Profits, Scale Economies, and the Gains from Trade and Industrial Policy

Ahmad Lashkaripour Volodymyr Lugovskyy IBA, February 2021

Indiana University

Industrial Policy is Back on the Scene¹

¹See Aiginger and Rodrik (2020) for a detailed account.

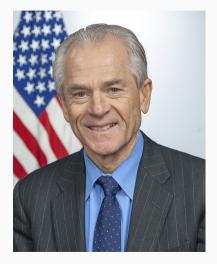
Industrial Targeting via Trade Restrictions is Proliferating

Made in China 2025

 2015 Initiative to promote Chinese manufacturing via trade barriers and subsidies.

National Trade Council

- Created in *Dec 2016* to promote US manufacturing (later became OTMP).
- Proposed tariffs on goods imported from China to counter "Made in China 2025".


Industrial Targeting via Trade Restrictions is Proliferating

Made in China 2025

 2015 Initiative to promote Chinese manufacturing via trade barriers and subsidies.

National Trade Council

- Created in *Dec 2016* to promote US manufacturing (later became OTMP).
- Proposed tariffs on goods imported from China to counter "Made in China 2025".

These developments have resurfaced some old-but-unresolved policy questions:

- 1. is trade policy an effective tool for correcting misallocation in domestic industries? (e.g., for correcting underproduction in manufacturing)
- 2. if not, should governments correct misallocation, *unilaterally*, with industrial subsidies to select industries?
- 3. or should they coordinate their industrial policies via deep trade agreements?

These developments have resurfaced some old-but-unresolved policy questions:

- 1. is trade policy an effective tool for correcting misallocation in domestic industries? (e.g., for correcting underproduction in manufacturing)
- 2. if not, should governments correct misallocation, *unilaterally*, with industrial subsidies to select industries?
- 3. or should they coordinate their industrial policies via deep trade agreements?

These developments have resurfaced some old-but-unresolved policy questions:

- 1. is trade policy an effective tool for correcting misallocation in domestic industries? (e.g., for correcting underproduction in manufacturing)
- 2. if not, should governments correct misallocation, *unilaterally*, with industrial subsidies to select industries?
- 3. or should they coordinate their industrial policies via deep trade agreements?

Our Answers to these Questions Exhibit Important Gaps

Standard *theories* that speak to Question 1-3 overlook key policy considerations:

- typically based on partial equilibrium, 2-good×2-country models.
- overlook multilateral considerations & key industry linkages.

The *quantitative* route has proven equally-elusive:

- quantitative trade model have advanced remarkably over the past two decades...
- ...but we lack credible estimates for parameters that govern the gains from trade and industrial policy.

Our Answers to these Questions Exhibit Important Gaps

Standard *theories* that speak to Question 1-3 overlook key policy considerations:

- typically based on partial equilibrium, 2-good×2-country models.
- overlook multilateral considerations & key industry linkages.

The *quantitative* route has proven equally-elusive:

- quantitative trade model have advanced remarkably over the past two decades...
- ...but we lack credible estimates for parameters that govern the gains from trade and industrial policy.

Step #1. Derive analytic formulas for *1st-best* and *2nd-best* trade policies in an important class of *multi-industry—multi-country* quantitative trade models where misallocation occurs due to scale economies or markup distortions.

Step #2 Estimate the parameters that govern the gains from policy in theses frameworks using micro-level data.

Step #3 Plug the estimated parameters into the analytic optimal policy formulas to quantify the gains from trade and industrial policy under various scenarios.

Step #1. Derive analytic formulas for *1st-best* and *2nd-best* trade policies in an important class of *multi-industry—multi-country* quantitative trade models where misallocation occurs due to scale economies or markup distortions.

Step #2 Estimate the parameters that govern the gains from policy in theses frameworks using micro-level data.

Step #3 Plug the estimated parameters into the analytic optimal policy formulas to quantify the gains from trade and industrial policy under various scenarios.

Step #1. Derive analytic formulas for *1st-best* and *2nd-best* trade policies in an important class of *multi-industry—multi-country* quantitative trade models where misallocation occurs due to scale economies or markup distortions.

Step #2 Estimate the parameters that govern the gains from policy in theses frameworks using micro-level data.

