective at correcting sectoral misallocation, even when designed optimally.
 - This is due to an innate tension between allocative efficiency and the terms-of-trade in open economies
- 2. Unilateral adoption of targeted industrial policies is also ineffective, as it triggers *immiserizing growth* effects in most countries.
- 3. Internationally-coordinated industrial policies, however, deliver welfare gains that are more transformative that any unilateral policy intervention
 - a deep agreement may be necessary to address free-riding

This Paper: Overview of Findings

- 1. (2nd-best) Import tariffs and export subsidies are ineffective at correcting sectoral misallocation, even when designed optimally.
 - This is due to an innate tension between allocative efficiency and the terms-of-trade in open economies
- 2. Unilateral adoption of targeted industrial policies is also ineffective, as it triggers *immiserizing growth* effects in most countries.
- 3. Internationally-coordinated industrial policies, however, deliver welfare gains that are more transformative that any unilateral policy intervention
 - a deep agreement may be necessary to address free-riding

This Paper: Overview of Findings

- 1. (2nd-best) Import tariffs and export subsidies are ineffective at correcting sectoral misallocation, even when designed optimally.
 - This is due to an innate tension between allocative efficiency and the terms-of-trade in open economies
- 2. Unilateral adoption of targeted industrial policies is also ineffective, as it triggers *immiserizing growth* effects in most countries.
- 3. Internationally-coordinated industrial policies, however, deliver welfare gains that are more transformative that any unilateral policy intervention
 - a deep agreement may be necessary to address free-riding

Theoretical Model

We adopt a generalized *multi-country*, *multi-industry* Krugman model:

- semi-parametric + general equilibrium
- tractably accommodates IO linkages
- accommodates the ToT-improving & misallocation-correcting cases for policy
- is isomorphic to a *Melitz-Pareto* model or an *Eaton-Kortum* model with Marshallian externalities (Kucheryavyy *et al.*, 2023).

The Economic Environment

- Many countries: i, j, n = 1, ..., N
 - Country *i* is populated by L_i workers who supply labor inelastically.
 - Labor is the only (primary) factor of production

- Many industries: $k, g = 1, ..., \mathcal{K}$
 - Industries differ in terms of their trade elasticity, scale elasticity, etc.
 - Each industry is served by many firms (index ω)

- Goods are indexed by origin-destination-industry

good $ij, k \sim$ origin i – destination j – industry k

- *Supply-side* variables are indexed by origin-industry

subscript $i, k \sim$ origin i – industry k

- Demand-side variables are indexed by destination-industry

subscript $j, k \sim \text{destination } j - \text{industry } k$

- Goods are indexed by origin-destination-industry

good $ij, k \sim$ origin i – destination j – industry k

- Supply-side variables are indexed by origin-industry

subscript $i, k \sim$ origin i – industry k

- Demand-side variables are indexed by destination-industry

subscript $j, k \sim \text{destination } j - \text{industry } k$

- Representative consumer's problem in country *i*

$$\max_{\mathbf{Q}_{i}} U_{i}(\mathbf{Q}_{i}) \quad s.t. \sum_{k} \left(\tilde{P}_{i,k} Q_{i,k} \right) = Y_{i}$$

national income

 $- \mathbf{Q}_i \equiv \{Q_{i,k}\} ~ \text{composite industry-level consumption.}$ - $\tilde{\mathbf{P}}_i \equiv \{\tilde{P}_{i,k}\} ~ \text{"consumer" price index of industry-level composite.}$

- The Marshallian demand function for *industry* k goods in *market* i $Q_{i,k} = \mathcal{D}_{i,k}(\tilde{\mathbf{P}}_i, Y_i)$
- The **Cobb-Douglas** case: $U_i(\mathbf{Q}_i) = \prod_{k=1}^{\mathcal{K}} Q_{i,k}^{e_{i,k}} \longrightarrow Q_{i,k} = e_{i,k} Y_i / \tilde{P}_{i,k}$

- Representative consumer's problem in country *i*

$$\max_{\mathbf{Q}_{i}} U_{i}(\mathbf{Q}_{i}) \quad s.t. \sum_{k} \left(\tilde{P}_{i,k} Q_{i,k} \right) = Y_{i}$$

Q_i ≡ {Q_{i,k}} ~ composite industry-level consumption.
 P̃_i ≡ {P̃_{i,k}} ~ "consumer" price index of industry-level composite.

- The Marshallian demand function for *industry* k goods in *market* i $Q_{i,k} = \mathcal{D}_{i,k}(\tilde{\mathbf{P}}_i, Y_i)$
- The **Cobb-Douglas** case: $U_i(\mathbf{Q}_i) = \prod_{k=1}^{\mathcal{K}} Q_{i,k}^{e_{i,k}} \longrightarrow Q_{i,k} = e_{i,k} Y_i / \tilde{P}_{i,k}$

national income

- Representative consumer's problem in country *i*

$$\max_{\mathbf{Q}_{i}} U_{i}(\mathbf{Q}_{i}) \quad s.t. \sum_{k} \left(\tilde{P}_{i,k} Q_{i,k} \right) = Y_{i}$$

Q_i ≡ {Q_{i,k}} ~ composite industry-level consumption.
 P̃_i ≡ {P̃_{i,k}} ~ "consumer" price index of industry-level composite.

- The Marshallian demand function for *industry* k goods in *market* i $Q_{i,k} = \mathcal{D}_{i,k}(\tilde{\mathbf{P}}_i, Y_i)$
- The **Cobb-Douglas** case: $U_i(\mathbf{Q}_i) = \prod_{k=1}^{\mathcal{K}} Q_{i,k}^{e_{i,k}} \longrightarrow Q_{i,k} = e_{i,k} Y_i / \tilde{P}_{i,k}$

national income

_

- Representative consumer's problem in country *i*

$$\max_{\mathbf{Q}_{i}} U_{i}(\mathbf{Q}_{i}) \quad s.t. \sum_{k} \left(\tilde{P}_{i,k} Q_{i,k} \right) = Y_{i}$$

 $- \mathbf{Q}_i \equiv \{Q_{i,k}\} ~ composite industry-level consumption.$ $- <math>\tilde{\mathbf{P}}_i \equiv \{\tilde{P}_{i,k}\} ~ "consumer"$ price index of industry-level composite.

– The Marshallian demand function for *industry* k goods in *market* i $Q_{i,k} = \mathcal{D}_{i,k}(\tilde{\mathbf{P}}_i, Y_i)$

- The **Cobb-Douglas** case:
$$U_i(\mathbf{Q}_i) = \prod_{k=1}^{\mathcal{K}} Q_{i,k}^{e_{i,k}} \longrightarrow Q_{i,k} = e_{i,k} Y_i / \tilde{P}_{i,k}$$

national income

- Within-industry utility aggregator:

$$Q_{i,k} = \left(\sum_{j \in \mathbb{C}} Q_{ji,k}^{\frac{\sigma_k - 1}{\sigma_k}}\right)^{\frac{\sigma_k}{\sigma_k - 1}} \qquad \qquad Q_{ji,k} = \left(\sum_{\omega \in \Omega_{j,k}} q_{ji,k}(\omega)^{\frac{\gamma_k - 1}{\gamma_k}}\right)^{\frac{\gamma_k}{\gamma_k - 1}}$$

- Nested-CES demand demand function:

$$q_{ji,k}\left(\omega\right) = \underbrace{\left(\frac{\tilde{p}_{ji,k}\left(\omega\right)}{\tilde{P}_{ji,k}}\right)^{-\gamma_{k}}}_{\tilde{P}_{ji,k}}Q_{ji,k}$$

firm-level demand

$$Q_{ji,k} = \left(\frac{\tilde{P}_{ji,k}}{\tilde{P}_{i,k}}\right)^{-\sigma_k} \mathcal{D}_{i,k}\left(\tilde{\mathbf{P}}_i, Y_i\right)$$

