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Trade policy is often cast as a solution to the free-riding problem in international climate agree-

ments. This paper examines the extent to which trade policy can deliver on this promise. We

incorporate global supply chains of carbon and climate externalities into a multi-country, multi-

industry general equilibrium model of trade. By deriving theoretical formulas for optimal carbon

and border taxes, we quantify the maximum efficacy of two trade policy solutions to the free-

riding problem. First, we show that border taxes, when used as non-contingent, indirect mecha-

nisms for carbon taxation, have limited potential to mitigate global emissions even under optimal

design. However, Nordhaus’s (2015) climate club framework, in which border taxes are used as

contingent penalties to deter free-riding, is highly effective. The climate club can achieve up to

68% of the emissions reduction under globally optimal carbon pricing, while ensuring global par-

ticipation and maintaining free trade. This success depends on major economic powers like the

U.S., E.U., and China forming an initial alliance of core members and leveraging their collective

trade penalties to compel participation by reluctant governments.

1 Introduction

Climate change is accelerating at an alarming rate, yet governments have been unsuccessful in

forging an agreement to effectively tackle this pressing issue. Major climate agreements, like the

1997 KYOTO PROTOCOL and the 2015 PARIS CLIMATE ACCORD, have failed to deliver a meaning-

ful reduction in global carbon emissions. This failure is often attributed to the free-riding problem:

Countries have an incentive to free-ride on the rest of the world’s reduction in carbon emissions

without undertaking proportionate abatement themselves.

*This paper has previously circulated as “Trade, Firm Delocation, and Optimal Climate Policy.” We are grateful to
Jonathan Eaton, Vernon Henderson, Sam Kortum, Volodymyr Lugovskyy, Ishan Nath, William Nordhaus, Ralph Ossa,
Heitor Pellegrina, Robert Staiger, John Sturm Becko, and Maksym Chepeliev for their valuable comments, and partici-
pants in many seminars and conferences for their helpful discussions and feedback. Email: farid.farrokhi@bc.edu and
alashkar@iu.edu.
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The shortcoming of existing climate agreements has led experts to propose alternative solu-

tions that are resistant to free-riding. Two canonical trade policy proposals have emerged:

Proposal 1: Climate-conscious governments use carbon border taxes as a second-best policy to curb

untaxed carbon emissions beyond their jurisdiction.

Proposal 2: Climate-conscious governments form a climate club, using collective and contingent

trade penalties to incentivize climate cooperation by reluctant governments.

While both proposals combine carbon pricing with trade policy, they differ starkly in their ap-

proach. Proposal 1 is grounded in unilateralism. It presumes that global climate cooperation is

improbable, but unilateral policies can serve as a viable second best solution. Proposal 2 relies on

the premise that unilateral action is insufficient and that the failure of past multilateral agreements

could be reversed through better institutional design.

The maximal efficacy of these proposals remains unclear due the challenges in characteriz-

ing their optimal design within quantitative frameworks. Traditional theories of optimal trade and

environmental policy are limited to stylized models that preclude quantitatively important con-

siderations. Existing quantitative studies examine simplified variants of these proposals that are

not optimal, sidestepping the computational challenges associated with optimal policy analysis.

Thus, they reveal only a fraction of what these proposals could potentially achieve

We overcome these challenges by combining optimal policy analysis with quantitative general

equilibrium modeling. First, we incorporate global carbon supply chains and climate externalities

into a multi-country, multi-industry general equilibrium trade model. Second, we derive theoret-

ical formulas for optimal carbon border taxes and climate club penalties that internalize climate

damage from carbon emissions and terms-of-trade effects under rich general equilibrium consid-

erations. Third, we map our model and optimal policy formulas to data on trade, production,

and emissions to evaluate the maximal effectiveness of carbon border taxes and climate clubs.

Section 2 presents our theoretical framework, that is a general equilibrium semi-parametric

model of international trade with many countries and industries. Our framework incorporates

production, distribution, and utilization of fossil fuel energy which gives rise to international

climate externalities. The resulting framework is particularly attractive as it combines the carbon

externality and terms-of-trade rationales for policy intervention in a tractable fashion. Section

3 derives theoretical formulas for optimal carbon and border taxes in our general equilibrium

framework. Our optimal policy formulas represent a notable advance over traditional theories.

In addition to internalizing multilateral leakage and ripple effects through carbon supply chains,
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our formulas pave the way for an in depth quantitative analysis of the above canonical climate

policy proposals.

We derive computationally efficient formulas for optimal policy using a dual decomposition

method that breaks down the general equilibrium optimal policy problem into independent sub-

problems. Specifically, the optimal policy problem consists of a system of first-order conditions

involving general equilibrium derivatives of variables with respect to policy. These derivatives

are challenging to characterize, making optimal policy derivation difficult in general equilibrium

settings. Our decomposition method simplifies this by dividing the problem into independent

sub-problems that can be solved without calculating general equilibrium derivatives. This ap-

proach mirrors the logic of the envelope theorem, in which the optimal policy for each instru-

ment sets the marginal effect of a subset of variables to zero, making changes in those variables

irrelevant when optimizing across other instruments.

Our analytical formulas indicate that the unilaterally optimal domestic carbon tax equals the

disutility from carbon emissions for domestic households. This policy choice is inefficient from

a global standpoint as it does not internalize the home country’s carbon externality on foreign

residents. Unilaterally optimal import tariffs and export subsidies are composed of two compo-

nents: a conventional terms-of-trade-driven component and carbon border adjustments. Relevant

to Proposal 1, these carbon adjustments impose a tax on imported goods based on the carbon con-

tent per dollar value and provide a subsidy to exported goods based on the carbon intensity of

competing foreign varieties. Relevant to Proposal 2, the unilaterally optimal border taxes repre-

sent the trade penalties that maximize welfare transfers from free-riders to climate club members.

To better understand these non-cooperative policy choices and elucidate the free-riding prob-

lem, we compare them with optimal policy under global cooperation. The first-best policy from

a global standpoint features zero border taxes/subsidies and a globally optimal carbon tax that

equals the global disutility from carbon emissions. Importantly, the globally optimal carbon tax

rate greatly exceeds the unilaterally optimal rate as it penalizes a country’s carbon externality on

not only its own residents but also foreign households. Governments acting in their own self-

interest, therefore, have incentives to deviate from the globally optimal rate, thus perpetuating

the free-riding problem in climate action.

Sections 4 and 5 leverage our optimal tax formulas and the sufficient statistics for counter-

factual analysis to determine the maximal efficacy of carbon border taxes and the climate club

proposal in reducing carbon emissions. The sufficient statistics for counterfactual policy analysis

are obtained as follows: First, observable shares are constructed from national and environmental
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accounts data. Second, the governments’ perceived disutility from climate change is inferred from

their applied environmentally-related taxes. Third, structural parameters including the industry-

level trade elasticities and the energy demand elasticity are estimated using cross-sectional tax

and expenditure data, utilizing conventional identification strategies. The required data on trade,

production, carbon emissions, and taxes are primarily taken from the GTAP Database for 2014

augmented by several auxiliary data sources. Our final database covers 18 broadly defined in-

dustries, including energy, representing the entire vector of production across 13 major countries,

the European Union, and five aggregate regions containing neighboring blocs of countries.

Our analysis reveals that carbon border taxes have limited efficacy in reducing carbon emis-

sions, even when designed optimally. Adding border taxes to unilaterally optimal domestic car-

bon taxes only reduces global emissions by an additional 1.3%—addressing merely 3.4% of the

excess emissions caused by free-riding behavior. The inefficacy of border taxes as an indirect

form of carbon taxation stems from three factors. First, carbon border taxes fail to incentivize

abatement among foreign firms because they tax firms based on industry-wide national averages

rather than the firm-specific carbon intensity. Since individual firms cannot meaningfully influ-

ence these broad averages, they have no incentive to reduce their carbon intensity in response to

these taxes. Second, carbon border taxes cannot target emissions from non-traded goods, which

account for a significant share of global emissions. Third, carbon border taxes cannot prevent car-

bon leakage through general equilibrium price changes. As pre-tax energy prices fall in response

to border taxes, energy use and carbon emissions tend to increase in countries without a domestic

carbon tax.

To examine the climate club, we solve a sequential game where core members move first,

followed by other countries. Core members and non-core countries that join the club abide by

the rules of membership: they impose unilaterally optimal trade penalties against non-members

and commit to free trade among members. Furthermore, they raise domestic carbon prices to

meet a specified carbon tax target. Non-members can use their trade taxes to retaliate against club

members but keep their other taxes unchanged. When considering joining the club, countries

weigh the cost of higher domestic carbon taxes against the benefits of evading the climate club’s

collective trade penalties.1

1 Analyzing the climate club proposal quantitatively poses two major challenges. First, computing optimal trade
penalties in a strategic game involving many players is practically infeasible with numerical optimization methods.
We circumvent this issue by leveraging our theoretical formulas for optimal trade penalties. Second, solving the
climate club game suffers from the curse of dimensionality, requiring that one searches over an excessively large
number of possible outcomes. To overcome this challenge, we shrink the space of possible outcomes using a proce-
dure that closely mimics the iterative elimination of dominated strategies.
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In setting the climate club’s carbon tax target, we balance two considerations. The first is a

trade-off reminiscent of the Laffer curve. Higher taxes encourage greater emission cuts per mem-

ber, but also discourage participation—yielding an inverted U-shape relationship between global

carbon reduction and the carbon tax target. The second consideration is upholding free trade.

Trade penalties against non-members are intended as deterrent threats, so the ideal target must

be set at a level that elicits universal participation, rendering the imposition of such penalties

unnecessary. Considering these dual objectives, our analysis sets the carbon tax target at the max-

imal rate that results in an inclusive club of all nations.

We find that the climate club framework can effectively reduce global carbon emissions, but

its success hinges critically on the makeup of core members. If the EU and US initiate a climate

club as core members, universal participation will be attained at a maximal carbon tax target of 53

($/tCO2), yielding a 18.6% reduction in global carbon emissions. Though substantial, the EU-US

alliance lacks the necessary market power to elicit a higher tax target. However, by incorporating

China as a core member, the maximal carbon tax target can be raised to 89 ($/tCO2) leading to a

28.0% reduction in global carbon emissions. This figure represents 68% of the emissions reduction

achievable under globally first-best carbon taxes, evaluated at the social cost of carbon equal to 156

($/tCO2). Overall, the climate club’s efficacy in mitigating climate change relies on assembling

an influential group of core members and setting an appropriate carbon tax target. Moreover,

comparing the efficacy of the climate club to carbon border taxes reveals that trade policy is more

effective when used as a contingent penalty at deterring free-riding than an indirect mechanism

for carbon taxation.

Climate clubs outperform non-coordinated, unilateral policies for two reasons. First, they

employ trade penalties as an enforcement tool rather than a means of indirect carbon taxation.

These penalties are specifically designed to compel governments to increase their domestic car-

bon taxes. Domestic taxes are more effective than indirect border taxes because they induce abate-

ment among local firms and can cover both traded and non-traded goods. Second, the multilateral

structure of climate clubs amplifies the impact of trade penalties compared to unilateral measures.

By leveraging their collective market power, club members can impose more consequential penal-

ties on free-riders, generating stronger pressure for compliance.

Lastly, Section 6 demonstrates the robustness of our quantitative results, showing they remain

similar across several alternative model specifications and extensions.
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Related Literature

Our work contributes to several areas of literature. First, we contribute to theoretical analyses of

trade and environmental policy. Early works such as Markusen (1975); Copeland (1996); Hoel

(1996), use partial equilibrium or two-country models to study how unilaterally-applied trade

taxes can mitigate transboundary environmental damages. More recent research by Kortum and

Weisbach (2020) and Weisbach et al. (2023) characterizes unilaterally-optimal carbon policy in a

two-country Dornbusch et al. (1977) model, emphasizing the effectiveness of combining supply

and demand-side carbon taxes. Another body of literature examines international agreements

that link trade and climate policy, wherein free trade is contingent on climate action (Barrett, 1997;

Nordhaus, 2015; Maggi, 2016; Nordhaus, 2021; Harstad, 2024; Iverson, 2024). Our work advances

this literature by characterizing optimal policy in a multi-country and industry general equilib-

rium model amenable to rich quantitative analysis.

Second, our analysis is related to quantitative examinations of environmental and energy-

related policies in open economies, e.g., Babiker (2005); Elliott et al. (2010); Taheripour et al. (2019);

Farrokhi (2020). Our paper is especially relevant to studies analyzing the efficacy of carbon border

adjustment policies, including Böhringer et al. (2016); Larch and Wanner (2017); Shapiro (2021).

Although these studies feature rich specifications of the global economy, they lack a concept of

optimal policy design. Consequently, they do not reveal the full potential of trade policy for re-

ducing carbon emissions. We complement this literature by utilizing optimal policy formulas to

uncover the frontier of trade and climate policy outcomes.

Third, our work relates to an emerging literature characterizing optimal policy in modern

quantitative trade models, e.g., Costinot et al. (2015); Bartelme et al. (2021); Beshkar and Lashkaripour

(2020); Lashkaripour (2021); Caliendo and Parro (2022); Lashkaripour and Lugovskyy (2023).

These studies have bridged a longstanding divide between classic partial equilibrium trade policy

frameworks and modern general equilibrium trade theories. Our dual decomposition technique

advances this effort towards closing the gap. It shows that optimal policy formulas can be derived

without characterizing complex general equilibrium elasticities, removing a primary impediment

to general equilibrium optimal policy analysis. This particular result sharpens and extends the

result in Lashkaripour and Lugovskyy (2023) to settings with global carbon supply chains and

international consumption externalities, an example of which is climate change damage.

Lastly, we contribute to the growing research on trade and the environment by examining how

trade policy can be used to mitigate climate change. This literature has made significant advances
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in bringing a spatial dimension to integrated assessment models, as reviewed by Desmet and

Rossi-Hansberg (2023). It embeds environmental issues ranging from local pollution to global

deforestation into trade models, e.g., Shapiro and Walker (2018) and Farrokhi et al. (2023). See

Copeland and Taylor (2004) and Copeland et al. (2021) for reviews of the literature on trade and

the environment and Staiger (2021) for how the existing world trade system can handle climate

and environmental issues.

2 Theoretical Framework

The global economy consists of multiple countries indexed by i, j, n ∈ C ≡ {1, ..., N} and mul-

tiple industries indexed by k, g ∈ {0, 1, ..., K}. Each country i is endowed by L̄i workers and R̄i

carbon reserves. Workers are perfectly mobile across industries but immobile across countries,

and each worker supplies one unit of labor inelastically. Production in the global economy can be

thought of as a two stage process. First, each country’s energy industry (indexed by k = 0) em-

ploys labor and carbon reserves—as a specific input—to produce energy. Second, other industries

(indexed by k = 1, ..., K) employ labor and energy to produce final goods. Markets are perfectly

competitive2 and goods in all industries are internationally traded.

We denote quantities of energy in terms of their CO2 emission content. Along the carbon sup-

ply chain, we count CO2 emissions when energy is used by final good producers and households.