Step #3 Plug the estimated parameters into the analytic optimal policy formulas to quantify the gains from trade and industrial policy under various scenarios.

- 1. The gains from *terms-of-trade* manipulation are small!
- 2. Trade restrictions are an ineffective *second-best* measure for correcting misallocation in domestic industries.
- 3. Unilateral industrial policy is equally ineffective, as it triggers *immiserizing growth* in most countries.
- 4. What is the best remedy for misallocation in open economies? multilateral industrial policies that are coordinated via *deep* agreements.

- 1. The gains from *terms-of-trade* manipulation are small!
- 2. Trade restrictions are an ineffective *second-best* measure for correcting misallocation in domestic industries.
- 3. Unilateral industrial policy is equally ineffective, as it triggers *immiserizing growth* in most countries.
- 4. What is the best remedy for misallocation in open economies? multilateral industrial policies that are coordinated via *deep* agreements.

Conceptual Framework

Textbook Cases for Policy Intervention in an Open Economy

(1) Improving the terms-of-trade (ToT):

- It may be (unilaterally) optimal to tax and contract foreign trade.
- Why? the trade tax revenue collected from foreign producers/consumers can nullify the efficiency loss from trade restrictions

- (2) Correcting misallocation in domestic industries:
 - National output in *high-returns-to-scale* industries is sub-optimal ~ misallocation
 - Governments can restore efficiency by subsidizing high-returns-to-scale industries

Textbook Cases for Policy Intervention in an Open Economy

(1) Improving the terms-of-trade (ToT):

- It may be (unilaterally) optimal to tax and contract foreign trade.
- Why? the trade tax revenue collected from foreign producers/consumers can nullify the efficiency loss from trade restrictions—*if* there's no retaliation.

(2) Correcting misallocation in domestic industries:

- National output in *high-returns-to-scale* industries is sub-optimal ~ misallocation
- Governments can restore efficiency by subsidizing high-returns-to-scale industries

Textbook Cases for Policy Intervention in an Open Economy

(1) Improving the terms-of-trade (ToT):

- It may be (unilaterally) optimal to tax and contract foreign trade.
- Why? the trade tax revenue collected from foreign producers/consumers can nullify the efficiency loss from trade restrictions—*if* there's no retaliation.

- (2) Correcting misallocation in domestic industries:
 - National output in *high-returns-to-scale* industries is sub-optimal ~ misallocation
 - Governments can restore efficiency by subsidizing high-returns-to-scale industries

- We adopt a generalized Krugman model:
 - general equilibrium
 - admits arbitrarily many countries and industries

- Our theoretical framework has two prominent features
 - accommodates both the ToT-improving & misallocation-correcting cases for policy
 - is observationally equivalent to a multi-industry *Melitz-Pareto* model and a multi-industry *Eaton-Kortum* model with Marshallian externalities.

A Brief Overview of the Model

Demand and Preferences

- Industry k is served by many firms located in different countries.
- Nested-CES utility function over firm-level varieties.
 - σ_k ~ cross-national elasticity of substitution in industry k
 - γ_k ~ within-national elasticity of substitution b/w firm-level varieties

Supply and Firms

- labor is the sole factor of production
- firms compete under monopolistic competition + free (or restricted) entry

Two Key Elasticities for Policy Analysis

Trade Elasticity

– The trade elasticity in industry k is defined as

trade elasticity ~ $\frac{\partial \ln \text{Bilateral trade value}}{\partial \ln \text{Bilateral trade barriers}} = \sigma_k - 1$

– Lower $\sigma_k - 1 \longrightarrow$ greater scope for ToT manipulation

Scale Elasticity

- The scale elasticity in industry k is defined as

scale elasticity
$$\sim \frac{\partial \ln \text{Variety-adjusted TFP}}{\partial \ln \text{Number of workers}} = \frac{1}{\gamma_k - 1}$$

- Higher $\operatorname{Var}_k(\mu_k) \longrightarrow$ greater degree of misallocation

Two Key Elasticities for Policy Analysis

Trade Elasticity

– The trade elasticity in industry k is defined as

trade elasticity ~ $\frac{\partial \ln \text{Bilateral trade value}}{\partial \ln \text{Bilateral trade barriers}} = \sigma_k - 1$