- Within-industry utility aggregator:

cross-national aggregator

 $Q_{ji,k} = \left(\sum_{\omega \in \Omega_{j,k}} q_{ji,k}(\omega)^{\frac{\gamma_k - 1}{\gamma_k}}\right)^{\frac{\gamma_k - 1}{\gamma_k - 1}}$

sub-national aggregator

– Nested-CES demand demand function:

$$q_{ji,k}(\omega) = \underbrace{\left(\frac{\tilde{p}_{ji,k}(\omega)}{\tilde{P}_{ji,k}}\right)^{-\gamma_k}}_{\text{firm-level demand}} Q_{ji,k}$$

$$Q_{ji,k} = \underbrace{\left(\frac{\tilde{P}_{ji,k}}{\tilde{P}_{i,k}}\right)^{-\sigma_k} \mathcal{D}_{i,k}\left(\tilde{\mathbf{P}}_i, Y_i\right)}_{\mathbf{D}_{i,k}}$$

national-level demand

- Within-industry utility aggregator:

cross-national aggregator

 $Q_{ji,k} = \left(\sum_{\omega \in \Omega_{jk}} q_{ji,k}(\omega)^{\frac{\gamma_k - 1}{\gamma_k}}\right)^{\frac{\gamma_k - 1}{\gamma_k}}$

sub-national aggregator

- Nested-CES demand demand function:

$$q_{ji,k}(\omega) = \underbrace{\left(\frac{\tilde{p}_{ji,k}(\omega)}{\tilde{P}_{ji,k}}\right)^{-\gamma_k}}_{\text{firm-level demand}} Q_{ji,k}$$

$$Q_{ji,k} = \underbrace{\left(\frac{\tilde{P}_{ji,k}}{\tilde{P}_{i,k}}\right)^{-\sigma_{k}}}_{\text{retired level derived}} \mathcal{D}_{i,k}\left(\tilde{\mathbf{P}}_{i}, Y_{i}\right)$$

national-level demand

- Within-industry utility aggregator:

$$Q_{ji,k} = \underbrace{\left(\sum_{\omega \in \Omega_{j,k}} q_{ji,k}(\omega)^{\frac{\gamma_k - 1}{\gamma_k}}\right)^{\frac{\gamma_k}{\gamma_k - 1}}}_{\text{sub-national aggregator}}$$

– Nested-CES demand demand function:

$$q_{ji,k}(\omega) = \left(\frac{\tilde{p}_{ji,k}(\omega)}{\tilde{P}_{ji,k}}\right)^{-\gamma_{k}} Q_{ji,k} \qquad Q_{ji,k} = \left(\frac{\tilde{P}_{ji,k}}{\tilde{P}_{i,k}}\right)^{-\sigma_{k}} \mathcal{D}_{i,k}\left(\tilde{\mathbf{P}}_{i}, Y_{i}\right)$$

CES price index (ji, k)

- Within-industry utility aggregator:

$$Q_{ji,k} = \underbrace{\left(\sum_{\omega \in \Omega_{j,k}} q_{ji,k}(\omega)^{\frac{\gamma_k - 1}{\gamma_k}}\right)^{\frac{\gamma_k}{\gamma_k - 1}}}_{\text{sub-national aggregator}}$$

- Nested-CES demand demand function:

$$q_{ji,k}(\omega) = \left(\frac{\tilde{p}_{ji,k}(\omega)}{\tilde{P}_{ji,k}}\right)^{-\gamma_k} Q_{ji,k} \qquad Q_{ji,k} = \left(\frac{\tilde{P}_{ji,k}}{\tilde{P}_{i,k}}\right)^{-\sigma_k} \mathcal{D}_{i,k}\left(\tilde{\mathbf{P}}_i, Y_i\right)$$
CES price index (ji,k)
CES price index (i, k)

- Within-industry utility aggregator:

cross-national aggregator

 $Q_{ji,k} = \left(\sum_{\omega \in \Omega_{i,k}} q_{ji,k}(\omega)^{\frac{\gamma_k - 1}{\gamma_k}}\right)^{\frac{\gamma_k - 1}{\gamma_k}}$

sub-national aggregator

- Notation: aggregate expenditure shares

$$\lambda_{ji,k} \equiv \underbrace{\frac{\tilde{P}_{ji,k}Q_{ji,k}}{\sum_{j}\tilde{P}_{ji,k}Q_{ji,k}}}_{\text{cross-national}}$$

$$e_{i,k} \equiv \underbrace{\frac{\sum_{j} \tilde{P}_{ji,k} Q_{ji,k}}{Y_{i}}}_{Y_{i}}$$

- Within-industry utility aggregator:

$$Q_{i,k} = \underbrace{\left(\sum_{j \in \mathbb{C}} Q_{ji,k}^{\frac{\sigma_k - 1}{\sigma_k}}\right)^{\frac{\sigma_k}{\sigma_k - 1}}}_{\underbrace{}$$

 $cross-national\ aggregator$

$$Q_{ji,k} = \left(\sum_{\omega \in \Omega_{j,k}} q_{ji,k}(\omega)^{\frac{\gamma_k - 1}{\gamma_k}}\right)^{\frac{\gamma_k}{\gamma_k - 1}}$$

sub-national aggregator

- Notation: aggregate expenditure shares

$$\lambda_{ji,k} \equiv \underbrace{\frac{\tilde{P}_{ji,k}Q_{ji,k}}{\sum_{j}\tilde{P}_{ji,k}Q_{ji,k}}}_{\text{cross-national}} = \left(\frac{\tilde{P}_{ji,k}}{\tilde{P}_{i,k}}\right)^{-\sigma_{k}}$$

$$e_{i,k} = \underbrace{\frac{\sum_{j} \tilde{P}_{ji,k} Q_{ji,k}}{Y_{i}}}_{Y_{i}}$$

cross-industry

- Firms compete under monopolistic competition.
- variety-specific marginal cost (origin *i*-destination *j*-industry *k*)

$$c_{ij,k}\left(\omega\right) = \frac{\tau_{ij,k} \, w_i}{\varphi_{i,k}\left(\omega\right)}$$

- Entry is either free or restricted
 - Free Entry: endogenous number of firms + zero profits
 - Restricted Entry: fixed number of firms + positive profits

- Firms compete under monopolistic competition.
- variety-specific marginal cost (origin *i*-destination *j*-industry *k*)

$$c_{ij,k}(\omega) = \frac{\tau_{ij,k}}{\varphi_{i,k}(\omega)} \text{wage rate}$$

- Entry is either free or restricted
 - Free Entry: endogenous number of firms + zero profits
 - Restricted Entry: fixed number of firms + positive profits

- Firms compete under monopolistic competition.
- variety-specific marginal cost (origin *i*-destination *j*-industry *k*)

- Entry is either free or restricted
 - Free Entry: endogenous number of firms + zero profits
 - Restricted Entry: fixed number of firms + positive profits

- Firms compete under monopolistic competition.
- variety-specific marginal cost (origin *i*-destination *j*-industry *k*)

- Entry is either free or restricted
 - Free Entry: endogenous number of firms + zero profits
 - Restricted Entry: fixed number of firms + positive profits

- Firms compete under monopolistic competition.
- variety-specific marginal cost (origin *i*-destination *j*-industry *k*)

- The producer price index of goods supplied by origin *i*-industry *k*:

$$P_{ij,k} = \text{constant} \times \left[\int_{\Omega_{i,k}} c_{ij,k} (\omega)^{1-\gamma_k} d\omega \right]^{\frac{1}{1-\gamma_k}} L_{i,k}^{-\frac{1}{\gamma_k-1}}$$

– Following the literature, we refer to $\mu_k \sim rac{1}{\gamma_k-1}$ as the scale elasticity

– special case w/ constant-returns to scale: $\mu_k
ightarrow 0$

$$-1 + \mu_k \sim rac{\gamma_k}{\gamma_k - 1}$$
 also represents the constant firm-level markup

- The producer price index of goods supplied by origin *i*-industry *k*:

$$P_{ij,k} = \text{constant} \times \left[\int_{\Omega_{i,k}} c_{ij,k} (\omega)^{1-\gamma_k} d\omega \right]^{\frac{1}{1-\gamma_k}} L_{i,k}^{-\frac{1}{\gamma_k-1}}$$
number of workers

– Following the literature, we refer to $\mu_k \sim rac{1}{\gamma_k - 1}$ as the scale elasticity

– special case w/ constant-returns to scale: $\mu_k
ightarrow 0$

$$-1 + \mu_k \sim rac{\gamma_k}{\gamma_k - 1}$$
 also represents the constant firm-level markup
- The producer price index of goods supplied by origin *i*-industry *k*:

$$P_{ij,k} = \text{constant} \times \left[\int_{\Omega_{i,k}} c_{ij,k} (\omega)^{1-\gamma_k} d\omega \right]^{\frac{1}{1-\gamma_k}} L_{i,k}^{-\mu_k}$$
number of workers