Since every individual producer or consumer is infinitesimally small, they do not internalize the

impact of their production or consumption choices on CO2 emissions.3

2.1 Prices and Tax Instruments

Subscript (ji, k) indexes a variety corresponding to origin j−destination i−industry k—i.e., a variety

of industry k that is produced in origin j and shipped to destination i. Country i’s government

has access to the following tax instruments:

1. Import tax, tji,k, applied to imported variety ji, k (tii,k = 0 by design);

2. Export subsidy, xij,k, applied to exported variety ij, k (xii,k = 0 by design);

3. Carbon tax, τi,k, applied to the carbon content of energy use;

2 In Section 6.3, we consider a more general case with monopolistic competition and firm entry.
3 Throughout the paper, we use “energy” as a shorthand for “fossil fuel energy” and we use “carbon emissions”

interchangeably with “CO2 emissions”.
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Border taxes/subsidies create a wedge between the after-tax consumer price, P̃ji,k, and the before-

tax producer price, Pji,k, of each variety (ji, k),

P̃ji,k =

(
1 + tji,k

)(
1 + xji,k

) × Pji,k, k = 0, 1, ..., K. (1)

A representative “energy distributer” in country i purchases varieties of energy from interna-

tional suppliers j = 1, ..., N, at prices
{

P̃ji,0
}

j, and aggregates them into a composite energy bundle

with price P̃i,0 = P̃i,0
(

P̃1i,0, ..., P̃Ni,0
)
. This bundle is sold to domestic producers after the inclusion

of an end-use-specific carbon tax, which creates a wedge between P̃i,0 and the final price paid by

producers for use in industry k:

P̃i,0k = P̃i,0 + τi,k, k = 1, ..., K. (2)

where P̃i,0k denotes the price of energy input for use in industry k = 1, ..., K (after the inclusion of

all taxes) and τi,k is the carbon tax. The above-listed tax instruments are sufficient for obtaining

the first-best policy outcome under cooperative and non-cooperative scenarios. Additional tax

instruments (e.g., production or consumption taxes) are redundant as their effects can be perfectly

mimicked with the appropriate choice of existing instruments.

2.2 Consumption

The representative household in country i maximizes a non-parametric utility function Ui(Ci) by

choosing the vector of consumption quantities, Ci =
{

Cji,k
}

j,k≥1 subject to the budget constraint,

Ei =
N

∑
j=1

K

∑
k=1

P̃ji,kCji,k, (3)

where Ei denotes national household expenditure, and P̃ji,k is the consumer price index of variety

ji, k (Equation 1). Let P̃i =
{

P̃ji,k
}

j∈C, k≥1 denote the entire vector of consumer prices in country

i. The household’s utility maximization implies an indirect utility function, Vi
(
Ei, P̃i

)
, and a

Marshallian demand function for each variety ji, k,

Cji,k = Dji,k
(
Ei, P̃i

)
, k = 1, ..., K. (4)

We denote the elasticity of demand for variety (ji, k) with respect to the price of variety (ni, g) by:

ε
(ni,g)
ji,k ≡

∂ ln Dji,k(Ei, P̃i)

∂ ln P̃ni,g
, ε ji,k ∼ ε

(ji,k)
ji,k ; (5)
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with the own price elasticity of demand defined as ε ji,k ∼ ε
(ji,k)
ji,k ≤ −1 (we use “∼” as a shorthand

for defined as).

We use β and λ to denote household expenditure shares. The within-industry expenditure

share on variety ji, k (origin j–destination i–industry k) is denoted by λji,k, and the overall expen-

diture share of country i on industry k ̸= 0 is denoted by βi,k,

λji,k ≡
P̃ji,kCji,k

∑N
n=1 P̃ni,kCni,k

, βi,k ≡
∑N

n=1 P̃ni,kCni,k

∑N
n=1 ∑K

g=1 P̃ni,gCni,g
=

∑N
n=1 P̃ni,kCni,k

Ei
. (6)

A familiar special case is the Cobb-Douglas-CES form, where a constant fraction of expenditure,

βi,k, is spent on industry k whose varieties are differentiated by source countries under a constant

elasticity of substitution, σk. The demand function in this special case is:

[special case: Cobb-Douglas-CES] Dji,k
(
Ei, P̃i

)
=

bji,kP̃−σk
ji,k

∑n bni,kP̃1−σk
ni,k

βi,kEi,

with demand elasticities given by ε
(ni,k)
ji,k = −σk1n=j + (σk − 1) λni,k and ε

(ni,g)
ji,k = 0 if g ̸= k.

2.3 Production

Energy Extraction. The extraction industry (k = 0) in each country j produces energy by em-

ploying exogenously-given carbon reserves, R̄j, as specific input and labor, Lj,0, as variable input

under a Cobb-Douglas technology:

Qj,0 = φ̄j,0

(
Lj,0

1 − ϕj

)1−ϕj
(

R̄j

ϕj

)ϕj

. (7)

Here, φ̄j,0 is an exogenous productivity parameter and Qj,0 is the output quantity of energy which

can be thought of as carbon supply from each economy j. Extracted energy varieties are traded

internationally subject to borders taxes but without incurring iceberg trade costs. The producer

price of the energy variety extracted in country j equalizes across destinations i,4

Pji,0 = Pjj,0 =
1

φ̄j,0
w

1−ϕj
j r

ϕj
j , (8)

Here, wj is the wage rate in country j, and rj represents the rental rate of carbon reserves in

that country. Similar to other goods, energy varieties are subject to border taxes, resulting in a

4 This specification implies an energy supply curve, Pjj,0 = p̄j,0 ×wj × Q
ϕ̃j

j,0, where p̄j,0 =

(
φ̄j,0 ×

[
Rj/ϕj

]ϕj
)−1/(1−ϕj)

is an exogenous shifter and ϕ̃j ≡ ϕj/
(

1 − ϕj

)
> 0 is the inverse energy supply elasticity.
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destination-specific consumer price, P̃ji,0 =
1+tji,0
1+xji,0

Pjj,0.

Energy Distribution. A representative energy distributer in each country i purchases varieties

of energy
{

Cji,0
}

i from international suppliers j = 1, .., N, aggregates them into a bundle of energy,

Zi = Zi (C1i,0, ..., CNi,0), and sells this energy bundle to domestic final-good producers. The price

of the energy bundle, P̃i,0, is determined by a homogeneous-of-degree-one aggregator:

P̃i,0 = P̃i,0
(

P̃1i,0, ..., P̃Ni,0
)

. (9)

The energy price aggregator, P̃i,0, is implied by a homothetic system of demand for interna-

tional sources of energy. The distributor’s demand for variety (ji, 0) is, accordingly, a function

of total expenditure on energy varieties, Ei,0 = ∑j P̃ji,0Cji,0, and the vector of energy prices,

P̃i,0 =
{

P̃1i,0, ..., P̃Ni,0
}

, which includes border taxes but excludes the carbon tax applied post-

distribution. Namely,

Cji,0 = Dji,0
(
Ei,0, P̃i,0

)
. (10)

As earlier, we use ε
(ni,0)
ji,0 = ∂ ln Dji,0 (.) / ln P̃ni,0 as the price elasticity of demand for energy vari-

eties. A special case of the above specification is the CES aggregator, which implies the following

price and quantity equations:5

[special case: CES] P̃i,0
(
P̃i,0
)
=

[
∑

j
bji,0P̃1−σ0

ji,0

] 1
1−σ0

; Dji,0
(
Ei,0, P̃i,0

)
=

bji,0P̃−σ0
ji,0 Ei,0

∑n bni,0P̃1−σ0
ni,0

.

Note that P̃ji,0 includes border taxes on energy but not the carbon tax. The latter is applied af-

ter bundling of energy varieties, so that the final price of the energy bundle paid by final-good

producers k is P̃i,0k = P̃i,0 + τi,k.

Household Energy Consumption. Our setup accommodates energy use by households, which

we model by making use of a fictitious industry that helps us maintain a compact notation. The

fictitious industry k0 ∈ {1, ..., K} purchases the energy bundle, at price P̃i,0 + τi,k0 , and converts it

without generating any value added into a final good of the same price. This fictitious industry is

nontradeable and sells exclusively to domestic households.6 Therefore, households’ consumption

of final good k0 corresponds to their energy consumption and their associated CO2 emission.
5 The finite elasticity of substitution between energy sources, as shown in Farrokhi (2020), can be micro-founded via

aggregation over sourcing choices of input-users who face variability in transport costs vis-a-vis exporters.
6 This is equivalent to the standard specification where households buy energy directly from the energy distributor,

subject to a household-specific carbon tax, τi,k0 .
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Production of Final Goods. Production of final good k = 1, ..., K in country i is conducted by

symmetric competitive firms that combine labor and the energy input. Total production in each

industry is represented by an aggregate constant-reruns-to-scale production function:

Qi,k = φ̄i,k Fi,k (Li,k, Zi,k) . (11)

The arguments Li,k and Zi,k denote the quantity of labor and energy inputs, and φ̄i,k > 0 is a Hick-

neutral productivity shifter. International trade in final goods is subject to iceberg trade costs,

d̄in,k ≥ 1, with d̄ii,k = 1. Consequently, per cost minimization, the competitive producer price of

variety in, k equals:

Pin,k =
d̄in,k

φ̄i,k
× ci,k

(
wi, P̃i,0k

)
, (12)

where ci,k (.) is a homogeneous-of-degree-one aggregator of input prices: the wage rate, wi, and

the after-tax price of the energy, P̃i,0k = P̃i,0 + τi,k. Assuming that the demand for inputs is homo-

thetic, the cost share of energy, αi,k ≡ P̃i,0kZi,k/Yi,k, is also fully-determined by wi and P̃i,0k, with

Yi,k = Pii,kQi,k denoting the total value of sales of origin i–industry k.

A canonical special case of our setup is the case of CES production function, with

Fi,k (Li,k, Zi,k) =

[
(1 − κ̄i,k)

1
ς L

ς−1
ς

i,k + (κ̄i,k)
1
ς Z

ς−1
ς

i,k

] ς
ς−1

,

where κ̄i,k ∈ [0, 1] represents exogenous energy intensity, and ς > 0 is the elasticity of substitu-

tion between labor and energy inputs. In this special case, the input cost aggregator takes the

following form:

[special case: CES] ci,k = ci,k
(
wi, P̃i,0k

)
≡
[
(1 − κ̄i,k)w

1−ς
i + κ̄i,kP̃1−ς

i,0k

] 1
1−ς

;

where ς regulates the “energy demand elasticity,” implying αi,k = κ̄i,k
(

P̃i,0,k/ci,k
)1−ς.

2.4 CO2 Emissions

Aggregate CO2 emission from each industry k = 1, ..., K can be decomposed as:

Zi,k = zi,k Qi,k, (13)

where zi,k represents the emissions per unit quantity (reflecting the production technique) and Qi,k

is industry-level output quantity.7 The emission per quantity is fully determined by the after-tax

7 In relation to the decomposition of emissions a la Copeland and Taylor (2004), zi,k represents the “technique” effect,
Qi,k the “scale” effect, and the vector of

{
Zi,k
}

k the “composition” effect.
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energy input price, P̃n,0k, and the the wage rate:

zi,k = zi,k
(

P̃i,0k, wi
)

.

A carbon tax, τi,k, raises the consumer price of energy, P̃i,0k, resulting in a lower energy use Zi,k

per unit of final good production. Country i’s total CO2 emissions, Zi, and the distributor’s total

energy expenditure, Ei,0, are:

Zi =
K

∑
k=1

Zi,k, Ei,0 = P̃i,0Zi. (14)

Under the special case with CES production, the emission per quantity takes the following para-

metric representation,

[special case: CES] zi,k
(

P̃i,0k, wi
)
= zi,k

[
κ̄i,kP̃1−ς

i,0k

(1 − κ̄i,k)w
1−ς
i + κ̄i,kP̃1−ς

i,0k

] ς
ς−1

,

where z̄i,k ≡ κ̄
1

1−ς

i,k /φ̄i,k is a constant shifter. Lastly, global CO2 emission can be calculated by

summing over national CO2 emissions:

Z(global) ≡ ∑
i

Zi (15)

2.5 General Equilibrium

Tax Revenues and National Income. We denote by Ti the tax revenues collected by country i’s

government from imports, exports, and carbon taxes and rebated to consumers in that country,

Ti =
K

∑
k=1

[τi,kZi,k]︸ ︷︷ ︸
carbon tax

+
K

∑
k=0

∑
n ̸=i

[
tni,k

1 + tni,k
P̃ni,kCni,k

]
︸ ︷︷ ︸

import taxes

−
K

∑
k=0

∑
n ̸=i

[
xin,k

1 + tin,k
P̃in,kCin,k

]
︸ ︷︷ ︸

export subsidies

Let Yi,k denote sales of country i−industry k,

Yi,k = Pii,kQi,k, (16)

Industry sales, on aggregate, generate an income level of ∑K
k=0 Yi,k = wi L̄i + riR̄i in each country i.

We assume trade is balanced, so that national income is the sum of the wage bill, rental payments

to carbon reserves, and tax revenues:

Yi = wi L̄i + Πi + Ti, where Πi = riR̄i. (17)
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Definition of General Equilibrium. For a given set of taxes
{

tji,k, xij,k, τi,k
}

, a general equilibrium

is a vector of consumption, production and input use,
{

Cji,k, Qi,k, Li,k, Zi,k
}

, final goods and en-

ergy input prices,
{

Pji,k, P̃ji,k, P̃i,0, P̃i,0k
}

, wage and rental rates, {wi, ri}, and income, sales and ex-

penditure levels, {Yi,k, Yi, Ei, Ei,0}, such that equations (1)-(17) hold; goods market clear, whereby

national consumption expenditure equals national income, Ei = Yi, and total output in each in-

dustry equals demand,

Qi,k =
N

∑
n=1

d̄in,kCin,k (18)

and the factor markets clear according to:

wi L̄i =
K

∑
k=1

[(1 − αi,k)Yi,k] + (1 − ϕi)Yi,0, Πi ≡ riR̄i = ϕiYi,0; (19)

where in each country the wage rate clears the labor market and the rental rate of carbon reserves

clears the market for energy extraction.8

3 Optimal Policy and the Free-Riding Problem

Our analysis builds on the realization that the globally optimal climate outcome is politically

infeasible due to free-riding incentives, but climate-conscious countries can use trade policies to

target global emissions. In this section, we first characterize the unilaterally optimal carbon and

border taxes, elucidating the two rationales for policy intervention from a unilateral standpoint.

Next, we characterize the globally optimal policy to highlight the free-riding problem in climate

agreements. Finally, we discuss two trade policy remedies for the free-riding problem: carbon

border taxes and the climate club. We explain how our theoretical optimal policy results provide

the groundwork for quantitatively evaluating these policies. To set the stage, we begin with a

formal definition of policy objectives.

Social Welfare with Climate Damage. The welfare of the representative consumer in country i

is the utility from consumption net of the disutility from CO2 emissions.9 Namely,

Wi = Vi
(
Ei, P̃i

)
− δi × Z(global). (20)

8 The definition of general equilibrium ensures the balance of trade. Specifically, national exports equals national im-

ports, Di ≡ ∑k ∑n Xni,k − ∑k ∑j Xij,k = 0, where Xij,k ≡ P̃ij,kCij,k/
(

1 + tij,k

)
denotes each variety’s trade flow

outside the border of the exporting country and before the application of taxes by importing country.
9 We exclude political economy factors for two reasons. First, they predominantly influence within-country distribu-
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The first component represents the indirect utility from consumption and the second component

is the disutility from global CO2 emissions. δi is a parameter that represents the disutility per unit

of CO2 emissions for country i’s residents. However, since individual producers or consumers,

take Z(global) as given, they do not internalize the associated externality in their energy consump-

tion decisions. Governments, meanwhile, can influence CO2 emissions and internalize them in

their policy choice. So, for all practical purposes, δi hereafter represents the disutility from CO2

emissions as perceived by governments—meaning that our analysis does not rule out that δi may

be disconnected from the actual climate cost facing country i’s residents.10 With this in mind, we

turn to characterizing optimal policy under various scenarios.

3.1 Unilaterally Optimal Policy Problem

Unilaterally optimal policies apply to non-cooperative settings, where governments choose poli-

cies to maximize national welfare as specified by Equation (20) without considering effects on

foreign households. The government in country i can utilize a comprehensive set of tax instru-

ments denoted by Ii ≡
{

tji,k, xij,k, τi,k
}

j,k. The unilateral optimal policy choice is formally defined

below, with an expansive formulation of the optimal policy problem provided in Appendix B.1.

