Profits, Scale Economies, and the
 Gains from Trade and Industrial Policy

November 2023

Ahmad Lashkaripour Indiana University

Volodymyr Lugovskyy
Indiana University

Industrial Policy is on the Rise Globally

The Rise of Industrial Policy

/ Global industrial policy interventions
2.0K

Source: "The New Economics of Industrial Policy," Reka Juhasz, Nathan Lane and Dani Rodrik, NBER (2023), figure 3.1

Trade Restrictions Being Used to Pursue Industrial Policy Objectives

Made in China 2025

- 2015 Initiative to promote Chinese manufacturing via trade barriers and subsidies.

National Trade Council
Created in Dec 2016 to promote US
manufacturing (later became ОтMP)
Proposed tariffs on goods imported from

China to counter "Made in China 2025"

Trade Restrictions Being Used to Pursue Industrial Policy Objectives

Made in China 2025

- 2015 Initiative to promote Chinese manufacturing via trade barriers and subsidies.

National Trade Council

- Created in Dec 2016 to promote US manufacturing (later became OTMP).
- Proposed tariffs on goods imported from China to counter "Made in China 2025".

Renewed Interest in Old-but-Unresolved Policy Questions

These developments have resurfaced some old-but-unresolved policy questions:

1. is trade policy an effective tool for correcting inter-sectoral misallocation?

2. if not, should governments correct misallocation, unilaterally, with industrial subsidies to taroet industries?

3. or should they coordinate their industrial policies via deep trade agreements?

Renewed Interest in Old-but-Unresolved Policy Questions

These developments have resurfaced some old-but-unresolved policy questions:

1. is trade policy an effective tool for correcting inter-sectoral misallocation?
2. if not, should governments correct misallocation, unilaterally, with industrial subsidies to target industries?
3. or should they coordinate their industrial policies via deep trade agreements?

Renewed Interest in Old-but-Unresolved Policy Questions

These developments have resurfaced some old-but-unresolved policy questions:

1. is trade policy an effective tool for correcting inter-sectoral misallocation?
2. if not, should governments correct misallocation, unilaterally, with industrial subsidies to target industries?
3. or should they coordinate their industrial policies via deep trade agreements?

This Paper: Roadmap

Step \#1. characterize optimal trade and industrial policies in an important class of multi-industry, multi-country quantitative trade models where misallocation stems from scale economies or profit-generating markups

Step \#2. estimate the structural parameters that govern the gains from trade and industrial policy in open economies

Step \#3. leverage the estimated parameters and optimal policy formulas to measure the gains from trade and industrial nolicy under various scenarios

This Paper: Roadmap

Step \#1. characterize optimal trade and industrial policies in an important class of multi-industry, multi-country quantitative trade models where misallocation stems from scale economies or profit-generating markups

Step \#2. estimate the structural parameters that govern the gains from trade and industrial policy in open economies

Step \#3. leverage the estimated parameters and optimal policy formulas to measure the gains from trade and industrial policy under various scenarios

This Paper: Roadmap

Step \#1. characterize optimal trade and industrial policies in an important class of multi-industry, multi-country quantitative trade models where misallocation stems from scale economies or profit-generating markups

Step \#2. estimate the structural parameters that govern the gains from trade and industrial policy in open economies

Step \#3. leverage the estimated parameters and optimal policy formulas to measure the maximal gains from trade and industrial policy under various scenarios

This Paper: Overview of Findings

1. (2nd-best) Import tariffs and export subsidies are ineffective at correcting sectoral misallocation, even when designed optimally.

- This is due to an innate tension between allocative efficiency and the terms-of-trade in open economies

2. Unilateral adoption of targeted industrial policies is also ineffective, as it triggers immiserizing growth effects in most countries.

Internationally-coordinated industrial policies, however, deliver welfare gains that are more transformative that any unilateral policy intervention

- a deep agreement may be necessary to address free-riding

This Paper: Overview of Findings

1. (2nd-best) Import tariffs and export subsidies are ineffective at correcting sectoral misallocation, even when designed optimally.

- This is due to an innate tension between allocative efficiency and the terms-of-trade in open economies

2. Unilateral adoption of targeted industrial policies is also ineffective, as it triggers immiserizing growth effects in most countries.
3. Internationally-coordinated industrial policies, however, deliver welfare gains that are more transformative that any unilateral policy intervention

This Paper: Overview of Findings

1. (2nd-best) Import tariffs and export subsidies are ineffective at correcting sectoral misallocation, even when designed optimally.

- This is due to an innate tension between allocative efficiency and the terms-of-trade in open economies

2. Unilateral adoption of targeted industrial policies is also ineffective, as it triggers immiserizing growth effects in most countries.
3. Internationally-coordinated industrial policies, however, deliver welfare gains that are more transformative that any unilateral policy intervention

- a deep agreement may be necessary to address free-riding

Theoretical Model

Overview of the Model

We adopt a generalized multi-country, multi-industry Krugman model:

- semi-parametric + general equilibrium
- tractably accommodates IO linkages
- accommodates the ToT-improving \& misallocation-correcting cases for policy
- is isomorphic to a Melitz-Pareto model or an Eaton-Kortum model with Marshallian externalities (Kucheryavyy et al., 2023).

The Economic Environment

- Many countries: $i, j, n=1, \ldots, \mathcal{N}$
- Country i is populated by L_{i} workers who supply labor inelastically.
- Labor is the only (primary) factor of production
- Many industries: $k, g=1, \ldots, \mathcal{K}$
- Industries differ in terms of their trade elasticity, scale elasticity, etc.
- Each industry is served by many firms (index ω)

Notation: Good's Indexes

- Goods are indexed by origin-destination-industry

$$
\operatorname{good} i j, k \sim \operatorname{origin} i-\text { destination } j \text { - industry } k
$$

variables are indexed by origin-industry

 subscript $i, k \sim$ origin i-industry k variables are indexed by destination-industry subscript $j, k \sim$ destination j-industry k
Notation: Good's Indexes

- Goods are indexed by origin-destination-industry

$$
\text { good } i j, k \sim \text { origin } i-\text { destination } j-\text { industry } k
$$

- Supply-side variables are indexed by origin-industry

$$
\text { subscript } i, k \sim \text { origin } i-\text { industry } k
$$

- Demand-side variables are indexed by destination-industry

$$
\text { subscript } j, k \sim \text { destination } j \text { - industry } k
$$

Preferences: Non-Parametric Across Industries

- Representative consumer's problem in country i

$$
\max _{\mathbf{Q}_{i}} U_{i}\left(\mathbf{Q}_{i}\right) \quad \text { s.t. } \sum_{k}\left(\tilde{P}_{i, k} Q_{i, k}\right)=Y_{i}
$$

- $\mathbf{Q}_{i} \equiv\left\{Q_{i, k}\right\} \sim$ composite industry-level consumption.
- $\tilde{\mathbf{P}}_{i} \equiv\left\{\tilde{P}_{i, k}\right\}$ ~"consumer" price index of industry-level composite.

The Marshallian demand function for industry k goods in market i

$$
\text { The Cobb-Douglas case: } U_{i}\left(\mathbf{Q}_{i}\right)=\prod_{k=1}^{\mathcal{K}} Q_{i, k}^{e_{i, k}}
$$

Preferences: Non-Parametric Across Industries

- Representative consumer's problem in country i
national income
- $\mathbf{Q}_{i} \equiv\left\{Q_{i, k}\right\}$ ~ composite industry-level consumption.
- $\tilde{\mathbf{P}}_{i} \equiv\left\{\tilde{P}_{i, k}\right\}$ ~"consumer" price index of industry-level composite.
- The Marshallian demand function for industry k goods in market i

$$
Q_{i, k}=\mathcal{D}_{i, k}\left(\tilde{\mathbf{P}}_{i}, Y_{i}\right)
$$

Preferences: Non-Parametric Across Industries

- Representative consumer's problem in country i
national income
- $\mathbf{Q}_{i} \equiv\left\{Q_{i, k}\right\}$ ~ composite industry-level consumption.
- $\tilde{\mathbf{P}}_{i} \equiv\left\{\tilde{P}_{i, k}\right\}$ ~"consumer" price index of industry-level composite.
- The Marshallian demand function for industry k goods in market i

$$
Q_{i, k}=\mathcal{D}_{i, k}\left(\tilde{\mathbf{P}}_{i}, Y_{i}\right)
$$

Preferences: Non-Parametric Across Industries

- Representative consumer's problem in country i
national income
- $\mathbf{Q}_{i} \equiv\left\{Q_{i, k}\right\}$ ~ composite industry-level consumption.
- $\tilde{\mathbf{P}}_{i} \equiv\left\{\tilde{P}_{i, k}\right\}$ ~"consumer" price index of industry-level composite.
- The Marshallian demand function for industry k goods in market i

$$
Q_{i, k}=\mathcal{D}_{i, k}\left(\tilde{\mathbf{P}}_{i}, Y_{i}\right)
$$

- The Cobb-Douglas case: $U_{i}\left(\mathbf{Q}_{i}\right)=\Pi_{k=1}^{\mathcal{K}} Q_{i, k}^{e_{i, k}} \longrightarrow Q_{i, k}=e_{i, k} Y_{i} / \tilde{P}_{i, k}$

Preferences: Nested-CES within Industries

- Within-industry utility aggregator:

$$
Q_{i, k}=\left(\sum_{j \in \mathbb{C}} Q_{j i, k}^{\frac{\sigma_{k}-1}{\sigma_{k}}}\right)^{\frac{\sigma_{k}}{\sigma_{k}-1}} \quad Q_{j i, k}=\left(\sum_{\omega \in \Omega_{j, k}} q_{j i, k}(\omega)^{\frac{\gamma_{k}-1}{\gamma_{k}}}\right)^{\frac{\gamma_{k}}{\gamma_{k}-1}}
$$