– Following the literature, we refer to $\mu_k \sim rac{1}{\gamma_k - 1}$ as the scale elasticity

– special case w/ constant-returns to scale: $\mu_k
ightarrow 0$

$$-1 + \mu_k \sim rac{\gamma_k}{\gamma_k - 1}$$
 also represents the constant firm-level markup

- The producer price index of goods supplied by origin *i*-industry *k*:

$$P_{ij,k} = \text{constant} \times \left[\int_{\Omega_{i,k}} c_{ij,k} (\omega)^{1-\gamma_k} d\omega \right]^{\frac{1}{1-\gamma_k}} L_{i,k}^{-\mu_k}$$
number of workers

– Following the literature, we refer to $\mu_k \sim rac{1}{\gamma_k - 1}$ as the scale elasticity

- special case w/ constant-returns to scale: $\mu_k \rightarrow 0$

$$-1+{m \mu_k}\sim {\gamma_k\over \gamma_k-1}$$
 also represents the constant firm-level markup

- The producer price index of goods supplied by origin *i*-industry *k*:

$$P_{ij,k} = \text{constant} \times \left[\int_{\Omega_{i,k}} c_{ij,k} (\omega)^{1-\gamma_k} d\omega \right]^{\frac{1}{1-\gamma_k}} L_{i,k}^{-\mu_k}$$
number of workers

– Following the literature, we refer to $\mu_k \sim rac{1}{\gamma_k - 1}$ as the scale elasticity

– special case w/ constant-returns to scale: $\mu_k \rightarrow 0$

$$-1 + \mu_k \sim \frac{\gamma_k}{\gamma_k - 1}$$
 also represents the constant firm-level markup

Two rationales for policy intervention from country i's standpoint:

- 1. Correct inter-industry misallocation
 - high-returns-to-scale (high-µ) industries exhibit inefficiently low levels of output
- 2. Take advantage of unexploited terms of trade (ToT) benefits
 - **export side:** firm-level markups do not internalize country *i*'s collective export market power \rightarrow use policy to elicit a higher markup
 - Import side: leverage national-level monopsony power to deflate import prices

Two rationales for policy intervention from country i's standpoint:

- 1. Correct inter-industry misallocation
 - high-returns-to-scale (high-µ) industries exhibit inefficiently low levels of output
- 2. Take advantage of unexploited terms of trade (ToT) benefits
 - **export side:** firm-level markups do not internalize country *i*'s collective export market power \rightarrow use policy to elicit a higher markup
 - Import side: leverage national-level monopsony power to deflate import prices

Two rationales for policy intervention from country i's standpoint:

- 1. Correct inter-industry misallocation
 - high-returns-to-scale (high-µ) industries exhibit inefficiently low levels of output
- 2. Take advantage of unexploited terms of trade (ToT) benefits
 - **export side:** firm-level markups do not internalize country *i*'s collective export market power \rightarrow use policy to elicit a higher markup
 - Import side: leverage national-level monopsony power to deflate import prices

Key Elasticities for Policy Evaluation in Open Economies

trade elasticity ~
$$\sigma_k - 1 = \frac{\partial \ln \left(\lambda_{ji,k} / \lambda_{ii,k} \right)}{\partial \ln \left(\tau_{ji,k} / \tau_{ii,k} \right)}$$

scale elasticity ~ $\mu_k = -\frac{\partial \ln P_{in,k}}{\partial \ln L_{i,k}} \sim \frac{\partial \ln \text{TFP}_i}{\partial \ln L_{i,k}}$

– Lower $\sigma_k \longrightarrow$ more scope for ToT manipulation in industry k

- Higher $Var(\mu_k) \longrightarrow$ greater degree of misallocation in the economy

Key Elasticities for Policy Evaluation in Open Economies

trade elasticity ~
$$\sigma_k - 1 = \frac{\partial \ln \left(\lambda_{ji,k}/\lambda_{ii,k}\right)}{\partial \ln \left(\tau_{ji,k}/\tau_{ii,k}\right)}$$

scale elasticity ~ $\mu_k = -\frac{\partial \ln P_{in,k}}{\partial \ln L_{i,k}} \sim \frac{\partial \ln \text{TFP}_i}{\partial \ln L_{i,k}}$

– Lower $\sigma_k \longrightarrow$ more scope for ToT manipulation in industry k

- Higher $Var(\mu_k) \longrightarrow$ greater degree of misallocation in the economy

Key Elasticities for Policy Evaluation in Open Economies

trade elasticity ~
$$\sigma_k - 1 = \frac{\partial \ln \left(\lambda_{ji,k}/\lambda_{ii,k}\right)}{\partial \ln \left(\tau_{ji,k}/\tau_{ii,k}\right)}$$

scale elasticity ~ $\mu_k = -\frac{\partial \ln P_{in,k}}{\partial \ln L_{i,k}} \sim \frac{\partial \ln \text{TFP}_i}{\partial \ln L_{i,k}}$

– Lower $\sigma_k \longrightarrow$ more scope for ToT manipulation in industry k

- Higher $Var(\mu_k) \longrightarrow$ greater degree of misallocation in the economy

- Governments are afforded a complete set of tax instruments → they can target each policy margin and obtain the *first-best* outcome from a unilateral standpoint.
- Taxes/subsidies create a wedge b/w producer prices (P) and consumer prices (\tilde{P}):

$$\tilde{P}_{ij,k} = \frac{1 + \boldsymbol{t_{ij,k}}}{\left(1 + \boldsymbol{x_{ij,k}}\right)\left(1 + \boldsymbol{s_{i,k}}\right)} P_{ij,k}$$

Tax revenues are rebated to the consumers lump-sum.¹ Definition of equilibrium

¹Note: lump-sum transfers are isomorphic to uniform consumption subsidies in the present setup because the labor supply is inelastic—see Dixit, 1980 and Lashkaripour, 2020.

- Governments are afforded a complete set of tax instruments → they can target each policy margin and obtain the *first-best* outcome from a unilateral standpoint.
- Taxes/subsidies create a wedge b/w producer prices (P) and consumer prices (\tilde{P}):

 $\tilde{P}_{ij,k} = \frac{1 + t_{ij,k}}{\left(1 + x_{ij,k}\right)\left(1 + s_{i,k}\right)} P_{ij,k}$

Tax revenues are rebated to the consumers lump-sum.¹ Definition of equilibrium

- Governments are afforded a complete set of tax instruments → they can target each policy margin and obtain the *first-best* outcome from a unilateral standpoint.
- Taxes/subsidies create a wedge b/w producer prices (P) and consumer prices (\tilde{P}):

 $\tilde{P}_{ij,k} = \frac{1 + t_{ij,k}}{\left(1 + x_{ij,k}\right)\left(1 + s_{i,k}\right)}P_{ij,k}$ export subsidy offered by country *i*

Tax revenues are rebated to the consumers lump-sum.¹ (Definition of equilibrium)

- Governments are afforded a complete set of tax instruments → they can target each policy margin and obtain the *first-best* outcome from a unilateral standpoint.
- Taxes/subsidies create a wedge b/w producer prices (P) and consumer prices (\tilde{P}):

- Governments are afforded a complete set of tax instruments → they can target each policy margin and obtain the *first-best* outcome from a unilateral standpoint.
- Taxes/subsidies create a wedge b/w producer prices (P) and consumer prices (\tilde{P}):

 $\tilde{P}_{ij,k} = \frac{1 + t_{ij,k}}{\left(1 + x_{ij,k}\right)\left(1 + s_{i,k}\right)}P_{ij,k}$ export subsidy offered by country *i*- Tax revenues are rebated to the consumers lump-sum.¹ Definition of equilibrium

Efficient Policy from a Global Standpoint

 The globally efficient policy solves the following planning problem *contingent on* the provision of lump-sum transfers:

$$\max_{\mathbf{t},\mathbf{x},\mathbf{s}} \sum_{i \in \mathbb{C}} \left[\delta_i \log W_i \left(\mathbf{t}, \mathbf{x}, \mathbf{s}; \mathbb{X} \right) \right] \qquad s.t. \text{ Equilbrium conditons.}$$

 The efficient policy features zero trade taxes and Pigouvian subsidies that restore marginal-cost-pricing globally:

$$t_{ji,k}^{\star} = x_{ji,k}^{\star} = 0$$
 $1 + s_{i,k}^{\star} = 1 + \mu_k \quad (\forall i, k)$

- As we will see, welfare-maximizing governments will deviate from the efficient policy to take advantage of terms-of-trade (ToT) gains.