Definition. The Unilaterally Optimal Policy for country i consists of taxes, I∗i ≡ {t∗ji,k, x∗ij,k, τ∗
i,k}j,k,

that maximize country i’s welfare in general equilibrium:

I∗i = arg max Wi (Ii, Ī−i) subject to general equilibrium Equations (1)− (19);

where Wi is described by Equation (20) and Ī−i denotes policy choices in the rest of the world,

which country i takes as given.

The unilaterally optimal policy seeks to correct the two sources of inefficiency in the decen-

tralized equilibrium from country i’s unilateral standpoint: First, private energy production and

consumption decisions fail to internalize the associated climate externality on country i’s residents

(as measured by δi). Second, country i’s producers fail to internalize their collective market power

when pricing the goods, so there is unexploited market power which country i’s government can

tional outcomes, which our analysis does not focus on. Within a similar framework, Ossa (2016) finds that “optimal
tariffs and their average welfare effects are quite similar with and without political economy pressures. This is because political
economy pressures are more about the intra-national rather than the international redistribution of rents.” Second, quantify-
ing political economy weights is infeasible due to over-identification issues. For any hypothetical tax schedule, there
exists a set of political weights that would rationalize it as optimal.

10 We also examine an alternative specification where δi maps to estimates of country-level climate change damage.
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exploit to improve its terms of trade vis-a-vis the rest of the world.11

The targeting principle provides some guidance on the unilaterally optimal policy choices. Do-

mestic carbon taxes are the first-best remedy for correcting carbon emissions from domestic eco-

nomic activity. Border taxes (based on the carbon content of goods) are the unilaterally optimal

instrument for correcting foreign emissions. And border taxes (based on national-level market

power) are the first-best instrument for manipulating the terms-of-trade. However, characteriz-

ing the optimal policy is complicated in multi-country, multi-industry general equilibrium mod-

els. Below, we introduce a method to bypass some of these complexities.

Before beginning our analysis, it is useful to conceptualize an equilibrium under optimal pol-

icy as the joint solution to two mappings: (a) the equilibrium allocation given optimal taxes, and

(b) the optimal taxes given an equilibrium allocation. The following section provides a unique

representation for mapping (b), with Section 4.1 detailing how we jointly solve (a) and (b).12

3.2 Dual Decomposition Technique for Optimal Policy Derivation

To derive the unilaterally optimal policy, we first reformulate the problem of selecting taxes,

Ii ≡
{

tji,k, xij,k, τi,k
}

j,k, into an equivalent problem where the government directly selects after-

tax prices: Pi =
{

P̃ji,k, P̃ij,k, τi,k
}

j,k. Optimal import tariffs and export subsidies can be derived

from optimal prices, P∗
i , using 1 + t∗ji,k =

P̃∗
ji,k

Pji,k
and

(
1 + x∗ij,k

)−1
=

P̃∗
ij,k

Pij,k
. The reformulated optimal

policy problem can be expressed as:

max
P̃i

Vi
(
Ei, P̃i

)
− δiZ(global).

The first-order condition (F.O.C.) w.r.t. to a generic policy instrument P̃ ∈ P̃i is:

∂Vi (.)
∂Ei

∂Ei

∂P̃
+

∂Vi (.)
∂P̃

− δi
∂Z(global)

∂P̃
= 0.

A critical aspect of our approach is specifying Ei and Z(global) as functions of select variables and

expressing ∂Ei
∂P̃ and ∂Zn,k

∂P̃ in terms of their derivatives. Total expenditure is equal to national income,

given by the following function:

Ei = Yi = Yi (Pi, w, C, Zi, P0) .

11 Similarly, country i’s consumers fail to internalize their collective monopsony power when purchasing foreign vari-
eties, justifying import tariffs to exploit national-level import market power.

12 Note that mapping (b) is unique up to the multiplicity introduced by the Lerner symmetry. Moreover, if mapping (a)
admits multiple solutions, this multiplicity will extend to the joint solution of (a) and (b). In the presence of multiple
equilibria, our optimal policy results do not offer guidance on how to choose between the multiple joint solutions.
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The function, Yi (.), is a unique mapping from policy Pi, wages w ≡ [wi, w−i], consumption

quantities C ≡ [Ci, C−i, Ci,0, C−i,0], local emissions Zi, and energy producer prices P0 to national

income, Yi, which is the sum of factor rewards and tax revenues. Using the vector notation for

compactness, the function Yi (.) is defined as

Yi (Pi, w, P0, C, Zi) = wiLi + Πi (Pi,0, wi) + τ⊺
i Zi

+
(
P̃i,0 − Pi,0

)⊺ Ci,0 +
(
P̃−i,0 − P−i,0

)⊺ C−i,0

+
(
P̃i − Pi (.)

)⊺ Ci +
(
P̃−i − P−i (.)

)⊺ C−i;

Here, Πi (Pii,0, wi) is a function that maps wage and producer price in the energy extraction sector

to the surplus, Πi, paid to fixed reserves, following cost minimization. The column vector Zi =

[Zi,k]k contains local industry-level emissions and τ⊺
i = [τi,k]

⊺
k is the corresponding row vector of

carbon taxes. Ci,0 ≡ {Cni,0}n denotes local energy consumption quantities with corresponding

after- and pre-tax prices P̃i,0 and Pi,0; C−i,0 ≡ {Cin,0}n ̸=i denotes energy export quantities with

corresponding prices P̃−i,0 and P−i,0. Similarly, Ci and P̃i denote the consumption quantity and

after-tax price of locally-consumed final goods, and C−i and P̃−i denote the quantity and after-tax

price of exported final goods. The functions Pi (.) = [Pni,k (.)]j, k>0 and P−i (.) =
[
Pij,k (.)

]
j ̸=i, k>0

represent the producer prices of locally-consumed and exported final goods, where Pin,k (Pi, wi)

for all n and Pni,k (Pi, P−i,0, wn) for n ̸= i, map policy, wages, and energy prices to producer prices

that satisfy cost minimization.

Global emissions are the sum of domestic and foreign emissions, Z(global) = ∑k Zi,k +∑k ∑n ̸=i Zn,k,

where emissions for home (i) and foreign countries (n ̸= i) are described by

Zi,k = zi,k (Pi, wi) Qn,k, Zn,k = zn,k
(

P̃in,0, P−i,0, wn
)

Qn,k.

The functions zi,k (.) and zn,k (.) for n ̸= i map input prices to the intensity of energy use (i.e.,

carbon emission per unit of output) as implied by cost minimization.13 Total output Qn,k is given

by the function Qn,k (.), which maps demand quantities for country n’s varieties in industry k to

13 Recall that carbon emissions intensities are fully determined by energy and labor input prices: zn,k = zn,k
(

P̃n,0k, wn
)

for all n. The energy price, P̃i,0k = P̃i,0

(
{P̃ji,0}j

)
+ τi,k, in home country i is fully determined by policy,{

{P̃ji,0}j, τi,k

}
∈ Pi. In foreign country n ̸= i, the energy price is determined by foreign energy prices, P−i,0,

and price of home’s energy variety, P̃in,0, which is set by home’s export policy. So, we can reformulate the emission
intensity function as:

zn,k
(

P̃n,0k, wn
)
=

{
zn,k

(
P̃in,0, P−i,0, wn

)
n ̸= i

zi,k (Pi, wi) n = i

A similar consideration applies to the above definition of producer prices of final goods (k > 0), Pin,k (Pi, wi) for all
n and Pni,k

(
Pi, P−i,0, wn

)
for n ̸= i.
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total output:

Qn,k = Qn,k

([
Cnj,k

]
j

)
≡

N

∑
j=1

dnj,kCnj,k

Generic First-Order Condition. For expositional purposes, we present the logic of our dual de-

composition method disregarding foreign energy price effects, ∂P−i,0
∂P̃ . However, our actual deriva-

tion in the appendix accounts for these effects. Under this simplification, the F.O.C. with respect

to policy instrument P̃ ∈ P̃i, can be expanded as14

∂Vi (.)
∂Ei

[
∂Yi (.)

∂P̃
+

∂Yi (.)
∂w

∂w
∂P̃

+
∂Yi (.)

∂C
∂C
∂P̃

+
∂Yi (.)

∂Zi

∂Zi

∂P̃

]
︸ ︷︷ ︸

∂Ei/∂P̃

+
∂Vi (.)

∂P̃

−δi

(
∂Zi

∂P̃
1 + z−i

∂Q−i

∂P̃
+ ∑

n ̸=i

(
∂zn (.)

∂P̃
+

∂zn (.)
∂wn

∂wn

∂P̃

)
Qn

)
︸ ︷︷ ︸

∂Z(global)/∂P̃

= 0 (21)

Terms such as ∂Vi(.)
∂P̃ , ∂Yi(.)

∂P̃ and ∂zn(.)
∂P̃ represent the partial derivative of known functions with re-

spect to a specific argument. In contrast, ∂w
∂P̃ , ∂C

∂P̃ , ∂Zi
∂P̃ , and ∂Q−i

∂P̃ are general equilibrium (GE) deriva-

tives, which are difficult to characterize. They result from the implicit differentiation of a complex

and interdependent system of equilibrium conditions. Traditionally, optimal policy formulas are

either presented in terms of these complex derivatives (Dixit, 1985) or they are simplified through

strong parametric assumptions that remove equilibrium interdependencies, reducing the noted

derivatives into partial equilibrium objects.15 Our method takes a different approach. We use less

restrictive assumptions, which allow us to bypass the task of calculating complex GE derivatives

while maintaining the model’s rich GE structure.16

Assumption 1. Policy-induced changes to relative wages between foreign countries (wn/wj, for all n, j ̸=

i) and changes to the fraction of wage to total income in foreign countries (wnLn/Yn for all n ̸= i) have no

14 To maintain compact notation, we omit the transpose sign hereafter, with the understanding that each product in the
F.O.C. represents compatible row and column vectors, e.g., ∂Yi(.)

∂w
∂w
∂P̃ = ∑n

∂Yi(.)
∂wn

∂wn
∂P̃ .

15 For instance, consider a quasi-linear and separable utility function, U = C0 +Σku(Ck), where u(Ck) =
η

η−1 (C
η−1

η

k − 1)

for each good k. Here, Ck = Dk
(

P̃k
)
= P̃−η

k depends only on the own price P̃k, given the choice of numeraire, P̃0 = 1.
In particular, the GE elasticity ∂Ck

∂P̃ reduces to a constant parameter, −η, if P̃ = P̃k and is zero otherwise.
16 Our approach advances the dual technique from Lashkaripour and Lugovskyy (2023) in two ways. First, we enhance

their approach by recasting it as a dual decomposition method that partitions the optimal policy problem into inde-
pendent sub-problems. This reformulation enables standardized application across a broad range of optimal policy
problems. Second, we extend their approach by incorporating international externalities, such as climate change,
that operate through cross-border consumption and production effects, independently of terms-of-trade externali-
ties. Our analysis introduces new lemmas (E1, E2, and E3, in Appendix B) that characterize endogenous energy price
changes throughout the global carbon supply chain.
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first-order effect on country i’s welfare in the neighborhood of the optimum.

Normalizing the wage rate in one of the foreign countries per Walras’ Law, we can invoke

Assumption 1 (henceforth, A1) to solve the F.O.C.s, disregarding changes to wages and income

in the rest of the world. Quantitatively, we confirm in Appendix D that A1 provides an accurate

approximation and relaxing it has a negligible effect on optimal policy outcomes.17 The reason

is that each country’s policy exerts a negligible influence on relative foreign wages. Additionally,

changes to relative foreign wages have an insignificant effect on home’s welfare, as they represent

transfers between foreign nations. Likewise, changes in foreign wage-to-income ratios represent

transfers between agents within those countries, with minimal consequences for country i’s wel-

fare. A1 becomes redundant in a standard trade policy framework, involving two countries, a

single production factor, and a laissez-faire foreign country.

Beyond a two-country model, A1 simplifies the generic first-order condition (21) in two ways.

First, the terms including foreign wage effects, ∂Yi(.)
∂w−i

w−i
∂P̃ − δi ∑n ̸=i

∂zn(.)
∂wn

∂wn
∂P̃ Qn, can be disregarded

at the optimum. Second, the GE derivatives of foreign demand with respect to policy reduce

to Marshallian price elasticities of demand, ∂C−i
∂P̃ = ∂D−i(.)

∂P̃ , which are easier to characterize.18

Nevertheless, the F.O.C.s still involve the GE derivatives of local variables, such as ∂wi
∂P̃ , ∂Ci

∂P̃ , ∂Zi
∂P̃ ,

and ∂Q−i
∂P̃ , which remain the main obstacles to deriving streamlined optimal policy formulas.

Building on several intermediate results, we demonstrate that the optimal policy problem

can be decomposed into independent sub-problems and solved without characterizing these GE

derivatives.19 The first intermediate result (Lemma 1) shows that the terms containing the GE

derivatives of local factor prices, ∂wi
∂P̃ , and ∂Pii,0

∂P̃ drop out of the first-order condition:

∂Yi (.)
∂wi

=
∂Yi (.)
∂Pii,0

= 0. [Lemma 1]

Based on the above result, the optimal policy could be derived without specifying the GE deriva-

17 In Appendix D, we validate the accuracy of our optimal policy formulas through extensive numerical testing, focus-
ing particularly on the implications of A1. First, we show that the welfare gains predicted by our formulas are almost
identical to those from numerical optimization. Second, we show that A1 provides an accurate approximation: per-
turbing a country’s taxes around their optimal levels, has negligible effects on foreign wages and wage-to-income
ratios. Importantly, our method offers substantial computational advantages: while direct numerical optimizations
require 108 minutes to find a country’s optimal unilateral policy, our algorithm accomplishes this in just 3.5 seconds.
This dramatic improvement in computational speed is crucial for conducting our climate club analysis.

18 The derivative of demand in foreign location n ̸= i can be expressed as ∂Cn
∂P̃ =

∂Dn(.)
∂P̃ +

∂Dn(.)
∂En

∂En
∂P̃ , where by invoking

A1 the second term can be disregarded near P∗
i . The reason is that changes in En =

(
Yn

wn Ln

)
wnLn are driven solely

by changes in country n’s wage (wn) and wage-to-income ratio (wnLn/Yn), neither of which has first-order effects on
country i’s welfare around the optimum, per A1. However, in the general case considered in the appendix, we also
account for GE effects related to foreign energy prices, i.e., ∂Cn

∂P̃ =
∂Dn(.)

∂P̃ +
∂Dn(.)
∂P̃−in

∂P−in(.)
∂P−i,0

∂P−i,0

∂P̃ .

19 Appendix B contains the details of these intermediate results and their proofs.
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tives, ∂wi
∂P̃ , and ∂Pii,0

∂P̃ . The logic is that any welfare gains from perturbing local factor prices will

be fully internalized by the price instruments in Pi. Conditional on Pi, changing local factor

prices merely redistributes income between primary factors and government revenues, leaving

total expendable income, Yi, unchanged.

Optimal local prices. The F.O.C. with respect to local consumer prices, P̃ ∈
{

P̃i, τi
}

, can be

simplified by appealing to utility maximization and cost minimization—namely, Roy’s identity

and Shephard’s lemma. This point constitutes our second intermediate result (Lemma 2), which

states that20

∂Vi (.)
∂Ei

∂Yi (.)
∂P̃

+
∂Vi (.)

∂P̃
= 0, ∀P̃ ∈

{
P̃i, τi

}
[Lemma 2]

Moreover, local prices do not directly enter the functions that regulate foreign emissions and

demand, indicating that ∂zn(.)
∂P̃ = 0 and ∂C−i

∂P̃ = ∂D−i(.)
∂P̃ = 0 for all P̃ ∈

{
P̃i, τi

}
. Considering this

point and Lemma 2, and invoking A1 to discard the terms involving foreign wages, the first-order

condition (equation 21), reduces to[
∂Yi (.)