– Lower $\sigma_k - 1 \longrightarrow$ greater scope for ToT manipulation

Scale Elasticity

- The scale elasticity in industry k is defined as

scale elasticity ~
$$\frac{\partial \ln \text{Variety-adjusted TFP}}{\partial \ln \text{Number of workers}} = \frac{1}{\gamma_k - 1}$$

- Higher $\operatorname{Var}_k(\mu_k) \longrightarrow$ greater degree of misallocation

Two Key Elasticities for Policy Analysis

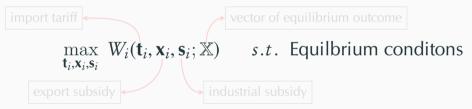
Trade Elasticity

- The trade elasticity in industry k is defined as

trade elasticity ~ $\frac{\partial \ln \text{Bilateral trade value}}{\partial \ln \text{Bilateral trade barriers}} = \sigma_k - 1$

– Lower $\sigma_k - 1 \longrightarrow$ greater scope for ToT manipulation

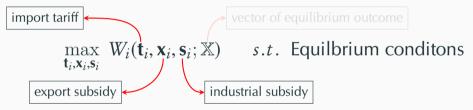
Scale Elasticity


- The scale elasticity in industry k is defined as

scale elasticity ~ $\frac{\partial \ln \text{Variety-adjusted TFP}}{\partial \ln \text{Number of workers}} = \underbrace{\frac{\mu_k}{1}}{\gamma_k - 1}$

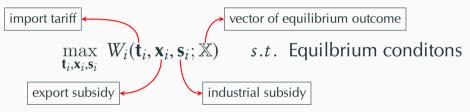
First-Best Non-Cooperative Policy

Optimal Non-Cooperative Policy Problem

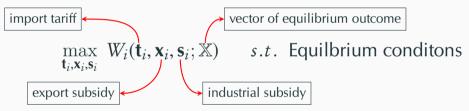

- Country *i*'s optimal policy problem

 Note the solution to the above problem does not internalize country i's ToT externality on the rest of the world —> it's sub-optimal from a global standpoint.

Optimal Non-Cooperative Policy Problem


- Country *i*'s optimal policy problem

 Note the solution to the above problem does not internalize country i's ToT externality on the rest of the world —> it's sub-optimal from a global standpoint.


Optimal Non-Cooperative Policy Problem

- Country *i*'s optimal policy problem

- Note the solution to the above problem does not internalize country i's ToT externality on the rest of the world → it's sub-optimal from a global standpoint.

- Country *i*'s optimal policy problem

- Note the solution to the above problem does *not* internalize country *i*'s ToT externality on the rest of the world \rightarrow it's sub-optimal from a global standpoint.

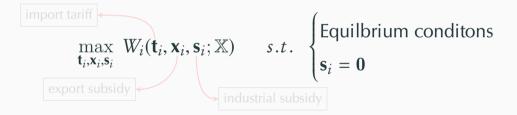
The unilaterally optimal (first-best) policy consists of

1. industrial subsidies (\mathbf{s}_i) that promote high- μ (*high-returns-to-scale*) industries.

2. import tariffs (\mathbf{t}_i) + export subsidies (\mathbf{x}_i) that contract exports in low- σ industries.

Corollary: first-best optimal tariffs and export subsidies are *misallocation-blind*.

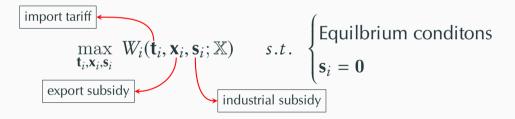
The unilaterally optimal (first-best) policy consists of


1. industrial subsidies (s_i) that promote high- μ (*high-returns-to-scale*) industries.

2. import tariffs (\mathbf{t}_i) + export subsidies (\mathbf{x}_i) that contract exports in low- σ industries.

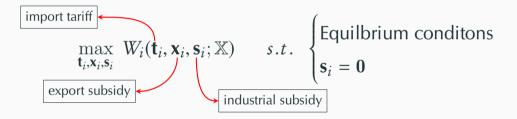
Corollary: first-best optimal tariffs and export subsidies are *misallocation-blind*.