- Nested-CES demand demand function:

firm-level demand

national-level demand

Preferences: Nested-CES within Industries

- Within-industry utility aggregator:

$$
Q_{i, k}=\underbrace{\left(\sum_{j \in \mathbb{C}} Q_{j i, k}^{\frac{\sigma_{k}-1}{\sigma_{k}}}\right)^{\frac{\sigma_{k}}{\sigma_{k}-1}}}_{\text {cross-national aggregator }} \quad Q_{j i, k}=\underbrace{\left(\sum_{\omega \in \Omega_{j, k}} q_{j i, k}(\omega)^{\frac{\gamma_{k}-1}{\gamma_{k}}}\right)^{\frac{\gamma_{k}}{\gamma_{k}-1}}}_{\text {sub-national aggregator }}
$$

- Nested-CES demand demand function:

Preferences: Nested-CES within Industries

- Within-industry utility aggregator:

$$
Q_{i, k}=\underbrace{\left(\sum_{j \in \mathbb{C}} Q_{j i, k}^{\frac{\sigma_{k}-1}{\sigma_{k}}}\right)^{\frac{\sigma_{k}}{\sigma_{k}-1}}}_{\text {cross-national aggregator }} \quad Q_{j i, k}=\underbrace{\left(\sum_{\omega \in \Omega_{j, k}} q_{j i, k}(\omega)^{\frac{\gamma_{k}-1}{\gamma_{k}}}\right)^{\frac{\gamma_{k}}{\gamma_{k}-1}}}_{\text {sub-national aggregator }}
$$

- Nested-CES demand demand function:

$$
q_{j i, k}(\omega)=\underbrace{\left(\frac{\tilde{p}_{j i, k}(\omega)}{\tilde{P}_{j i, k}}\right)^{-\gamma_{k}} Q_{j i, k}}_{\text {firm-level demand }}
$$

$$
Q_{j i, k}=\underbrace{\left(\frac{\tilde{P}_{j i, k}}{\tilde{P}_{i, k}}\right)^{-\sigma_{k}} \mathcal{D}_{i, k}\left(\tilde{\mathbf{P}}_{i}, Y_{i}\right)}_{\text {national-level demand }}
$$

Preferences: Nested-CES within Industries

- Within-industry utility aggregator:

$$
Q_{i, k}=\underbrace{\left(\sum_{j \in \mathbb{C}} Q_{j i, k}^{\frac{\sigma_{k}-1}{\sigma_{k}}}\right)^{\frac{\sigma_{k}}{\sigma_{k}-1}}}_{\text {cross-national aggregator }} \quad Q_{j i, k}=\underbrace{\left(\sum_{\omega \in \Omega_{j, k}} q_{j i, k}(\omega)^{\frac{\gamma_{k}-1}{\gamma_{k}}}\right)^{\frac{\gamma_{k}}{\gamma_{k}-1}}}_{\text {sub-national aggregator }}
$$

- Nested-CES demand demand function:

$$
q_{j i, k}(\omega)=\underbrace{\left.\frac{\tilde{p}_{j i, k}(\omega)}{\tilde{P}_{j i, k}}\right)^{-\gamma_{k}} Q_{j i, k} \quad Q_{j i, k}=\left(\frac{\tilde{P}_{j i, k}}{\tilde{P}_{i, k}}\right)^{-\sigma_{k}} \mathcal{D}_{i, k}\left(\tilde{\mathbf{P}}_{i}, Y_{i}\right)}_{\text {CES price index (ji,k)}}
$$

Preferences: Nested-CES within Industries

- Within-industry utility aggregator:

$$
Q_{i, k}=\underbrace{\left(\sum_{j \in \mathbb{C}} Q_{j i, k}^{\frac{\sigma_{k}-1}{\sigma_{k}}}\right)^{\frac{\sigma_{k}}{\sigma_{k}-1}}}_{\text {cross-national aggregator }} \quad Q_{j i, k}=\underbrace{\left(\sum_{\omega \in \Omega_{j, k}} q_{j i, k}(\omega)^{\frac{\gamma_{k}-1}{\gamma_{k}}}\right)^{\frac{\gamma_{k}}{\gamma_{k}-1}}}_{\text {sub-national aggregator }}
$$

- Nested-CES demand demand function:

$$
q_{j i, k}(\omega)=\left(\frac{\tilde{p}_{j i, k}(\omega)}{\tilde{P}_{j i, k}}\right)^{-\gamma_{k}} Q_{j i, k} Q_{j i, k}=\left(\frac{\tilde{P}_{j i, k}}{\tilde{P}_{i, k}}\right)^{-\sigma_{k}} \mathcal{D}_{i, k}\left(\tilde{\mathbf{P}}_{i}, Y_{i}\right)
$$

Preferences: Nested-CES within Industries

- Within-industry utility aggregator:

$$
Q_{i, k}=\underbrace{\left(\sum_{j \in \mathbb{C}} Q_{j i, k}^{\frac{\sigma_{k}-1}{\sigma_{k}}}\right)^{\frac{\sigma_{k}}{\sigma_{k}-1}}}
$$

cross-national aggregator

- Notation: aggregate expenditure shares

$$
\lambda_{j i, k} \equiv \underbrace{\frac{\tilde{P}_{j i, k} Q_{j i, k}}{\sum_{j} \tilde{P}_{j i, k} Q_{j i, k}}}_{\text {cross-national }}
$$

$$
Q_{j i, k}=\underbrace{\left(\sum_{\omega \in \Omega_{j, k}} q_{j i, k}(\omega)^{\frac{\gamma_{k}-1}{\gamma_{k}}}\right)^{\frac{\gamma_{k}}{\gamma_{k}-1}}}_{\text {sub-national aggregator }}
$$

$$
e_{i, k} \equiv \underbrace{\frac{\sum_{j} \tilde{P}_{j i, k} Q_{j i, k}}{Y_{i}}}_{\text {cross-industry }}
$$

Preferences: Nested-CES within Industries

- Within-industry utility aggregator:

$$
Q_{i, k}=\underbrace{\left(\sum_{j \in \mathbb{C}} Q_{j i, k}^{\frac{\sigma_{k}-1}{\sigma_{k}}}\right)^{\frac{\sigma_{k}}{\sigma_{k}-1}}}
$$

cross-national aggregator

$$
Q_{j i, k}=\underbrace{\left(\sum_{\omega \in \Omega_{j, k}} q_{j i, k}(\omega)^{\frac{\gamma_{k}-1}{\gamma_{k}}}\right)^{\frac{\gamma_{k}}{\gamma_{k}-1}}}_{\text {sub-national aggregator }}
$$

- Notation: aggregate expenditure shares

$$
\lambda_{j i, k} \equiv \underbrace{\frac{\tilde{P}_{j i, k} Q_{j i, k}}{\sum_{j} \tilde{P}_{j i, k} Q_{j i, k}}}_{\text {cross-national }}=\left(\frac{\tilde{P}_{j i, k}}{\tilde{P}_{i, k}}\right)^{-\sigma_{k}} \quad e_{i, k}=\underbrace{\frac{\sum_{j} \tilde{P}_{j i, k} Q_{j i, k}}{Y_{i}}}_{\text {cross-industry }}
$$

Production and Firms

- Firms compete under monopolistic competition.
- variety-specific marginal cost (origin i-destination j-industry k)

$$
c_{i j, k}(\omega)=\frac{\tau_{i j, k} w_{i}}{\varphi_{i, k}(\omega)}
$$

Entry is either free or restricted
Free Entry: endogenous number of firms + zero profits
Restricted Entry: fixed number of firms + positive profits

Production and Firms

- Firms compete under monopolistic competition.
- variety-specific marginal cost (origin i-destination j-industry k)

Entry is either free or restricted
Free Entry: endogenous number of firms + zero profits
Restricted Entry: fixed number of firms + positive profits

Production and Firms

- Firms compete under monopolistic competition.
- variety-specific marginal cost (origin i-destination j-industry k)

Entry is either free or restricted
Free Entry: endogenous number of firms + zero profits
Restricted Entry: fixed number of firms + positive profits

Production and Firms

- Firms compete under monopolistic competition.
- variety-specific marginal cost (origin i-destination j-industry k)

- Entry is either free or restricted
- Free Entry: endogenous number of firms + zero profits
- Restricted Entry: fixed number of firms + positive profits

Production and Firms

- Firms compete under monopolistic competition.
- variety-specific marginal cost (origin i-destination j-industry k)

- Entry is either free or restricted
> - Free Entry: endogenous number of firms + zero profits
> - Restricted Entry: fixed number of firms + positive profits

this presentation will focus on this case

Summarizing the Supply Side

- The producer price index of goods supplied by origin i-industry k :

$$
P_{i j, k}=\text { constant } \times\left[\int_{\Omega_{i, k}} c_{i j, k}(\omega)^{1-\gamma_{k}} d \omega\right]^{\frac{1}{1-\gamma_{k}}} L_{i, k}^{-\frac{1}{\gamma_{k}-1}}
$$

Following the literature, we refer to $\mu_{k} \sim \frac{1}{\gamma_{k}-1}$ as the scale elasticity

 snecial case w/ constant-raturns to scale: $H . \longrightarrow 0$ $1+\mu_{k} \sim \frac{\gamma_{k}}{\gamma_{k}-1}$ also represents the constant firm-level markup
Summarizing the Supply Side

- The producer price index of goods supplied by origin $i-i n d u s t r y$:

$$
P_{i j, k}=\text { constant } \times\left[\int_{\Omega_{i, k}} c_{i j, k}(\omega)^{1-\gamma_{k}} d \omega\right]^{\frac{1}{1-\gamma_{k}}} L_{i, k}^{-\frac{1}{\gamma_{k}-1}}
$$