∂Ci
− δ̃iz−i

∂Q−i (.)
∂Ci

]
∂Ci

∂P̃
+
[
τi − δ̃i1

] ∂Zi

∂P̃
= 0,

where δ̃i ≡ δi P̃i is the carbon disutility adjusted for the consumer price index, P̃i ≡
(

∂Vi(.)
∂Ei

)−1
. In

the above equation, the terms in the bracket are easy to evaluate as they involve the derivative of

known functions w.r.t. specific arguments. The GE derivatives, ∂Ci
∂P̃ , and ∂Zi

∂P̃ , however, are difficult

to characterize. But as hinted above, they need not be characterized to obtain the optimal policy

formulas. This point is formalized by another intermediate result (Lemma 3), which states that

local price optimality entails that

∂Yi (.)
∂Ci

− δ̃iz−i
∂Q−i (.)

∂Ci
= 0, τi − δ̃i1 = 0, [Lemma 3]

The above result decomposes the optimal local price problem into independent sub-problems that

merely involve the derivative of functions, Q−i (.) and Yi (.) with respect to specific arguments.

As we elaborate shortly, Lemma 3 also serves as an envelope-like result that simplifies the char-

acterization of optimal export prices.

20 For instance, consider the imported price of industry k from origin j, P̃ = P̃ji,k. When i’s government raises P̃ji,k,

i’s income increases proportional to its imported quantity ∂Yi(.)
∂P̃ji,k

= Cji,k, whereas Roy’s identity implies ∂Vi(.)
∂P̃ji,k

=

− ∂Vi(.)
∂Ei

× Cji,k. Together, ∂Vi(.)
∂P̃ji,k

+
∂Vi(.)

∂Ei

∂Yi(.)
∂P̃ji,k

= 0.
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Optimal export prices. Now, consider the policy instrument, P̃ ∈ P̃in ⊂ P̃−i, which regulates

export prices to country n ̸= i. Notice that ∂Vi(.)
∂P̃ = 0, since P̃ is not a local price. Moreover,

P̃ ∈ P̃in influences demand in foreign market n through ∂Cn
∂P̃ = ∂Dn(.)

∂P̃ , and demand and emissions

in the local market i through general equilibrium effects, i.e., ∂Ci
∂P̃ ∼ ∂Di(.)

∂Ei

∂Ei
∂P̃ . Considering these

points, the F.O.C. w.r.t. P̃ ∈ P̃in becomes:

∂Yi (.)
∂P̃

+

[
∂Yi (.)

∂Cn
− δ̃iz−i

∂Q−i (.)
∂Cn

]
∂Dn (.)

∂P̃
− δ̃i

∂zn (.)
∂P̃

1
(

P̃ = P̃in,0
)

+

[
∂Yi (.)

∂Ci
− δ̃iz−i

∂Q−i (.)
∂Ci

]
∂Ci

∂P̃
+
[
τi − δ̃i1

] ∂Zi

∂P̃
= 0.

Following Lemma 3, the second line collapses to zero if local prices are set optimally. This makes

Lemma 3 akin to an envelope result, allowing us to solve for the optimal export prices without

considering their impact on local consumption and emissions. In other words, the export price

problem simplifies into another independent sub-problem.

Altogether our dual approach breaks down the initial optimal policy problem into a set of

independent sub-problems, that are free from GE derivatives (e.g., ∂Ci
∂P̃ , ∂Zi

∂P̃ , ∂wi
∂P̃ ).21 We present this

result under the following proposition.

Proposition 1. Country i’s unilaterally optimal policy can be obtained by solving three independent sub-

problems: 
τi − δ̃i1 = 0 [SP 1]

∂Yi(.)
∂Ci

− δ̃iz−i
∂Q−i(.)

∂Ci
= 0 [SP 2]

∂Yi(.)
∂P̃ +

[
∂Yi(.)
∂Cn

− δ̃iz−i
∂Q−i(.)

∂Cn

]
∂Dn(.)

∂P̃ − δ̃i
∂zn(.)

∂P̃ 1
(

P̃ = P̃in,0
)
= 0 [SP 3]

Solving these sub-problems involves taking partial derivatives of known functions w.r.t. to their arguments,

without specifying complex general equilibrium derivatives such as ∂Ci
∂P̃ , ∂Zi

∂P̃ , and ∂wi
∂P̃ .

As mentioned earlier, our presentation here abstracted away from foreign energy price effects,
∂P−i,0

∂P̃ . Our main derivation in Appendix B accounts for these effects showing that energy price

effects can be specified as the product of a matrix of equilibrium variables and demand effects ∂C
∂P̃

(Lemmas E1, E2 and E3 in the appendix). This result allows absorbing the energy price effects into

21 Our approach of decomposing the generic F.O.C.s into sub-problems is similar to the cell problem method in Costinot
et al. (2015). However, unlike their method, our approach does not require separability between goods, as a single
sub-problem can establish joint optimality for multiple goods. This distinction is particularly evident when solving
for optimal export prices: due to cross-price elasticities, a change in one export price affects the demand for all export
goods, requiring a joint solution across the entire matrix of export prices. In this respect, Proposition 1 complements
the primal approach in Costinot et al. (2015) by forgoing separability restrictions on demand and supply.
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Sub-problems 2 and 3, while preserving the modularity and independence of these sub-problems.

3.3 Unilaterally Optimal Policy Formulas

We build on Proposition 1 to derive the unilaterally optimal policy formulas. These formulas are

characterized by a set of sufficient statistics, making them suitable for quantitative analysis. To

present our formulas, we define some auxiliary variables: We denote by vn,k the CO2 emission

per unit value of output in country n−industry k, and let ρni,k denote market i’s share from that

industry’s total sales, Yn,k. More formally,

vn,k =
Zn,k

Yn,k
, ρni,k =

Pni,kCni,k

Yn,k
(22)

Additionally, we denote the elasticities of demand for the composite energy input (equivalently,

CO2 emissions) with respect to the energy input price at the industry and national levels as22

ζn,k ≡
∂ ln Zn,k (.)

∂ ln P̃n,0k
, ζn ≡ ∂ ln ∑k Zn,k (.)

∂ ln P̃n,0k
= ∑

k ̸=0

(
Zn,k

Zn

)
ζn,k. (23)

In the special case with CES production functions, ζn,k = −ς (1 − αn,k), with (ς) as the elasticity of

substitution between energy and labor inputs. Below, we present the unilaterally optimal policy

formulas, noting that, by Lerner symmetry, the optimal border tax-cum-subsidies are unique only

up to a uniform and arbitrary tax shifter, t̄i ≥ 0.23

Proposition 2. Country i’s unilaterally optimal policy consists of (i) uniform carbon taxes (τ∗
i,k = τ∗

i ),

given by

τ∗
i = δ̃i ≡ δi P̃i,

(ii) import tariffs and export subsidies on final goods (k ≥ 1) that are unique up to a uniform and arbitrary

tax-shifter, t̄i ≥ 0, augmented by a carbon border adjustment based on the CO2 content per unit value of

imported goods vn,k (Eq. 22),

1 + t∗ni,k = (1 + t̄i) + τ∗
i vn,k

1 + x∗in,k =
1 + ε in,k

ε in,k
∑
j ̸=i

[(
1 + t∗ji,k

) λjn,k

1 − λin,k

]
22 The function Zn,k (.) is defined based on Equation (13) as Zn,k = Zn,k

(
P̃n,0k, wn, Qn,k

)
≡ zn,k

(
P̃n,0k, wn

)
Qn,k.

23 For a clearer presentation, the export subsidy formulas are reported for additively separable preferences across
industries and generalized separability within industries. General formulas are provided in Appendix B.7.
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(iii) import tariffs and export subsidies on energy,

1 + t∗ni,0 = (1 + t̄i) (1 + ωni,0) + τ∗
i ∑
ℓ ̸=i

∑
j ̸=i

[
ψ̃
(i,0)
jn ρjℓ,0

ζℓ
P̃ℓ,0

]
1 + x∗in,0 =

1 + ε in,0

ε in,0
∑
j ̸=i

[(
1 + t∗ji,0

) λjn,0

1 − λin,0

]
−
(

Λin,0 + τ∗
i

ζn

P̃n,0

)
(1 + t̄i)

ε in,0
,

where Λin,0 = ∑k αn,kYn,kρni,k
∑k αn,kYn,k

is the fraction of energy exports re-imported via the carbon supply chain;

ωni,0 = ∑j ̸=i ψ̃
(i,0)
jn ρji,0 is the inverse export supply elasticity of energy (for flows from n to i), where

ψ̃
(i,0)
jn ≡ ϕj

1−ϕj
ψ
(i,0)
jn

Yj,0
Yn,0

represents backward linkages in the energy sector;24 λ and ρ represent inter-

national expenditure and sales shares (Eqs. 6 and 22); ζ is the demand elasticity of composite energy

input (Eq. 23), and ε denotes the Marshallian demand elasticities (Eq. 5).ω̃ji,0 = ∑n ̸=i ψ̃
(i,0)
nj ρni,0 +

δ̃i ∑ℓ ̸=i ∑n ̸=i

[
ψ̃
(i,0)
ℓj ρℓn,0

ζn
P̃n,0

]
The unilaterally optimal carbon tax, τ∗

i , corrects only the carbon externality imposed on house-

holds in country i.25 Specifically, it equals the welfare cost per unit of CO2 emissions to residents

of country i adjusted for the consumer price index, i.e., δ̃i ∼ δi P̃i,0. The unilaterally optimal border

taxes, however, pursue two objectives. First, they seek to manipulate the terms of trade in coun-

try i’s favor. Second, they include a carbon border tax component that indirectly taxes the carbon

externality of foreign production and consumption.

To better understand carbon border taxes, it is helpful to examine a small open economy under

Cobb-Douglass CES preferences. Under the CES assumption, the import demand elasticity takes

the form ε in,k = −σk + (σk − 1) λin,k. The small open economy assumption sets λij,k ≈ ρji,k ≈ 0.

Plugging these into our general optimal policy formulas yields a simplified representation:

τ∗
i = δ̃i ∼ δi P̃i [carbon tax]

t∗ni,k = t̄i + τ∗
i vn,k t∗ni,0 = t̄i [import tax]

1 + x∗in,k = (1 + t̄i)
σk−1

σk
+ τ∗

i ∑j ̸=i
[
λjn,kvj,k

] σk−1
σk

[export subsidy (non-energy)]

1 + x∗in,0 = (1 + t̄i)
σ0−1

σ0
+ τ∗

i
1
σ0

ζn
P̃n,0

[export subsidy (energy)]

24 Specifically, ψ
(i,0)
jn is entry (j, n) of matrix Ψ(i,0) ≡ inv

(
IN −

[
1j ̸=i ∑ℓ ̸=i

ϕn
1−ϕn

ρjℓ,0ε
(nℓ,0)
jℓ,0

]
j,n

)
, measuring the exposure

of country j’s energy output to demand for country n’s energy, as detailed in Appendix .B.
25 Alternatively, the carbon tax could be applied at the point of energy extraction with appropriate adjustments to

energy border taxes. See Appendix E.3 for optimal policy formulas featuring an explicit extraction tax. In our frame-
work, extraction taxes are non-essential due to product differentiation in energy markets, where border taxes serve as
a more direct instrument for regulating foreign emissions. However, when energy is a homogeneous commodity, the
distinction between border and extraction taxes becomes irrelevant, making extraction taxes an essential component
of the optimal policy schedule, as in Kortum and Weisbach (2021).
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The optimal import tax on final-good variety ni, k, which is unaffected by the CES and small open

economy simplification, can be decomposed as:

t∗ni,k = t̄i + τ∗
i × vn,k︸ ︷︷ ︸

Carbon Border Tax

. (24)

The uniform tariff component t̄i reflects the standard terms-of-trade rationale for import taxa-

tion.26 The carbon border tax component mimics the unilaterally-optimal domestic carbon tax.

It taxes the carbon content per dollar value of imports, vn,k, at the unilaterally optimal rate, τ∗
i .

Remarkably, the unilaterally optimal border tax rate coincides with the accounting border ad-

justment that neutralizes the domestic cost disadvantage caused by carbon-pricing. Our formula

presents a welfare rationale for these widely-used border adjustment schemes.27

The unilaterally optimal export subsidy on final-good variety in, k can be similarly decom-

posed as
1 + x∗in,k = (1 + t̄i)

σk − 1
σk

+ τ∗
i × ∑

j ̸=i

[
λjn,kvj,k

] σk − 1
σk︸ ︷︷ ︸

Carbon Border Subsidy

, (25)

where the first component corresponds to the optimal markup on exports from the terms-of-trade

standpoint. The carbon border subsidy depends on the average carbon intensity of competing for-

eign varieties in market n, namely, ∑j ̸=i
[
λjn,kvj,k

]
. This differs from accounting border adjustment

schemes that simply rebate the carbon taxes toward exports. The optimal carbon border subsidy

seeks to mimic a carbon tax, τ∗
i , on foreign varieties sold to market n ̸= i. It accomplishes this

by subsidizing the price of domestically produced exports varieties. Since domestically produced

and foreign varieties are substitutable, the subsidy lowers demand for foreign goods in market

n ̸= i, imitating the demand drop if those goods were taxed directly.

Turning to border taxes on energy varieties, the uniform tariff, t̄i, on energy imports is mo-

tivated by terms-of-trade considerations.28 Since imported energy varieties, after bundling and

distribution, are subjected to a domestic carbon tax τ∗
i , no additional import duty on energy is

26 This element of our formula echoes the familiar result that, absent climate externalities, optimal tariffs are uniform
across differentiated constant-returns-to scale industries.

27 The above carbon border tax configuration does not account for origin country carbon tax rates, therefore risking
double taxation. This is due to the non-cooperative nature of these taxes since governments may doubly tax the
carbon externality to generate revenue. As shown in Appendix C, double taxation is avoided in a cooperative

setting. The optimal cooperative carbon border tax is
(

τE − τn

)
× vn,k, taxing the difference between the globally

optimal rate τE and the rate applied in the origin country, thus preventing double taxation.
28 A small open economy’s optimal energy import tax has no climate-driven element, since imported energy varieties

face a carbon tax after bundling and distribution. However, for a large economy, the optimal energy import tax
internalizes climate impacts arising from general equilibrium linkages, as Proposition 2 indicates. We elaborate on
these general equilibrium linkages in the next paragraph.
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needed. The optimal policy, however, includes a carbon-based tax on energy exports equal to

τ∗
i × 1

σ0

(
ζn/P̃n,0

)
. The rationale is that country i would ideally levy a tax on country n’s com-

posite energy input at an ad valorem rate of τ∗
i /P̃n,0. This policy is infeasible, but the energy

export tax is passed on to foreign’s energy price, imitating this intended tax. Echoing this logic,

the optimal export tax rate depends on the magnitude of tax passthrough, which is determined

by the foreign countries’s energy input demand elasticity, ζn ≡ ∂ ln ∑k Zn,k(.)
∂ ln P̃n,0

< 0, and the elasticity

of substitution between international energy varieties, σ0.

Having covered the basic intuition from the small open economy case, let us revisit the gen-

eral formulas presented under Proposition 2. The optimal export subsidy for non-energy goods

depends on foreign demand elasticity ε, which is itself determined by structural parameters (like

σ in the case of CES) and endogenous expenditure shares. The optimal border taxes on energy,

meanwhile, account for GE linkages, which are non-trivial for large economies (as shown by lem-

mas E1, E2, E3 in Appendix B). Import taxes on energy constrict export supply and increase the

marginal cost of energy extraction abroad. This triggers price changes that alter global energy de-

mand, prompting further energy price shifts worldwide. These GE ripple effects are captured by

the backward linkage matrix, Ψ(i,0), whose elements determine the optimal import tax rate. En-

ergy export subsidies, meanwhile, influence the cost of foreign goods using those inputs. Some of

these goods are imported by country i and face a carbon border tax upon importation. The opti-

mal energy export subsidy is, therefore, adjusted to prevent double marginalization. The optimal

adjustment depends on Λin,0, which is the fraction of energy exports re-imported via the energy

supply chain.