Second-Best Optimal Policy Problem


- Country *i*'s 2nd-best optimal policy problem

- Note: The restriction that $s_i = 0$ may reflect institutional barriers or political economy pressures.

Second-Best Optimal Policy Problem


- Country *i*'s 2nd-best optimal policy problem

- Note: The restriction that $s_i = 0$ may reflect institutional barriers or political economy pressures.

Second-Best Optimal Policy Problem

- Country *i*'s 2nd-best optimal policy problem

- Note: The restriction that $s_i = 0$ may reflect institutional barriers or political economy pressures.

- Optimal 2nd-best trade policies can be specified as follows:

$$t_{2nd-best}^{*} = t_{1st-best}^{*} \times t_{misallocation-correcting}^{*}$$

$$x_{2nd-best}^{*} = x_{1st-best}^{*} \times x_{misallocation-correcting}^{*}$$

Intuition

- $t^*_{2nd-best}$ and $x^*_{2nd-best}$ mimic *1st-best* (Pigouvian) industrial subsidies...
- ...but by the *targeting principle*, they cannot replicate the *1st-best* outcome.

- Optimal 2nd-best trade policies can be specified as follows:

$$t_{2nd-best}^{*} = t_{1st-best}^{*} \times t_{misallocation-correcting}^{*}$$

$$x_{2nd-best}^{*} = x_{1st-best}^{*} \times x_{misallocation-correcting}^{*}$$

Intuition

- $t^*_{2nd-best}$ and $x^*_{2nd-best}$ mimic *1st-best* (Pigouvian) industrial subsidies...
- ...but by the *targeting principle*, they cannot replicate the *1st-best* outcome.

- Optimal 2nd-best trade policies can be specified as follows:

$$t_{2nd-best}^{*} = t_{1st-best}^{*} \times t_{misallocation-correcting}^{*}$$

$$x_{2nd-best}^{*} = x_{1st-best}^{*} \times x_{misallocation-correcting}^{*}$$

Intuition

- $t^*_{2nd-best}$ and $x^*_{2nd-best}$ mimic *1st-best* (Pigouvian) industrial subsidies...
- ...but by the *targeting principle*, they cannot replicate the *1st-best* outcome.

Tension between ToT and Misallocation-Correcting Objectives

- Correcting misallocation requires promoting high- μ industries.
- ToT improvement requires contracting export sales in low- σ industries.

Proposition

- If $\text{Cov}_k(\mu_k, \sigma_k) < 0 \implies$ correcting misallocation with trade policy worsens the terms-of-trade and *vice versa*.
- This tension makes trade policy an ineffective *misallocation-correcting* measure, beyond what is implied by the targeting principle.

Avoiding Immiserizing Growth with Deep Agreements

- Flip side: If $\text{Cov}_k(\mu_k, \sigma_k) < 0 \implies$ using industrial subsidies, *unilaterally*, to correct misallocation causes *immiserizing growth*.
- Why? corrective industrial subsidies promote high- μ industries \rightarrow expand exports in low- σ industries by design \rightarrow worsen the ToT.
- The best remedy for misallocation in open economies:
 - Countries coordinate their industrial subsidies via *deep* trade agreements.
 - In this process, each country forgoes the (unilateral) ToT gains from policy but benefit for efficiency improvements in the RoW.

Avoiding Immiserizing Growth with Deep Agreements

- Flip side: If $\text{Cov}_k(\mu_k, \sigma_k) < 0 \implies$ using industrial subsidies, *unilaterally*, to correct misallocation causes *immiserizing growth*.
- Why? corrective industrial subsidies promote high- μ industries \rightarrow expand exports in low- σ industries by design \rightarrow worsen the ToT.
- The best remedy for misallocation in open economies:
 - Countries coordinate their industrial subsidies via deep trade agreements.
 - In this process, each country forgoes the (unilateral) ToT gains from policy but benefit for efficiency improvements in the RoW.

