Profits, Scale Economies, and the Gains from Trade and Industrial Policy

Ahmad Lashkaripour Volodymyr Lugovskyy University of Michigan, March 2021

Indiana University

Industrial Policy is Back on the Scene¹

¹See Aiginger and Rodrik (2020) for a detailed account.

Industrial Targeting via Trade Restrictions is Proliferating

Made in China 2025

 2015 Initiative to promote Chinese manufacturing via trade barriers and subsidies.

National Trade Council

- Created in *Dec 2016* to promote US manufacturing (later became OTMP).
- Proposed tariffs on goods imported from China to counter "Made in China 2025".

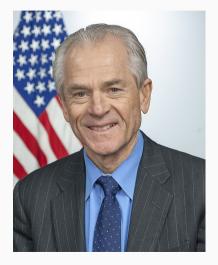
Industrial Targeting via Trade Restrictions is Proliferating

Made in China 2025

 2015 Initiative to promote Chinese manufacturing via trade barriers and subsidies.

National Trade Council

- Created in *Dec 2016* to promote US manufacturing (later became OTMP).
- Proposed tariffs on goods imported from China to counter "Made in China 2025".



These developments have resurfaced some old-but-unresolved policy questions:

- 1. is trade policy an effective tool for correcting misallocation in domestic industries? (e.g., for correcting underproduction in manufacturing)
- 2. if not, should governments correct misallocation, *unilaterally*, with industrial subsidies to target industries?
- 3. or should they coordinate their industrial policies via deep trade agreements?

These developments have resurfaced some old-but-unresolved policy questions:

- 1. is trade policy an effective tool for correcting misallocation in domestic industries? (e.g., for correcting underproduction in manufacturing)
- 2. if not, should governments correct misallocation, *unilaterally*, with industrial subsidies to target industries?
- 3. or should they coordinate their industrial policies via deep trade agreements?

These developments have resurfaced some old-but-unresolved policy questions:

- 1. is trade policy an effective tool for correcting misallocation in domestic industries? (e.g., for correcting underproduction in manufacturing)
- 2. if not, should governments correct misallocation, *unilaterally*, with industrial subsidies to target industries?
- 3. or should they coordinate their industrial policies via deep trade agreements?

Our Answers to these Questions Exhibit Important Gaps

Standard *theories* that speak to Question 1-3 overlook key policy considerations:

- typically based on partial equilibrium, 2-good×2-country models.
- overlook multilateral considerations & key industry linkages.

The *quantitative* route has proven equally-elusive:

- quantitative trade model have advanced remarkably over the past two decades...
- ...but we lack credible estimates for parameters that govern the gains from trade and industrial policy. [exception: Bartelme et. al. (2019)]

Standard *theories* that speak to Question 1-3 overlook key policy considerations:

- typically based on partial equilibrium, 2-good×2-country models.
- overlook multilateral considerations & key industry linkages.

The *quantitative* route has proven equally-elusive:

- quantitative trade model have advanced remarkably over the past two decades...
- ...but we lack credible estimates for parameters that govern the gains from trade and industrial policy. [exception: Bartelme *et. al.* (2019)]

Standard *theories* that speak to Question 1-3 overlook key policy considerations:

- typically based on partial equilibrium, 2-good×2-country models.
- overlook multilateral considerations & key industry linkages.

The *quantitative* route has proven equally-elusive:

- quantitative trade model have advanced remarkably over the past two decades...
- ...but we lack credible estimates for parameters that govern the gains from trade and industrial policy. [exception: Bartelme et. al. (2019)]

Step #1. Derive analytic formulas for *1st-best* and *2nd-best* trade policies in an important class of *multi-industry—multi-country* quantitative trade models where misallocation occurs due to scale economies or markup distortions.

Step #2 Estimate the parameters that govern the gains from policy in theses frameworks using micro-level data.

Step #3 Plug the estimated parameters into the analytic optimal policy formulas to quantify the gains from trade and industrial policy under various scenarios.

Step #1. Derive analytic formulas for *1st-best* and *2nd-best* trade policies in an important class of *multi-industry—multi-country* quantitative trade models where misallocation occurs due to scale economies or markup distortions.

Step #2 Estimate the parameters that govern the gains from policy in theses frameworks using micro-level data.

Step #3 Plug the estimated parameters into the analytic optimal policy formulas to quantify the gains from trade and industrial policy under various scenarios.

Step #1. Derive analytic formulas for *1st-best* and *2nd-best* trade policies in an important class of *multi-industry—multi-country* quantitative trade models where misallocation occurs due to scale economies or markup distortions.

Step #2 Estimate the parameters that govern the gains from policy in theses frameworks using micro-level data.

Step #3 Plug the estimated parameters into the analytic optimal policy formulas to quantify the gains from trade and industrial policy under various scenarios.

- 1. Trade restrictions are an ineffective *second-best* measure for correcting misallocation in domestic industries.
- 2. Unilateral industrial policy is equally ineffective, as it triggers *immiserizing growth* in most countries.
- 3. What is the best remedy for misallocation in open economies? multilateral industrial policies that are coordinated via *deep* agreements.

- 1. Trade restrictions are an ineffective *second-best* measure for correcting misallocation in domestic industries.
- 2. Unilateral industrial policy is equally ineffective, as it triggers *immiserizing growth* in most countries.
- 3. What is the best remedy for misallocation in open economies? multilateral industrial policies that are coordinated via *deep* agreements.

Conceptual Framework

We adopt a generalized *multi-country*, *multi-industry* Krugman model:

- general equilibrium + can tractably accommodate IO linkages

- accommodates the ToT-improving & misallocation-correcting cases for policy

- is isomorphic to a *Melitz-Pareto* model or an *Eaton-Kortum* model with Marshallian externalities (Kucheryavyy et. al., 2020).

The Economic Environment

- Many countries: i, j, n = 1, ..., N
 - Country *i* is populated by L_i workers who supply labor inelastically.
 - Labor is the only (primary) factor of production

- Many industries: $k, g = 1, ..., \mathcal{K}$
 - Industries differ in terms of their trade elasticity, scale elasticity, etc.
 - Each industry is served by many firms (index ω)

- Goods are indexed by origin-destination-industry

good $ij, k \sim$ origin i – destination j – industry k

- *Supply-side* variables are indexed by origin-industry

subscript $i, k \sim$ origin i – industry k

- Demand-side variables are indexed by destination-industry

subscript $j, k \sim$ destination j – industry k

- Goods are indexed by origin-destination-industry

good $ij, k \sim$ origin i – destination j – industry k

- Supply-side variables are indexed by origin-industry

subscript $i, k \sim$ origin i – industry k

- Demand-side variables are indexed by destination-industry

subscript $j, k \sim \text{destination } j - \text{industry } k$

- Representative consumer's problem in country *i*

m

$$\max_{\mathbf{Q}_{i}} U_{i}(\mathbf{Q}_{i}) \quad s.t. \sum_{k} \left(\tilde{P}_{i,k} Q_{i,k} \right) = Y_{i}$$

- $\mathbf{Q}_i \equiv \{Q_{i,k}\} ~ \text{composite industry-level consumption.}$ - $\tilde{\mathbf{P}}_i \equiv \{\tilde{P}_{i,k}\} ~ \text{"consumer" price index of industry-level composite.}$
- The Marshallian demand function for *industry* k goods in *market* i $Q_{i,k} = \mathcal{D}_{i,k}(\tilde{\mathbf{P}}_i, Y_i)$
- The **Cobb-Douglas** case: $U_i(\mathbf{Q}_i) = \prod_{k=1}^{\mathcal{K}} Q_{i,k}^{e_{i,k}} \longrightarrow Q_{i,k} = e_{i,k} Y_i / \tilde{P}_{i,k}$

- Representative consumer's problem in country *i*

$$\max_{\mathbf{Q}_{i}} U_{i}(\mathbf{Q}_{i}) \quad s.t. \sum_{k} \left(\tilde{P}_{i,k} Q_{i,k} \right) = Y_{i}$$

 $- \mathbf{Q}_i \equiv \{Q_{i,k}\} ~ \text{composite industry-level consumption.}$ - $\tilde{\mathbf{P}}_i \equiv \{\tilde{P}_{i,k}\} ~ \text{"consumer" price index of industry-level composite.}$

– The Marshallian demand function for *industry* k goods in *market* i $Q_{i,k} = \mathcal{D}_{i,k}(\tilde{\mathbf{P}}_i, Y_i)$