Following the literature, we refer to

special case w/ constant-returns to scale: $\mu \mathrm{m} \rightarrow 0$
$-1+\mu_{k} \sim \frac{\gamma_{k}}{\gamma_{k}-1}$ also represents the constant firm-level markup

Summarizing the Supply Side

- The producer price index of goods supplied by origin $i-i n d u s t r y$:

$$
P_{i j, k}=\text { constant } \times\left[\int_{\Omega_{i, k}} c_{i j, k}(\omega)^{1-\gamma_{k}} d \omega\right]^{\frac{1}{1-\gamma_{k}}} L_{i, k}^{-\mu_{k}}
$$

Following the literature, we refer to $\mu_{k} \sim \frac{1}{\gamma_{k}-1}$ as the scale elasticity

 special case w/ constant-returns to scale: $\mu_{k} \rightarrow 0$ $1+\mu_{k} \sim \frac{\gamma_{k}}{\gamma_{k}-1}$ also represents the constant firm-level markup
Summarizing the Supply Side

- The producer price index of goods supplied by origin $i-i n d u s t r y ~ k:$

$$
P_{i j, k}=\text { constant } \times\left[\int_{\Omega_{i, k}} c_{i j, k}(\omega)^{1-\gamma_{k}} d \omega\right]^{\frac{1}{1-\gamma_{k}}} L_{i, k}^{-\mu_{k}} \underbrace{}_{\text {number of workers }}
$$

- Following the literature, we refer to $\mu_{k} \sim \frac{1}{\gamma_{k}-1}$ as the scale elasticity
- special case w/ constant-returns to scale: $\mu_{k} \rightarrow 0$

Summarizing the Supply Side

- The producer price index of goods supplied by origin $i-i n d u s t r y ~ k:$

$$
P_{i j, k}=\text { constant } \times\left[\int_{\Omega_{i, k}} c_{i j, k}(\omega)^{1-\gamma_{k}} d \omega\right]^{\frac{1}{1-\gamma_{k}}} L_{i, k}^{-\mu_{k}}
$$

- Following the literature, we refer to $\mu_{k} \sim \frac{1}{\gamma_{k}-1}$ as the scale elasticity
- special case w/ constant-returns to scale: $\mu_{k} \rightarrow 0$
$-1+\mu_{k} \sim \frac{\gamma_{k}}{\gamma_{k}-1}$ also represents the constant firm-level markup

The Rationales for Policy Intervention

Two rationales for policy intervention from country i 's standpoint:

1. Correct inter-industry misallocation

- high-returns-to-scale (high- μ) industries exhibit inefficiently low levels of output

2. Take advantage of unexploited
export side: firm-level markups do not internalize country i 's collective export market power \longrightarrow use policy to elicit a higher markup

Import side: leverage national-level monopsony power to deflate import prices

The Rationales for Policy Intervention

Two rationales for policy intervention from country i 's standpoint:

1. Correct inter-industry misallocation

- high-returns-to-scale (high- μ) industries exhibit inefficiently low levels of output

2. Take advantage of unexploited terms of trade (ToT) benefits

- export side: firm-level markups do not internalize country $i^{\prime} s$ collective export market power \longrightarrow use policy to elicit a higher markup
- Import side: leverage national-level monopsony power to deflate import prices

The Rationales for Policy Intervention

Two rationales for policy intervention from country i 's standpoint:

1. Correct inter-industry misallocation

- high-returns-to-scale (high- μ) industries exhibit inefficiently low levels of output

2. Take advantage of unexploited terms of trade (ToT) benefits

- export side: firm-level markups do not internalize country $i^{\prime} s$ collective export market power \longrightarrow use policy to elicit a higher markup
- Import side: leverage national-level monopsony power to deflate import prices

$$
\begin{gathered}
\text { trade elasticity } \sim \sigma_{k}-1=\frac{\partial \ln \left(\lambda_{j i, k} / \lambda_{i i, k}\right)}{\partial \ln \left(\tau_{j i, k} / \tau_{i i, k}\right)} \\
\text { scale elasticity } \sim \mu_{k}=-\frac{\partial \ln P_{i n, k}}{\partial \ln L_{i, k}} \sim \frac{\partial \ln \mathrm{TFP}_{i}}{\partial \ln L_{i, k}}
\end{gathered}
$$

Key Elasticities for Policy Evaluation in Open Economies

trade elasticity $\sim \sigma_{k}-1=\frac{\partial \ln \left(\lambda_{j i, k} / \lambda_{i i, k}\right)}{\partial \ln \left(\tau_{j i, k} / \tau_{i i, k}\right)}$
scale elasticity $\sim \mu_{k}=-\frac{\partial \ln P_{i n, k}}{\partial \ln L_{i, k}} \sim \frac{\partial \ln \mathrm{TFP}_{i}}{\partial \ln L_{i, k}}$

- Lower $\sigma_{k} \longrightarrow$ more scope for ToT manipulation in industry k
- Higher $\operatorname{Var}\left(\mu_{k}\right)$ \longrightarrow greater degree of misallocation in the economy

Key Elasticities for Policy Evaluation in Open Economies

trade elasticity $\sim \sigma_{k}-1=\frac{\partial \ln \left(\lambda_{j i, k} / \lambda_{i i, k}\right)}{\partial \ln \left(\tau_{j i, k} / \tau_{i i, k}\right)}$
scale elasticity $\sim \mu_{k}=-\frac{\partial \ln P_{i n, k}}{\partial \ln L_{i, k}} \sim \frac{\partial \ln \mathrm{TFP}_{i}}{\partial \ln L_{i, k}}$

- Lower $\sigma_{k} \longrightarrow$ more scope for ToT manipulation in industry k
- Higher $\operatorname{Var}\left(\mu_{k}\right) \longrightarrow$ greater degree of misallocation in the economy

Policy Instruments

- Governments are afforded a complete set of tax instruments \longrightarrow they can target each policy margin and obtain the first-best outcome from a unilateral standpoint.
- Taxes/subsidies create a wedge b/w producer prices (P) and consumer prices ($\tilde{P})$:

$$
\tilde{P}_{i j, k}=\frac{1+t_{i j, k}}{\left(1+x_{i j, k}\right)\left(1+s_{i, k}\right)} P_{i j, k}
$$

- Tax revenues are rebated to the consumers lump-sum. ${ }^{1}$ Deminno mulbim

[^0]
Policy Instruments

- Governments are afforded a complete set of tax instruments \longrightarrow they can target each policy margin and obtain the first-best outcome from a unilateral standpoint.
- Taxes/subsidies create a wedge b/w producer prices (P) and consumer prices ($\tilde{P})$:

$$
\tilde{P}_{i j, k}=\frac{1+t_{i j, k}}{\left(1+x_{i j, k}\right)\left(1+s_{i, k}\right)} P_{i j, k}
$$

[^1][^2]
Policy Instruments

- Governments are afforded a complete set of tax instruments \longrightarrow they can target each policy margin and obtain the first-best outcome from a unilateral standpoint.
- Taxes/subsidies create a wedge b/w producer prices (P) and consumer prices ($\tilde{P})$:

export subsidy offered by country i
- Tax revenues are rebated to the consumers lump-sum. ${ }^{1}$

[^3]
Policy Instruments

- Governments are afforded a complete set of tax instruments \longrightarrow they can target each policy margin and obtain the first-best outcome from a unilateral standpoint.
- Taxes/subsidies create a wedge b/w producer prices (P) and consumer prices ($\tilde{P})$:

- Tax revenues are rebated to the consumers lump-sum.

[^4]
Policy Instruments

- Governments are afforded a complete set of tax instruments \longrightarrow they can target each policy margin and obtain the first-best outcome from a unilateral standpoint.
- Taxes/subsidies create a wedge b/w producer prices (P) and consumer prices (\tilde{P}):

- Tax revenues are rebated to the consumers lump-sum. ${ }^{1}$

Definition of equilibrium

[^5]
Efficient Policy from
 a Global Standpoint

First-Best: Optimal Policy Problem with all Instruments

- The globally efficient policy solves the following planning problem contingent on the provision of lump-sum transfers:

$$
\max _{\mathbf{t}, \mathbf{x}, \mathbf{s}} \sum_{i \in \mathbb{C}}\left[\delta_{i} \log W_{i}(\mathbf{t}, \mathbf{x}, \mathbf{s} ; \mathbb{X})\right] \quad \text { s.t. Equilbrium conditons. }
$$

The efficient policy features zero trade taxes and Pigouvian subsidies that restore marginal-cost-nricing olohally.

As we will see, welfare-maximizing governments will deviate from the efficient nolicy to take advantage of terms-of-trade (TnT) gains

First-Best: Optimal Policy Problem with all Instruments

- The globally efficient policy solves the following planning problem contingent on the provision of lump-sum transfers:

The efficient policy features zero trade taxes and Pigouvian subsidies that restore marginal-cost-pricing globally

As we will see, welfare-maximizing governments will deviate from the efficient nolicy to take advantage of terms-of-trade (TnT) gains

First-Best: Optimal Policy Problem with all Instruments

- The globally efficient policy solves the following planning problem contingent on the provision of lump-sum transfers:

First-Best: Optimal Policy Problem with all Instruments

- The globally efficient policy solves the following planning problem contingent on the provision of lump-sum transfers:

$$
\max _{\mathbf{t}, \mathbf{x}, \mathbf{s}} \sum_{i \in \mathbb{C}}\left[\delta_{i} \log W_{i}(\mathbf{t}, \mathbf{x}, \mathbf{s} ; \mathbb{X})\right] \quad \text { s.t. Equilbrium conditons. }
$$

- The efficient policy features zero trade taxes and Pigouvian subsidies that restore marginal-cost-pricing globally:

$$
t_{j i, k}^{\star}=x_{j i, k}^{\star}=0 \quad 1+s_{i, k}^{\star}=1+\mu_{k} \quad(\forall i, k)
$$

As we will see, welfare-maximizing governments will deviate from the efficient nolicy to take advantage of terms-of-trade (ToT) gains.