Estimating the Key Policy Parameters

The Parameters that Govern the Gains from Policy

- The gains from optimal policy depend crucially on two sets of elasticities:

- 1. μ_k ~ industry-level scale elasticity
- 2. $\sigma_k 1$ ~ industry-level trade elasticity

- We posses plenty of estimates for trade elasticities, but μ_k is often normalized:
 - perfectly competitive models $\longrightarrow \mu_k = 0$
 - traditional Krugman/Melitz models $\longrightarrow \mu_k = \frac{1}{\text{trade elasticity}}$

- The gains from optimal policy depend crucially on two sets of elasticities:
 - 1. μ_k ~ industry-level scale elasticity
 - 2. $\sigma_k 1$ ~ industry-level trade elasticity

- We posses plenty of estimates for trade elasticities, but μ_k is often normalized:
 - perfectly competitive models $\longrightarrow \mu_k = 0$
 - traditional Krugman/Melitz models $\longrightarrow \mu_k = \frac{1}{\text{trade elasticity}}$

- We propose a new methodology to jointly estimate ξ_k and ϵ_k .
- We estimate a *firm-level* nest-CES import demand function with *transaction-level* trade data ($j, kt \sim \text{origin } j-\text{industry } k-\text{year } t$):

$$\ln X_{j,kt}(\omega) = -(\sigma_k - 1) \ln \tilde{p}_{j,kt}(\omega) + (1 - \mu_k [\sigma_k - 1]) \ln \lambda(\omega \mid j, kt) + \delta_{kt} + \varepsilon_{\omega jkt}$$
firm-leve sales firm-level price within-national market share

 Data Source: Universe of Colombian import transactions during 2007-2013, covering 226,288 exporting firms from 251 different countries. Estimation Details

- We propose a new methodology to jointly estimate ξ_k and ϵ_k .
- We estimate a *firm-level* nest-CES import demand function with *transaction-level* trade data (*j*, *kt* ~ origin *j*-industry *k*-year *t*):

$$\lim_{\substack{j,kt} \\ j,kt}(\omega) = -(\sigma_k - 1) \ln \tilde{p}_{j,kt}(\omega) + (1 - \mu_k [\sigma_k - 1]) \ln \lambda(\omega \mid j, kt) + \delta_{kt} + \varepsilon_{\omega jkt}$$
firm-leve sales within-national market share

 Data Source: Universe of Colombian import transactions during 2007-2013, covering 226,288 exporting firms from 251 different countries. Estimation Details **Quantifying the Gains from Policy**

- Our goal is to simulate the counterfactual equilibrium under optimal policy.
- A bullet point summary of our quantitative strategy:
 - 1. Use exact hat-algebra \rightarrow express optimal policy formulas in changes
 - 2. Use exact hat-algebra \longrightarrow express equilibrium conditions in changes
 - 3. Solve the system of equations derived under Steps (1) and (2)
- Step (3) determines the change in *real GDP* in response to optimal policy as a function of the following *sufficient statistics*:

$$\mathcal{B}_{v} \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, w_{n}\bar{L}_{n}, Y_{n}\}_{ni,k} \qquad \mathcal{B}_{e} = \{\sigma_{k} - 1, \mu_{k}\}_{k}$$

expen

- Our goal is to simulate the counterfactual equilibrium under optimal policy.
- A bullet point summary of our quantitative strategy:
 - 1. Use exact hat-algebra \rightarrow express optimal policy formulas in changes
 - 2. Use exact hat-algebra \longrightarrow express equilibrium conditions in changes
 - 3. Solve the system of equations derived under Steps (1) and (2)
- Step (3) determines the change in *real GDP* in response to optimal policy as a function of the following *sufficient statistics*:

$$\mathcal{B}_{v} \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, w_{n}\bar{L}_{n}, Y_{n}\}_{ni,k} \qquad \mathcal{B}_{e} = \{\sigma_{k} - 1, \mu_{k}\}_{k}$$

diture share

- Our goal is to simulate the counterfactual equilibrium under optimal policy.
- A bullet point summary of our quantitative strategy:
 - 1. Use exact hat-algebra \rightarrow express optimal policy formulas in changes
 - 2. Use exact hat-algebra \longrightarrow express equilibrium conditions in changes
 - 3. Solve the system of equations derived under Steps (1) and (2)
- Step (3) determines the change in *real GDP* in response to optimal policy as a function of the following *sufficient statistics*:

$$\mathcal{B}_{v} \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, w_{n}\bar{L}_{n}, Y_{n}\}_{ni,k} \qquad \mathcal{B}_{e} = \{\sigma_{k} - 1, \mu_{k}\}_{k}$$
sales share