- The **Cobb-Douglas** case: $U_i(\mathbf{Q}_i) = \prod_{k=1}^{\mathcal{K}} Q_{i,k}^{e_{i,k}} \longrightarrow Q_{i,k} = e_{i,k} Y_i / \tilde{P}_{i,k}$

- Representative consumer's problem in country *i*

$$\max_{\mathbf{Q}_{i}} U_{i}(\mathbf{Q}_{i}) \quad s.t. \sum_{k} \left(\tilde{P}_{i,k} Q_{i,k} \right) = Y_{i}$$

 $- \mathbf{Q}_i \equiv \{Q_{i,k}\} ~ \text{composite industry-level consumption.}$ - $\tilde{\mathbf{P}}_i \equiv \{\tilde{P}_{i,k}\} ~ \text{"consumer" price index of industry-level composite.}$

– The Marshallian demand function for *industry* k goods in *market* i $Q_{i,k} = \mathcal{D}_{i,k}(\tilde{\mathbf{P}}_i, Y_i)$

- The **Cobb-Douglas** case: $U_i(\mathbf{Q}_i) = \prod_{k=1}^{\mathcal{K}} Q_{i,k}^{e_{i,k}} \longrightarrow Q_{i,k} = e_{i,k} Y_i / \tilde{P}_{i,k}$

- Representative consumer's problem in country *i*

$$\max_{\mathbf{Q}_{i}} U_{i}(\mathbf{Q}_{i}) \quad s.t. \sum_{k} \left(\tilde{P}_{i,k} Q_{i,k} \right) = Y_{i}$$

 $- \mathbf{Q}_i \equiv \{Q_{i,k}\} ~ composite industry-level consumption.$ $- <math>\tilde{\mathbf{P}}_i \equiv \{\tilde{P}_{i,k}\} ~ "consumer"$ price index of industry-level composite.

- The Marshallian demand function for *industry k* goods in *market i* $Q_{i\,k} = \mathcal{D}_{i\,k}(\tilde{\mathbf{P}}_i, Y_i)$
- The **Cobb-Douglas** case: $U_i(\mathbf{Q}_i) = \prod_{k=1}^{\mathcal{K}} Q_{i,k}^{e_{i,k}} \longrightarrow Q_{i,k} = e_{i,k} Y_i / \tilde{P}_{i,k}$

Preferences: Nested-CES within Industries

- Cross-national aggregator:
$$Q_{i,k} = \left(\sum_{j \in \mathbb{C}} Q_{ji,k}^{\frac{\sigma_k - 1}{\sigma_k}}\right)^{\frac{\sigma_k}{\sigma_k - 1}}$$

- Sub-national aggregator: $Q_{ji,k} = \left(\sum_{\omega \in \Omega_{j,k}} q_{ji,k}(\omega)^{\frac{\gamma_k - 1}{\gamma_k}}\right)^{\frac{\gamma_k}{\gamma_k - 1}}$

- The demand facing an firm-level variety
$$\omega$$
 (origin *i*-destination *i*-industry

$$q_{ji,k}(\omega) = \left(\frac{\tilde{p}_{ji,k}(\omega)}{\tilde{P}_{ji,k}}\right)^{-\gamma_k} \left(\frac{\tilde{P}_{ji,k}}{\tilde{P}_{i,k}}\right)^{-\sigma_k} \mathcal{D}_{i,k}\left(\tilde{\mathbf{P}}_i, Y_i\right)$$

Preferences: Nested-CES within Industries

- Cross-national aggregator:
$$Q_{i,k} = \left(\sum_{j \in \mathbb{C}} Q_{ji,k}^{\frac{\sigma_k - 1}{\sigma_k}}\right)^{\frac{\sigma_k}{\sigma_k - 1}}$$

- Sub-national aggregator:
$$Q_{ji,k} = \left(\sum_{\omega \in \Omega_{j,k}} q_{ji,k}(\omega)^{\frac{\gamma_k - 1}{\gamma_k}}\right)^{\frac{\kappa}{\gamma_k - 1}}$$

- The demand facing an firm-level variety ω (origin *j*-destination *i*-industry *k*):

$$q_{ji,k}(\omega) = \left(\frac{\tilde{p}_{ji,k}(\omega)}{\tilde{P}_{ji,k}}\right)^{-\gamma_{k}} \left(\frac{\tilde{P}_{ji,k}}{\tilde{P}_{i,k}}\right)^{-\sigma_{k}} \mathcal{D}_{i,k}\left(\tilde{\mathbf{P}}_{i}, Y_{i}\right)$$

origin *j*-destination *i*-industry *k*

Preferences: Nested-CES within Industries

- Cross-national aggregator:
$$Q_{i,k} = \left(\sum_{j \in \mathbb{C}} Q_{ji,k}^{\frac{\sigma_k - 1}{\sigma_k}}\right)^{\frac{\sigma_k}{\sigma_k - 1}}$$

- Sub-national aggregator:
$$Q_{ji,k} = \left(\sum_{\omega \in \Omega_{j,k}} q_{ji,k}(\omega)^{\frac{\gamma_k - 1}{\gamma_k}}\right)^{\frac{\kappa}{\gamma_k - 1}}$$

- The demand facing an firm-level variety ω (origin *j*-destination *i*-industry *k*):

$$q_{ji,k}(\omega) = \left(\frac{\tilde{p}_{ji,k}(\omega)}{\tilde{P}_{ji,k}}\right)^{-\gamma_k} \left(\frac{\tilde{P}_{ji,k}}{\tilde{P}_{i,k}}\right)^{-\sigma_k} \mathcal{D}_{i,k}\left(\tilde{\mathbf{P}}_i, Y_i\right)$$

origin *j*-destination *i*-industry *k* destination *i*-industry *k*

- Firms compete under monopolistic competition.
- variety-specific marginal cost (origin *i*-destination *j*-industry *k*)

$$\mathsf{MC}_{ij,k}(\omega) = \frac{\tau_{ij,k} \, w_i}{\varphi_{i,k}(\omega)}$$

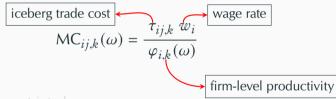
- Entry is either free or restricted
 - Free Entry: endogenous number of firms + zero profits
 - Restricted Entry: fixed number of firms + positive profits

- Firms compete under monopolistic competition.
- variety-specific marginal cost (origin *i*-destination *j*-industry *k*)

$$\mathsf{MC}_{ij,k}(\omega) = \frac{\tau_{ij,k} \ \widehat{\psi_i}}{\varphi_{i,k}(\omega)} \text{ wage rate}$$

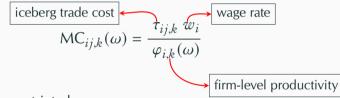
- Entry is either free or restricted
 - Free Entry: endogenous number of firms + zero profits
 - Restricted Entry: fixed number of firms + positive profits

- Firms compete under monopolistic competition.
- variety-specific marginal cost (origin *i*-destination *j*-industry *k*)



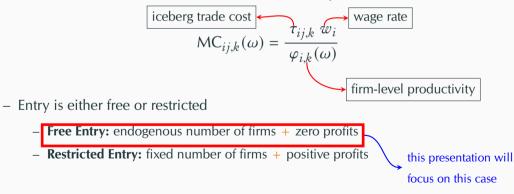
- Entry is either free or restricted
 - Free Entry: endogenous number of firms + zero profits
 - Restricted Entry: fixed number of firms + positive profits

- Firms compete under monopolistic competition.
- variety-specific marginal cost (origin *i*-destination *j*-industry *k*)



- Entry is either free or restricted
 - Free Entry: endogenous number of firms + zero profits
 - Restricted Entry: fixed number of firms + positive profits

- Firms compete under monopolistic competition.
- variety-specific marginal cost (origin *i*-destination *j*-industry *k*)



$$P_{ij,k} = \text{constant} \times w_i \times L_{i,k}^{-\frac{1}{\gamma_k - 1}}$$

- The special case w/ constant-returns to scale: $\mu_k
 ightarrow 0$
- **Note:** firm-level *markup* in industry $k = 1 + \mu_k$

$$P_{ij,k} = \text{constant} \times w_i \times L_{i,k}^{-\frac{1}{\gamma_k - 1}}$$
 number of workers

– The special case w/ constant-returns to scale: $\mu_k
ightarrow 0$

– Note: firm-level markup in industry $k = 1 + \mu_k$

$$P_{ij,k} = \text{constant} \times w_i \times L_{i,k}^{-\mu_k}$$
number of workers

– The special case w/ constant-returns to scale: $\mu_k
ightarrow 0$

– Note: firm-level markup in industry $k = 1 + \mu_k$

$$P_{ij,k} = \text{constant} \times w_i \times L_{i,k}^{-\mu_k}$$
number of workers

– The special case w/ constant-returns to scale: $\mu_k \rightarrow 0$

- Note: firm-level markup in industry $k = 1 + \mu_k$

- The *producer* price of goods supplied by *origin i–industry k*:

$$P_{ij,k} = \text{constant} \times w_i \times L_{i,k}^{-\mu_k}$$
number of workers

– The special case w/ constant-returns to scale: $\mu_k \rightarrow 0$

– **Note:** firm-level *markup* in industry $k = 1 + \mu_k$

The Rationale for Policy Intervention

From country *i*'s standpoint, the market equilibrium exhibits 2 types of inefficiency:

- 1. Sectoral misallocation
 - There is sub-optimal output in high-returns-to-scale (high- μ) industries.
- 2. Unexploited ToT gains
 - **Export side:** the government can charge an additional markup on export goods.
 - Import side: the government can lower the price of imports via import restrictions.