First-Best: Optimal Policy Problem with all Instruments

- The globally efficient policy solves the following planning problem contingent on the provision of lump-sum transfers:

$$
\max _{\mathbf{t}, \mathbf{x}, \mathbf{s}} \sum_{i \in \mathbb{C}}\left[\delta_{i} \log W_{i}(\mathbf{t}, \mathbf{x}, \mathbf{s} ; \mathbb{X})\right] \quad \text { s.t. Equilbrium conditons. }
$$

- The efficient policy features zero trade taxes and Pigouvian subsidies that restore marginal-cost-pricing globally:

$$
t_{j i, k}^{\star}=x_{j i, k}^{\star}=0 \quad 1+s_{i, k}^{\star}=1+\mu_{k} \quad(\forall i, k)
$$

- As we will see, welfare-maximizing governments will deviate from the efficient policy to take advantage of terms-of-trade (ToT) gains.

Unilaterally Optimal Policy Choices

First-Best: Optimal Policy Problem with all Instruments

- Country i^{\prime} s unilaterally optimal policy problem

First-Best: Optimal Policy Problem with all Instruments

- Country i^{\prime} s unilaterally optimal policy problem import tariff

> Note: the solution to the above problem does not internalize country i^{\prime} s ToT externality on the rest of the world \longrightarrow it's sub-optimal from a global standpoint.

First-Best: Optimal Policy Problem with all Instruments

- Country i^{\prime} s unilaterally optimal policy problem

> Note: the solution to the above problem does not internalize country i 's ToT externality on the rest of the world \longrightarrow it's sub-optimal from a global standpoint.

First-Best: Optimal Policy Problem with all Instruments

- Country i^{\prime} s unilaterally optimal policy problem

- Note: the solution to the above problem does not internalize country i^{\prime} 's ToT externality on the rest of the world $\longrightarrow i t^{\prime}$ s sub-optimal from a global standpoint.

Theorem 1: First-Best Unilaterally Optimal Policy

[industrial subsidy]

$$
1+s_{i, k}^{*}=\left(1+\mu_{k}\right)\left(1+\bar{s}_{i}\right)
$$

[import tariff] $1+t_{j i, k}^{*}=\left(1+\omega_{j i, k}\right)\left(1+\bar{t}_{i}\right)$
[export subsidy] $1+x_{i j, k}^{*}=\frac{\left(\sigma_{k}-1\right) \sum_{n \neq i}\left[\left(1+\omega_{n i, k}\right) \lambda_{n j, k}\right]}{1+\left(\sigma_{k}-1\right)\left(1-\lambda_{i j, k}\right)}\left(1+\bar{t}_{i}\right)$

Theorem 1: First-Best Unilaterally Optimal Policy

[industrial subsidy] $1+s_{i, k}^{*}=\left(1+\mu_{k}\right)\left(1+\bar{s}_{i}\right) \longrightarrow \xrightarrow{\text { arbitrary tax shifters to }}$ account for multiplicity
[export subsidy] $1+x_{i j, k}^{*}=\frac{\left(\sigma_{k}-1\right) \sum_{n \neq i}\left[\left(1+\omega_{n i, k}\right) \lambda_{n j, k}\right]}{1+\left(\sigma_{k}-1\right)\left(1-\lambda_{i j, k}\right)}\left(1+\bar{t}_{i}\right)$

Theorem 1: First-Best Unilaterally Optimal Policy

[industrial subsidy] $1+s_{i, k}^{*}=\left(1+\mu_{k}\right)\left(1+\bar{s}_{i}\right)$
[import tariff] $1+t_{j i, k}^{*}=\left(1+\omega_{j i, k}\right)\left(1+\bar{t}_{i}\right)$
[export subsidy] $1+x_{i j, k}^{*}=\frac{\left(\sigma_{k}-1\right) \sum_{n \neq i}\left[\left(1+\omega_{n i, k}\right) \lambda_{n j, k}\right]}{1+\left(\sigma_{k}-1\right)\left(1-\lambda_{i j, k}\right)}\left(1+\bar{t}_{i}\right)$

Theorem 1: First-Best Unilaterally Optimal Policy

[industrial subsidy]

$$
1+s_{i, k}^{*}=\left(1+\mu_{k}\right)\left(1+\bar{s}_{i}\right)
$$

[import tariff]

$$
1+t_{j i, k}^{*}=\left(1+\omega_{j i, k} \xrightarrow[\left(1+\bar{t}_{i}\right)]{\operatorname{good} i j, k^{\prime} \text { s (inverse) supply elasticity }}\right.
$$

$$
\text { [export subsidy] } 1+x_{i j, k}^{*}=\frac{\left(\sigma_{k}-1\right) \sum_{n \neq i}\left[\left(1+\omega_{n i, k}\right) \lambda_{n j, k}\right]}{1+\left(\sigma_{k}-1\right)\left(1-\lambda_{i j, k}\right)}\left(1+\bar{t}_{i}\right)
$$

Theorem 1: First-Best Unilaterally Optimal Policy

[industrial subsidy]

$$
1+s_{i, k}^{*}=\left(1+\mu_{k}\right)\left(1+\bar{s}_{i}\right)
$$

[import tariff]

$$
1+t_{j i, k}^{*}=\left(1+\omega_{j i, k}\right)\left(1+\bar{t}_{i}\right)
$$

[export subsidy] $1+x_{i j, k}^{*}=\frac{\left(\sigma_{k}-1\right) \sum_{n \neq i}\left[\left(1+\omega_{n i, k}\right) \lambda_{n j, k}\right]}{1+\left(\sigma_{k}-1\right)\left(1-\lambda_{i j, k}\right)}\left(1+\bar{t}_{i}\right)$

Theorem 1: First-Best Unilaterally Optimal Policy

[industrial subsidy] $\quad 1+s_{i, k}^{*}=\left(1+\mu_{k}\right)\left(1+\bar{s}_{i}\right)$
[import tariff] $1+t_{j i, k}^{*}=\left(1+\omega_{j i, k}\right)\left(1+\bar{t}_{i}\right)$
[export subsidy] $1+x_{i j, k}^{*}=\frac{\left(\sigma_{k}-1\right) \sum_{n \neq i}\left[\left(1+\omega_{n i, k}\right) \lambda_{n j, k}\right]}{1+\left(\sigma_{k}-1\right)\left(1-\lambda_{i j, k}\right)}\left(1+\bar{t}_{i}\right)$
expenditure share on good $i j, k$

Special Case: Multi-Industry Armington Model

Theorem 1 describes optimal policy in the multi-industry Armington or Eaton-Kortum models, as a special case with constant-returns to scale industries ($\mu_{k}=0$):

Special Case: Multi-Industry Armington Model

Theorem 1 describes optimal policy in the multi-industry Armington or Eaton-Kortum models, as a special case with constant-returns to scale industries ($\mu_{k}=0$):
[industrial subsidy] $\quad s_{i, k}^{*}=0$
[import tariff] $1+t_{j i, k}^{*}=1+\bar{t}_{i}$

$$
\text { [export subsidy] } 1+x_{i j, k}^{*}=\frac{\left(\sigma_{k}-1\right)\left(1-\lambda_{i j, k}\right)}{1+\left(\sigma_{k}-1\right)\left(1-\lambda_{i j, k}\right)}\left(1+\bar{t}_{i}\right)
$$

Special Case: Multi-Industry Armington Model

Theorem 1 describes optimal policy in the multi-industry Armington or Eaton-Kortum models, as a special case with constant-returns to scale industries ($\mu_{k}=0$):
[industrial subsidy] $\quad s_{i, k}^{*}=0 \longrightarrow$ by choice of $s_{i}=0$
[import tariff] $1+t_{j i, k}^{*}=1+\bar{t}_{i}$

$$
\text { [export subsidy] } 1+x_{i j, k}^{*}=\frac{\left(\sigma_{k}-1\right)\left(1-\lambda_{i j, k}\right)}{1+\left(\sigma_{k}-1\right)\left(1-\lambda_{i j, k}\right)}\left(1+\bar{t}_{i}\right)
$$

Special Case: Multi-Industry Armington Model

Theorem 1 describes optimal policy in the multi-industry Armington or Eaton-Kortum models, as a special case with constant-returns to scale industries ($\mu_{k}=0$):

$$
\text { [industrial subsidy] } \quad s_{i, k}^{*}=0 \longrightarrow \text { by choice of } s_{i}=0
$$

$$
\begin{array}{r}
\text { [import tariff] } 1+t_{j i, k}^{*}=1+\bar{t}_{i} \rightarrow \text { uniform optimal tariff } \\
\text { [export subsidy] } 1+x_{i j, k}^{*}=\frac{\left(\sigma_{k}-1\right)\left(1-\lambda_{i j, k}\right)}{1+\left(\sigma_{k}-1\right)\left(1-\lambda_{i j, k}\right)}\left(1+\bar{t}_{i}\right)
\end{array}
$$

Special Case: Small Open Economy

Suppose country i is a small open economy $\left(\omega_{j i, k} \approx \lambda_{i j, k} \approx 0\right) \longrightarrow$ our optimal policy formulas reduce to:

Special Case: Small Open Economy

Suppose country i is a small open economy $\left(\omega_{j i, k} \approx \lambda_{i j, k} \approx 0\right) \longrightarrow$ our optimal policy formulas reduce to:

$$
\begin{aligned}
& \text { [industrial subsidy] } 1+s_{i, k}^{*}=\left(1+\mu_{k}\right)\left(1+\bar{s}_{i}\right) \\
& \text { [import tariff] } 1+t_{j i, k}^{*}=1+\bar{t}_{i} \\
& \text { [export subsidy] } 1+x_{i j, k}^{*}=\frac{\sigma_{k}-1}{\sigma_{k}}\left(1+\bar{t}_{i}\right)
\end{aligned}
$$

A Verbal Summary of Theorem 1

The unilaterally optimal (first-best) policy consists of

1. industrial subsidies (\mathbf{s}_{i}) that promote high- μ (high-returns-to-scale) industries.
2. import tariffs $\left(\mathbf{t}_{i}\right)+$ export subsidies $\left(\mathbf{x}_{i}\right)$ that contract exports in low- σ industries.