- The globally efficient policy solves the following planning problem *contingent on* the provision of lump-sum transfers: $\max_{\substack{\mathbf{t},\mathbf{x},\mathbf{s}}} \sum_{i \in \mathbb{C}} [\delta_i \log W_i(\mathbf{t}, \mathbf{x}, \mathbf{s}; \mathbb{X})] \qquad s.t. \text{ Equilbrium conditons.}$

 The efficient policy features zero trade taxes and Pigouvian subsidies that restore marginal-cost-pricing globally:

$$t_{ji,k}^{\star} = x_{ji,k}^{\star} = 0$$
 $1 + s_{i,k}^{\star} = 1 + \mu_k \quad (\forall i, k)$

 As we will see, welfare-maximizing governments will deviate from the efficient policy to take advantage of terms-of-trade (ToT) gains.

 The globally efficient policy solves the following planning problem *contingent on* the provision of lump-sum transfers:

vector of equilibrium outcome

$$\max_{\substack{\mathbf{t},\mathbf{x},\mathbf{s}\\ \text{Pareto weight}}} \sum_{i \in \mathbb{C}} \left[\delta_i \log W_i \left(\mathbf{t}, \mathbf{x}, \mathbf{s}; \mathbb{X} \right) \right] \qquad s.t. \text{ Equilbrium conditons}$$

 The efficient policy features zero trade taxes and Pigouvian subsidies that restore marginal-cost-pricing globally:

$$t_{ji,k}^{\pm} = x_{ji,k}^{\pm} = 0$$
 $1 + s_{i,k}^{\pm} = 1 + \mu_k \quad (\forall i, k)$

 As we will see, welfare-maximizing governments will deviate from the efficient policy to take advantage of terms-of-trade (ToT) gains.

- The globally efficient policy solves the following planning problem *contingent on* the provision of lump-sum transfers:

$$\max_{\mathbf{t},\mathbf{x},\mathbf{s}} \sum_{i \in \mathbb{C}} \left[\delta_i \log W_i \left(\mathbf{t}, \mathbf{x}, \mathbf{s}; \mathbb{X} \right) \right] \qquad s.t. \text{ Equilbrium conditons.}$$

 The efficient policy features zero trade taxes and Pigouvian subsidies that restore marginal-cost-pricing globally:

$$t_{ji,k}^{\pm} = x_{ji,k}^{\pm} = 0$$
 $1 + s_{i,k}^{\pm} = 1 + \mu_k \quad (\forall i, k)$

 As we will see, welfare-maximizing governments will deviate from the efficient policy to take advantage of terms-of-trade (ToT) gains.

- The globally efficient policy solves the following planning problem *contingent on* the provision of lump-sum transfers:

$$\max_{\mathbf{t},\mathbf{x},\mathbf{s}} \sum_{i \in \mathbb{C}} \left[\delta_i \log W_i \left(\mathbf{t}, \mathbf{x}, \mathbf{s}; \mathbb{X} \right) \right] \qquad s.t. \text{ Equilbrium conditons.}$$

 The efficient policy features zero trade taxes and Pigouvian subsidies that restore marginal-cost-pricing globally:

$$t_{ji,k}^{\pm} = x_{ji,k}^{\pm} = 0$$
 $1 + s_{i,k}^{\pm} = 1 + \mu_k \quad (\forall i, k)$

- As we will see, welfare-maximizing governments will deviate from the efficient policy to take advantage of terms-of-trade (ToT) gains.

Unilaterally Optimal Policy Choices

- Country *i*'s unilaterally optimal policy problem

- Note: the solution to the above problem does *not* internalize country *i*'s ToT externality on the rest of the world \rightarrow it's sub-optimal from a global standpoint.

- Country *i*'s unilaterally optimal policy problem

- Note: the solution to the above problem does *not* internalize country *i*'s ToT externality on the rest of the world \rightarrow it's sub-optimal from a global standpoint.

Country *i*'s unilaterally optimal policy problem

- Note: the solution to the above problem does *not* internalize country *i*'s ToT externality on the rest of the world \rightarrow it's sub-optimal from a global standpoint.

- Country *i*'s unilaterally optimal policy problem

- Note: the solution to the above problem does *not* internalize country *i*'s ToT externality on the rest of the world \rightarrow it's sub-optimal from a global standpoint.

[industrial subsidy]
$$1 + s_{i,k}^* = (1 + \mu_k) (1 + \overline{s}_i)$$

[import tariff]
$$1 + t_{ji,k}^* = \left(1 + \omega_{ji,k}\right) \left(1 + \bar{t}_i\right)$$

$$[\text{export subsidy}] \quad 1 + x_{ij,k}^* = \frac{(\sigma_k - 1) \sum_{n \neq i} \left[\left(1 + \omega_{ni,k} \right) \lambda_{nj,k} \right]}{1 + (\sigma_k - 1) \left(1 - \lambda_{ij,k} \right)} \left(1 + \bar{t}_i \right)$$

$$\begin{bmatrix} \text{industrial subsidy} \end{bmatrix} \quad 1 + s_{i,k}^* = (1 + \mu_k) (1 + \overline{s}_i) \longrightarrow \begin{bmatrix} \text{arbitrary tax shifters to} \\ \text{account for multiplicity} \end{bmatrix}$$
$$\begin{bmatrix} \text{import tariff} \end{bmatrix} \quad 1 + t_{ji,k}^* = (1 + \omega_{ji,k}) (1 + \overline{t}_i)$$
$$\begin{bmatrix} \text{export subsidy} \end{bmatrix} \quad 1 + x_{ij,k}^* = \frac{(\sigma_k - 1) \sum_{n \neq i} \left[(1 + \omega_{ni,k}) \lambda_{nj,k} \right]}{1 + (\sigma_k - 1) \left(1 - \lambda_{ij,k} \right)} (1 + \overline{t}_i)$$

restores marginal cost-pricing

[industrial subsidy]
$$1 + s_{i,k}^* = (1 + \mu_k) (1 + \overline{s}_i)$$

[import tariff]
$$1 + t_{ji,k}^* = \left(1 + \omega_{ji,k}\right) \left(1 + \bar{t}_i\right)$$

[export subsidy]
$$1 + x_{ij,k}^* = \frac{(\sigma_k - 1) \sum_{n \neq i} \left[\left(1 + \omega_{ni,k} \right) \lambda_{nj,k} \right]}{1 + (\sigma_k - 1) \left(1 - \lambda_{ij,k} \right)} \left(1 + \bar{t}_i \right)$$

[industrial subsidy]
$$1 + s_{i,k}^* = (1 + \mu_k) (1 + \overline{s}_i)$$

good *ij*, *k*'s (inverse) supply elasticity

[import tariff]
$$1 + t_{ji,k}^* = \left(1 + \omega_{ji,k}\right) \left(1 + \bar{t}_i\right)$$

$$[\text{export subsidy}] \quad 1 + x_{ij,k}^* = \frac{(\sigma_k - 1) \sum_{n \neq i} \left[\left(1 + \omega_{ni,k} \right) \lambda_{nj,k} \right]}{1 + (\sigma_k - 1) \left(1 - \lambda_{ij,k} \right)} \left(1 + \bar{t}_i \right)$$

[industrial subsidy]
$$1 + s_{i,k}^* = (1 + \mu_k) (1 + \bar{s}_i)$$

[import tariff]
$$1 + t_{ji,k}^* = (1 + \omega_{ji,k}) (1 + \bar{t}_i)$$

[export subsidy]
$$1 + x_{ij,k}^* = \frac{(\sigma_k - 1) \sum_{n \neq i} \left[\left(1 + \omega_{ni,k} \right) \lambda_{nj,k} \right]}{1 + (\sigma_k - 1) \left(1 - \lambda_{ij,k} \right)} \left(1 + \bar{t}_i \right)$$

[industrial subsidy]
$$1 + s_{i,k}^* = (1 + \mu_k) (1 + \overline{s}_i)$$

[import tariff]
$$1 + t_{ji,k}^* = \left(1 + \omega_{ji,k}\right) \left(1 + \overline{t}_i\right)$$