- Governments have access to a complete set of tax instruments \rightarrow they can target each inefficiency margin listed above and reach the *1st-best* outcome.

The Rationale for Policy Intervention

From country *i*'s standpoint, the market equilibrium exhibits 2 types of inefficiency:

- 1. Sectoral misallocation
 - There is sub-optimal output in high-returns-to-scale (high- μ) industries.
- 2. Unexploited ToT gains
 - **Export side:** the government can charge an additional markup on export goods.
 - Import side: the government can lower the price of imports via import restrictions.

- Governments have access to a complete set of tax instruments \rightarrow they can target each inefficiency margin listed above and reach the *1st-best* outcome.

The Rationale for Policy Intervention

From country *i*'s standpoint, the market equilibrium exhibits 2 types of inefficiency:

- 1. Sectoral misallocation
 - There is sub-optimal output in high-returns-to-scale (high- μ) industries.
- 2. Unexploited ToT gains
 - Export side: the government can charge an additional markup on export goods.
 - Import side: the government can lower the price of imports via import restrictions.

- Governments have access to a complete set of tax instruments \rightarrow they can target each inefficiency margin listed above and reach the *1st-best* outcome.

trade elasticity ~
$$\sigma_k - 1 = \frac{\partial \ln \text{Trade value}}{\partial \ln \text{Trade cost}}$$

scale elasticity ~
$$\mu_k = \frac{\partial \ln \text{Variety-adjusted TFP}}{\partial \ln \text{Number of workers}}$$

- Lower $\sigma_k \longrightarrow$ more scope for ToT manipulation in industry k
- Higher $\operatorname{Var}_k(\mu_k) \longrightarrow$ greater degree of misallocation in the economy
- Note: non-nested CES preferences imply $\mu_k = \frac{1}{\sigma_k 1} \longrightarrow$ impose an arbitrary link b/w the scale and trade elasticity (Benassy, 1996).

trade elasticity ~
$$\sigma_k - 1 = \frac{\partial \ln \text{Trade value}}{\partial \ln \text{Trade cost}}$$

scale elasticity ~
$$\mu_k = \frac{\partial \ln \text{Variety-adjusted TFP}}{\partial \ln \text{Number of workers}}$$

- Lower $\sigma_k \longrightarrow$ more scope for ToT manipulation in industry k
- Higher $\operatorname{Var}_k(\mu_k) \longrightarrow$ greater degree of misallocation in the economy
- Note: non-nested CES preferences imply $\mu_k = \frac{1}{\sigma_k 1} \longrightarrow$ impose an arbitrary link b/w the scale and trade elasticity (Benassy, 1996).

trade elasticity ~
$$\sigma_k - 1 = \frac{\partial \ln \text{Trade value}}{\partial \ln \text{Trade cost}}$$

scale elasticity ~
$$\mu_k = \frac{\partial \ln \text{Variety-adjusted TFP}}{\partial \ln \text{Number of workers}}$$

- Lower $\sigma_k \longrightarrow$ more scope for ToT manipulation in industry k
- Higher $\operatorname{Var}_k(\mu_k) \longrightarrow$ greater degree of misallocation in the economy
- Note: non-nested CES preferences imply $\mu_k = \frac{1}{\sigma_k 1} \longrightarrow$ impose an arbitrary link b/w the scale and trade elasticity (Benassy, 1996).

trade elasticity ~
$$\sigma_k - 1 = \frac{\partial \ln \text{Trade value}}{\partial \ln \text{Trade cost}}$$

scale elasticity ~
$$\mu_k = \frac{\partial \ln \text{Variety-adjusted TFP}}{\partial \ln \text{Number of workers}}$$

- Lower $\sigma_k \longrightarrow$ more scope for ToT manipulation in industry k
- Higher $\operatorname{Var}_k(\mu_k) \longrightarrow$ greater degree of misallocation in the economy
- − **Note:** non-nested CES preferences imply $\mu_k = \frac{1}{\sigma_k 1}$ → impose an arbitrary link b/w the scale and trade elasticity (Benassy, 1996).

– Import tariffs, export subsidies, and industrial subsidies create a wedge b/w producer prices (P) and consumer prices (\tilde{P}):

$$\tilde{P}_{ij,k} = \frac{1 + t_{ij,k}}{(1 + x_{ij,k})(1 + s_{i,k})} P_{ij,k}$$

²Note: lump-sum transfers are isomorphic to uniform consumption subsidies in the present setup because the labor supply is inelastic—see Dixit, 1980 and Lashkaripour, 2020.

producer prices (P) and consumer prices (\tilde{P}): Import tax collected by country j $\tilde{P}_{ij,k} = \frac{1 + t_{ij,k}}{(1 + x_{ij,k})(1 + s_{i,k})}P_{ij,k}$

²Note: lump-sum transfers are isomorphic to uniform consumption subsidies in the present setup because the labor supply is inelastic—see Dixit, 1980 and Lashkaripour, 2020.

producer prices (P) and consumer prices (\tilde{P}): Import tax collected by country j $\tilde{P}_{ij,k} = \frac{1 + t_{ij,k}}{(1 + x_{ij,k})(1 + s_{i,k})}P_{ij,k}$ export subsidy offered by country i

²Note: lump-sum transfers are isomorphic to uniform consumption subsidies in the present setup because the labor supply is inelastic—see Dixit, 1980 and Lashkaripour, 2020.

producer prices (P) and consumer prices (
$$\tilde{P}$$
): Import tax collected by country j

$$\tilde{P}_{ij,k} = \frac{1 + t_{ij,k}}{(1 + x_{ij,k})(1 + s_{i,k})}P_{ij,k}$$
export subsidy offered by country i industrial subsidy offered by country

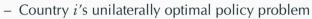
²Note: lump-sum transfers are isomorphic to uniform consumption subsidies in the present setup because the labor supply is inelastic—see Dixit, 1980 and Lashkaripour, 2020.

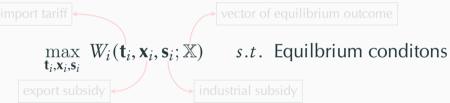
producer prices (P) and consumer prices (
$$\tilde{P}$$
): Import tax collected by country j

$$\tilde{P}_{ij,k} = \frac{1 + t_{ij,k}}{(1 + x_{ij,k})(1 + s_{i,k})}P_{ij,k}$$
export subsidy offered by country i industrial subsidy offered by country

²Note: lump-sum transfers are isomorphic to uniform consumption subsidies in the present setup because the labor supply is inelastic—see Dixit, 1980 and Lashkaripour, 2020.

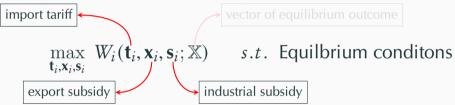
First-Best Non-Cooperative Policy





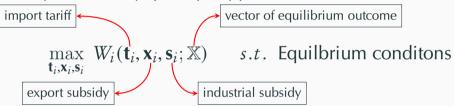
- Note: the solution to the above problem does *not* internalize country *i*'s ToT externality on the rest of the world \rightarrow it's sub-optimal from a global standpoint.

- Country *i*'s unilaterally optimal policy problem



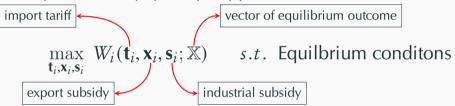
- Note: the solution to the above problem does *not* internalize country i's ToT externality on the rest of the world \rightarrow it's sub-optimal from a global standpoint.