3.4 Globally Optimal Carbon-Pricing and Free-Riding

This section characterizes the optimal carbon policy from a global standpoint. Comparing the

globally optimal policy with the unilaterally optimal policy, derived earlier, elucidates the free-

riding problem that impedes cooperation on climate action. We obtain the globally optimal policy

by solving a global planning problem, where the planner selects tax instruments I ≡ {Ii}i∈N and

lump-sum international transfers, ∆ ≡ {∆i}i, to maximize an internationally representative social

welfare function. Letting Ĩ ≡ {I, ∆} denote the policy set, the planing problem can be formulated

compactly as

max
Ĩ

∑ ϑi ln Wi
(
Ĩ
)

subject to General Equilibrium Equations (1)− (19),
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where Wi ∼ Vi
(
Ei + ∆i, P̃i

)
− δi × Z(global) is country i’s climate-adjusted welfare under policy,

with ∑i ∆i = 0, and ϑi is country i’s weight in the planner’s problem. The inclusion of income

transfers is essential, as it separates redistribution, addressed via transfers, from climate-related

externalities, addressed via taxes.

Capitalizing on a variation of Proposition 2, we derive the globally optimal policy in Appendix

C. The optimal policy from a global perspective involves carbon taxes that correct the worldwide

externality of carbon emissions, along with zero trade taxes29:

τEi,k = ∑
i

δ̃i ∼ τE, tEi,k = xEi,k = 0 (∀i, k) . (26)

The finding that globally optimal border taxes are zero (and carbon-blind) resonates with the tar-

geting principle. Border taxes are an inefficient policy for reducing carbon emissions compared

to directly targeted carbon taxes. In the unilateral case, carbon border taxes were justified since

country i’s government could not directly tax foreign carbon inputs. This missing policy limita-

tion no longer applies in the globally optimal context.

The free-riding problem stems from the gap between the unilaterally optimal and globally opti-

mal carbon tax rates. Specifically,

τ∗
i = δ̃i < τE = ∑

n
δ̃n.

This means that if all other countries commit to τE, country i’s welfare-maximizing government

will be inclined to lower its carbon tax rate from τE to τ∗
i . Strategic behavior by all governments

in this manner triggers a race to the bottom in climate action, similar to what we are witnessing

today. In the next section, we discuss two potential solutions to the free-riding problem.

3.5 Two Remedies for the Free-Riding Problem

Two types of policies can mitigate the free-riding problem, both involving border tax measures:

Proposal 1. Governments use border taxes as a second-best policy to correct the climate externality

of foreign emissions on their citizens. The maximal efficacy of this proposal will be realized

if carbon border tax rates are set to the optimal rate specified by Proposition 2.

Proposal 2. Climate-conscious governments forge a climate club and leverage contingent trade

penalties to deter free-riding. The maximal efficacy of this proposal will be realized if the

29 Transfers, ∆i = (πi × ∑i Ei)− Ei, are pinned down by the optimal income shares: πE
i =

(
ϑi

Vi
Wi

)
/
(

∑n

[
ϑn

Vn
Wn

])
.
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trade penalties are applied based on the unilaterally optimal import and export tax rates (t∗

and x∗) specified by Proposition 2.

A key difference is that Proposal 1 is rooted in unilateral action, while Proposal 2 seeks to revive

multilateral climate efforts through better policy design. In theory, Proposal 2 could achieve first-

best carbon pricing together with free trade. However, poorly-designed trade penalties and car-

bon tax targets for club members could also decouple the climate club from the rest of the world.

We must clarify that our notion of optimal trade penalties refers to penalties that maximize wel-

fare transfers from free-riders to climate club members. Accordingly, the optimal trade penalties

coincide with the unilaterally optimal trade tax/subsides specified by Proposition 2—that is, they

elevate the climate club’s terms of trade with non-members to its maximal level while also taxing

out-of-club carbon emissions. In Section 6.2, we discuss policy designs when free-riding is not a

concern or trade penalties are chosen differently.

4 Mapping Theory to Data

This section describes how our general equilibrium model is mapped to data to simulate counter-

factual policy outcomes. First, we describe our quantitative strategy for determining counterfac-

tual optimal policy outcomes, identifying the sufficient statistics required for implementation. We

then detail the data sources from which the noted sufficient statistics are obtained. For our quanti-

tative analyses, we assume that the production function of final goods and the energy distributor

has a CES form and the households’ demand function has a Cobb-Douglas-CES functional form.

The baseline equilibrium, to which we introduce the optimal policy interventions, corresponds to

the status quo in 2014 (see Section 4.2). We are interested in counterfactual outcomes when taxes

are revised from their applied levels to their optimal rates under the non-cooperative and climate

club scenarios.

The baseline equilibrium under the status quo is characterized by the following statistics:

1. expenditure shares
{

λji,k, βi,k
}

and employment shares {ℓi,k}, where ℓi,k ≡ Li,k/L̄i is country

i’s share of employment in industry k,

2. CO2 emissions, energy input cost shares, and CO2 intensity values, {Zi,k, αi,k, vi,k},

3. pre-carbon-tax price of energy
{

P̃i,0
}

, and national accounting of income {wi L̄i, riR̄i, Yi}.

Let BV stack the above-mentioned baseline variables, and let BT ≡
{

xij,k, tji,k, τi,k
}

contain the

applied policy variables—both of which are observable. Also, let BΘ =
{

δ̃i, ϕi, ς, σk
}

denote the
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set of structural parameters of the model consisting of carbon disutility parameters, cost share of

carbon reserves, energy input demand elasticity, and trade elasticities; with B ≡
{
BV , BT, BΘ}

denoting the set of sufficient statistics for conducting counterfactual policy analyses.

Let z′ denote the value of a generic variable z in the counterfactual equilibrium, with ẑ ≡ z′/z

denoting the corresponding change using the exact hat-algebra notation. To determine counter-

factual outcomes under each of the policy scenarios, we solve a system of equations consisting

of equilibrium conditions and optimal tax formulas. The solution to this system determines the

optimal tax and subsidy rates, RT =
{

x′ij,k, t′ji,k, τ′
i,k

}
, as well as changes to all general equilibrium

variables, RV =
{

λ̂ji,k, ℓ̂i,k, Ẑi,k, α̂i,k, v̂i,k, ŵi, r̂i, Ŷi

}
, with R ≡

{
RT, RV} denoting the full set of

optimal policy outcomes solved given the sufficient statistics in B.

4.1 Quantitative Strategy

Baseline Policies. Our analysis sets the baseline import tariffs, {tji,k}, export subsidies, {xij,k},

and carbon taxes, {τi,k}, to the applied rates observed in data.30

Counterfactual Policy Scenarios. We evaluate Proposal 1 by simulating the non-cooperative equi-

librium in which each country adopts its unilaterally-optimal policy. Under this situation, country

i’s policy, RT
i ≡

{
x′ij,k, t′ ji,k, τ′

i,k

}
j,k

is determined by the optimal policy formulas presented un-

der Proposition 2 as a function of B and RV .31 The change in non-policy variables is, similarly,

described by general equilibrium conditions as a function of RT and B. Appendix G outlines the

equations describing the change in non-policy variables as a function of policy change RT and the

sufficient statistics B. Jointly solving RT = f
(
RV ; B

)
and RV = g

(
RT; B

)
determines optimal

policy and counterfactual equilibrium outcomes as a function of the observable and estimable

30 These rates reflect the current-but-evolving sentiments of governments regarding trade and climate issues. In the
absence of globally-coordinated climate action, our optimal policy framework indicates these long-run policy out-
comes: (i) import tariffs and export subsidies necessitated by carbon border taxation; and (ii) unilaterally optimal
carbon taxes. However, testing our optimal policy framework with a snapshot of contemporary policy data is chal-
lenging for two reasons. First, policies transition gradually, and not necessarily monotonically, rather than shift
instantly to desired levels. Trade liberalization under the GATT/WTO exemplifies this gradual process, playing out
over many decades and rounds of negotiations. Second, we are in a transitional policy period, undergoing a major
shift in governmental and public attitudes toward trade and climate policy. Given the static nature of our model, it
is difficult to test it against these dynamic, transitional policies. Yet our optimal policy formulas align with broader
evidence on government behavior. Empirical evidence shows governments account for terms of trade effects in pol-
icymaking (Broda et al., 2008) when acting non-cooperatively. However, applied tariffs are typically small under
the WTO/GATT while reflecting the early stages of carbon border taxes such as the EU CBAM; export subsidies
are minimal due to the WTO’s prohibition; and carbon taxes are below optimal but increasing worldwide to match
countries’ valuations of climate damage.

31 The resulting equilibrium constitutes the Nash equilibrium of a one-shot game, wherein every country selects their
best policy response given applied policies in the rest of world. Lashkaripour (2021) and Lashkaripour and Lugov-
skyy (2023) use a similar logic to quantify the counterfactual impact of non-cooperative trade policies.
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sufficient statistics in B. Likewise, our analysis of the climate club uses the unilaterally optimal

trade taxes described by Proposition 2 as contingent trade penalties, and simulates counterfactual

policy outcomes using the same logic.

Interpreting Counterfactual Policy Outcomes. Before discussing the data and results, two clar-

ifications are in order. First, our counterfactual analyses measure long-run outcomes depending

on whether governments maintain their non-cooperative policy stance or form a climate club.

Results relating to Proposal 1 measure outcomes if heightened climate concerns prompt govern-

ments to abandon shallow trade cooperation while continuing to raise domestic carbon taxes until

they reach the unilaterally optimal rate. Proposal 2 evaluates outcomes if climate considerations

are integrated into existing international trade agreements. Second, the primary goal of our op-

timal policy framework is to trace out the frontier of policy outcomes, not to necessarily explain

government behavior. Actual policies often fall short of this frontier due to various obstacles. But

the policy frontier remains an effective tool for gauging long-term policy efficacy—a point we

come back in Section 6.2 when discussing the EU’s unilateral policy frontier.

4.2 Data and Parameters: Sufficient Statistics

In this section, we describe the sufficient statistics for conducting counterfactual policy analysis,

which include data on trade, production, and CO2 emissions (labeled as BV), applied taxes (BT),

and the structural parameters of our model (BΘ).

Trade, Production, and Expenditure. We take data on international trade and production from

the Global Trade Analysis Project (GTAP) database (Aguiar et al., 2019), which reports the matrix

of international trade flows from each country-industry origin to each country-industry destina-

tion for the year 2014.32 We consolidate our sample into (K + 1 = 18) “industries,” compris-

ing K = 17 non-energy ISIC-level industries and one composite energy industry, and (N = 19)

“countries,” consisting of the 13 countries with the largest GDP plus 6 aggregate regions. Ta-

bles 1 and 2 list the industries and countries in our sample, along with their key characteris-

tics. Our final sample manifests as a 19 × 19 × 18 matrix of free-on-board flows, with element

X( f ob)
ij,k = P̃ji,kCji,k/

(
1 + tij,k

)
corresponding to origin j–destination i–industry k.33

32 One advantage of the GTAP dataset is its extensive coverage of developing countries. Caliendo et al. (2024) also use
this dataset to explore the emission impact of trade policy with a focus on developing countries.

33 To be consistent with our framework, we purge the data from trade imbalances following Ossa (2016).
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CO2 Emissions and Carbon Accounting. We obtain information on CO2 emissions associated

with use of fossil fuels from the GTAP database. We count CO2 emissions at the location of en-

ergy use by end-users (i.e., non-energy industries and households). We consolidate all energy

types into one composite energy industry, denoted as industry “0,” calculating the CO2 emissions

associated with direct and indirect purchases of energy.34 Appendix F details our carbon account-

ing procedure. Table A.2 reports total emissions (as the sum of direct and indirect emissions) by

industries and households, which we use throughout our analysis.

We highlight key statistics that will aid in interpreting our quantitative findings in Section

5. First, emissions from production constitute three-fourths of global CO2 emissions, with the

remaining one-fourth generated by households (Appendix Table A.2). Second, more-tradeable

industries exhibit lower CO2 emission shares (Appendix Figure A.2). For example, Electronics &

Machinery, Textiles & Leather, and Motor Vehicles industries, that are highly tradeable, as indi-

cated by their high trade-to-GDP ratio, collectively account for only six percent of the global CO2

emissions from production (Table 1). Lastly, low and middle-income countries are major contrib-

utors to global CO2 emissions, with China alone accounting for over a quarter of these emissions.

This proportion reaches 60% when considering all non-OECD countries (Table 2).

Energy Input Cost Shares. We construct energy input cost shares using data on sales and en-

ergy input expenditures. Our assumption that energy is freely traded in the baseline equilibrium

implies a uniform (pre-carbon-tax) energy price across countries, denoted as PZ. For the year

2014, our data sets PZ at $122 per tonne of CO2, a figure that closely aligns with independent

data on production quantities and primary energy prices for that year.35 The energy input cost

share can be calculated as αn,k =
(

PZZn,k
)

/ (Pnn,kQn,k), where Zn,k and Pnn,kQn,k represent total

CO2 emissions and gross output in country n−industry k. Global average values of αn,k for each

industry are reported in Table 1.

Cost Share of Carbon Reserves. The GTAP database reports the value added associated with

each factor of production, including natural resources. We set the cost share of carbon reserves

in the energy extraction industry, ϕi, based on the value added share of natural resources in each

country’s primary energy sector, which consists of coal, crude oil and natural gas. The calibrated

34 For example, the steel industry directly generates emissions by burning coal, and it indirectly generates emissions by
using electricity, the production of which involves burning coal.

35 Specifically, dividing the global sales of primary energy—consisting of coal, crude oil, and natural gas—by the global
output quantity of primary energy which maps to the global CO2 emission, delivers the pre-tax global carbon price.
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values of ϕi range between 0.31 and 0.49 across countries, with an average value of 0.37.

Baseline Taxes. We acquire data on applied tariffs from the GTAP database via the Market Ac-

cess Map of International Trade Centre that reports tariffs at the level of 6-digit HS products in

2014. For each origin–destination–non-energy industry triplet, we use the simple average of the

tariffs across HS products, except when the tax-imposing country is a member of the European

Union (EU). In such cases, we assign applied tariffs based on the fact that intra-EU trade is sub-

ject to no tariffs and EU members apply a common tariff on non-members. We set import tariffs

on energy to zero in the baseline equilibrium. Also, in accordance with the World Trade Orga-

nization rules, we assume that applied export subsidies are negligible, and set xij,k = 0 in the

baseline equilibrium. We infer carbon taxes in 2014 from the the World Bank’s Carbon Pricing

Dashboard. To attain a harmonized measure of carbon taxes across countries, we calculate the

ratio of taxes raised from climate policies to the aggregate CO2 emissions within each country,

which we designate as the national carbon tax for each respective country.36

Perceived Disutility from Carbon Emissions. We recover the perceived disutility from CO2

emissions through governments’ revealed preferences for tackling environmental issues. Specif-

ically, we postulate that the perceived national disutility from carbon is proportional to applied

environmentally-related taxes per unit of CO2 emissions, adjusted for the respective country’s

size. If perceptions of climate damage were symmetric across governments, the disutility from

CO2 emissions would merely scale with country size. To account for the size effect, we impose

that
(
δ̃i/δ̃j

)
∝
(

Li/Lj
)
, where Li denotes country i’s population. However, governments’ atti-

tudes towards climate change are markedly diverse—even after accounting for size effects. We

do not intend to explain these differences, but posit that governmental concern for climate dam-

age can be inferred from policy stance toward environmental issues. Under this assumption, we

assert that
(
δ̃i/δ̃j

)
∝
(

T(env)
i /Zi

)
/
(

T(env)
j /Zj

)
, where T(env)

i denotes the environmentally-related

taxes collected by country i, sourced from OECD-PINE. These considerations lead to the following

proportionality condition:

(a)
δ̃i/Li

δ̃j/Lj
=

T(env)
i /Zi

T(env)
j /Zj

.