Corollary: first-best optimal tariffs and export subsidies are

A Verbal Summary of Theorem 1

The unilaterally optimal (first-best) policy consists of

1. industrial subsidies (\mathbf{s}_{i}) that promote high- μ (high-returns-to-scale) industries.
2. import tariffs $\left(\mathbf{t}_{i}\right)+$ export subsidies $\left(\mathbf{x}_{i}\right)$ that contract exports in low- σ industries.

Corollary: first-best optimal tariffs and export subsidies are misallocation-blind.

Second-Best: Optimal Policy with Limited Policy Instruments

- Country i^{\prime} s 2 nd-best optimal trade policy problem
import tariff

$$
\max _{\mathbf{t}_{i} \boldsymbol{x}_{i} \mathbf{s}_{i}} W_{i}\left(\mathbf{t}_{i}, \mathbf{x}_{i}, \mathbf{s}_{i} ; \mathbb{X}\right)
$$

$$
\text { s.t. }\left\{\begin{array}{l}
\text { Equilbrium conditons } \\
\mathbf{s}_{i}=\mathbf{0}
\end{array}\right.
$$

Note: The restriction that $\mathbf{s}_{i}=0$ may reflect institutional barriers or political economy nressures

Second-Best: Optimal Policy with Limited Policy Instruments

- Country i^{\prime} s 2 nd-best optimal trade policy problem

Note: The restriction that $\mathbf{s}_{i}=\mathbf{0}$ may reflect institutional barriers or political economv pressures.

Second-Best: Optimal Policy with Limited Policy Instruments

- Country i^{\prime} s 2 nd-best optimal trade policy problem

- Note: The restriction that $\mathbf{s}_{i}=\mathbf{0}$ may reflect institutional barriers or political economy pressures.

Theorem 2: Second-Best Import Tariffs and Export Subsides

$$
\begin{gathered}
1+t_{j i, k}^{* *}=\frac{1+\left(\sigma_{k}-1\right) \lambda_{i i, k}}{1+\frac{1+\bar{\mu}_{i}}{1+\mu_{k}}\left(\sigma_{k}-1\right) \lambda_{i i, k}}\left(1+t_{j i, k}^{*}\right) \\
1+x_{i j, k}^{* *}=\frac{1+\mu_{k}}{1+\bar{\mu}_{i}}\left(1+x_{i j, k}^{*}\right)
\end{gathered}
$$

Intuition: 2nd-best import tariff \& export subsidies try to mimic the 1 st-best Pionouvian subsidies, hut are unable to this effectively as we see next!

Theorem 2: Second-Best Import Tariffs and Export Subsides

$$
\begin{gathered}
1+t_{j i, k}^{* *}=\frac{1+\left(\sigma_{k}-1\right) \lambda_{i i, k}}{1+\frac{1+\bar{\mu}_{i}}{1+\mu_{k}}\left(\sigma_{k}-1\right) \lambda_{i i, k}}\left(1+t_{j i, k}^{*}\right) \\
1+x_{i j, k}^{* *}=\frac{1+\mu_{k}}{1+\bar{\mu}_{i}}\left(1+x_{i j, k}^{*}\right) \\
\text { average } \mu_{k} \text { in economy } i
\end{gathered}
$$

Intuition: 2nd-best import tariff \& export subsidies try to mimic the 1 st-best Pigouvian subsidies, but are unable to this effectively as we see next!

Theorem 2: Second-Best Import Tariffs and Export Subsides

Intuition: 2nd-best import tariff \& export subsidies try to mimic the 1st-best Pigouvian subsidies but are unable to this effectively as we see next!

Theorem 2: Second-Best Import Tariffs and Export Subsides

Intuition: 2nd-best import tariff \& export subsidies try to mimic the 1 st-best Pigouvian subsidies, but are unable to this effectively as we see next!

Theorem 2: Second-Best Import Tariffs and Export Subsides

$$
1+t_{j i, k}^{* *}=\frac{1+\left(\sigma_{k}-1\right) \lambda_{i i, k}}{1+\frac{1+\bar{\mu}_{i}}{1+\mu_{k}}\left(\sigma_{k}-1\right) \lambda_{i i, k}}\left(1+t_{j i, k}^{*}\right)
$$

- Intuition: 2nd-best import tariff \& export subsidies try to mimic the 1 st-best Pigouvian subsidies but are unable to this effectively as we see next!

Theorem 2: Second-Best Import Tariffs and Export Subsides

$$
1+t_{j i, k}^{* *}=\frac{1+\left(\sigma_{k}-1\right) \lambda_{i i, k}}{1+\frac{1+\bar{\mu}_{i}}{1+\mu_{k}}\left(\sigma_{k}-1\right) \lambda_{i i, k}}\left(1+t_{j i, k}^{*}\right)
$$

- Intuition: 2nd-best import tariff \& export subsidies try to mimic the 1 st-best Pigouvian subsidies, but are unable to this effectively as we see next!

The Efficacy of
Trade and Industrial Policy

Tension between ToT and Allocative Efficiency

- Improving allocative efficiency necessitates directing resources toward high-returns-to-scale (high- μ) industries.
- ToT improvement requires contracting exports (an thus output) (low- σ) industries, where import demand is less-elastic.

Conjecture 1

- If $\operatorname{Cov}\left(\sigma_{k}, \mu_{k}\right)<0 \longrightarrow$ standalone trade policy has difficulty striking a balance between ToT \& misallocation-correcting objectives
- 2nd-best trade policy measures are, thus, ineffective, even when set optimally.

Tension between ToT and Allocative Efficiency

- Improving allocative efficiency necessitates directing resources toward high-returns-to-scale (high- μ) industries.
- ToT improvement requires contracting exports (an thus output) (low- σ) industries, where import demand is less-elastic.

Conjecture 2

- If $\operatorname{Cov}\left(\sigma_{k}, \mu_{k}\right)<0 \longrightarrow$ unilateral scale correction via industrial policy can worsen national welfare through adverse ToT effects
- These adverse consequences resemble the immiserizing growth paradox

Tension between ToT and Misallocation-Correcting Objectives

Consequences of Unilateral Scale/Markup Correction

Tension between ToT and Misallocation-Correcting Objectives

Consequences of Unilateral Scale/Markup Correction

The Case for Industrial Policy Coordination

		Country $j\left(\% \Delta W_{j}\right)$			
	$\mathbf{s}_{j}=\mathbf{0}$				$\mathbf{s}_{j}=\boldsymbol{\mu}$
Country $i\left(\% \Delta W_{i}\right)$	$\mathbf{s}_{i}=\mathbf{0}$	$(0 \%, 0 \%)$	$(3.7 \%,-1.2 \%)$		
	$\mathbf{s}_{i}=\boldsymbol{\mu}$	$(-1.2 \%, 3.7 \%)$	$(2.7 \%, 2.7 \%)$		

- If countries restrict themselves to efficient industrial policy choices, they my avoid implementation to escape immiserizing growth effects \longrightarrow race to the bottom

The Case for Industrial Policy Coordination

		Country $j\left(\% \Delta W_{j}\right)$	
	Nash outcome		$\mathbf{s}_{j}=\mathbf{0}$
$\mathbf{s}_{j}=\boldsymbol{\mu}$			
Country $i\left(\% \Delta W_{i}\right)$	$\mathbf{s}_{i}=\mathbf{0}$	$(0 \%, 0 \%)$	$(3.7 \%,-1.2 \%)$
	$\mathbf{s}_{i}=\boldsymbol{\mu}$	$(-1.2 \%, 3.7 \%)$	$(2.7 \%, 2.7 \%)$

- If countries restrict themselves to efficient industrial policy choices, they my avoid implementation to escape immiserizing growth effects \longrightarrow race to the bottom
- industrial policy coordination via a deep agreement can address this problem

The Case for Industrial Policy Coordination

		Country $j\left(\% \Delta W_{j}\right)$	
	Nash outcome		$\mathbf{s}_{j}=\mathbf{0}$
$\mathbf{s}_{j}=\boldsymbol{\mu}$			
Country $i\left(\% \Delta W_{i}\right)$	$\mathbf{s}_{i}=\mathbf{0}$	$(0 \%, 0 \%)$	$(3.7 \%,-1.2 \%)$
	$\mathbf{s}_{i}=\boldsymbol{\mu}$	$(-1.2 \%, 3.7 \%)$	$(2.7 \%, 2.7 \%)$

- If countries restrict themselves to efficient industrial policy choices, they my avoid implementation to escape immiserizing growth effects \longrightarrow race to the bottom
- industrial policy coordination via a deep agreement can address this problem

Estimating the Key Policy Parameters

The Parameters Governing the Gains from Policy

- The gains from optimal policy depend crucially on two sets of elasticities: ${ }^{2}$

1. industry-level scale elasticity $\left(\mu_{k}\right)$
2. industry-level trade elasticity $\left(\sigma_{k}-1\right)$