– Country *i*'s unilaterally optimal policy problem



- Note: the solution to the above problem does *not* internalize country *i*'s ToT externality on the rest of the world \rightarrow it's sub-optimal from a global standpoint.

– Country *i*'s unilaterally optimal policy problem



- Note: the solution to the above problem does *not* internalize country *i*'s ToT externality on the rest of the world \rightarrow it's sub-optimal from a global standpoint.

[industrial subsidy]
$$1 + s_{i,k}^{\star} = (1 + \mu_k)(1 + \bar{s}_i)$$

[import tariff]
$$1 + t_{ji,k}^{\star} = (1 + \omega_{ji,k})(1 + \overline{t}_i)$$

[export subsidy]
$$1 + x_{ij,k}^{\star} = \frac{(\sigma_k - 1) \sum_{n \neq i} \left[(1 + \omega_{ni,k}) \lambda_{nj,k} \right]}{1 + (\sigma_k - 1)(1 - \lambda_{ij,k})} (1 + \bar{t}_i)$$

Theorem 1: Country *i*'s (1st-Best) Optimal Policy

$$[\text{industrial subsidy}] \qquad 1 + s_{i,k}^{\star} = (1 + \mu_k)(1 + \overline{s_i}) \longrightarrow \text{arbitrary tax shifters to} \\ \text{account for multiplicity} \\ [\text{import tariff}] \qquad 1 + t_{ji,k}^{\star} = (1 + \omega_{ji,k})(1 + \overline{t_i}) \\ [\text{export subsidy}] \qquad 1 + x_{ij,k}^{\star} = \frac{(\sigma_k - 1)\sum_{n \neq i} \left[(1 + \omega_{ni,k})\lambda_{nj,k}\right]}{1 + (\sigma_k - 1)(1 - \lambda_{ij,k})}(1 + \overline{t_i})$$

Theorem 1: Country *i*'s (1st-Best) Optimal Policy

[industrial subsidy]
$$1 + s_{i,k}^{\star} = (1 + \mu_k)(1 + \bar{s}_i)$$

[import tariff]
$$1 + t_{ji,k}^{\star} = (1 + \omega_{ji,k})(1 + \bar{t}_i)$$

[export subsidy]
$$1 + x_{ij,k}^{\star} = \frac{(\sigma_k - 1)\sum_{n \neq i} \left[(1 + \omega_{ni,k})\lambda_{nj,k}\right]}{1 + (\sigma_k - 1)(1 - \lambda_{ij,k})}(1 + \bar{t}_i)$$

[industrial subsidy]
$$1 + s_{i,k}^{\star} = (1 + \mu_k)(1 + \bar{s}_i)$$

good ij, k's (inverse) supply elasticity

[import tariff]
$$1 + t_{ji,k}^{\star} = (1 + \omega_{ji,k})(1 + \overline{t}_i)$$

$$[\text{export subsidy}] \quad 1 + x_{ij,k}^{\star} = \frac{(\sigma_k - 1) \sum_{n \neq i} \left[(1 + \omega_{ni,k}) \lambda_{nj,k} \right]}{1 + (\sigma_k - 1)(1 - \lambda_{ij,k})} (1 + \bar{t}_i)$$

[industrial subsidy]
$$1 + s_{i,k}^{\star} = (1 + \mu_k)(1 + \bar{s}_i)$$

[import tariff]
$$1 + t_{ji,k}^{\star} = (1 + \omega_{ji,k})(1 + \bar{t}_i)$$

[export subsidy]
$$1 + x_{ij,k}^{\star} = \frac{(\sigma_k - 1) \sum_{n \neq i} \left[(1 + \omega_{ni,k}) \lambda_{nj,k} \right]}{1 + (\sigma_k - 1)(1 - \lambda_{ij,k})} (1 + \bar{t}_i)$$

[industrial subsidy]
$$1 + s_{i,k}^{\star} = (1 + \mu_k)(1 + \bar{s}_i)$$

[import tariff]
$$1 + t_{ji,k}^{\star} = (1 + \omega_{ji,k})(1 + \overline{t}_i)$$

[export subsidy]
$$1 + x_{ij,k}^{\star} = \frac{(\sigma_k - 1) \sum_{n \neq i} \left[(1 + \omega_{ni,k}) \lambda_{nj,k} \right]}{1 + (\sigma_k - 1)(1 - \lambda_{ij,k})} (1 + \bar{t}_i)$$
expenditure share on good ij,k

Special Case: Multi-Industry Armington Model

Perfectly competitive industries ($\mu_k = 0$) \longrightarrow our model reduces to a multi-industry

[industrial subsidy]
$$s_{i,k}^{\star} = 0$$

[import tariff]
$$1 + t_{ji,k}^{\star} = 1 + \bar{t}_i$$

[export subsidy]
$$1 + x_{ij,k}^{\star} = \frac{(\sigma_k - 1)(1 - \lambda_{ij,k})}{1 + (\sigma_k - 1)(1 - \lambda_{ij,k})}(1 + \bar{t}_i)$$

Perfectly competitive industries ($\mu_k = 0$) \longrightarrow our model reduces to a multi-industry

[industrial subsidy]
$$s_{i,k}^{\star} = 0$$

[import tariff]
$$1 + t_{ji,k}^{\star} = 1 + \bar{t}_i$$

[export subsidy]
$$1 + x_{ij,k}^{\star} = \frac{(\sigma_k - 1)(1 - \lambda_{ij,k})}{1 + (\sigma_k - 1)(1 - \lambda_{ij,k})}(1 + \bar{t}_i)$$

Perfectly competitive industries ($\mu_k = 0$) \longrightarrow our model reduces to a multi-industry

industrial subsidy]
$$s_{i,k}^{\star} = 0$$
 by choice of $s_i = 0$

[import tariff]
$$1 + t_{ji,k}^{\star} = 1 + \overline{t}_{ij}$$

[export subsidy]
$$1 + x_{ij,k}^{\star} = \frac{(\sigma_k - 1)(1 - \lambda_{ij,k})}{1 + (\sigma_k - 1)(1 - \lambda_{ij,k})}(1 + \bar{t}_i)$$

Special Case: Multi-Industry Armington Model

Perfectly competitive industries ($\mu_k = 0$) \longrightarrow our model reduces to a multi-industry

[industrial subsidy]
$$s_{i,k}^{\star} = 0$$
 by choice of $s_i = 0$
[import tariff] $1 + t_{ji,k}^{\star} = 1 + \overline{t}_i$ uniform optimal tariff
[export subsidy] $1 + x_{ij,k}^{\star} = \frac{(\sigma_k - 1)(1 - \lambda_{ij,k})}{1 + (\sigma_k - 1)(1 - \lambda_{ij,k})}(1 + \overline{t}_i)$

Special Case: Small Open Economy

Suppose country *i* is a small open economy $(\omega_{ji,k} \approx \lambda_{ij,k} \approx 0) \longrightarrow$ our optimal policy formulas reduce to:

[industrial subsidy]
$$1 + s_{i,k}^{\star} = (1 + \mu_k)(1 + \bar{s}_i)$$

[import tariff]
$$1 + t_{ji,k}^{\star} = 1 + \bar{t}_i$$

[export subsidy]
$$1 + x_{ij,k}^{\star} = \frac{\sigma_k - 1}{\sigma_k} (1 + \bar{t}_i)$$

Special Case: Small Open Economy

Suppose country *i* is a small open economy $(\omega_{ji,k} \approx \lambda_{ij,k} \approx 0) \longrightarrow$ our optimal policy formulas reduce to:

[industrial subsidy]
$$1 + s_{i,k}^{\star} = (1 + \mu_k)(1 + \bar{s}_i)$$

[import tariff]
$$1 + t_{ji,k}^{\star} = 1 + \bar{t}_i$$

[export subsidy]
$$1 + x_{ij,k}^{\star} = \frac{\sigma_k - 1}{\sigma_k} (1 + \bar{t}_i)$$

The unilaterally optimal (first-best) policy consists of

1. industrial subsidies (\mathbf{s}_i) that promote high- μ (*high-returns-to-scale*) industries.

2. import tariffs (\mathbf{t}_i) + export subsidies (\mathbf{x}_i) that contract exports in low- σ industries.

Corollary: first-best optimal tariffs and export subsidies are *misallocation-blind*.

The unilaterally optimal (first-best) policy consists of

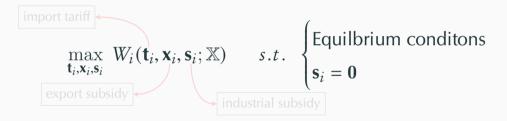
1. industrial subsidies (\mathbf{s}_i) that promote high- μ (*high-returns-to-scale*) industries.