[export subsidy]
$$1 + x_{ij,k}^* = \frac{(\sigma_k - 1) \sum_{n \neq i} \left[(1 + \omega_{ni,k}) \lambda_{nj,k} \right]}{1 + (\sigma_k - 1) \left(1 - \lambda_{ij,k} \right)} (1 + \bar{t}_i)$$
[expenditure share on good ij,k

[industrial subsidy]
$$s_{i,k}^* = 0$$

[import tariff]
$$1 + t^*_{ji,k} = 1 + \bar{t}_i$$

$$[\text{export subsidy}] \quad 1 + x_{ij,k}^* = \frac{(\sigma_k - 1) \left(1 - \lambda_{ij,k}\right)}{1 + (\sigma_k - 1) \left(1 - \lambda_{ij,k}\right)} \left(1 + \bar{t}_i\right)$$

[industrial subsidy]
$$s_{i,k}^* = 0$$

[import tariff]
$$1 + t_{ji,k}^* = 1 + \bar{t}_i$$

[export subsidy]
$$1 + x_{ij,k}^* = \frac{(\sigma_k - 1)\left(1 - \lambda_{ij,k}\right)}{1 + (\sigma_k - 1)\left(1 - \lambda_{ij,k}\right)} (1 + \bar{t}_i)$$

industrial subsidy]
$$s_{i,k}^* = 0$$
 by choice of $s_i = 0$

[import tariff]
$$1 + t_{ji,k}^* = 1 + \overline{t}_i$$

$$[\text{export subsidy}] \quad 1 + x_{ij,k}^* = \frac{(\sigma_k - 1)\left(1 - \lambda_{ij,k}\right)}{1 + (\sigma_k - 1)\left(1 - \lambda_{ij,k}\right)} (1 + \bar{t}_i)$$

[industrial subsidy]
$$s_{i,k}^* = 0$$
 by choice of $s_i = 0$
[import tariff] $1 + t_{ji,k}^* = 1 + \overline{t}_i$ uniform optimal tariff
[export subsidy] $1 + x_{ij,k}^* = \frac{(\sigma_k - 1)(1 - \lambda_{ij,k})}{1 + (\sigma_k - 1)(1 - \lambda_{ij,k})} (1 + \overline{t}_i)$

Special Case: Small Open Economy

Suppose country *i* is a small open economy $(\omega_{ji,k} \approx \lambda_{ij,k} \approx 0) \longrightarrow$ our optimal policy formulas reduce to:

[industrial subsidy]
$$1 + s_{i,k}^* = (1 + \mu_k) (1 + \overline{s}_i)$$

[import tariff]
$$1 + t^*_{ji,k} = 1 + \bar{t}_i$$

[export subsidy]
$$1 + x_{ij,k}^* = \frac{\sigma_k - 1}{\sigma_k} \left(1 + \bar{t}_i\right)$$
Special Case: Small Open Economy

Suppose country *i* is a small open economy $(\omega_{ji,k} \approx \lambda_{ij,k} \approx 0) \longrightarrow$ our optimal policy formulas reduce to:

[industrial subsidy]
$$1 + s_{i,k}^* = (1 + \mu_k) (1 + \overline{s}_i)$$

[import tariff]
$$1 + t^*_{ji,k} = 1 + \bar{t}_i$$

[export subsidy]
$$1 + x_{ij,k}^* = \frac{\sigma_k - 1}{\sigma_k} (1 + \bar{t}_i)$$

The unilaterally optimal (first-best) policy consists of

1. industrial subsidies (\mathbf{s}_i) that promote high- μ (*high-returns-to-scale*) industries.

2. import tariffs (\mathbf{t}_i) + export subsidies (\mathbf{x}_i) that contract exports in low- σ industries.

Corollary: first-best optimal tariffs and export subsidies are *misallocation-blind*.

The unilaterally optimal (first-best) policy consists of

1. industrial subsidies (\mathbf{s}_i) that promote high- μ (*high-returns-to-scale*) industries.

2. import tariffs (\mathbf{t}_i) + export subsidies (\mathbf{x}_i) that contract exports in low- σ industries.

Corollary: first-best optimal tariffs and export subsidies are *misallocation-blind*.

Second-Best: Optimal Policy with Limited Policy Instruments

- Country *i*'s 2nd-best optimal trade policy problem

- Note: The restriction that $s_i = 0$ may reflect institutional barriers or political economy pressures.

Second-Best: Optimal Policy with Limited Policy Instruments

- Country *i*'s 2nd-best optimal trade policy problem

- Note: The restriction that $s_i = 0$ may reflect institutional barriers or political economy pressures.

Second-Best: Optimal Policy with Limited Policy Instruments

- Country *i*'s 2nd-best optimal trade policy problem

- Note: The restriction that $s_i = 0$ may reflect institutional barriers or political economy pressures.

$$1 + t_{ji,k}^{**} = \frac{1 + (\sigma_k - 1) \lambda_{ii,k}}{1 + \frac{1 + \overline{\mu_i}}{1 + \mu_k} (\sigma_k - 1) \lambda_{ii,k}} \left(1 + t_{ji,k}^*\right)$$
$$1 + x_{ij,k}^{**} = \frac{1 + \mu_k}{1 + \overline{\mu_i}} \left(1 + x_{ij,k}^*\right)$$

$$1 + t_{ji,k}^{**} = \frac{1 + (\sigma_k - 1) \lambda_{ii,k}}{1 + \frac{1 + \overline{\mu_i}}{1 + \mu_k} (\sigma_k - 1) \lambda_{ii,k}} \left(1 + t_{ji,k}^*\right)$$
$$1 + x_{ij,k}^{**} = \frac{1 + \mu_k}{1 + \overline{\mu_i}} \left(1 + x_{ij,k}^*\right)$$
average μ_k in economy *i*

$$1 + t_{ji,k}^{**} = \frac{1 + (\sigma_k - 1)\lambda_{ii,k}}{1 + \frac{1 + \overline{\mu_i}}{1 + \mu_k}(\sigma_k - 1)\lambda_{ii,k}} (1 + t_{ji,k}^*)$$

$$1 + x_{ij,k}^{**} = \frac{1 + \mu_k}{1 + \overline{\mu_i}} (1 + x_{ij,k}^*)$$
promote exports in high- μ industries

The Efficacy of Trade and Industrial Policy

Tension between ToT and Allocative Efficiency

- Improving allocative efficiency necessitates directing resources toward high-returns-to-scale (high-µ) industries.
- ToT improvement requires contracting exports (an thus output) (low- σ) industries, where import demand is less-elastic.

Conjecture 1

- If $Cov(\sigma_k, \mu_k) < 0 \longrightarrow$ standalone trade policy has difficulty striking a balance between ToT & misallocation-correcting objectives
- 2nd-best trade policy measures are, thus, ineffective, even when set optimally.

Tension between ToT and Allocative Efficiency

- Improving allocative efficiency necessitates directing resources toward high-returns-to-scale (high-µ) industries.
- ToT improvement requires contracting exports (an thus output) (low- σ) industries, where import demand is less-elastic.

Conjecture 2

- If $Cov(\sigma_k, \mu_k) < 0 \longrightarrow$ unilateral scale correction via industrial policy can worsen national welfare through adverse ToT effects
- These adverse consequences resemble the *immiserizing growth paradox*

Tension between ToT and Misallocation-Correcting Objectives

Tension between ToT and Misallocation-Correcting Objectives

The Case for Industrial Policy Coordination

- If countries restrict themselves to efficient industrial policy choices, they my avoid implementation to escape immiserizing growth effects → race to the bottom
- industrial policy coordination via a deep agreement can address this problem

The Case for Industrial Policy Coordination

- If countries restrict themselves to efficient industrial policy choices, they my avoid implementation to escape immiserizing growth effects → race to the bottom
- industrial policy coordination via a deep agreement can address this problem

The Case for Industrial Policy Coordination

- If countries restrict themselves to efficient industrial policy choices, they my avoid implementation to escape immiserizing growth effects —> race to the bottom
- industrial policy coordination via a deep agreement can address this problem

Estimating the Key Policy Parameters

- The gains from optimal policy depend crucially on two sets of elasticities:²

- 1. industry-level scale elasticity (μ_k)
- 2. industry-level trade elasticity ($\sigma_k 1$)

– The past literature often uses ad-hoc normalizations to recover μ_k :

- perfectly competitive models $\longrightarrow \mu_k = 0$
- traditional Krugman/Melitz models $\longrightarrow \mu_k = \frac{1}{\text{trade elasticity}}$

²**Note:** To account for firm-selection à la *Melitz-Chaney*, we need to estimate the shape of the Pareto distribution in addition to σ_k and $\mu_k = 1/(\gamma_k - 1)$.