The past literature often uses ad-hoc normalizations to recover μ_{k}
perfectly competitive models $\longrightarrow \mu_{k}=0$
traditional Krugman/Melitz mode's $\longrightarrow \mu_{k}=\frac{1}{\text { trade elasticity }}$

[^6]
The Parameters Governing the Gains from Policy

- The gains from optimal policy depend crucially on two sets of elasticities: ${ }^{2}$

1. industry-level scale elasticity $\left(\mu_{k}\right)$
2. industry-level trade elasticity $\left(\sigma_{k}-1\right)$

- The past literature often uses ad-hoc normalizations to recover μ_{k} :
- perfectly competitive models $\longrightarrow \mu_{k}=0$
- traditional Krugman/Melitz models $\longrightarrow \mu_{k}=\frac{1}{\text { trade elasticity }}$

[^7]
Overview of Estimation Strategy

- We jointly estimate μ_{k} and σ_{k} to obtain credible estimates for $\operatorname{Cov}\left(\mu_{k}, \sigma_{k}\right)$
- Estimating equation : firm-level nested-CES demand function (t indexes year)
$\ln \tilde{x}_{j i, k t}(\omega)=-\left(\sigma_{k}-1\right) \ln \tilde{p}_{j i, k t}(\omega)+\left[1-\frac{\sigma_{k}-1}{\gamma_{k}-1}\right] \ln \lambda_{j i, k t}(\omega)+D_{i, k t}+\varepsilon_{\omega j i k t}$
firm-leve sales $(\tilde{x}=\tilde{p} q)$
firm-level price
within-national market share

Data source: Universe of Colombian import transactions during 2007-2013, covering 226,288 exporting firms from 251 different countries.

Identification strategy: leverage high-frequency trade data to construct a
shift-share IV for variety-level prices

Overview of Estimation Strategy

- We jointly estimate μ_{k} and σ_{k} to obtain credible estimates for $\operatorname{Cov}\left(\mu_{k}, \sigma_{k}\right)$
- Estimating equation : firm-level nested-CES demand function (t indexes year)

> Data source: Universe of Colombian import transactions during 2007-2013, covering 226,288 exporting firms from 251 different countries.
> Identification strategy: leverage high-frequency trade data to construct a shift-share IV for variety-level prices

Overview of Estimation Strategy

- We jointly estimate μ_{k} and σ_{k} to obtain credible estimates for $\operatorname{Cov}\left(\mu_{k}, \sigma_{k}\right)$
- Estimating equation : firm-level nested-CES demand function (t indexes year)

- Data source: Universe of Colombian import transactions during 2007-2013, covering 226,288 exporting firms from 251 different countries.
- Identification strategy: leverage high-frequency trade data to construct a shift-share IV for variety-level prices Estimaion Deailis

Estimation Results

Sector	ISIC code	Estimated Parameter			Obs.	Weak Ident. Test
		trade elasticity $\sigma_{k}-1$	scale elast. \times trade elast. $\mu_{k} \times\left(\sigma_{k}-1\right)$	scale elasticity μ_{k}		
Agriculture \& Mining	100-1499	$\begin{aligned} & 6.227 \\ & (2.345) \end{aligned}$	$\begin{aligned} & 0.891 \\ & (0.148) \end{aligned}$	$\begin{gathered} 0.143 \\ (0.059) \end{gathered}$	11,568	2.40
Food	1500-1699	$\begin{gathered} 2.303 \\ (0.765) \end{gathered}$	$\begin{gathered} 0.905 \\ (0.046) \end{gathered}$	$\begin{gathered} 0.393 \\ (0.132) \end{gathered}$	19,615	6.27
Textiles, Leather, \& Footwear	1700-1999	$\begin{gathered} 3.359 \\ (0.353) \end{gathered}$	$\begin{gathered} 0.753 \\ (0.022) \end{gathered}$	$\begin{gathered} 0.224 \\ (0.024) \end{gathered}$	125,120	66.65
Wood	2000-2099	$\begin{gathered} 3.896 \\ (1.855) \end{gathered}$	$\begin{gathered} 0.891 \\ (0.195) \end{gathered}$	$\begin{gathered} 0.229 \\ (0.120) \end{gathered}$	5,872	1.41
Paper	2100-2299	$\begin{gathered} 2.646 \\ (1.106) \end{gathered}$	$\begin{gathered} 0.848 \\ (0.061) \end{gathered}$	$\begin{gathered} 0.320 \\ (0.136) \end{gathered}$	37,376	3.23
Petroleum	2300-2399	$\begin{gathered} 0.636 \\ (0.464) \end{gathered}$	$\begin{gathered} 0.776 \\ (0.119) \end{gathered}$	$\begin{gathered} 1.220 \\ (0.909) \end{gathered}$	3,973	2.83
Chemicals	2400-2499	$\begin{aligned} & 3.966 \\ & (0.403) \end{aligned}$	$\begin{gathered} 0.921 \\ (0.025) \end{gathered}$	$\begin{gathered} 0.232 \\ (0.024) \end{gathered}$	133,142	38.01

Estimation Results

Sector	ISIC code	Estimated Parameter			Obs.	Weak Ident. Test
		trade elasticity $\sigma_{k}-1$	scale elast. \times trade elast. $\mu_{k} \times\left(\sigma_{k}-1\right)$	scale elasticity μ_{k}		
Agriculture \& Mining	100-1499	$\begin{aligned} & 6.227 \\ & (2.345) \end{aligned}$	$\begin{aligned} & 0.891 \\ & (0.148) \end{aligned}$	$\begin{gathered} 0.143 \\ (0.059) \end{gathered}$	11,568	2.40
Food	1500-1699	$\begin{gathered} 2.303 \\ (0.765) \end{gathered}$	$\begin{gathered} 0.905 \\ (0.046) \end{gathered}$	$\begin{gathered} 0.393 \\ (0.132) \end{gathered}$	19,615	6.27
Textiles, Leather, \& Footwear	1700-1999	$\begin{gathered} 3.359 \\ (0.353) \end{gathered}$	$\begin{gathered} 0.753 \\ (0.022) \end{gathered}$	$\begin{gathered} 0.224 \\ (0.024) \end{gathered}$	125,120	66.65
Wood	2000-2099	$\begin{gathered} 3.896 \\ (1.855) \end{gathered}$	$\begin{gathered} 0.891 \\ (0.195) \end{gathered}$	$\begin{gathered} 0.229 \\ (0.120) \end{gathered}$	5,872	1.41
Paper	2100-2299	$\begin{gathered} 2.646 \\ (1.106) \end{gathered}$	$\begin{gathered} 0.848 \\ (0.061) \end{gathered}$	$\begin{gathered} 0.320 \\ (0.136) \end{gathered}$	37,376	3.23
Petroleum	2300-2399	$\begin{gathered} 0.636 \\ (0.464) \end{gathered}$	$\begin{gathered} 0.776 \\ (0.119) \end{gathered}$	$\begin{gathered} 1.220 \\ (0.909) \end{gathered}$	3,973	2.83
Chemicals	2400-2499	$\begin{gathered} 3.966 \\ (0.403) \end{gathered}$	$\begin{aligned} & 0.921 \\ & (0.025) \end{aligned}$	$\begin{gathered} 0.232 \\ (0.024) \\ \hline \end{gathered}$	133,142	38.01

Estimation Results

Sector	ISIC code	Estimated Parameter			Obs.	Weak Ident. Test
		trade elasticity $\sigma_{k}-1$	scale elast. \times trade elast. $\mu_{k} \times\left(\sigma_{k}-1\right)$	scale elasticity μ_{k}		
Rubber \& Plastic	2500-2599	$\begin{aligned} & 5.157 \\ & (1.176) \end{aligned}$	$\begin{aligned} & 0.721 \\ & (0.062) \end{aligned}$	$\begin{gathered} 0.140 \\ (0.034) \end{gathered}$	106,398	7.16
Minerals	2600-2699	$\begin{gathered} 5.283 \\ (1.667) \end{gathered}$	$\begin{aligned} & 0.881 \\ & (0.108) \end{aligned}$	$\begin{gathered} 0.167 \\ (0.056) \end{gathered}$	27,952	3.53
Basic \& Fabricated Metals	2700-2899	$\begin{gathered} 3.004 \\ (0.484) \end{gathered}$	$\begin{aligned} & 0.627 \\ & (0.030) \end{aligned}$	$\begin{gathered} 0.209 \\ (0.035) \end{gathered}$	153,102	20.39
Machinery \& Equipment	2900-3099	$\begin{gathered} 7.750 \\ (1.330) \end{gathered}$	$\begin{aligned} & 0.927 \\ & (0.072) \end{aligned}$	$\begin{gathered} 0.120 \\ (0.023) \end{gathered}$	263,797	12.01
Electrical \& Optical Equipment	3100-3399	$\begin{gathered} 1.235 \\ (0.323) \end{gathered}$	$\begin{gathered} 0.682 \\ (0.017) \end{gathered}$	$\begin{gathered} 0.552 \\ (0.145) \end{gathered}$	257,775	26.27
Transport Equipment	3400-3599	$\begin{gathered} 2.805 \\ (0.834) \end{gathered}$	$\begin{gathered} 0.363 \\ (0.036) \end{gathered}$	$\begin{gathered} 0.129 \\ (0.041) \end{gathered}$	85,920	5.50
N.E.C. \& Recycling	3600-3800	$\begin{aligned} & 6.169 \\ & (1.012) \end{aligned}$	$\begin{gathered} 0.938 \\ (0.090) \end{gathered}$	$\begin{gathered} 0.152 \\ (0.029) \end{gathered}$	70,264	11.57