36 In 2014, carbon taxes were zero in most countries and substantially lower than their unilaterally-optimal levels
everywhere. Consolidating the impact of climate policies into a single carbon tax metric is difficult, especially with
limited data on sectoral variations. This consideration, however, remains inconsequential for our 2014 baseline
because: (i) most countries lacked climate policies, and (ii) carbon taxes, whether directly applied or indirectly
implied, were still very low, even in the EU.
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Table 1: Industry-Level Statistics

CO2 Emission Trade-to- Carbon Energy Trade
Industry (% of Total) GDP Ratio Intensity Cost Share Elasticity

(v) (α) (σ − 1)

Agriculture 4.2% 8.9% 100.0 0.030 3.80
Other Mining 1.9% 28.9% 183.0 0.055 10.16
Food 3.3% 8.0% 45.9 0.015 3.80
Textile 1.9% 22.8% 59.7 0.021 4.25
Wood 0.5% 8.4% 61.0 0.026 6.50
Paper 2.1% 8.9% 125.9 0.061 6.55
Chemicals 9.5% 21.9% 179.5 0.062 8.60
Plastics 1.8% 13.5% 89.1 0.056 8.60
Nonmetallic Minerals 8.6% 6.0% 458.4 0.121 5.27
Metals 14.7% 14.6% 205.2 0.066 5.99
Electronics and Machinery 3.0% 30.0% 42.0 0.022 3.98
Motor Vehicles 1.2% 23.3% 34.0 0.014 4.88
Other Manufacturing 0.6% 21.5% 42.0 0.032 4.80
Construction 1.5% 0.6% 59.2 0.025 5.94
Wholesale and Retail 3.6% 2.4% 34.7 0.017 5.94
Transportation 27.3% 10.5% 498.3 0.171 5.94
Other Services 14.5% 3.1% 26.7 0.012 5.94

Note: This table shows for every of the 17 non-energy industries the share from world industrial CO2 emission (not
including households’ emission), world-level trade-to-GDP ratio, global average carbon intensity (CO2 emissions per
dollar of output) normalized by that of agriculture, energy cost shares reported as unweighted mean across countries
within each industry, and estimated trade elasticities.

Moreover, the global sum of disutility from CO2 emissions equates the global Social Cost of CO2:

(b) ∑
i

δ̃i = SC-CO2.

We calibrate SC-CO2 based on the latest release of the United States Environmental Protection

Agency (EPA)’s Final Report on the Social Cost of Greenhouse Gases. From this report, we adopt

the middle scenario discount rate, yielding a SC-CO2 of $156.2 per tonne of CO2 in 2014.37 By con-

solidating conditions, (a) and (b), we recover the CPI-adjusted disutility from carbon emissions,

δ̃i. Table 2 reports our calibrated values of δ̃i for each country in the sample.38

37 Table A.5 of the EPA’s publication reports 193 ($/tCO2) for 2020 and 230 ($/tCO2) for 2030, in dollars of 2020, based
on a 2% annual discount rate.. Using a linear projection to the year 2014, and adjusting for the inflation, we obtain a
SC-CO2 of 156.2 ($/tCO2) for 2014 in terms of dollars of 2014.

38 We also experiment with an alternative calibration of δ̃i based on country-level social cost of carbon. See Figure A.5
and Section 6.1. In both cases we recover CPI-adjusted disutility parameters, δ̃i = P̃iδi which is sufficient for our
counterfactual equilibrium analyses.
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Table 2: Country-Level Statistics

Share from World Carbon
Country Output CO2 Emission Population Intensity (v) Disutility (δ̃)

Australia 1.8% 1.2% 0.3% 147.5 1.5
EU 25.9% 12.3% 7.5% 100.0 53.2
Brazil 2.8% 1.6% 2.8% 135.3 6.0
Canada 1.9% 1.6% 0.5% 176.1 1.2
China 17.8% 26.7% 18.9% 378.1 20.9
Indonesia 1.0% 1.5% 3.5% 302.0 0.5
India 2.4% 6.4% 17.9% 620.4 12.5
Japan 6.2% 3.6% 1.8% 127.6 6.0
Korea 2.2% 1.7% 0.7% 188.7 3.2
Mexico 1.4% 1.4% 1.7% 218.8 0.3
Russia 1.9% 4.4% 2.0% 436.5 0.2
Saudi Arabia 0.4% 1.5% 0.4% 752.4 0.0
Turkey 1.0% 1.1% 1.1% 245.5 4.9
USA 20.4% 17.2% 4.4% 162.0 6.8
Africa 2.6% 3.6% 15.9% 285.3 22.2
RO Americas 3.0% 2.7% 4.1% 194.7 9.8
RO Asia and Oceania 5.1% 5.5% 11.8% 253.0 6.6
RO Eurasia 0.7% 2.2% 1.9% 671.6 0.1
RO Middle East 1.6% 3.9% 2.8% 494.9 0.3

Note: This table shows for every of the 19 regions (13 countries + the EU + Africa + 4 “Rest Of” regions as collection
of neighboring countries), their share from world output, CO2 emission, and population, and carbon intensity (CO2

emissions per dollar of output) normalized by that of the EU, and CPI-adjusted disutility from one tonne of CO2

emission, which sum to the social cost of carbon.

Trade Elasticities. We estimate the industry-level trade elasticities, (σk − 1), using an identi-

fication strategy resembling that of Caliendo and Parro (2015). Under Cobb-Douglas-CES de-

mand, the free-on-board value corresponding to origin i–destination j–industry k, denoted by

X( f ob)
ij,k ≡ Pij,kCij,k, is given by

X( f ob)
ij,k =

(
1 + tij,k

)−σk
(

dij,kPii,k

)1−σk
Pσk−1

j,k β j,kEj,

where (1+ tij,k) is the ad valorem tariff rate, Pii,k is the producer price in the origin country, and P̃j,k

and β j,kEj are the industry-level consumer price index and expenditure in the importing country.

We specify the bilateral trade cost in industry k as dij,k = di,k × dj,k × di↔j,k × exp
(
ϵij,k
)
, dissecting

it into origin and destination fixed effects alongside a symmetric dyad fixed effect, encapsulating

the effect of gravity-related variables such as distance, common currency, or common border.
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From the above relationships we obtain the following estimating equation:

ln X( f ob)
ij,k = −σk ln

(
1 + tij,k

)
+ Di,k + Dj,k + Di↔j,k + ϵij,k, (27)

where Di↔j,k = (1 − σk) ln di↔j,k is a symmetric dyad fixed effect, while Di,k = (1 − σk) ln
(

di,kPii,k

)
and Dj,k = ln

[(
Pj,k/dj,k

)σk−1
β j,kEj

]
represent importer and exporter fixed effects. Utilizing data

on trade values and applied tariffs, we estimate σk under the identifying assumption that applied

tariffs are uncorrelated with idiosyncratic variations in bilateral trade costs, ϵij,k. Detailed estima-

tion results are reported in Appendix Table A.3, with point estimates replicated in Table 1.39

Energy Demand Elasticity. The following equation describes the quantity of energy inputs rel-

ative to total input cost, Zi,k/TCi,k, in country i−industry k:

ln
(

Zi,k

TCi,k

)
= −ς ln P̃i,0k + (1 − ς) ln mci,k + ln κ̄i,k︸ ︷︷ ︸

=Φ(energy)
i +Φ(energy)

k +ϵ
(energy)
i,k

. (28)

The right-hand side variables include the after-tax price of energy, P̃i,0k,40 the marginal cost, mci,k,

and the exogenous input demand parameter, κ̄i,k. We allow the combined effect of the latter

two terms to systematically vary by country and industry through the fixed effects, Φ(energy)
i and

Φ(energy)
k , with ϵ

(energy)
i,k denoting the unobserved energy demand residual.

Our identification strategy relies on two assumptions. First, an individual industry’s energy

demand residual (in a given country) has a negligible impact on the global pre-tax energy prices.

This assumption entails that each industry is small relative to the global energy market where

pre-tax energy prices are set. Second, we assume that the unobserved energy demand residual is

uncorrelated with energy tax rates after controlling for country and industry fixed effects. Table

A.4 reports our estimation results. Our preferred specification corresponds to Column (3) which

corresponds to an energy demand elasticity of 0.65.41

39 Two points warrant mention. First, lacking information on service trade tariffs, we set the trade elasticity of services
to the average from non-service industries. Second, the table does not list the energy industry since, by accounting of
carbon flows, we assign CO2 emissions to consumption (and not production) of energy. For completeness, we note
that global energy trade-to-GDP ratio is 24.6%, with energy trade elasticity estimated at (σ0 − 1) = 10.16, derived
from pooling observations on energy flows with Other Mining.

40 The after-tax price of energy which we use here includes fuel taxes that are not related to climate change. In our
quantitative analysis, these non-climate-related fuel taxes are captured by exogenous energy demand shifters.

41 Our elasticity parameters align with the long-run estimates in the literature, reflecting our focus on long-term out-
comes. In their meta-analysis, Labandeira et al. (2017) report an average long-run energy demand elasticity of 0.596
(ours is 0.65). Our calibration implies a greater-than-one energy supply elasticity which is closer to an elasticity
one would obtain from a long-run history of oil field extractions or explorations, e.g., see Appendix E.2 of Kortum
and Weisbach (2021) and Dahl and Duggan (1998). Lastly, our trade elasticity, ranging between 3.8 and 8.6 across
manufacturing industries, is in line with larger and long-run estimates in the literature (Alessandria et al., 2021).
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Magnitudes of Optimal Border Taxes. To lay the groundwork for our assessment of Proposals 1

and 2, we discuss the magnitude of unilaterally optimal border taxes as implied by our calibrated

model. Recall that unilaterally optimal border policies involve both import tariffs and export

subsidies. Consider first the case where governments exhibit no concern for climate change. In

this case, optimal border policies solely include terms-of-trade driven components. Per Lerner’s

symmetry, only the ratio of the optimal tariff (t∗) to export subsidy (x∗) is determined, and ex-

hibits a median of 17% across non-energy product varieties, i.e., (1 + t∗) / (1 + x∗) ≃ 0.17. The

corresponding 10th and 90th percentiles of optimal tariff-to-export-subsidy ratios stand at 12%

and 26%, respectively. These ratios tend to be larger in industries with a lower trade elasticity

and exhibit modest variation across countries.42

Carbon border taxes/subsidies constitute a modest fraction of the optimal border tax/subsidy

rate. They vary noticeably across countries imposing the taxes, as they align with each country’s

unilaterally optimal carbon tax, τ∗
i = δ̃i. They also vary considerably across industries and are

more punitive in industries with higher carbon intensities. Figure A.3 in the appendix elucidates

this point by showcasing EU’s unilaterally optimal carbon import taxes, evaluated at τ∗
EU = 53

($/tCO2). “Nonmetallic Minerals,” “Metals” and “Chemicals” in the manufacturing sector and

“Transportation” in services have the highest unilaterally-optimal carbon import tax, with median

rates ranging from 2-7% and reaching 10% for exporters at the 90th percentile of carbon intensity.

5 Quantitative Assessment of Climate Proposals 1 and 2

In this section, we provide a quantitative assessment of two prominent climate proposals that

combine carbon taxes with border measures to address the free-riding problem. We examine the

efficacy of each proposal by reporting the changes in carbon emissions and welfare resulting from

these policies, compared to the status quo.

5.1 Proposal 1: Non-Cooperative Carbon Border Taxes

Under Proposal 1, border taxes are employed as a second-best policy to cut (under-taxed) car-

bon emissions by non-cooperative trading partners. To gauge maximal efficacy, we simulate a

42 Our optimal border taxes are broadly consistent with, but on the lower side of existing estimates obtained from
models without carbon externalities, e.g., Ossa (2014); Lashkaripour (2021). The terms-of-trade component of opti-
mal border taxes largely depend on the industry-level trade elasticity, (σk − 1), with a higher trade elasticity implying
a lower degree of national-level market power. Our estimates of trade elasticity are on average 5.9, which is higher
than the estimates of trade elasticity in Ossa (2014); Lashkaripour (2021).
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non-cooperative Nash equilibrium in which each government enacts its best policy response con-

sisting of unilaterally optimal border and carbon taxes. The resulting change in CO2 emissions

(Z), real consumption (V), and climate-adjusted welfare (W) are reported in Table 3.

The first panel (titled “Noncooperative: Carbon + Border Tax”) reports changes in outcomes

relative to the status quo when all governments adopt their unilaterally optimal carbon and bor-

der tax measures non-cooperatively. To understand these results, note that domestic carbon taxes

are small or virtually zero under the status quo. Therefore, the carbon reduction reported in this

panel represents the combined reduction from both elevating the domestic carbon tax and border

tax rates to their unilaterally optimal rates.

To isolate the net contribution of border taxes, the middle panel in Table 3 (titled “Noncooper-

ative: Carbon Tax”) reports outcomes under unilaterally optimal domestic carbon taxes that are

not supplemented with any carbon border taxes. The difference between the numbers presented

in the first and middle panels represents the net contribution of non-cooperative border taxes. To

put the non-cooperative outcomes in perspective, the panel “Globally Cooperative” presents the

effects of globally optimal (first-best) carbon taxes.43

The results in Table 3 suggest that optimally-designed non-cooperative border taxes deliver

a 1.3% reduction in global CO2 emissions (i.e., (1−0.066)/(1−0.054) − 1 = 1.3%), complementing the

5.4% reduction attained through unilaterally optimal domestic carbon taxes.44 This stands in con-

trast to the additional 37.6% reduction in global CO2 emissions when domestic carbon prices are

elevated to their first-best level (i.e., (1−0.410)/(1−0.054)− 1 = 37.6%). To rephrase, non-cooperative

border taxes replicate only 3.4% of the potential CO2 reduction under global cooperation (i.e.,

1.3/37.6 = 3.4%)—highlighting the limited effectiveness of non-contingent carbon border taxes at

addressing the free-riding problem.

The inefficacy of carbon border taxes at mitigating the free-riding problem stems from three

factors. First, they fail to incentivize abatement at the firm level because the taxes are uniformly

applied based on the average carbon intensity of all firms within a country and industry, rather

than the firm-specific carbon intensity. As individual firms cannot meaningfully influence these

broad averages, they have no motivation to reduce their carbon inputs and emissions in response

to the taxes.

Second, border taxes cannot cut the CO2 emissions from non-traded goods, which constitute a

43 The outcomes presented in the last panel exclude the lump-sum inter-country transfers necessary for ensuring Pareto
improvements. The country weights in the global planner’s problem could be chosen to ensure such Pareto improve-
ments. Here, we simply set these weights based on GDP share of countries in status quo.