- The gains from optimal policy depend crucially on two sets of elasticities:²

- 1. industry-level scale elasticity (μ_k)
- 2. industry-level trade elasticity ($\sigma_k 1$)
- The past literature often uses ad-hoc normalizations to recover μ_k :
 - perfectly competitive models $\longrightarrow \mu_k = 0$
 - traditional Krugman/Melitz models $\longrightarrow \mu_k = \frac{1}{\text{trade elasticity}}$

²**Note:** To account for firm-selection à la *Melitz-Chaney*, we need to estimate the shape of the Pareto distribution in addition to σ_k and $\mu_k = 1/(\gamma_k - 1)$.

Overview of Estimation Strategy

- We jointly estimate μ_k and σ_k to obtain credible estimates for $Cov(\mu_k, \sigma_k)$
- Estimating equation : *firm-level* nested-CES demand function (*t* indexes year)

$$\ln \tilde{x}_{ji,kt}(\omega) = -(\sigma_k - 1) \ln \tilde{p}_{ji,kt}(\omega) + \left[1 - \frac{\sigma_k - 1}{\gamma_k - 1}\right] \ln \lambda_{ji,kt}(\omega) + D_{i,kt} + \varepsilon_{\omega jikt}$$
irm-leve sales ($\tilde{x} = \tilde{p}q$) firm-level price within-national market share

- Data source: Universe of Colombian import transactions during 2007-2013, covering 226,288 exporting firms from 251 different countries.
- Identification strategy: leverage high-frequency trade data to construct a shift-share IV for variety-level prices (Estimation Details)

Overview of Estimation Strategy

- We jointly estimate μ_k and σ_k to obtain credible estimates for $Cov(\mu_k, \sigma_k)$
- Estimating equation : *firm-level* nested-CES demand function (*t* indexes year)

$$\ln \tilde{x}_{ji,kt}(\omega) = -(\sigma_k - 1) \ln \tilde{p}_{ji,kt}(\omega) + \left[1 - \frac{\sigma_k - 1}{\gamma_k - 1}\right] \ln \lambda_{ji,kt}(\omega) + D_{i,kt} + \varepsilon_{\omega jikt}$$
firm-level sales ($\tilde{x} = \tilde{p}q$) within-national market share

- Data source: Universe of Colombian import transactions during 2007-2013, covering 226,288 exporting firms from 251 different countries.
- Identification strategy: leverage high-frequency trade data to construct a shift-share IV for variety-level prices (Estimation Details)

Overview of Estimation Strategy

- We jointly estimate μ_k and σ_k to obtain credible estimates for $Cov(\mu_k, \sigma_k)$
- Estimating equation : firm-level nested-CES demand function (t indexes year)

$$\ln \tilde{x}_{ji,kt}(\omega) = -(\sigma_k - 1) \ln \tilde{p}_{ji,kt}(\omega) + [1 - \mu_k (\sigma_k - 1)] \ln \lambda_{ji,kt}(\omega) + D_{i,kt} + \varepsilon_{\omega jik}$$

firm-leve sales ($\tilde{x} = \tilde{p}q$) firm-level price within-national market share

- Data source: Universe of Colombian import transactions during 2007-2013, covering 226,288 exporting firms from 251 different countries.
- Identification strategy: leverage high-frequency trade data to construct a shift-share IV for variety-level prices Estimation Details

Estimation Results

			Estimated Parameter			
Sector	ISIC code	trade elasticity $\sigma_k - 1$	scale elast. × trade elast. $\mu_k \times (\sigma_k - 1)$	scale elasticity μ_k	Obs.	Weak Ident. Test
Agriculture & Mining	100-1499	6.227	0.891	0.143	11,568	2.40
		(2.345)	(0.148)	(0.059)		
Food	1500-1699	2.303	0.905	0.393	19,615	6.27
		(0.765)	(0.046)	(0.132)		
Textiles, Leather, & Footwear	1700-1999	3.359	0.753	0.224	125,120	66.65
		(0.353)	(0.022)	(0.024)		
Wood	2000-2099	3.896	0.891	0.229	5,872	1.41
		(1.855)	(0.195)	(0.120)		
Paper	2100-2299	2.646	0.848	0.320	37,376	3.23
		(1.106)	(0.061)	(0.136)		
Petroleum	2300-2399	0.636	0.776	1.220	3,973	2.83
		(0.464)	(0.119)	(0.909)		
Chemicals	2400-2499	3.966	0.921	0.232	133,142	38.01
		(0.403)	(0.025)	(0.024)		

Estimation Results

			Estimated Parameter			
Sector	ISIC code	trade elasticity $\sigma_k - 1$	scale elast. × trade elast. $\mu_k \times (\sigma_k - 1)$	scale elasticity μ_k	Obs.	Weak Ident. Test
Agriculture & Mining	100-1499	6.227	0.891	0.143	11,568	2.40
		(2.345)	(0.148)	(0.059)		
Food	1500-1699	2.303	0.905	0.393	19,615	6.27
		(0.765)	(0.046)	(0.132)		
Textiles, Leather, & Footwear	1700-1999	3.359	0.753	0.224	125,120	66.65
		(0.353)	(0.022)	(0.024)		
Wood	2000-2099	3.896	0.891	0.229	5,872	1.41
		(1.855)	(0.195)	(0.120)		
Paper	2100-2299	2.646	0.848	0.320	37,376	3.23
		(1.106)	(0.061)	(0.136)		
Petroleum	2300-2399	0.636	0.776	1.220	3,973	2.83
		(0.464)	(0.119)	(0.909)		
Chemicals	2400-2499	3.966	0.921	0.232	133,142	38.01
		(0.403)	(0.025)	(0.024)	J	

Estimation Results

		Estimated Parameter				
Sector	ISIC code	trade elasticity $\sigma_k - 1$	scale elast. × trade elast. $\mu_k \times (\sigma_k - 1)$	scale elasticity μ_k	Obs.	Weak Ident. Test
Rubber & Plastic	2500-2599	5.157 (1.176)	0.721 (0.062)	0.140 (0.034)	106,398	7.16
Minerals	2600-2699	5.283 (1.667)	0.881 (0.108)	0.167 (0.056)	27,952	3.53
Basic & Fabricated Metals	2700-2899	3.004 (0.484)	0.627 (0.030)	0.209 (0.035)	153,102	20.39
Machinery & Equipment	2900-3099	7.750 (1.330)	0.927 (0.072)	0.120 (0.023)	263,797	12.01
Electrical & Optical Equipment	3100-3399	1.235 (0.323)	0.682 (0.017)	0.552 (0.145)	257,775	26.27
Transport Equipment	3400-3599	2.805 (0.834)	0.363 (0.036)	0.129 (0.041)	85,920	5.50
N.E.C. & Recycling	3600-3800	6.169 (1.012)	0.938 (0.090)	0.152 (0.029)	70,264	11.57

Summary of Estimated Scale Elasticities

High returns to scale sectors

- 1. Electrical & Optical Equipment
- 2. Petroleum
- 3. Paper

Low returns to scale sectors

- 1. Agriculture & Mining
- 2. Wood
- 3. Machinery Equipment
- When using our estimated scale elasticities, researchers must ensure to retain the covariance between scale & trade elasticities, $Cov (\mu_k, \sigma_k)$, by either:
 - 1. using our estimated scale elasticities (μ_k) in conjunction with our estimated trade elasticities ($\sigma_k 1$), which implies Cov (μ_k, σ_k) ≈ -0.65
 - 2. estimating the trade elasticity externally, and recovering the scale elasticity from our estimated product of the two elasticities, $\mu_k (\sigma_k 1)$