Summary of Estimated Scale Elasticities

High returns to scale sectors

1. Electrical \& Optical Equipment
2. Petroleum
3. Paper

Low returns to scale sectors

1. Agriculture \& Mining
2. Wood
3. Machinery Equipment

When using our estimated scale elasticities, researchers must ensure to retain the covariance hetween scale \&, trade elasticities, Cors ($1, \sigma, \sigma$) hy either.
using our estimated scale elasticities $\left(\mu_{k}\right)$ in conjunction with our estimated trade clasticitios $(\sigma-1)$ which implios C orr $(\mu, \sigma,) \sim-0.65$
estimating the trade elasticity externally, and recovering the scale elasticity from our estimated product of the two elasticities, $\mu_{k}\left(\sigma_{k}-1\right)$

Summary of Estimated Scale Elasticities

High returns to scale sectors

1. Electrical \& Optical Equipment
2. Petroleum
3. Paper

Low returns to scale sectors

1. Agriculture \& Mining
2. Wood
3. Machinery Equipment

- When using our estimated scale elasticities, researchers must ensure to retain the covariance between scale \& trade elasticities, $\operatorname{Cov}\left(\mu_{k}, \sigma_{k}\right)$, by either:

1. using our estimated scale elasticities $\left(\mu_{k}\right)$ in conjunction with our estimated trade elasticities $\left(\sigma_{k}-1\right)$, which implies $\operatorname{Cov}\left(\mu_{k}, \sigma_{k}\right) \approx-0.65$
2. estimating the trade elasticity externally, and recovering the scale elasticity from our estimated product of the two elasticities, $\mu_{k}\left(\sigma_{k}-1\right)$

Quantifying the Gains from Policy

Sketch of Quantitative Strategy

- Compute the counterfactual equilibrium under optimal policy:
- (1) equilibrium allocation depends on optimal policy
- (2) optimal policy depends on equilibrium allocation
- jointly solve the systems of equations implied by (1) and (2).

Sufficient statistics for counterfactual policy analysis
$\mathcal{B}_{v} \equiv\left\{\lambda_{n i, k}, e_{n, k}, r_{n i, k}, \rho_{i, k}, w_{n} \bar{L}_{n}, \bar{Y}_{n}\right\}_{n i, k}$

Sketch of Quantitative Strategy

- Compute the counterfactual equilibrium under optimal policy:
- (1) equilibrium allocation depends on optimal policy
- (2) optimal policy depends on equilibrium allocation
- jointly solve the systems of equations implied by (1) and (2).
- Sufficient statistics for counterfactual policy analysis

Sketch of Quantitative Strategy

- Compute the counterfactual equilibrium under optimal policy:
- (1) equilibrium allocation depends on optimal policy
- (2) optimal policy depends on equilibrium allocation
- jointly solve the systems of equations implied by (1) and (2).
- Sufficient statistics for counterfactual policy analysis

$$
\mathcal{B}_{v} \equiv\left\{\lambda_{n i, k}, e_{n, k}, r_{n i, k}, \rho_{i, k}, w_{n} \bar{L}_{n}, Y_{n}\right\}_{n i, k} \quad \mathcal{B}_{e}=\left\{\sigma_{k}-1, \mu_{k}\right\}_{k}
$$

Sketch of Quantitative Strategy

- Compute the counterfactual equilibrium under optimal policy:
- (1) equilibrium allocation depends on optimal policy
- (2) optimal policy depends on equilibrium allocation
- jointly solve the systems of equations implied by (1) and (2).
- Sufficient statistics for counterfactual policy analysis

$$
\mathcal{B}_{v} \equiv\left\{\lambda_{n i, k}, e_{n, k}, r_{n i, k}, \rho_{i, k}, w_{n} \bar{L}_{n}, Y_{n}\right\}_{n i, k} \quad \mathcal{B}_{e}=\left\{\sigma_{k}-1, \mu_{k}\right\}_{k}
$$

Sketch of Quantitative Strategy

- Compute the counterfactual equilibrium under optimal policy:
- (1) equilibrium allocation depends on optimal policy
- (2) optimal policy depends on equilibrium allocation
- jointly solve the systems of equations implied by (1) and (2).
- Sufficient statistics for counterfactual policy analysis

$$
\begin{array}{rr}
\mathcal{B}_{v} \equiv\left\{\lambda_{n i, k}, e_{n, k}, r_{n i, k}, \rho_{i, k}, w_{n} \bar{L}_{n}, Y_{n}\right\}_{n i, k} \quad \mathcal{B}_{e}=\left\{\sigma_{k}-1, \mu_{k}\right\}_{k} \\
& \text { estimable parameters }
\end{array}
$$

Data Sources

World Input-Output Database (2000-2014)

- production and expenditure by origin \times destination \times industry.
- 44 Countries + an aggregate of the rest of the world
- 56 Industries

UNCTAD-TRAINS Database:

- average industry-level tariffs for all 44×43 country pairs.

The Gains from Unilaterally Optimal Policies (w/o retaliation)

Average Gains from Policy (\% Δ Real GDP)

2nd-best trade restrictions $\square 0.59 \%$ 1.23\%

3rd-best import restrictions $\square 0.46 \%$

The Immiserizing Growth Effects of Unilateral Industrial Policy

Welfare consequences of corrective industrial subsidies under free entry

- Unilateral adoption $\longrightarrow \mathbf{0 . 7 0 \%}$ decline in real GDP
- Coordinated via a deep agreement $\longrightarrow \mathbf{3 . 2 2} \%$ rise in real GDP

Welfare consequences of corrective industrial subsidies under restricted entry

- Unilateral adoption $\longrightarrow \mathbf{0 . 2 5} \%$ decline in real GDP
- Coordinated via a deep agreement $\longrightarrow \mathbf{1 . 2 4 \%}$ rise in real GDP

The Immiserizing Growth Effects of Unilateral Industrial Policy

Welfare consequences of corrective industrial subsidies under free entry

- Unilateral adoption $\longrightarrow \mathbf{0 . 7 0 \%}$ decline in real GDP
- Coordinated via a deep agreement $\longrightarrow \mathbf{3 . 2 2} \%$ rise in real GDP

Welfare consequences of corrective industrial subsidies under restricted entry

- Unilateral adoption $\longrightarrow \mathbf{0 . 2 5 \%}$ decline in real GDP
- Coordinated via a deep agreement $\longrightarrow \mathbf{1 . 2 4 \%}$ rise in real GDP

The Prospective Gains from Deep Cooperation

A Stronger Case for International Cooperation?

Restricted Entry

Free Entry

Conclusions

- Import tariffs and export subsidies are an ineffective second-best measure for correcting sectoral misallocation due to scale economies
- Unilateral adoption of first-best industrial policies is also ineffective, as it leads to immiserizing growth effects in most countries.
- Industrial policies coordinated internationally via a deep agreement are more transformative than any unilateral policy intervention.

Thank you

References

Equilibrium for a given Vector of Taxes, $\mathbb{T}=(\mathbf{t}, \mathbf{x}, \mathbf{s})$

1. Consumption choices are optimal:
2. Production choices are optimal:

3. Wage payments equal net sales:
4. Income equals wage payments plus tax revenues:

Equilibrium for a given Vector of Taxes, $\mathbb{T}=(\mathbf{t}, \mathbf{x}, \mathbf{s})$

1. Consumption choices are optimal: $\left\{\begin{array}{l}Q_{j i, k}=\mathcal{D}_{j i, k}\left(Y_{i}, \tilde{\mathbf{P}}_{i}\right) \\ \tilde{P}_{j i, k}=\frac{1+t_{j i, k}}{\left(1+x_{j i, k}\right)\left(1+s_{j, k}\right)} P_{j i, k}\end{array}\right.$
2. Production choices are optimal: $P_{i j, k}=$ constant $_{i j} \times w_{i}\left(\sum_{n} \tau_{i n, k} Q_{i n, k}\right)^{-\frac{\mu_{k}}{1+\mu_{k}}}$
3. Wage payments equal net sales: $w_{i} L_{i}=\sum_{j=1}^{\mathcal{N}} \sum_{k=1}^{\mathcal{K}}\left[P_{i j, k} Q_{i j, k}\right]$
4. Income equals wage payments plus tax revenues: $Y_{i}=w_{i} L_{i}+\mathcal{R}_{i}(\mathrm{t}, \mathrm{x}, \mathrm{s})$

Our Dual Approach to Characterizing T*

Step 1-Reformulate the optimal policy problem

- The government in i chooses optimal consumer prices and abatement levels

$$
\max _{\mathbb{T}_{i}} W_{i}\left(\mathbb{T}_{i} ; \mathbb{X}_{i}\right) \quad[\mathbf{P} 1] \quad \xrightarrow{\text { reformulate }} \max _{\mathbb{P}_{i}} W_{i}\left(\mathbb{P}_{i} ; \mathbb{X}_{i}\right) \quad\left[\mathbf{P} 1^{\prime}\right]
$$

Optimal taxes can be recovered from the optimal choice w.r.t.

Our Dual Approach to Characterizing \mathbb{T}^{\star}

Step 1-Reformulate the optimal policy problem

- The government in i chooses optimal consumer prices and abatement levels

$$
\begin{aligned}
\max _{\mathbb{T}_{i}} W_{i}\left(\mathbb{T}_{i} ; \mathbb{X}_{i}\right) \quad[\mathbf{P} 1] \quad \xrightarrow{\text { reformulate }} \underbrace{\max _{\mathbb{P}_{i}}} W_{i}\left(\mathbb{P}_{i} ; \mathbb{X}_{i}\right) \quad\left[\mathbf{P} \mathbf{1}^{\prime}\right] \\
\mathbb{P}_{i}=\left(\tilde{\mathbf{P}}_{j i}, \tilde{\mathbf{P}}_{i j}, \tilde{\mathbf{P}}_{i i}\right)
\end{aligned}
$$

Optimal taxes can be recovered from the optimal choice w.r.t.