44 Let ∆xA = (x̂A − 1) be the percentage change in a generic variable x under counterfactual policy “A” with x̂A ≡
xA/x as the corresponding “hat” value. Then, the percentage change for a move from counterfactual A to B equals:
(x̂B/x̂A − 1) = ([1 + ∆xA]/[1 + ∆xB]− 1).
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Table 3: The Impact of Non-cooperative and Cooperative Tax Policies

Non-Cooperative Globally Cooperative
Carbon + Border Tax Carbon Tax

Country ∆CO2 ∆V ∆W ∆CO2 ∆V ∆W ∆CO2 ∆V ∆W

Australia 0.3% -0.6% -0.5% 1.9% -0.0% 0.1% -39.6% -1.2% -0.4%
EU -22.2% -0.3% -0.0% -21.2% -0.0% 0.2% -38.5% -0.4% 1.7%
Brazil -1.5% -0.1% 0.3% -1.0% 0.0% 0.3% -39.4% 0.3% 2.6%
Canada 8.1% -1.6% -1.5% 3.5% -0.1% 0.0% -42.6% -1.2% -0.6%
China -9.8% -0.1% 0.1% -8.3% 0.0% 0.1% -39.0% -1.7% -0.6%
Indonesia 1.2% -0.2% -0.1% 2.4% -0.0% 0.1% -42.9% -3.1% -2.7%
India -6.9% -0.3% 0.5% -5.3% 0.0% 0.7% -44.0% 4.5% 10.8%
Japan -2.1% -0.3% -0.1% -0.6% 0.0% 0.1% -39.1% -1.5% -0.5%
Korea 0.5% 0.3% 0.6% 0.9% 0.0% 0.2% -39.9% 1.6% 3.2%
Mexico 4.3% -1.3% -1.2% 3.0% -0.0% 0.0% -41.5% -1.3% -1.1%
Russia 7.1% -1.4% -1.3% 3.5% -0.2% -0.2% -43.8% -0.0% 0.1%
Saudi Arabia 11.5% -3.9% -3.9% 4.8% -0.6% -0.6% -45.8% -0.6% -0.5%
Turkey -4.6% -0.5% 0.3% -0.0% 0.1% 0.8% -39.1% 1.9% 7.6%
USA -4.0% -0.3% -0.3% -1.9% 0.0% 0.0% -43.0% -1.7% -1.3%
Africa -12.8% -1.2% 0.1% -10.2% -0.1% 1.1% -41.7% 8.4% 20.6%
RO Americas -5.3% -0.7% -0.2% -3.4% -0.0% 0.4% -41.5% 2.0% 5.6%
RO Asia -5.5% -1.0% -0.9% -0.9% 0.0% 0.2% -40.6% -0.9% 0.4%
RO Eurasia 2.0% -1.1% -1.1% 3.6% -0.1% -0.1% -44.2% -2.2% -2.1%
RO Middle East 5.6% -2.5% -2.5% 3.9% -0.3% -0.3% -43.3% 0.0% 0.2%

Global -6.6% -0.5% -0.2% -5.4% -0.0% 0.2% -41.0% -0.6% 1.1%

Note: This table shows for every country the change to CO2 emission, real consumption, and welfare from the baseline
to noncooperative and cooperative equilibrium. In the baseline, each country’s tariffs and carbon taxes are set at their
applied rates in 2014 and export subsidies are zero. Optimal policy formulas for the noncooperative and cooperative
outcomes are detailed in Sections 3.1and 3.4 and our quantitative implementation is described in Sections 4.1 and 4.2.

significant portion of worldwide emissions. The “Transportation” sector, for example, is respon-

sible for over 25% of global industrial CO2 emissions, yet it has a trade-to-GDP ratio of just 0.10

(see Table 1). Appendix Figure (A.2) compares the tradeability of industries to their global emis-

sions share. Notably, the industries that have a trade-to-GDP ratio below 0.15 are responsible for

over 80% of global CO2 emissions from production.

Third, border taxes are not immune to leakage via general equilibrium energy price adjust-

ments. In particular, they reduce global demand for energy, leading to lower pre-tax energy

prices worldwide. This in turn causes a drop in the after-tax price of energy in major energy

exporting countries like Russia and Saudi Arabia, which have lesser care for climate change. As

a result, their CO2 emissions rise with carbon border taxes, dampening the overall reduction in

global emissions.45

The modest CO2 reduction achieved with non-cooperative border taxes is offset by sizable

45 Our carbon border tax specification exhibits similarities and differences with the EU’s carbon border adjustment

36



consumption losses in certain countries. On aggregate, the global real consumption decreases

by 0.5% under these taxes, with only a negligible benefit from reductions in CO2 emissions. By

comparison, globally optimal carbon taxes deliver a 41.0% reduction in global CO2 emissions,

paired with mere 0.6% loss to real consumption, which translates to a 1.1% increase in climate-
adjusted welfare.

5.2 Proposal 2: Climate Club with Contingent Trade Penalties

Under Nordhaus’s (2015) climate club proposal, border taxes are used as a contingent penalty

device to deter free-riding. We begin by specifying the climate club as a sequential game. A

group of “core” countries move first and all countries simultaneously play afterwards. The game

is characterized by a given set of core countries, denoted by N(core), and a “carbon tax target,”

denoted by τ(target). Given
(

N(core), τ(target)
)

, governments play according to the following rules:

Members. A member country must raise its domestic carbon tax to τ(target), set zero border

taxes against other members, and impose unilaterally optimal trade taxes, as penalty,

against non-members. By design, core countries adhere to these rules, while others

conform only if they opt to join the club.

Non-members. Non-member nations retaliate by imposing their unilaterally optimal trade taxes

against member countries. Other than this, non-member countries retain their status

quo tax policies—preserving existing tariffs against other non-member countries and

maintaining their zero or near-zero carbon taxes.

For a game
(

N(core), τ(target)
)

, a partitioning of countries into non-core club members N(member),

and non-members N(non-member) constitutes a Nash equilibrium if (i) No non-core country has an

incentive to deviate from the partition to which it belongs. (ii) Each core country’s welfare im-

proves (compared to the baseline) under this partition.

Quantitative Challenges.— Analyzing the climate club game in-depth poses significant challenges

for two main reasons. First, iteratively determining optimal trade penalties for various countries

across all conceivable partitions is practically infeasible with brute-force numerical optimization

techniques. Our formulas for optimal border taxes, however, offer an analytical representation

of these penalties, effectively circumventing this issue. Second, identifying all possible equilibria

of the climate club game is complicated by the curse of dimensionality. Without a technique to

shrink the outcome space, our analysis would involve examining 2N−N(core)
combinations of na-

tional strategies.46 We address this challenge by noting that the severity of climate club penalties

mechanism (CBAM). Both unilaterally levy duties on the carbon content of imports. However, the CBAM aims to
target firm-level emissions when possible, exempting exporters who demonstrate abatement through monitoring.
Thus, while the CBAM faces the second and third limitations highlighted above, the extent to which the first limita-
tion applies is unclear. Additionally, the CBAM allows deduction of carbon taxes already paid in the origin country.
This bears similarity to the globally-optimal carbon border taxes analyzed in Appendix E.1.

46 With nineteen countries in our sample and supposing one core member, we would be required to solve for 4.7
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increases with the club’s size. Consequently, the pay-off from joining the club rises with size, al-

lowing us to shrink the outcome space via iterative elimination of dominated strategies.47

Carbon Tax Target.— The selection of the carbon tax target τ(target)is based on two key considera-

tions. First, there is an inverted U-shaped relationship between the club’s emission reduction and

the carbon tax target, akin to the Laffer curve. When weighing club membership, non-core coun-

tries compare the costs of raising their carbon tax against trade penalties from club members.

While a higher carbon tax target prompts more emission reduction per member, it also deters

participation due to higher costs. This creates a trade-off: an excessively high tax target reduces

membership limiting global emission cuts, while an overly low target delivers a limited reduction

in global emissions despite maximal participation. Second, the climate club’s aim is to cut emis-

sions without triggering decoupling between club members and the rest of the world. That is,

trade penalties are meant to deter free-riding without being exercised in equilibrium. To achieve

this, τ(target) must be ideally set to the maximal carbon tax target that supports an inclusive club

of all nations as the Nash equilibrium.48

Solution Algorithm.— We employ the following two-tier procedure to identify the maximal car-

bon tax target. In the inner tier, we use the following iterative procedure for a given carbon tax

target: In the first iteration, climate club penalties are applied only by core members. We iden-

tify non-core countries that would benefit from unilaterally joining the club, adding them to the

club in the subsequent rounds. In the second iteration, climate club penalties are applied by core

members plus those added from the previous round. We re-evaluate the gains from unilateral

club membership under the new penalties and update the club accordingly. We repeat this pro-

cedure until we achieve convergence. The resulting outcome is an equilibrium club of all nations

if: (i) the converged set corresponds to the set of all non-core countries who have no incentive to

unilaterally withdraw, (ii) the welfare of core countries has increased relative to the status quo.49

million general equilibrium outcomes. Each partitioning of non-core countries,
(

N(member), N(non-member)
)

, maps

to a different general equilibrium outcome, amounting to 218 cases. Additionally, for a given partitioning, checking
whether any of the eighteen non-core countries has an incentive to unilaterally deviate corresponds to a new general
equilibrium outcome. Therefore, in total, there are 18 × 218 ≈ 4.7 million general equilibrium outcomes to check.

47 This procedure requires that the benefits of membership increase as the climate club grows larger. This typically
holds since a bigger club can impose harsher trade penalties on non-members. However, the relationship may
not hold universally due to a caveat: As the climate club expands, global energy demand decreases, lowering the
pre-tax price of energy worldwide. These general equilibrium price effects can diminish the desirability of club
membership by raising the opportunity cost of carbon pricing. We cannot theoretically preclude scenarios where
these general equilibrium forces undermine the link between club size and membership benefits. Instead, in the
spirit of irreversible actions in theories of gradual coalition formation (Seidmann and Winter, 1998), we assume that
exiting the climate club damages reputation and carries a non-pecuniary cost that intensifies with the club’s size.
Therefore, even if escalating trade sanctions prove insufficient, the non-pecuniary cost of existing ensures that the
benefits of maintaining membership rise as the club grows.

48 In our quantitative exercises, this maximal target typically aligns with the peak of the emission reduction along the
Laffer curve. The maximum emission reduction can be attained only when large developing countries such as India
or Indonesia are in the club. At the same time, these countries are nearly marginal in joining the club or staying out.
As a result, although that is not theoretically the case, in practice aiming for an inclusive club of all nations typically
aligns with achieving the maximum emission reduction.

49 The second stage among non-core countries constitutes a coalition-proof equilibrium under the assumption referenced
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Table 4: Climate Club Game with the EU & US as Core and Carbon Tax Target of 53 ($/tCO2)

Core EU, United States
Round 1 Brazil, Canada, Korea, Turkiye, RO Eurasia
Round 2 Russia, RO Americas
Round 3 Africa
Round 4 Japan, Mexico, Saudi Arabia
Round 5 China, Indonesia, RO Asia and Oceania, RO Middle East
Round 6 Australia, India

Note: This table shows the convergence of our solution method via successive rounds to a club of all nations, for the
case in which the EU and US are core members and the carbon tax target is at its maximal value of 53 $/tCO2. A
country unilaterally evaluates to join or leave at each round given the club configuration at its previous round.

In the outer tier, we incrementally increase the carbon tax target from a small initial value until

we identify the maximum target at which the club of all nations is formed.

While we specify the climate club as a static one-shot game, our procedure offers a glimpse

into the club’s potential expansion trajectory. For example, consider a club with the EU and US

as core members and a carbon tax target of 53 ($/tCO2), as detailed in Table 4. In Round 1,

five countries with stronger trade ties to the EU and US find it beneficial to join. Given this

outcome, two additional countries opt to join in Round 2 to evade penalties by the EU, US, and the

five other members that joined in Round 1. Following this iterative process, the club eventually

includes all non-core countries after eight rounds. At this point, we assess the benefits for the

first movers—the EU and US—and find that their core membership has improved their national

welfare compared to the status quo. It is worth noting this example uses the maximal carbon tax

target of 53 ($/tCO2), as a higher target fails to deliver global participation.

The progression of country memberships in the above example reflects the gravity structure of

trade relations. Nations like Turkiye and Canada join early given their strong trade ties with the

EU and US. As the club expands, it attracts more distant countries with strong trade connections

with the evolving club’s collective body. Accordingly, the club’s expansion occurs by the mem-

bership from the West toward the East.

Outcomes Under Various Makeup of Core Members.— We analyze three climate club scenarios, each

with a distinct composition of core countries. Initially, we consider the European Union (EU) as

the sole core member, recognizing its status as a leader in environmental commitment. Subse-

quently, we explore a scenario where the United States joins the EU, forming a larger core. Our

final scenario includes the EU, US, and China as the core members of the club.

For each scenario, Table 5 reports the maximal carbon tax target and the resulting global CO2

in Footnote 47. Specifically, suppose that once a country joins the club, the increasing costs of exiting prevent it
from leaving in subsequent rounds. Under this assumption as a universal feature, our procedure coincides with
the iterative elimination of dominated strategies, allowing us to narrow the set of potential outcomes. Moreover, the
resulting outcome is a coalition-proof equilibrium provided that the iterative elimination of dominated strategies
converges to a unique outcome, which is the case in our analysis (Moreno and Wooders, 1996). Lastly, we highlight
that, for completeness, we always verify that the resulting outcome constitutes a Nash equilibrium even without the
assumption in Footnote 47.
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reduction. With the EU as the only core member, the maximal carbon price target is 36 ($/tCO2),

leading to a 13.4% decrease in global emissions. When the EU and US unite as core members,

the maximal target rises to 53 ($/tCO2), delivering a 18.6% reduction in global emissions. The

addition of China as a core member further amplifies the club’s impact: it allows for a maximal

carbon price target of 89 ($/tCO2), culminating in a 28.0% reduction in global emissions. This is

substantial when contrasted with the 41.0%, obtainable under first-best carbon pricing.50

Table 5: Climate Club Outcomes

Max Carbon Reduction in
Core Target ($/tCO2) Global CO2

EU 36 -13.4%
EU + USA 53 -18.6%
EU + USA + China 89 -28.0%

Note: This table shows the climate club outcomes of the maximal carbon price target and the corresponding reduction
in global CO2 emissions for each scenario of the core countries

These findings suggest that a well-structured climate club could achieve more than two-thirds

of the first-best reduction in global carbon emissions (28.0/41.0≈0.68). The extent of this success,

however, hinges critically on the initial composition of core members and the appropriate selec-

tion of the carbon tax target.

6 Discussions

In this section, we examine the robustness of our results to alternative parameterizations, charac-

terize alternative policy designs, and discuss extensions to our framework.

6.1 Sensitivity Analysis and External Validity

We redo our analysis under five alternative specifications, with results reported in Tables A.7 and

A.8 . First, we set the social cost of carbon at 92 ($/tCO2) compared to 156 ($/tCO2) in our main

analysis. This choice is consistent with the EPA’s estimate under a 2.5% (instead of 2%) annual

discount rate. Second, we leverage country-level estimates for the social cost of carbon from Ricke

et al. (2018) to re-calibrate the carbon disutility parameters, δ̃i.51 Third, we assign a uniform trade

elasticity, σk ≡ σ = 6.7, to all industries, by estimating Equation (27) on a pooled sample. With a

uniform σk, export market power varies solely with export market share across industries. Fourth,

50 Tables A.5 and A.6 in the appendix show the rounds of succession when the core consists of the EU or EU+US+China.
In addition, Figure A.4 in the appendix shows, for each of the three scenarios of core countries, the welfare gains of
staying vs. withdrawing for each of non-core countries, and it reports the welfare improvement for each core country
vs. the status quo.

51 Specifically, we calibrate the disutility parameters by assuming that the relative disutility is proportional to the
country-level cost of carbon and that the disutility parameters add up to SC-CO2 = 156.
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we consider a Cobb-Douglas production function for final goods, corresponding to a unitary sub-

stitution elasticity between energy and labor inputs (i.e., ς → 1), compared to ς = 0.65 in our

main specification. Lastly, we consider an alternative (inverse) energy supply elasticity by setting

ϕi/(1 − ϕi) to 2.0 for all countries, compared to an average of 0.6 in our main specification. Fol-

lowing Kortum and Weisbach (2020), this choice aligns with data on the distribution of extraction

costs among oil fields.52 For each specification, Table A.7 reports the effects of non-cooperative

border taxes, while Table A.8 reports outcomes associated with the climate club. Across all sce-

narios tested, the qualitative results remain identical and quantitative results are similar to our

main specification.

We additionally conduct two external validation checks on our model. First, we conduct an IV-

based test in the spirit of Adao et al. (2024). To this end, we use our model to simulate countries’

emission response to observed changes in carbon taxes from 2014 to 2022, holding all parameters of

the model constant at their 2014 values. We then check whether the difference between the vector

of model-implied and observed emission changes is uncorrelated with the vector of carbon tax

changes. Following Adao et al. (2024), and provided that carbon tax changes are independent of

other changes in model fundamentals, a significant non-zero correlation would suggest that our

model is misspecified. Encouragingly, as Figure A.8 shows, the noted correlation is statistically

indistinguishable from zero in our case.53 Second, we compare our model’s predicted emissions

reductions from globally-applied carbon taxes to estimates from other modeling approaches, in-

cluding integrated assessment models, computable general equilibrium models, and ex-post em-

pirical studies. Figure A.9 plots our model’s projected global emission reductions against the

global carbon tax rate, benchmarked against projections from leading studies in the literature.