2. import tariffs (\mathbf{t}_i) + export subsidies (\mathbf{x}_i) that contract exports in low- σ industries.

Corollary: first-best optimal tariffs and export subsidies are *misallocation-blind*.

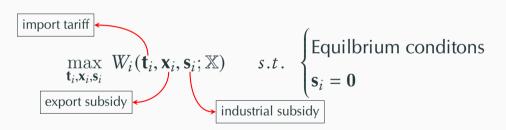
Second-Best Trade Policy

- Country *i*'s 2nd-best optimal trade policy problem



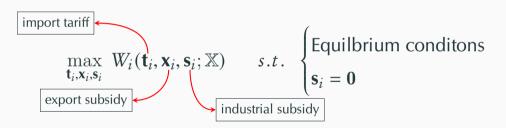
- Note: The restriction that $s_i = 0$ may reflect institutional barriers or political economy pressures.

- Country *i*'s 2nd-best optimal trade policy problem



- Note: The restriction that $s_i = 0$ may reflect institutional barriers or political economy pressures.

- Country *i*'s 2nd-best optimal trade policy problem



- Note: The restriction that $s_i = 0$ may reflect institutional barriers or political economy pressures.

$$1 + t_{ji,k}^{2\text{nd-best}} = \frac{1 + (\sigma_k - 1)\lambda_{ii,k}}{1 + \frac{1 + \overline{\mu}_i}{1 + \mu_k}(\sigma_k - 1)\lambda_{ii,k}} (1 + t_{ji,k}^{1\text{st-best}})$$
$$1 + x_{ij,k}^{2\text{nd-best}} = \frac{1 + \mu_k}{1 + \overline{\mu}_i} (1 + x_{ij,k}^{1\text{st-best}})$$

Intuition

- 2nd-best trade taxes/subsidies mimic 1st-best industrial subsidies...

- ... but—by the *targeting principle*—they cannot replicate the 1st-best outcome.

$$1 + t_{ji,k}^{2\text{nd-best}} = \frac{1 + (\sigma_k - 1)\lambda_{ii,k}}{1 + \frac{1 + \overline{\mu}_i}{1 + \mu_k}(\sigma_k - 1)\lambda_{ii,k}} (1 + t_{ji,k}^{1\text{st-best}})$$
$$1 + x_{ij,k}^{2\text{nd-best}} = \frac{1 + \mu_k}{1 + \overline{\mu}_i} (1 + x_{ij,k}^{1\text{st-best}})$$
$$\text{average } \mu_k \text{ in economy } i$$

Intuition

- 2nd-best trade taxes/subsidies mimic 1st-best industrial subsidies...
- ... but—by the *targeting principle*—they cannot replicate the *1st-best* outcome.

$$1 + t_{ji,k}^{2\text{nd-best}} = \frac{1 + (\sigma_k - 1)\lambda_{ii,k}}{1 + \frac{1 + \overline{\mu}_i}{1 + \mu_k}(\sigma_k - 1)\lambda_{ii,k}} (1 + t_{ji,k}^{1\text{st-best}})$$

$$1 + x_{ij,k}^{2\text{nd-best}} = \frac{1 + \mu_k}{1 + \overline{\mu}_i} (1 + x_{ij,k}^{1\text{st-best}})$$
subsidize exports in high- μ industries

Intuition

- 2nd-best trade taxes/subsidies mimic 1st-best industrial subsidies...
- ... but—by the *targeting principle*—they cannot replicate the *1st-best* outcome.

$$1 + t_{ji,k}^{2\text{nd-best}} = \frac{1 + (\sigma_k - 1)\lambda_{ii,k}}{1 + \frac{1 + \overline{\mu}_i}{1 + \mu_k}(\sigma_k - 1)\lambda_{ii,k}} (1 + t_{ji,k}^{1\text{st-best}})$$

$$1 + x_{ij,k}^{2\text{nd-best}} = \frac{1 + \mu_k}{1 + \overline{\mu}_i} (1 + x_{ij,k}^{1\text{st-best}})$$
subsidize exports in high- μ industries

Intuition

- 2nd-best trade taxes/subsidies mimic 1st-best industrial subsidies...
- ... but—by the *targeting principle*—they cannot replicate the 1st-best outcome.

$$1 + t_{ji,k}^{2\text{nd-best}} = \frac{1 + (\sigma_k - 1)\lambda_{ii,k}}{1 + \frac{1 + \overline{\mu}_i}{1 + \mu_k}(\sigma_k - 1)\lambda_{ii,k}} (1 + t_{ji,k}^{1\text{st-best}})$$

$$1 + x_{ij,k}^{2\text{nd-best}} = \frac{1 + \mu_k}{1 + \overline{\mu}_i} (1 + x_{ij,k}^{1\text{st-best}})$$

$$\text{ubsidize exports in high-}\mu \text{ industries}$$

Intuition

S

- 2nd-best trade taxes/subsidies mimic 1st-best industrial subsidies...
- ... but—by the *targeting principle*—they cannot replicate the *1st-best* outcome.

Tension between ToT and Misallocation-Correcting Objectives

- Correcting misallocation requires promoting high- μ industries.
- ToT improvement requires contracting export sales in low- σ industries.

Proposition

- If $\text{Cov}_k(\mu_k, \sigma_k) < 0 \implies$ correcting misallocation with trade policy worsens the terms-of-trade and *vice versa*.
- This tension makes trade policy an ineffective *misallocation-correcting* measure, beyond what is implied by the targeting principle.

Tension between ToT and Misallocation-Correcting Objectives

- Correcting misallocation requires promoting high- μ industries.
- ToT improvement requires contracting export sales in low- σ industries.

Proposition

our (subsequent) estimates indicate that $\text{Cov}_k(\mu_k, \sigma_k) < 0$

- If $\text{Cov}_k(\mu_k, \sigma_k) < 0 \implies$ correcting misallocation with trade policy worsens the terms-of-trade and *vice versa*.
- This tension makes trade policy an ineffective *misallocation-correcting* measure, beyond what is implied by the targeting principle.

Avoiding Immiserizing Growth with Deep Agreements

- Flip side: If $\text{Cov}_k(\mu_k, \sigma_k) < 0 \implies$ using industrial subsidies, *unilaterally*, to correct misallocation causes *immiserizing growth*.
- Why? corrective industrial subsidies promote high- μ industries \rightarrow expand exports in low- σ industries by design \rightarrow worsen the ToT.
- The best remedy for misallocation in open economies:
 - Countries coordinate their industrial subsidies via deep trade agreements.
 - In this process, each country forgoes the (unilateral) ToT gains from policy but benefit for efficiency improvements in the RoW.

Avoiding Immiserizing Growth with Deep Agreements

- Flip side: If $\text{Cov}_k(\mu_k, \sigma_k) < 0 \implies$ using industrial subsidies, *unilaterally*, to correct misallocation causes *immiserizing growth*.
- Why? corrective industrial subsidies promote high- μ industries \rightarrow expand exports in low- σ industries by design \rightarrow worsen the ToT.
- The best remedy for misallocation in open economies:
 - Countries coordinate their industrial subsidies via deep trade agreements.
 - In this process, each country forgoes the (unilateral) ToT gains from policy but benefit for efficiency improvements in the RoW.

Estimating the Key Policy Parameters

The Parameters that Govern the Gains from Policy

- The gains from optimal policy depend crucially on two sets of elasticities:³
 - 1. μ_k ~ industry-level scale elasticity
 - 2. $\sigma_k 1$ ~ industry-level trade elasticity

- We posses plenty of estimates for trade elasticities, but μ_k is often normalized:

- perfectly competitive models $\longrightarrow \mu_k = 0$
- traditional Krugman/Melitz models $\longrightarrow \mu_k = \frac{1}{\text{trade elasticity}}$

³**Note:** To account for firm-selection à la *Melitz-Chaney*, we need to estimate the shape of the Pareto distribution in addition to σ_k and $\mu_k = 1/(\gamma_k - 1)$.

The Parameters that Govern the Gains from Policy

- The gains from optimal policy depend crucially on two sets of elasticities:³
 - 1. μ_k ~ industry-level scale elasticity
 - 2. $\sigma_k 1$ ~ industry-level trade elasticity
- We posses plenty of estimates for trade elasticities, but μ_k is often normalized:
 - perfectly competitive models $\longrightarrow \mu_k = 0$
 - traditional Krugman/Melitz models $\longrightarrow \mu_k = \frac{1}{\text{trade elasticity}}$

³**Note:** To account for firm-selection à la *Melitz-Chaney*, we need to estimate the shape of the Pareto distribution in addition to σ_k and $\mu_k = 1/(\gamma_k - 1)$.