Summary of Estimated Scale Elasticities

High returns to scale sectors

- 1. Electrical & Optical Equipment
- 2. Petroleum
- 3. Paper

Low returns to scale sectors

- 1. Agriculture & Mining
- 2. Wood
- 3. Machinery Equipment
- When using our estimated scale elasticities, researchers must ensure to retain the covariance between scale & trade elasticities, $Cov(\mu_k, \sigma_k)$, by either:
 - 1. using our estimated scale elasticities (μ_k) in conjunction with our estimated trade elasticities (σ_k 1), which implies Cov (μ_k , σ_k) \approx –0.65
 - 2. estimating the trade elasticity externally, and recovering the scale elasticity from our estimated product of the two elasticities, $\mu_k (\sigma_k 1)$

Quantifying the Gains from Policy

- Compute the counterfactual equilibrium under optimal policy:
 - (1) equilibrium allocation depends on optimal policy
 - (2) optimal policy depends on equilibrium allocation
 - jointly solve the systems of equations implied by (1) and (2).
- Sufficient statistics for counterfactual policy analysis

$$\mathcal{B}_{v} \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, w_{n}\bar{L}_{n}, Y_{n}\}_{ni,k} \qquad \mathcal{B}_{e} = \{\sigma_{k} - 1, \mu_{k}\}_{k}$$

- Compute the counterfactual equilibrium under optimal policy:
 - (1) equilibrium allocation depends on optimal policy
 - (2) optimal policy depends on equilibrium allocation
 - jointly solve the systems of equations implied by (1) and (2).
- Sufficient statistics for counterfactual policy analysis

$$\mathcal{B}_{v} \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, w_{n}\bar{L}_{n}, Y_{n}\}_{ni,k} \qquad \mathcal{B}_{e} = \{\sigma_{k} - 1, \mu_{k}\}_{k}$$

expenditure share ←

- Compute the counterfactual equilibrium under optimal policy:
 - (1) equilibrium allocation depends on optimal policy
 - (2) optimal policy depends on equilibrium allocation
 - jointly solve the systems of equations implied by (1) and (2).
- Sufficient statistics for counterfactual policy analysis

$$\mathcal{B}_{v} \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, w_{n}\bar{L}_{n}, Y_{n}\}_{ni,k} \qquad \mathcal{B}_{e} = \{\sigma_{k} - 1, \mu_{k}\}_{k}$$
sales share

- Compute the counterfactual equilibrium under optimal policy:
 - (1) equilibrium allocation depends on optimal policy
 - (2) optimal policy depends on equilibrium allocation
 - jointly solve the systems of equations implied by (1) and (2).
- Sufficient statistics for counterfactual policy analysis

$$\mathcal{B}_{v} \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, w_{n}\overline{L}_{n}, Y_{n}\}_{ni,k} \qquad \mathcal{B}_{e} = \{\sigma_{k} - 1, \mu_{k}\}_{k}$$
national accounts data
Sketch of Quantitative Strategy

- Compute the counterfactual equilibrium under optimal policy:
 - (1) equilibrium allocation depends on optimal policy
 - (2) optimal policy depends on equilibrium allocation
 - jointly solve the systems of equations implied by (1) and (2).
- Sufficient statistics for counterfactual policy analysis

$$\mathcal{B}_{v} \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, w_{n}\bar{L}_{n}, Y_{n}\}_{ni,k}$$

$$\mathcal{B}_{e} = \{ \sigma_{k} - 1, \mu_{k} \}_{k}$$
estimable parameters

WORLD INPUT-OUTPUT DATABASE (2000-2014)

- production and expenditure by *origin*×*destination*×*industry*.
- 44 Countries + an aggregate of the rest of the world
- 56 Industries

UNCTAD-TRAINS Database:

- average industry-level tariffs for all 44×43 country pairs.

The Gains from Unilaterally Optimal Policies (w/o retaliation)

Average Gains from Policy (% Δ Real GDP)

The Immiserizing Growth Effects of Unilateral Industrial Policy

Welfare consequences of corrective industrial subsidies under free entry

- Unilateral adoption $\rightarrow 0.70\%$ decline in real GDP
- Coordinated via a deep agreement \longrightarrow 3.22% rise in real GDP

Welfare consequences of *corrective* industrial subsidies under **restricted entry**

- Unilateral adoption $\longrightarrow 0.25\%$ decline in real GDP
- Coordinated via a deep agreement \rightarrow 1.24% rise in real GDP

The Immiserizing Growth Effects of Unilateral Industrial Policy

Welfare consequences of corrective industrial subsidies under free entry

- Unilateral adoption $\rightarrow 0.70\%$ decline in real GDP
- Coordinated via a deep agreement \rightarrow 3.22% rise in real GDP

Welfare consequences of corrective industrial subsidies under restricted entry

- Unilateral adoption $\rightarrow 0.25\%$ decline in real GDP
- Coordinated via a deep agreement \rightarrow 1.24% rise in real GDP

The Prospective Gains from Deep Cooperation

A Stronger Case for International Cooperation?

Free Entry

O RUS

O KOR

• LUX

• MEXN

• EST

• ROU

O TUR

• MLT

- Import tariffs and export subsidies are an ineffective second-best measure for correcting sectoral misallocation due to scale economies
- Unilateral adoption of *first-best* industrial policies is also ineffective, as it leads to *immiserizing growth* effects in most countries.
- Industrial policies coordinated internationally via a *deep* agreement are more transformative than any unilateral policy intervention.

Thank you

References

Equilibrium for a given Vector of Taxes, $\mathbb{T}=(t,x,s)$

1. Consumption choices are optimal:

$$\begin{cases} Q_{ji,k} = \mathcal{D}_{ji,k}(Y_i, \tilde{\mathbf{P}}_i) \\ \tilde{P}_{ji,k} = \frac{1 + t_{ji,k}}{(1 + x_{ji,k})(1 + s_{j,k})} P_{ji,k} \end{cases}$$

- 2. Production choices are optimal: $P_{ij,k} = constant_{ij} \times w_i \left(\sum_n \tau_{in,k} Q_{in,k}\right)^{-\frac{i}{1+\mu_k}}$
- 3. Wage payments equal net sales: $w_i L_i = \sum_{j=1}^{N} \sum_{k=1}^{\mathcal{K}} [P_{ij,k} Q_{ij,k}]$

4. Income equals wage payments plus tax revenues: $Y_i = w_i L_i + \mathcal{R}_i(\mathbf{t}, \mathbf{x}, \mathbf{s})$

Equilibrium for a given Vector of Taxes, $\mathbb{T} = (t, x, s)$

1. Consumption choices are optimal: $\begin{cases} Q_{ji,k} = \mathcal{D}_{ji,k}(Y_i, \tilde{\mathbf{P}}_i) \\ \tilde{P}_{ji,k} = \frac{1+t_{ji,k}}{(1+x_{ji,k})(1+s_{j,k})} P_{ji,k} \end{cases}$

2. Production choices are optimal: $P_{ij,k} = constant_{ij} \times w_i \left(\sum_n \tau_{in,k} Q_{in,k}\right)^{-\frac{\mu_k}{1+\mu_k}}$

3. Wage payments equal net sales: $w_i L_i = \sum_{j=1}^{N} \sum_{k=1}^{\mathcal{K}} [P_{ij,k} Q_{ij,k}]$

4. Income equals wage payments plus tax revenues: $Y_i = w_i L_i + \mathcal{R}_i(\mathbf{t}, \mathbf{x}, \mathbf{s})$

Step 1-Reformulate the optimal policy problem

- The government in *i* chooses optimal consumer prices and abatement levels

$$\max_{\mathbb{T}_i} W_i(\mathbb{T}_i; \mathbb{X}_i) \quad [\mathbf{P1}] \xrightarrow{\text{reformulate}} \max_{\mathbb{P}_i} W_i(\mathbb{P}_i; \mathbb{X}_i) \quad [\mathbf{P1'}]$$

– Optimal taxes can be recovered from the optimal choice w.r.t. \mathbb{P}_i

$$1 + t_{ji,k}^{\star} = \frac{\tilde{P}_{ji,k}^{\star}}{P_{ji,k}}, \qquad 1 + x_{ij,k}^{\star} = \frac{P_{ij,k}^{\star}}{\tilde{P}_{ij,k}} \frac{P_{ii,k}^{\star}}{\tilde{P}_{ii,k}}, \qquad 1 + s_{i,k}^{\star} = \frac{P_{ii,k}^{\star}}{\tilde{P}_{ii,k}}$$