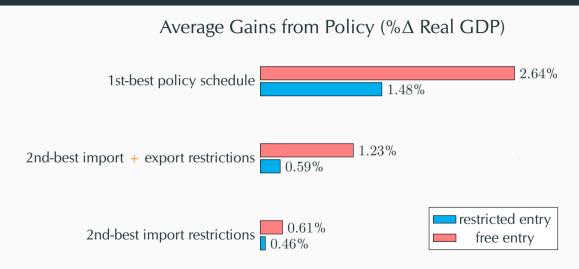
- Our goal is to simulate the counterfactual equilibrium under optimal policy.
- A bullet point summary of our quantitative strategy:
 - 1. Use exact hat-algebra \rightarrow express optimal policy formulas in changes
 - 2. Use exact hat-algebra \longrightarrow express equilibrium conditions in changes
 - 3. Solve the system of equations derived under Steps (1) and (2)
- Step (3) determines the change in *real GDP* in response to optimal policy as a function of the following *sufficient statistics*:

$$\mathcal{B}_{v} \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, w_{n}\bar{L}_{n}, Y_{n}\}_{ni,k} \qquad \mathcal{B}_{e} = \{\sigma_{k} - 1, \mu_{k}\}_{k}$$

- Our goal is to simulate the counterfactual equilibrium under optimal policy.
- A bullet point summary of our quantitative strategy:
 - 1. Use exact hat-algebra \rightarrow express optimal policy formulas in changes
 - 2. Use exact hat-algebra \rightarrow express equilibrium conditions in changes
 - 3. Solve the system of equations derived under Steps (1) and (2)
- Step (3) determines the change in *real GDP* in response to optimal policy as a function of the following *sufficient statistics*:

$$\mathcal{B}_{v} \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, w_{n}\bar{L}_{n}, Y_{n}\}_{ni,k}$$

$$\mathcal{B}_{e} = \{ \sigma_{k} - 1, \mu_{k} \}_{k}$$
estimable parameters


WORLD INPUT-OUTPUT DATABASE (2000-2014)

- production and expenditure by *origin*×*destination*×*industry*.
- 44 Countries + an aggregate of the rest of the world
- 56 Industries

UNCTAD-TRAINS Database:

– Average industry-level tariffs for all 44×43 country pairs.

Gains from Non-Cooperative Optimal Policies

The Immiserizing Growth Effects of Industrial Policy

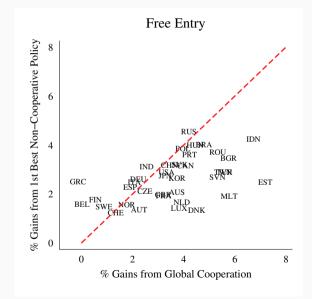
Welfare consequences of corrective industrial subsidies under free entry

- Unilateral adoption \rightarrow 0.70% decline in real GDP
- Coordinated via a deep agreement \rightarrow 3.22% rise in real GDP

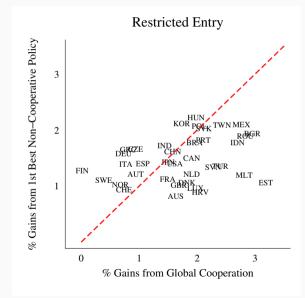
Welfare consequences of corrective industrial subsidies under restricted entry

- Unilateral adoption $\longrightarrow 0.25\%$ decline in real GDP
- Coordinated via a deep agreement \rightarrow 1.24% rise in real GDP

The Immiserizing Growth Effects of Industrial Policy


Welfare consequences of corrective industrial subsidies under free entry

- Unilateral adoption \rightarrow 0.70% decline in real GDP
- Coordinated via a deep agreement \rightarrow 3.22% rise in real GDP


Welfare consequences of corrective industrial subsidies under restricted entry

- Unilateral adoption $\rightarrow 0.25\%$ decline in real GDP
- Coordinated via a deep agreement \rightarrow 1.24% rise in real GDP

Deep Cooperation vs. Non-Cooperation

Deep Cooperation vs. Non-Cooperation

- The gains from *terms-of-trade* manipulation are small!
- Trade restrictions are an ineffective *second-best* measure for correcting misallocation in domestic industries.
- Unilateral industrial policy is equally ineffective, as it triggers *immiserizing* growth in most countries.
- What is the best remedy for misallocation in open economies? multilateral industrial policies that are coordinated via *deep* agreements.