Estimation Strategy

- We propose a new methodology to jointly estimate μ_k and σ_k .
- We estimate a *firm-level* nest-CES import demand function with *transaction-level* trade data (*j*, *kt* ~ origin *j*-product *k*-year *t*):

$$\ln X_{j,kt}(\omega) = -(\sigma_k - 1) \ln \tilde{p}_{j,kt}(\omega) + \left[1 - \frac{\sigma_k - 1}{\gamma_k - 1}\right] \ln \lambda_{j,kt}(\omega) + \delta_{kt} + \varepsilon_{\omega jkt}$$
firm-leve sales firm-level price within-national market share

 Data Source: Universe of Colombian import transactions during 2007-2013, covering 226,288 exporting firms from 251 different countries. Estimation Details

Estimation Strategy

- We propose a new methodology to jointly estimate μ_k and σ_k .
- We estimate a *firm-level* nest-CES import demand function with *transaction-level* trade data (*j*, *kt* ~ origin *j*-product *k*-year *t*):

$$\ln X_{j,kt}(\omega) = -(\sigma_k - 1) \ln \tilde{p}_{j,kt}(\omega) + \left[1 - \frac{\sigma_k - 1}{\gamma_k - 1}\right] \ln \lambda_{j,kt}(\omega) + \delta_{kt} + \varepsilon_{\omega jkt}$$
firm-level price within-national market share

 Data Source: Universe of Colombian import transactions during 2007-2013, covering 226,288 exporting firms from 251 different countries. Estimation Details

Estimation Strategy

- We propose a new methodology to jointly estimate μ_k and σ_k .
- We estimate a *firm-level* nest-CES import demand function with *transaction-level* trade data (*j*, *kt* ~ origin *j*-product *k*-year *t*):

$$\ln X_{j,kt}(\omega) = -(\sigma_k - 1) \ln \tilde{p}_{j,kt}(\omega) + [1 - \mu_k(\sigma_k - 1)] \ln \lambda_{j,kt}(\omega) + \delta_{kt} + \varepsilon_{\omega jkt}$$

firm-leve sales firm-level price within-national market share

 Data Source: Universe of Colombian import transactions during 2007-2013, covering 226,288 exporting firms from 251 different countries. Estimation Details **Quantifying the Gains from Policy**

- Our goal is to simulate the counterfactual equilibrium under optimal policy.
- A bullet point summary of our quantitative strategy:
 - 1. Use exact hat-algebra \rightarrow express optimal policy formulas in changes
 - 2. Use exact hat-algebra \longrightarrow express equilibrium conditions in changes
 - 3. Solve the system of equations derived under Steps (1) and (2)
- Step (3) determines the change in *real GDP* in response to optimal policy as a function of the following *sufficient statistics*:

$$\mathcal{B}_{v} \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, w_{n}\bar{L}_{n}, Y_{n}\}_{ni,k} \qquad \mathcal{B}_{e} = \{\sigma_{k} - 1, \mu_{k}\}_{k}$$

expe

- Our goal is to simulate the counterfactual equilibrium under optimal policy.
- A bullet point summary of our quantitative strategy:
 - 1. Use exact hat-algebra \rightarrow express optimal policy formulas in changes
 - 2. Use exact hat-algebra \longrightarrow express equilibrium conditions in changes
 - 3. Solve the system of equations derived under Steps (1) and (2)
- Step (3) determines the change in *real GDP* in response to optimal policy as a function of the following *sufficient statistics*:

$$\mathcal{B}_{v} \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, w_{n}\bar{L}_{n}, Y_{n}\}_{ni,k} \qquad \mathcal{B}_{e} = \{\sigma_{k} - 1, \mu_{k}\}_{k}$$

- Our goal is to simulate the counterfactual equilibrium under optimal policy.
- A bullet point summary of our quantitative strategy:
 - 1. Use exact hat-algebra \rightarrow express optimal policy formulas in changes
 - 2. Use exact hat-algebra \longrightarrow express equilibrium conditions in changes
 - 3. Solve the system of equations derived under Steps (1) and (2)
- Step (3) determines the change in *real GDP* in response to optimal policy as a function of the following *sufficient statistics*:

$$\mathcal{B}_{v} \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, w_{n}\bar{L}_{n}, Y_{n}\}_{ni,k} \qquad \mathcal{B}_{e} = \{\sigma_{k} - 1, \mu_{k}\}_{k}$$
sales share

- Our goal is to simulate the counterfactual equilibrium under optimal policy.
- A bullet point summary of our quantitative strategy:
 - 1. Use exact hat-algebra \rightarrow express optimal policy formulas in changes
 - 2. Use exact hat-algebra \longrightarrow express equilibrium conditions in changes
 - 3. Solve the system of equations derived under Steps (1) and (2)
- Step (3) determines the change in *real GDP* in response to optimal policy as a function of the following *sufficient statistics*:

$$\mathcal{B}_{v} \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, w_{n}\overline{L}_{n}, Y_{n}\}_{ni,k} \qquad \mathcal{B}_{e} = \{\sigma_{k} - 1, \mu_{k}\}_{k}$$
national accounts data

- Our goal is to simulate the counterfactual equilibrium under optimal policy.
- A bullet point summary of our quantitative strategy:
 - 1. Use exact hat-algebra \rightarrow express optimal policy formulas in changes
 - 2. Use exact hat-algebra \longrightarrow express equilibrium conditions in changes
 - 3. Solve the system of equations derived under Steps (1) and (2)
- Step (3) determines the change in *real GDP* in response to optimal policy as a function of the following *sufficient statistics*:

$$\mathcal{B}_{v} \equiv \{\lambda_{ni,k}, e_{n,k}, r_{ni,k}, \rho_{i,k}, w_{n}\bar{L}_{n}, Y_{n}\}_{ni,k}$$

$$\mathcal{B}_e = \{ \sigma_k - 1, \mu_k \}_k$$
estimable parameters

WORLD INPUT-OUTPUT DATABASE (2000-2014)

- production and expenditure by *origin*×*destination*×*industry*.
- 44 Countries + an aggregate of the rest of the world
- 56 Industries

UNCTAD-TRAINS Database:

– Average industry-level tariffs for all 44×43 country pairs.

Average Gains from Policy (% Δ Real GDP)

The Immiserizing Growth Effects of Industrial Policy

Welfare consequences of corrective industrial subsidies under free entry

- Unilateral adoption $\rightarrow 0.70\%$ decline in real GDP
- Coordinated via a deep agreement \rightarrow 3.22% rise in real GDP

Welfare consequences of *corrective* industrial subsidies under **restricted entry**

- Unilateral adoption \longrightarrow 0.25% decline in real GDP
- Coordinated via a deep agreement \rightarrow 1.24% rise in real GDP

The Immiserizing Growth Effects of Industrial Policy

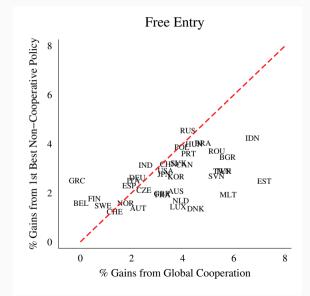
Welfare consequences of corrective industrial subsidies under free entry

- Unilateral adoption $\rightarrow 0.70\%$ decline in real GDP
- Coordinated via a deep agreement \rightarrow 3.22% rise in real GDP

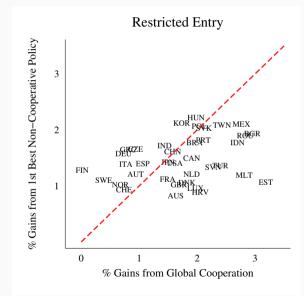
Welfare consequences of corrective industrial subsidies under restricted entry

- Unilateral adoption $\rightarrow 0.25\%$ decline in real GDP
- Coordinated via a deep agreement \rightarrow 1.24% rise in real GDP

Deep Cooperation vs. Non-Cooperation



Deep Cooperation vs. Non-Cooperation



- The gains from *terms-of-trade* manipulation are small!
- Trade restrictions are an ineffective *second-best* measure for correcting misallocation in domestic industries.
- Unilateral industrial policy is equally ineffective, as it triggers *immiserizing* growth in most countries.
- What is the best remedy for misallocation in open economies? multilateral industrial policies that are coordinated via *deep* agreements.