Our Dual Approach to Characterizing \mathbb{T}^{\star}

Step 1–Reformulate the optimal policy problem

- The government in *i* chooses optimal consumer prices and abatement levels

– Optimal taxes can be recovered from the optimal choice w.r.t. \mathbb{P}_i

$$1 + t_{ji,k}^{\star} = \frac{\tilde{P}_{ji,k}^{\star}}{P_{ji,k}}, \qquad 1 + x_{ij,k}^{\star} = \frac{P_{ij,k}^{\star}}{\tilde{P}_{ij,k}} \frac{P_{ii,k}^{\star}}{\tilde{P}_{ii,k}}, \qquad 1 + s_{i,k}^{\star} = \frac{P_{ii,k}^{\star}}{\tilde{P}_{ii,k}}$$

Step 1-Reformulate the optimal policy problem

- The government in *i* chooses optimal consumer prices and abatement levels

– Optimal taxes can be recovered from the optimal choice w.r.t. \mathbb{P}_i

$$1 + t_{ji,k}^{\star} = \frac{\tilde{P}_{ji,k}^{\star}}{P_{ji,k}}, \qquad 1 + x_{ij,k}^{\star} = \frac{P_{ij,k}^{\star}}{\tilde{P}_{ij,k}} \frac{P_{ii,k}^{\star}}{\tilde{P}_{ii,k}}, \qquad 1 + s_{i,k}^{\star} = \frac{P_{ii,k}^{\star}}{\tilde{P}_{ii,k}}$$

- This step is complicated by GE considerations \rightarrow traditional theories bypass these complications by focusing on partial equilibrium 2-by-2 models.
- Intermediate Envelope Theorem: The first-order conditions associated with Problem P1' can be derived as if

1. wages $\mathbf{w} = \{w_i\}$ are constant ~ GE wage effects are welfare-neutral

2. demand is income inelastic ~ GE income effects are welfare-neutral at the optimum

- This step is complicated by GE considerations \rightarrow traditional theories bypass these complications by focusing on partial equilibrium 2-by-2 models.
- Intermediate Envelope Theorem: The first-order conditions associated with Problem P1' can be derived *as if*
 - 1. wages $\mathbf{w} = \{w_i\}$ are constant ~ GE wage effects are welfare-neutral
 - 2. demand is income inelastic ~ GE income effects are *welfare-neutral* at the optimum

- This step is complicated by GE considerations \rightarrow traditional theories bypass these complications by focusing on partial equilibrium 2-by-2 models.
- Intermediate Envelope Theorem: The first-order conditions associated with Problem P1' can be derived *as if*
 - 1. wages $\mathbf{w} = \{w_i\}$ are constant ~ GE wage effects are *welfare-neutral*
 - 2. demand is income inelastic ~ GE income effects are welfare-neutral at the optimum

- This step is complicated by GE considerations \rightarrow traditional theories bypass these complications by focusing on partial equilibrium 2-by-2 models.
- Intermediate Envelope Theorem: The first-order conditions associated with Problem P1' can be derived *as if*

1. wages $\mathbf{w} = \{w_i\}$ are constant ~ LERNER SYMMETRY + TARGETING PRINCIPLE

2. demand is income inelastic ~ GE income effects are welfare-neutral at the optimum

Step 3–Solve the system of F.O.C.s

- We use the primitive properties of Marshallian demand (i.e., *Cournot aggregation, homogeneity of degree zero*) to prove that the system of F.O.C.s admits a unique and trivial solution.
- Inverting the system of F.O.C.s, determines optimal price wedges \longrightarrow implicitly determines optimal taxes \mathbb{T}^*

$$1 + t_{ji,k}^{\star} = \frac{\tilde{P}_{ji,k}^{\star}}{P_{ji,k}}, \qquad 1 + x_{ij,k}^{\star} = \frac{P_{ij,k}^{\star}}{\tilde{P}_{ij,k}} \frac{P_{ii,k}^{\star}}{\tilde{P}_{ii,k}}, \qquad 1 + s_{i,k}^{\star} = \frac{P_{ii,k}^{\star}}{\tilde{P}_{ii,k}}$$

Return

Step 3–Solve the system of F.O.C.s

- We use the primitive properties of Marshallian demand (i.e., *Cournot aggregation, homogeneity of degree zero*) to prove that the system of F.O.C.s admits a unique and trivial solution.
- Inverting the system of F.O.C.s, determines optimal price wedges \longrightarrow implicitly determines optimal taxes \mathbb{T}^*

$$1 + t_{ji,k}^{\star} = \frac{\tilde{P}_{ji,k}^{\star}}{P_{ji,k}}, \qquad 1 + x_{ij,k}^{\star} = \frac{P_{ij,k}^{\star}}{\tilde{P}_{ij,k}} \frac{P_{ii,k}^{\star}}{\tilde{P}_{ii,k}}, \qquad 1 + s_{i,k}^{\star} = \frac{P_{ii,k}^{\star}}{\tilde{P}_{ii,k}}$$

Return

Take first differences to eliminate the firm-product FE

 $\ln \tilde{x}_{j,kt}\left(\omega\right) = -\left(\sigma_{k}-1\right) \Delta \ln \tilde{p}_{j,kt}\left(\omega\right) + \left(1-\mu_{k}\left[\sigma_{k}-1\right]\right) \Delta \ln \lambda_{j,kt}\left(\omega\right) + D_{kt} + \Delta \varepsilon_{\omega j k t}$

- Identification Challenge: $\Delta \ln p$ (and $\Delta \ln \lambda$) maybe correlated with $\Delta \varepsilon$.

- Identification Strategy: leverage high frequency transaction level data to construct a shift-share instrument for $\Delta \ln \tilde{p}$ that measures export to aggregate exchange rate shocks at the firm-product-year level. Return

Take first differences to eliminate the firm-product FE

 $\ln \tilde{x}_{j,kt}\left(\omega\right) = -\left(\sigma_{k}-1\right) \Delta \ln \tilde{p}_{j,kt}\left(\omega\right) + \left(1-\mu_{k}\left[\sigma_{k}-1\right]\right) \Delta \ln \lambda_{j,kt}\left(\omega\right) + D_{kt} + \Delta \varepsilon_{\omega j k t}$

– **Identification Challenge:** $\Delta \ln p$ (and $\Delta \ln \lambda$) maybe correlated with $\Delta \varepsilon$.

- Identification Strategy: leverage high frequency transaction level data to construct a shift-share instrument for $\Delta \ln \tilde{p}$ that measures export to aggregate exchange rate shocks at the firm-product-year level. Return

Take first differences to eliminate the firm-product FE

 $\ln \tilde{x}_{j,kt}\left(\omega\right) = -\left(\sigma_{k}-1\right) \Delta \ln \tilde{p}_{j,kt}\left(\omega\right) + \left(1-\mu_{k}\left[\sigma_{k}-1\right]\right) \Delta \ln \lambda_{j,kt}\left(\omega\right) + D_{kt} + \Delta \varepsilon_{\omega j k t}$

– **Identification Challenge:** $\Delta \ln p$ (and $\Delta \ln \lambda$) maybe correlated with $\Delta \varepsilon$.

- Identification Strategy: leverage high frequency transaction level data to construct a shift-share instrument for $\Delta \ln \tilde{p}$ that measures export to aggregate exchange rate shocks at the firm-product-year level. Return

- Compile an external database on monthly exchange rates.
- Interact the change in monthly exchange rates w/ prior monthly export shares to construct a variety-specific shift-share IV:

$$z_{j,kt}(\omega) = \sum_{m=1}^{12} [\text{share of month } m \text{ exports}]_{t-1} \times [\text{YoY change in month } m \text{ exchange rate}]_t$$

- $z_{j,kt}(\omega)$ measures firm-level exposure to cost shocks that channel through exchange rate movements. Return

- Compile an external database on monthly exchange rates.
- Interact the change in monthly exchange rates w/ prior monthly export shares to construct a variety-specific shift-share IV:

$$z_{j,kt}(\omega) = \sum_{m=1}^{12} [\text{share of month } m \text{ exports}]_{t-1} \times [\text{YoY change in month } m \text{ exchange rate}]_t$$

 $- z_{j,kt}(\omega)$ measures firm-level exposure to cost shocks that channel through exchange rate movements. Return

Accounting for Firm-Selection à la Melitz-Chaney

Gains Implied by σ_k and μ_k Estimated in Levels