- The gains from *terms-of-trade* manipulation are small!
- Trade restrictions are an ineffective *second-best* measure for correcting misallocation in domestic industries.
- Unilateral industrial policy is equally ineffective, as it triggers *immiserizing growth* in most countries.
- What is the best remedy for misallocation in open economies? multilateral industrial policies that are coordinated via *deep* agreements.

Thank you

References

Take first differences to eliminate the firm-product FE

 $\Delta \ln X_{j,kt}(\omega) = -(\sigma_k - 1) \Delta \ln \tilde{p}_{j,kt}(\omega) + (1 - \mu_k [\sigma_k - 1]) \Delta \ln \lambda(\omega \mid j, kt) + \tilde{\delta}_{kt} + \Delta \varepsilon_{\omega j kt}$

- Identification Challenge: $\Delta \ln p$ and $\Delta \ln \lambda$ maybe correlated with $\Delta \varepsilon$.

- Identification Strategy: use degree of exposure to monthly exchange rate shocks as an instrument for $\Delta \ln \tilde{p}$ and $\Delta \ln \lambda$.

Take first differences to eliminate the firm-product FE

 $\Delta \ln X_{j,kt}(\omega) = -(\sigma_k - 1) \Delta \ln \tilde{p}_{j,kt}(\omega) + (1 - \mu_k [\sigma_k - 1]) \Delta \ln \lambda(\omega \mid j, kt) + \tilde{\delta}_{kt} + \Delta \varepsilon_{\omega jkt}$

- Identification Challenge: $\Delta \ln p$ and $\Delta \ln \lambda$ maybe correlated with $\Delta \varepsilon$.

- Identification Strategy: use degree of exposure to monthly exchange rate shocks as an instrument for $\Delta \ln \tilde{p}$ and $\Delta \ln \lambda$. Recurs

Take first differences to eliminate the firm-product FE

 $\Delta \ln X_{j,kt}(\omega) = -(\sigma_k - 1) \Delta \ln \tilde{p}_{j,kt}(\omega) + (1 - \mu_k [\sigma_k - 1]) \Delta \ln \lambda(\omega \mid j, kt) + \tilde{\delta}_{kt} + \Delta \varepsilon_{\omega jkt}$

- Identification Challenge: $\Delta \ln p$ and $\Delta \ln \lambda$ maybe correlated with $\Delta \varepsilon$.

- Identification Strategy: use degree of exposure to *monthly* exchange rate shocks as an instrument for $\Delta \ln \tilde{p}$ and $\Delta \ln \lambda$. Return

- Compile an external database on monthly exchange rates.
- Interact the change in monthly exchange rates w/ prior export behavior to construct a *variety-specific* shift-share IV:

$$z_{j,kt}(\omega) = \sum_{m=1}^{12} \left(\text{[share of month } m \text{ sales in } t-1] \times \Delta \ln E_{j,t}(m) \right)$$

- $z_{j,kt}(\omega)$ measures firm ω 's exposure to cost shocks that channel through exchange rate movements. Return

- Compile an external database on monthly exchange rates.
- Interact the change in monthly exchange rates w/ prior export behavior to construct a *variety-specific* shift-share IV:

$$z_{j,kt}(\omega) = \sum_{m=1}^{12} \left(\text{[share of month } m \text{ sales in } t-1] \times \Delta \ln E_{j,t}(m) \right)$$
exchange rate

- $z_{j,kt}(\omega)$ measures firm ω 's exposure to cost shocks that channel through exchange rate movements. Return