- The gains from *terms-of-trade* manipulation are small!
- Trade restrictions are an ineffective *second-best* measure for correcting misallocation in domestic industries.
- Unilateral industrial policy is equally ineffective, as it triggers *immiserizing* growth in most countries.
- What is the best remedy for misallocation in open economies? multilateral industrial policies that are coordinated via *deep* agreements.

Thank you

References

Equilibrium for a given Vector of Taxes (t, x, s, τ)

1. Consumption choices are optimal:

$$\begin{cases} Q_{ji,k} = \mathcal{D}_{ji,k}(Y_i, \tilde{\mathbf{P}}_i) \\ \tilde{P}_{ji,k} = \frac{1 + t_{ji,k}}{(1 + x_{ji,k})(1 + s_{j,k})} P_{ji,k} \end{cases}$$

- 2. Production choices are optimal: $P_{ij,k} = C_{ij,k} \times w_i Q_{i,k}^{-\frac{\mu_k}{1+\mu_k}}$
- 3. Wage payments equal net sales: $w_i L_i = \sum_{j=1}^{N} \sum_{k=1}^{\mathcal{K}} [P_{ij,k} Q_{ij,k}]$

4. Income equals wage payments plus tax revenues: $Y_i = w_i L_i + \mathcal{R}_i(\mathbf{t}, \mathbf{x}, \mathbf{s})$

Equilibrium for a given Vector of Taxes (t, x, s, τ)

- 1. Consumption choices are optimal: $\begin{cases} Q_{ji,k} = \mathcal{D}_{ji,k}(Y_i, \tilde{\mathbf{P}}_i) \\ \tilde{P}_{ji,k} = \frac{1+t_{ji,k}}{(1+x_{ji,k})(1+s_{j,k})} P_{ji,k} \end{cases}$
- 2. Production choices are optimal: $P_{ij,k} = C_{ij,k} \times w_i Q_{i,k}^{-\frac{\mu_k}{1+\mu_k}}$
- 3. Wage payments equal net sales: $w_i L_i = \sum_{j=1}^{N} \sum_{k=1}^{\mathcal{K}} \left[P_{ij,k} Q_{ij,k} \right]$

4. Income equals wage payments plus tax revenues: $Y_i = w_i L_i + \mathcal{R}_i(\mathbf{t}, \mathbf{x}, \mathbf{s})$

Step 1-Reformulate the optimal policy problem

- The government in *i* chooses optimal consumer prices and abatement levels

$$\max_{\mathbb{T}_i} W_i(\mathbb{T}_i; \mathbb{X}_i) \quad [\mathbf{P1}] \xrightarrow{\text{reformulate}} \max_{\mathbb{P}_i} W_i(\mathbb{P}_i; \mathbb{X}_i) \quad [\mathbf{P1'}]$$

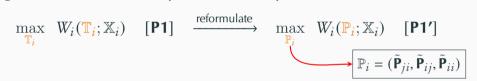
– Optimal taxes can be recovered from the optimal choice w.r.t. \mathbb{P}_i

$$1 + t_{ji,k}^{\star} = \frac{\tilde{P}_{ji,k}^{\star}}{P_{ji,k}}, \qquad 1 + x_{ij,k}^{\star} = \frac{P_{ij,k}^{\star}}{\tilde{P}_{ij,k}} \frac{P_{ii,k}^{\star}}{\tilde{P}_{ii,k}}, \qquad 1 + s_{i,k}^{\star} = \frac{P_{ii,k}^{\star}}{\tilde{P}_{ii,k}}$$

Our Dual Approach to Characterizing \mathbb{T}^{\star}

Step 1–Reformulate the optimal policy problem

- The government in *i* chooses optimal consumer prices and abatement levels



– Optimal taxes can be recovered from the optimal choice w.r.t. \mathbb{P}_i

$$1 + t_{ji,k}^{\star} = \frac{\tilde{P}_{ji,k}^{\star}}{P_{ji,k}}, \qquad 1 + x_{ij,k}^{\star} = \frac{P_{ij,k}^{\star}}{\tilde{P}_{ij,k}} \frac{P_{ii,k}^{\star}}{\tilde{P}_{ii,k}}, \qquad 1 + s_{i,k}^{\star} = \frac{P_{ii,k}^{\star}}{\tilde{P}_{ii,k}}$$

Step 1-Reformulate the optimal policy problem

- The government in *i* chooses optimal consumer prices and abatement levels

– Optimal taxes can be recovered from the optimal choice w.r.t. \mathbb{P}_i

$$1 + t_{ji,k}^{\star} = \frac{\tilde{P}_{ji,k}^{\star}}{P_{ji,k}}, \qquad 1 + x_{ij,k}^{\star} = \frac{P_{ij,k}^{\star}}{\tilde{P}_{ij,k}} \frac{P_{ii,k}^{\star}}{\tilde{P}_{ii,k}}, \qquad 1 + s_{i,k}^{\star} = \frac{P_{ii,k}^{\star}}{\tilde{P}_{ii,k}}$$

- This step is complicated by GE considerations \rightarrow traditional theories bypass these complications by focusing on partial equilibrium 2-by-2 models.
- Intermediate Envelope Theorem: The first-order conditions associated with Problem P1' can be derived as if

1. wages $\mathbf{w} = \{w_i\}$ are constant ~ GE wage effects are welfare-neutral

2. demand is income inelastic ~ GE income effects are welfare-neutral at the optimum

- This step is complicated by GE considerations \rightarrow traditional theories bypass these complications by focusing on partial equilibrium 2-by-2 models.
- Intermediate Envelope Theorem: The first-order conditions associated with Problem P1' can be derived *as if*
 - 1. wages $\mathbf{w} = \{w_i\}$ are constant ~ GE wage effects are welfare-neutral
 - 2. demand is income inelastic ~ GE income effects are *welfare-neutral* at the optimum

- This step is complicated by GE considerations \rightarrow traditional theories bypass these complications by focusing on partial equilibrium 2-by-2 models.
- Intermediate Envelope Theorem: The first-order conditions associated with Problem P1' can be derived *as if*
 - 1. wages $\mathbf{w} = \{w_i\}$ are constant ~ GE wage effects are *welfare-neutral*
 - 2. demand is income inelastic ~ GE income effects are welfare-neutral at the optimum

- This step is complicated by GE considerations \rightarrow traditional theories bypass these complications by focusing on partial equilibrium 2-by-2 models.
- Intermediate Envelope Theorem: The first-order conditions associated with Problem P1' can be derived *as if*

1. wages $\mathbf{w} = \{w_i\}$ are constant ~ LERNER SYMMETRY + TARGETING PRINCIPLE

2. demand is income inelastic ~ GE income effects are welfare-neutral at the optimum

Step 3–Solve the system of F.O.C.s

- We use the primitive properties of Marshallian demand (i.e., *Cournot aggregation, homogeneity of degree zero*) to prove that the system of F.O.C.s admits a unique and trivial solution.
- Inverting the system of F.O.C.s, determines optimal price wedges \longrightarrow implicitly determines optimal taxes \mathbb{T}^*

$$1 + t_{ji,k}^{\star} = \frac{\tilde{P}_{ji,k}^{\star}}{P_{ji,k}}, \qquad 1 + x_{ij,k}^{\star} = \frac{P_{ij,k}^{\star}}{\tilde{P}_{ij,k}} \frac{P_{ii,k}^{\star}}{\tilde{P}_{ii,k}}, \qquad 1 + s_{i,k}^{\star} = \frac{P_{ii,k}^{\star}}{\tilde{P}_{ii,k}}$$

Return

Step 3–Solve the system of F.O.C.s

- We use the primitive properties of Marshallian demand (i.e., *Cournot aggregation, homogeneity of degree zero*) to prove that the system of F.O.C.s admits a unique and trivial solution.
- Inverting the system of F.O.C.s, determines optimal price wedges \longrightarrow implicitly determines optimal taxes \mathbb{T}^*

$$1 + t_{ji,k}^{\star} = \frac{\tilde{P}_{ji,k}^{\star}}{P_{ji,k}}, \qquad 1 + x_{ij,k}^{\star} = \frac{P_{ij,k}^{\star}}{\tilde{P}_{ij,k}} \frac{P_{ii,k}^{\star}}{\tilde{P}_{ii,k}}, \qquad 1 + s_{i,k}^{\star} = \frac{P_{ii,k}^{\star}}{\tilde{P}_{ii,k}}$$

Return

Take first differences to eliminate the firm-product FE

 $\Delta \ln X_{j,kt}(\omega) = -(\sigma_k - 1) \Delta \ln \tilde{p}_{j,kt}(\omega) + (1 - \mu_k [\sigma_k - 1]) \Delta \ln \lambda(\omega \mid j, kt) + \tilde{\delta}_{kt} + \Delta \varepsilon_{\omega j k t}$

- Identification Challenge: $\Delta \ln p$ and $\Delta \ln \lambda$ maybe correlated with $\Delta \varepsilon$.