Our Dual Approach to Characterizing \mathbb{T}^{\star}

Step 1-Reformulate the optimal policy problem

- The government in i chooses optimal consumer prices and abatement levels

$$
\begin{aligned}
& \max _{\mathbb{T}_{i}} W_{i}\left(\mathbb{T}_{i} ; \mathbb{X}_{i}\right) \quad[\mathbf{P} 1] \quad \xrightarrow{\text { reformulate }} \underbrace{\max _{\mathbb{P}_{i}}} W_{i}\left(\mathbb{P}_{i} ; \mathbb{X}_{i}\right) \quad\left[\mathbf{P} 1^{\prime}\right] \\
& \mathbb{P}_{i}=\left(\tilde{\mathbf{P}}_{j i}, \tilde{\mathbf{P}}_{i j}, \tilde{\mathbf{P}}_{i i}\right)
\end{aligned}
$$

- Optimal taxes can be recovered from the optimal choice w.r.t. \mathbb{P}_{i}

$$
1+t_{j i, k}^{\star}=\frac{\tilde{P}_{j i, k}^{\star}}{P_{j i, k}}, \quad 1+x_{i j, k}^{\star}=\frac{P_{i j, k}^{\star}}{\tilde{P}_{i j, k}} \frac{P_{i i, k}^{\star}}{\tilde{P}_{i i, k}}, \quad 1+s_{i, k}^{\star}=\frac{P_{i i, k}^{\star}}{\tilde{P}_{i i, k}}
$$

Our Dual Approach to Characterizing \mathbb{T}^{\star}

Step 2-Derive F.O.C.s for the reformulated problem P^{\prime}

- This step is complicated by GE considerations \longrightarrow traditional theories bypass these complications by focusing on partial equilibrium 2-by-2 models.

Problem P1' can be derived as if

1. wages $\mathbf{w}=\left\{w_{i}\right\}$ are constant
2. demand is income inelastic

Our Dual Approach to Characterizing \mathbb{T}^{\star}

Step 2-Derive F.O.C.s for the reformulated problem P^{\prime}

- This step is complicated by GE considerations \longrightarrow traditional theories bypass these complications by focusing on partial equilibrium 2-by-2 models.
- Intermediate Envelope Theorem: The first-order conditions associated with Problem P1' can be derived as if

1. wages $\mathbf{w}=\left\{w_{i}\right\}$ are constant GE wage effects are welfare-neutral
2. demand is income inelastic

Our Dual Approach to Characterizing T*

Step 2-Derive F.O.C.s for the reformulated problem P1'

- This step is complicated by GE considerations \longrightarrow traditional theories bypass these complications by focusing on partial equilibrium 2-by-2 models.
- Intermediate Envelope Theorem: The first-order conditions associated with Problem P1' can be derived as if

1. wages $\mathbf{w}=\left\{w_{i}\right\}$ are constant \sim GE wage effects are welfare-neutral
2. demand is income inelastic \sim GE income effects are welfare-neutral at the optimum

Our Dual Approach to Characterizing T*

Step 2-Derive F.O.C.s for the reformulated problem P1'

- This step is complicated by GE considerations \longrightarrow traditional theories bypass these complications by focusing on partial equilibrium 2-by-2 models.
- Intermediate Envelope Theorem: The first-order conditions associated with Problem P1' can be derived as if

1. wages $\mathbf{w}=\left\{w_{i}\right\}$ are constant \sim LERNER SYMMETRY + TARGETING PRINCIPLE
2. demand is income inelastic \sim GE income effects are welfare-neutral at the optimum

Our Dual Approach to Characterizing T*

Step 3-Solve the system of F.O.C.s

- We use the primitive properties of Marshallian demand (i.e., Cournot aggregation, homogeneity of degree zero) to prove that the system of F.O.C.s admits a unique and trivial solution.

Inverting the system of F.O.C.s, determines optimal price wedges
implicitly
determines optimal taxes

Our Dual Approach to Characterizing \mathbb{T}^{\star}

Step 3-Solve the system of F.O.C.s

- We use the primitive properties of Marshallian demand (i.e., Cournot aggregation, homogeneity of degree zero) to prove that the system of F.O.C.s admits a unique and trivial solution.
- Inverting the system of F.O.C.s, determines optimal price wedges \longrightarrow implicitly determines optimal taxes \mathbb{T}^{\star}

$$
1+t_{j i, k}^{\star}=\frac{\tilde{P}_{j i, k}^{\star}}{P_{j i, k}}, \quad 1+x_{i j, k}^{\star}=\frac{P_{i j, k}^{\star}}{\tilde{P}_{i j, k}} \frac{P_{i i, k}^{\star}}{\tilde{P}_{i i, k}}, \quad 1+s_{i, k}^{\star}=\frac{P_{i i, k}^{\star}}{\tilde{P}_{i i, k}}
$$

Identification Strategy

Take first differences to eliminate the firm-product FE
$\ln \tilde{x}_{j, k t}(\omega)=-\left(\sigma_{k}-1\right) \Delta \ln \tilde{p}_{j, k t}(\omega)+\left(1-\mu_{k}\left[\sigma_{k}-1\right]\right) \Delta \ln \lambda_{j, k t}(\omega)+D_{k t}+\Delta \varepsilon_{\omega j k t}$

Identification Challenge: $\Delta \ln p$ (and $\Delta \ln \lambda$) maybe correlated with $\Delta \varepsilon$.

Identification Strategy: leverage high frequency transaction level data to
construct a shift-share instrument for $\Delta \ln \tilde{p}$ that measures export to aggregate exchange rate shocks at the firm-product-year level. Remili

Identification Strategy

Take first differences to eliminate the firm-product FE
$\ln \tilde{x}_{j, k t}(\omega)=-\left(\sigma_{k}-1\right) \Delta \ln \tilde{p}_{j, k t}(\omega)+\left(1-\mu_{k}\left[\sigma_{k}-1\right]\right) \Delta \ln \lambda_{j, k t}(\omega)+D_{k t}+\Delta \varepsilon_{\omega j k t}$

- Identification Challenge: $\Delta \ln p($ and $\Delta \ln \lambda)$ maybe correlated with $\Delta \varepsilon$.

> Identification Strategy: leverage high frequency transaction level data to construct a shift-share instrument for $\Delta \ln \tilde{p}$ that measures export to aggregate exchange rate shocks at the firm-product-year level. Recum

Identification Strategy

Take first differences to eliminate the firm-product FE
$\ln \tilde{x}_{j, k t}(\omega)=-\left(\sigma_{k}-1\right) \Delta \ln \tilde{p}_{j, k t}(\omega)+\left(1-\mu_{k}\left[\sigma_{k}-1\right]\right) \Delta \ln \lambda_{j, k t}(\omega)+D_{k t}+\Delta \varepsilon_{\omega j k t}$

- Identification Challenge: $\Delta \ln p($ and $\Delta \ln \lambda)$ maybe correlated with $\Delta \varepsilon$.
- Identification Strategy: leverage high frequency transaction level data to construct a shift-share instrument for $\Delta \ln \tilde{p}$ that measures export to aggregate exchange rate shocks at the firm-product-year level. Reum

Shift-Share Instrument

- Compile an external database on monthly exchange rates.
- Interact the change in monthly exchange rates w/ prior monthly export shares to construct a variety-specific shift-share IV:
$z_{j, k t}(\omega)=\sum_{m=1}^{12}[\text { share of month } m \text { exports }]_{t-1} \times[\text { YoY change in month } m \text { exchange rate }]_{t}$
measures firm-level exposure to cost shocks that channel through exchange rate movements.

Shift-Share Instrument

- Compile an external database on monthly exchange rates.
- Interact the change in monthly exchange rates w/ prior monthly export shares to construct a variety-specific shift-share IV:
$z_{j, k t}(\omega)=\sum_{m=1}^{12}[\text { share of month } m \text { exports }]_{t-1} \times[\text { YoY change in month } m \text { exchange rate }]_{t}$
$-z_{j, k t}(\omega)$ measures firm-level exposure to cost shocks that channel through exchange rate movements.

```
Reum
```


Accounting for Firm-Selection à la Melitz-Chaney

Return

Gains Implied by σ_{k} and μ_{k} Estimated in Levels

Return

[^0]: Note: lump-sum transfers are isomorphic to uniform consumption subsidies in the present setup because the labor supply is inelastic-see Dixit, 1980 and Lashkaripour, 2020.

[^1]: - Tax revenues are rebated to the consumers lump-sum. ${ }^{1}$ Dation ocatibrim

[^2]: Note: lump-sum transfers are isomorphic to uniform consumption subsidies in the present setup because the labor supply is inelastic-see Dixit, 1980 and Lashkaripour, 2020.

[^3]: ${ }^{1}$ Note: lump-sum transfers are isomorphic to uniform consumption subsidies in the present setup because the labor supply is inelastic-see Dixit, 1980 and Lashkaripour, 2020.

[^4]: ${ }^{1}$ Note: lump-sum transfers are isomorphic to uniform consumption subsidies in the present setup because the labor supply is inelastic-see Dixit, 1980 and Lashkaripour, 2020.

[^5]: ${ }^{1}$ Note: lump-sum transfers are isomorphic to uniform consumption subsidies in the present setup because the labor supply is inelastic-see Dixit, 1980 and Lashkaripour, 2020.

[^6]: ${ }^{2}$ Note: To account for firm-selection à la Melitz-Chaney, we need to estimate the shape of the Pareto distribution in addition to σ_{k} and $\mu_{k}=1 /\left(\gamma_{k}-1\right)$.

[^7]: ${ }^{2}$ Note: To account for firm-selection à la Melitz-Chaney, we need to estimate the shape of the Pareto distribution in addition to σ_{k} and $\mu_{k}=1 /\left(\gamma_{k}-1\right)$.