- Compile an external database on monthly exchange rates.
- Interact the change in monthly exchange rates w/ prior export behavior to construct a *variety-specific* shift-share IV:

$$z_{j,kt}(\omega) = \sum_{m=1}^{12} \left(\text{[share of month } m \text{ sales in } t-1] \times \Delta \ln E_{j,t}(m) \right)$$
exchange rate

- $z_{j,kt}(\omega)$ measures firm ω 's exposure to cost shocks that channel through exchange rate movements. Return

		Estimated Parameter				
Sector	ISIC4 codes	$\sigma_k - 1$	$\tfrac{\sigma_k-1}{\gamma_k-1}$	μ_k	Obs.	Weak Ident. Test
Agriculture & Mining	100-1499	6.212 (2.112)	0.875 (0.142)	0.141 (0.167)	11,962	2.51
Food	1500-1699	3.333 (0.815)	0.883 (0.050)	0.265 (0.131)	20.042	6.00
Textiles, Leather & Footwear	1700-1999	3.413 (0.276)	0.703 (0.020)	0.207 (0.022)	126,483	63.63
Wood	2000-2099	3.329 (1.331)	0.899 (0.181)	0.270 (0.497)	5,962	1.76
Paper	2100-2299	2.046 (0.960)	0.813 (0.216)	0.397 (0.215)	37,815	2.65
Petroleum	2300-2399	0.397 (0.342)	0.698 (0.081)	1.758 (1.584)	4,035	2.03
Chemicals	2400-2499	4.320 (0.376)	0.915 (0.027)	0.212 (0.069)	134,413	42.11

		Estimated Parameter				
Sector	ISIC4 codes	$\sigma_k - 1$	$\frac{\sigma_k - 1}{\gamma_k - 1}$	μ_k	Obs.	Weak Ident. Test
Agriculture & Mining	100-1499	6.212 (2.112)	0.875 (0.142)	0.141 (0.167)	11,962	2.51
Food	1500-1699	3.333 (0.815)	0.883 (0.050)	0.265 (0.131)	20.042	6.00
Textiles, Leather & Footwear	1700-1999	3.413 (0.276)	0.703 (0.020)	0.207 (0.022)	126,483	63.63
Wood	2000-2099	3.329 (1.331)	0.899 (0.181)	0.270 (0.497)	5,962	1.76
Paper	2100-2299	2.046 (0.960)	0.813 (0.216)	0.397 (0.215)	37,815	2.65
Petroleum	2300-2399	0.397 (0.342)	0.698 (0.081)	1.758 (1.584)	4,035	2.03
Chemicals	2400-2499	4.320 (0.376)	0.915 (0.027)	0.212 (0.069)	134,413	42.11

		Esti	mated Para	meter		
Sector	ISIC4 codes	$\sigma_k - 1$	$\frac{\sigma_k - 1}{\gamma_k - 1}$	μ_k	Obs.	Weak Ident. Test
Rubber & Plastic	2500-2599	3.599 (0.802)	0.582 (0.041)	0.162 (0.039)	107,713	7.22
Minerals	2600-2699	4.561 (1.347)	0.847 (0.096)	0.186 (0.129)	28,197	3.19
Basic & Fabricated Metals	2700-2899	2.959 (0.468)	0.559 (0.024)	0.189 (0.032)	155,032	16.35
Machinery	2900-3099	8.682 (1.765)	0.870 (0.080)	0.100 (0.065)	266,628	8.54
Electrical & Optical Equipment	3100-3399	1.392 (0.300)	0.631 (0.015)	0.453 (0.099)	260,207	17.98
Transport Equipment	3400-3599	2.173 (0.589)	0.289 (0.028)	0.133 (0.036)	86,853	5.09
N.E.C. & Recycling	3600-3800	6.704 (1.133)	0.951 (0.100)	0.142 (0.289)	70,974	8.51

- High- μ sectors:
 - 1. Electrical & Optical Equipment
 - 2. Petroleum

- Low- μ sectors:
 - 1. Agriculture & Mining
 - 2. Wood

- High- μ sectors:
 - 1. Electrical & Optical Equipment
 - 2. Petroleum

- Low- μ sectors:
 - 1. Agriculture & Mining
 - 2. Wood