- Identification Strategy: use degree of exposure to monthly exchange rate shocks as an instrument for $\Delta \ln \tilde{p}$ and $\Delta \ln \lambda$. Return

Take first differences to eliminate the firm-product FE

 $\Delta \ln X_{j,kt}(\omega) = -(\sigma_k - 1) \Delta \ln \tilde{p}_{j,kt}(\omega) + (1 - \mu_k [\sigma_k - 1]) \Delta \ln \lambda(\omega \mid j, kt) + \tilde{\delta}_{kt} + \Delta \varepsilon_{\omega jkt}$

- Identification Challenge: $\Delta \ln p$ and $\Delta \ln \lambda$ maybe correlated with $\Delta \varepsilon$.

- Identification Strategy: use degree of exposure to monthly exchange rate shocks as an instrument for $\Delta \ln \tilde{p}$ and $\Delta \ln \lambda$.

Take first differences to eliminate the firm-product FE

 $\Delta \ln X_{j,kt}(\omega) = -(\sigma_k - 1)\Delta \ln \tilde{p}_{j,kt}(\omega) + (1 - \mu_k [\sigma_k - 1])\Delta \ln \lambda(\omega \mid j, kt) + \tilde{\delta}_{kt} + \Delta \varepsilon_{\omega jkt}$

- Identification Challenge: $\Delta \ln p$ and $\Delta \ln \lambda$ maybe correlated with $\Delta \varepsilon$.

- Identification Strategy: use degree of exposure to *monthly* exchange rate shocks as an instrument for $\Delta \ln \tilde{p}$ and $\Delta \ln \lambda$. Return

- Compile an external database on monthly exchange rates.
- Interact the change in monthly exchange rates w/ prior monthly export behavior to construct a variety-specific shift-share IV:

$$z_{j,kt}(\omega) = \sum_{m=1}^{12} \left(\text{[share of month } m \text{ sales in } t-1] \times \Delta \ln \mathcal{E}_{j,t}(m) \right)$$

- $z_{j,kt}(\omega)$ measures firm ω 's exposure to cost shocks that channel through exchange rate movements. Return

- Compile an external database on monthly exchange rates.
- Interact the change in monthly exchange rates w/ prior monthly export behavior to construct a variety-specific shift-share IV:

$$z_{j,kt}(\omega) = \sum_{m=1}^{12} \left(\text{[share of month } m \text{ sales in } t-1] \times \Delta \ln \frac{\mathcal{E}_{j,t}(m)}{\sqrt{monthly \text{ exchange rate}}} \right)$$

- $z_{j,kt}(\omega)$ measures firm ω 's exposure to cost shocks that channel through exchange rate movements. Return

- Compile an external database on monthly exchange rates.
- Interact the change in monthly exchange rates w/ prior monthly export behavior to construct a variety-specific shift-share IV:

$$z_{j,kt}(\omega) = \sum_{m=1}^{12} \left(\text{[share of month } m \text{ sales in } t-1] \times \Delta \ln \mathcal{E}_{j,t}(m) \right)$$
monthly exchange rate

- $z_{j,kt}(\omega)$ measures firm ω 's exposure to cost shocks that channel through exchange rate movements. Return

		Estimated Parameter				
Sector	ISIC4 codes	$\sigma_k - 1$	$rac{\sigma_k-1}{\gamma_k-1}$	μ_k	Obs.	Weak Ident. Test
Agriculture & Mining	100-1499	6.212 (2.112)	0.875 (0.142)	0.141 (0.167)	11,962	2.51
Food	1500-1699	3.333 (0.815)	0.883 (0.050)	0.265 (0.131)	20.042	6.00
Textiles, Leather & Footwear	1700-1999	3.413 (0.276)	0.703 (0.020)	0.207 (0.022)	126,483	63.63
Wood	2000-2099	3.329 (1.331)	0.899 (0.181)	0.270 (0.497)	5,962	1.76
Paper	2100-2299	2.046 (0.960)	0.813 (0.216)	0.397 (0.215)	37,815	2.65
Petroleum	2300-2399	0.397 (0.342)	0.698 (0.081)	1.758 (1.584)	4,035	2.03
Chemicals	2400-2499	4.320 (0.376)	0.915 (0.027)	0.212 (0.069)	134,413	42.11

		Estir	mated Parar	meter		
Sector	ISIC4 codes	$\sigma_k - 1$	$\tfrac{\sigma_k-1}{\gamma_k-1}$	μ_k	Obs.	Weak Ident. Test
Agriculture & Mining	100-1499	6.212 (2.112)	0.875 (0.142)	0.141 (0.167)	11,962	2.51
Food	1500-1699	3.333 (0.815)	0.883 (0.050)	0.265 (0.131)	20.042	6.00
Textiles, Leather & Footwear	1700-1999	3.413 (0.276)	0.703 (0.020)	0.207 (0.022)	126,483	63.63
Wood	2000-2099	3.329 (1.331)	0.899 (0.181)	0.270 (0.497)	5,962	1.76
Paper	2100-2299	2.046 (0.960)	0.813 (0.216)	0.397 (0.215)	37,815	2.65
Petroleum	2300-2399	0.397 (0.342)	0.698 (0.081)	1.758 (1.584)	4,035	2.03
Chemicals	2400-2499	4.320 (0.376)	0.915 (0.027)	0.212 (0.069)	134,413	42.11

		Esti	mated Para	meter		
Sector	ISIC4 codes	$\sigma_k - 1$	$\frac{\sigma_k - 1}{\gamma_k - 1}$	μ_k	Obs.	Weak Ident. Test
Rubber & Plastic	2500-2599	3.599 (0.802)	0.582 (0.041)	0.162 (0.039)	107,713	7.22
Minerals	2600-2699	4.561 (1.347)	0.847 (0.096)	0.186 (0.129)	28,197	3.19
Basic & Fabricated Metals	2700-2899	2.959 (0.468)	0.559 (0.024)	0.189 (0.032)	155,032	16.35
Machinery	2900-3099	8.682 (1.765)	0.870 (0.080)	0.100 (0.065)	266,628	8.54
Electrical & Optical Equipment	3100-3399	1.392 (0.300)	0.631 (0.015)	0.453 (0.099)	260,207	17.98
Transport Equipment	3400-3599	2.173 (0.589)	0.289 (0.028)	0.133 (0.036)	86,853	5.09
N.E.C. & Recycling	3600-3800	6.704 (1.133)	0.951 (0.100)	0.142 (0.289)	70,974	8.51

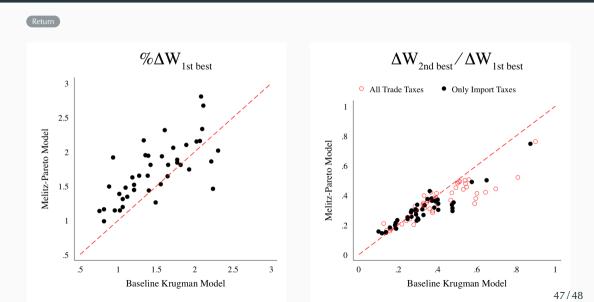
- High- μ sectors:
 - 1. Electrical & Optical Equipment
 - 2. Petroleum

- Low- μ sectors:
 - 1. Agriculture & Mining
 - 2. Wood

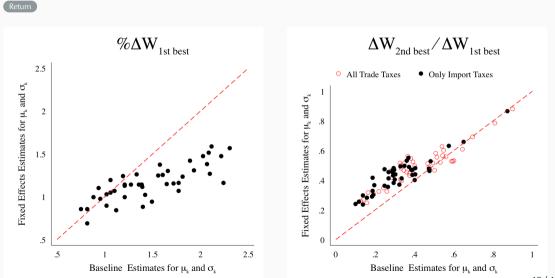
- High- μ sectors:
 - 1. Electrical & Optical Equipment
 - 2. Petroleum

- Low- μ sectors:
 - 1. Agriculture & Mining
 - 2. Wood

Accounting for Firm-Selection à la Melitz-Chaney



Gains Implied by σ_k and μ_k Estimated in Levels



48/48