Despite differences in underlying assumptions, our results fall within the range reported across

these previous analyses, providing additional support for the credibility of our model.

6.2 Alternative Policy Designs

Our main analysis focused on policy proposals that can address the free-riding problem. Our

analysis of Proposal 1 considered the most effective carbon border tax design that is resilient to

free-riding, as characterized by Proposition 2. For Proposal 2, we focused on optimal penalties

52 Our specification of energy production, Equation (7), is isomorphic to the one in Kortum and Weisbach (2020). The
latter assumes a continuum of fields that are heterogenous in their extraction costs, as captured by the unit labor
requirement, a. Let Q0 = E(ā) = constant × āϵ represent the amount of energy that can be extracted with a unit
labor requirement a < ā. This formulation is equivalent to the production function, Q0 = constant × L1−ϕ

0 , assumed
in this paper by setting (1− ϕ) = ϵ/(ϵ + 1). The choice of ϵ = 0.5 implied by the empirical distribution of extraction
costs, yields ϕ = 2/3, which corresponds to an inverse energy supply elasticity of ϕ/(1 − ϕ) = 2.

53 We view the test outcome as merely suggestive, since data limitations prevent us from credibly running a formal ver-
sion of Adao et al.’s (2024) test. Our emission data are limited to N = 19 points, as emission changes across countries
between the two periods, whereas asymptotic results in Adao et al.’s (2024) require this number to approach infinity.

However, implementing their formal test on the goodness-of-fit measure β = ∑N
i=1 τ̃i

(
∆ ln Z(data)

i − ∆ ln Z(model)
i

)
where τ̃i is the mean-zero normalized change in country i’s carbon price, delivers β̂ = −0.025 with a p-value of 0.10.
This result does not reject β̂ = 0 at the conventional 5 percent significance level. Future work can enhance our test
upon the availability of CO2 emissions at the level of individual industries for recent years.
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that maximize welfare transfers from non-members to members of the climate club. But it is

important to note that border taxes can deliver even greater emission reductions when free-riding

is not the central concern. These taxes can also be more punitive than the unilaterally-optimal

taxes used in our climate club analysis. Below, we explore alternative border tax designs, which

are relevant when free-riding is less of a concern or when countries are willing to exert harsher

sanctions on free-riders.

First, consider a global economy where governments are willing to cooperate on climate is-

sues but face political pressures that prevent them from implementing first-best carbon taxes. In

this scenario, border taxes could serve as a second-best cooperative solution. We characterize the

globally optimal border taxes under this scenario in Appendix C. Quantitatively, we find that this

policy reduces global carbon emissions by only 0.9%, which is comparable to the non-cooperative

border taxes examined earlier. The main takeaway here is that carbon border taxes have limited

efficacy in reducing global emissions regardless of whether they address international free-riding

or domestic political constraints. Instead, their ineffectiveness stems from the three structural

limitations discussed in Section 5.1.

Second, envision a scenario where the home country’s government assigns a non-zero weight

to foreign welfare when designing its policy. The resulting optimal policy choices in that case

trace out the home country’s unilateral policy frontier. Each point on this frontier corresponds

to a specific set of weights assigned to foreign countries’ welfare. As detailed in Appendix C,

placing more importance on foreign welfare dilutes the terms-of-trade component of the optimal

border taxes. And when the weights on foreign welfare are sufficiently large, the home country’s

optimal policy has no negative externality on other countries—aligning with the optimal policy

framework in Kortum and Weisbach (2020).

Figure A.6 in the appendix illustrates the EU’s unilateral policy frontier. As the EU assigns a

greater weight to non-EU countries, its optimal policy moves along the frontier to a point where

it preserves non-EU’s welfare. This policy, labeled “Externality-Free”, elevates the EU’s welfare

by 0.19% compared to 0.32% under our baseline Unilaterally-Optimal policy. Moreover, global

emissions drop by 3.4% under the Externality-Free policy compared to around 2% under the

Unilaterally-Optimal policy. The Externality-Free policy, however, is difficult to implement due

to free-riding incentives. It effectively raises non-EU welfare to the detriment of EU countries

compared to other policies on the frontier (top panel of Figure A.7). Additionally, policies that

assign a greater weight to non-EU welfare trigger more carbon leakage, as displayed in the bot-

tom panel of Figure A.7. The reason is that a higher non-EU weight prompts the EU to raise its

domestic carbon tax, bringing it closer to the social cost of carbon. This increase in tax reduces

the EU’s energy demand and consequently lowers global pre-tax energy prices, prompting higher

energy use and carbon emissions in non-EU regions.

The unilateral policy frontier, moreover, identifies the range of penalties that a country could

impose on its trade partners. Most notably, it covers cases where the home country assigns a neg-

ative weight to foreign welfare, as studied in Becko (2024). Under one such weighting scheme,
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a country could achieve the maximal reduction in foreign welfare without reducing its own wel-

fare. The noted policy lies on the westernmost point of the frontier, labeled as "Maximal Sanction"

in Figure A.6.54

Lastly, the unilateral policy frontier shows the limitations of unilateral policy, regardless of

whether governments implement optimal policies or not. The frontier shown in Figure A.6 deter-

mines the range of potential welfare outcomes possible under unilateral policy. Suboptimal policy

decisions would result in outcomes inside the frontier. The maximum welfare increase realizable

for the EU under unilateral policy is less than 0.4%, contrasting with the 0.7% increase feasible

under the climate club led by the EU. Similarly, emissions reductions are capped at around 5%

under the EU’s unilateral policy, compared to more than 13% with the climate club initiated by

the EU (Figure A.7 and Table 5). Essentially, even if governments do not optimize policies, the

climate club’s frontier remains far more promising.

6.3 Extensions to Richer Settings

(a) Increasing-returns to scale. We introduce increasing-returns to scale in final-good industries

as in Krugman (1980), with details provided in Appendix H.1. In this setting, scale economies

arise from love-for-variety, governed by the elasticity of substitution, γk, between firm varieties.55

Firms’ entry decisions do not internalize the full benefits of introducing new varieties, leading

to inefficient entry and output across industries. Consequently, optimal policy aims to address

inter-industry scale distortions while also managing the terms of trade and reducing emissions.

For a small open economy under Cobb-Douglas-CES preferences, the unilaterally optimal policy

formulas become:

τ∗
i = δ̃i ∼ δi P̃i, s∗i,k =

1
γk−1 [carbon tax & domestic subsidy]

t∗ni,k = t̄i +
γk−1

γk
τ∗

i vn,k t∗ni,0 = t̄i [import tax (energy and non-energy)]

1 + x∗in,k = (1 + t̄i)
σk−1

σk
+ γk−1

γk
τ∗

i ∑j ̸=i
[
λjn,kvj,k

] σk−1
σk

[export subsidy (non-energy)]

1 + x∗in,0 = (1 + t̄i)
σ0−1

σ0
+ τ∗

i
1
σ0

ζn
P̃n,0

[export subsidy (energy)]
(29)

The above policy differs from the constant-returns to scale variant in two ways. First, it includes

production subsidies, denoted by si,k. The optimal production subsidy is carbon-blind and cor-

rects scale distortions by favoring high-returns-to-scale (low-γ) industries. Second, carbon border

taxes are adjusted to account for scale economies, as they exert two countervailing effects on for-

eign emissions: they lower emissions by reducing output (Q), but concurrently, raise the per-unit

emissions (Z/Q). The latter effect occurs because per unit emissions decline with output scale at

an elasticity, (γk − 1)−1. To balance this trade-off, the optimal carbon border tax is revised down-

54 In the context of a climate club, applying these extreme trade sanctions would have ambiguous effects on the club’s
efficacy. On one hand, the sanctions would make non-membership more costly. On the other hand, they would
dilute the benefits of membership by prioritizing harm to foreign countries over domestic welfare.

55 As shown in Appendix H.1, this extended model is isomorphic to a setting with external economies of scale.
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wards by a factor of γk−1
γk

. In the limit where γk → ∞, industry k operates under constant-returns

to scale and the above formulas reduce to the baseline formulas presented earlier.

Tables A.9 and A.10 in the appendix show the impacts of Proposals 1 (non-cooperative car-

bon border taxes) and 2 (climate club) under increasing-returns to scale. The analysis uses scale

elasticities derived from the estimates in Lashkaripour and Lugovskyy (2023).56 The results in-

dicate that carbon pricing policies deliver smaller reductions in global emissions due to the same

trade-off highlighted earlier. Specifically, under increasing-returns to scale (IRS), contractions in

output, Q, coincide with an increase in per-unit emissions (Z/Q). While this trade-off moderates

the overall impact of policy on emissions, the relative efficacy of Proposals 1 and 2 is virtually

unchanged compared to the baseline constant-returns-to-scale (CRS) scenario.57

(b) Firm heterogeneity. We consider two sources of firm heterogeneity: differences in (1) total

factor productivity and (2) carbon intensity across firms. The Krugman extension of our frame-

work can readily handle the former, but modeling heterogeneity in carbon intensity is more chal-

lenging due to data limitations. Specifically, the formulas described in Equation 29 remain valid

if there is firm heterogeneity only in total factor productivity. The formulas apply without qual-

ification if serving new markets does not require paying a fixed overhead cost. In the presence

of fixed costs, however, the optimal policy must account for self-selection of the most productive

firms into export markets, à la Melitz (2003). Following Kucheryavyy et al. (2023), it can be shown

that the Krugman extension of our model is isomorphic to the Melitz model when firm-level pro-

ductivity follows a Pareto distribution. See Appendix H.2 for details. Therefore, Equation 29

describes optimal policy in the Melitz-Pareto case, albeit with a reinterpretation of parameters—

indicating our quantitative results would be unchanged.

A richer extension could incorporate firm heterogeneity in both productivity and carbon in-

tensity (see Cherniwchan et al. (2017)). Here, border taxes could alter the average carbon intensity

of exporting firms. This consideration lends itself to policy designs that target firm-level abate-

ment, such as the Carbon Border Adjustment Mechanism (CBAM) referenced in footnote 45. But

how this consideration affects optimal policy design depends on information asymmetry between

governments and foreign firms. For instance, if governments know that more productive firms

tend to be less carbon intensive, they could set a higher carbon border tax to deter entry by small,

carbon-intensive firms. Yet with only industry-level data on carbon intensities, governments may

implement voluntary certification schemes that incentivize low-emissions firms to disclose their

output and emission levels (Cicala et al., 2022). Quantifying the global impacts of border taxes in

56 In this extension of our model, a necessary condition for uniqueness is µk ≡ (σk − 1) / (γk − 1) ≤ 1. Therefore,
we use the estimates of µk from Lashkaripour and Lugovskyy (2023), which guarantee µk ≤ 1, together with our
estimates of trade elasticity σk to recover the love-of-variety parameters, γk.

57 Despite similar aggregate results, some differences are noticeable at the level of individual countries. For example,
Figure A.10 compares the change in CO2 emissions under Proposal 1 between our main model (CRS) and extended
model (IRS). Under the IRS model, when firms are subjected to border tax hikes, they tend to relocate to larger
markets to evade such taxes. These delocation effects can raise the scale of production and CO2 emissions even in
climate-conscious regions like the EU that charge a relatively high carbon tax.
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either case requires international firm-level emissions data, which is presently unavailable.58

7 Conclusion

We examined two prominent climate policy proposals that leverage trade policy to address the

free-riding problem in climate action. One proposal calls for carbon border taxes as a second-best

device to curb transboundary emissions, while the other, the climate club, advocates for border

taxes as a penalty device to encourage cooperation by reluctant governments. We characterized

optimal policies to evaluate these proposals in a general equilibrium trade model with global

carbon supply chains and climate externalities. Our findings indicated that carbon border taxes

can achieve only a modest reduction in global emissions even when designed optimally, whereas

the climate club can be remarkably successful. This success, however, hinges on the makeup of

the club’s core members and its carbon tax target.

Our analysis puts forth methods that have implications beyond the scope of this paper. First,

carbon border taxes could be targeted towards individual firms given appropriate monitoring

regimes. Collecting firm-level emissions data to quantitatively assess such targeted policies rep-

resents a promising direction for future research. Incorporating distributional considerations into

the optimal climate policy calculus is another potential avenue, for instance, through the inclu-

sion of an international climate fund, technology transfers to developing nations, or supply-side

carbon policies. Furthermore, our analysis excludes dynamic considerations such as potential cli-

mate tipping points or technological innovation. These factors provide justifications for dynamic

policies or industrial policies that subsidize green technologies. They also rationalize policy pack-

ages that concurrently promote both climate change mitigation and adaptation.
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Appendices for “Can Trade Policy Mitigate

Climate Change?” (for Online Publication)

Farid Farrokhi and Ahmad Lashkaripour

A Notational Preliminaries

A.1 Notation

To express the function that represents a generic variable X, we use an upright font with parentheses,

X = X (.). This distinction helps us distinguish between a variable, whose value is determined in gen-

eral equilibrium, and the function which represents it. For example, Cji,k denotes country i’s consump-

tion quantity of industry k from supplying country j, whereas Dji,k
(
Ei, P̃i

)
is a function whose value

depends on national income Ei and the vector of consumer prices P̃i = [P̃ji,k]j,k>0. Consequently,

for policy choice P̃ni,g ∈ Pi, the term ∂Cji,k/∂P̃ni,g is the general equilibrium change in Cij,k, while

∂Dji,k (.) /∂P̃ni,g is merely the partial derivative of the function Dji,k (.) with respect to P̃ni,g as one of

its arguments. The former is a complex general equilibrium change but the latter can be expressed in

terms of a demand elasticity.

Moreover, to express a matrix that contains variable X over many markets and/or industries, we

use a bold font, X = [X]. Moreover, we use matrix multiplication to avoid expansive sums. For

example, τi = [τi,k]k>0 and Zi = [Zi,k]k>0 denote the K × 1 matrices of country i’s carbon taxes and

emissions, and τ⊺
i Zi = ∑k>0 τi,kZi,k gives country i’s carbon tax revenues.

Lastly, as in the paper and without loss of generality, our notation allows households to consume

energy through their purchases of the output of a fictitious industry k0 ∈ {1, ..., K} that converts the

energy input bundle into a nontradeable final good without creating value added.

A.2 Functional Forms for Quantitative Analysis.

In our derivations of the optimal policy, we make no parametric assumptions about the generic de-

mand and production functions. However, for our quantitative analysis, we adopt the following

functional forms:

1. Cobb-Douglas-CES preferences for final goods deliver the following indirect utility:

Vi
(
Ei, P̃i

)
= Ei/P̃i, where P̃i =

K

∏
k=1

(
N

∑
j=1

bji,k P̃1−σk
ji,k

) βi,k
1−σk

;

and, Marshallian demand functions, for home i and foreign ℓ ̸= i:

Dni,k
(
Ei, P̃i

)
=

bni,k P̃1−σk
ni,k

∑j bji,k P̃1−σk
ji,k

βi,kEi, Dnℓ,k
(
Eℓ, P̃iℓ, P−iℓ

)
=

bnℓ,kP1−σk
nℓ,k

biℓ,k P̃iℓ,k + ∑j ̸=i bjℓ,kP1−σk
jℓ,k

βℓ,kEℓ

1



and, price elasticities of demand:

ε
(ni,g)
ji,k =


− [1 + (σk − 1) (1 − λni,k)] j = n, g = k

(σk − 1) λni,k j ̸= n, g = k

0 g ̸= k

Lastly, note that income elasticities of CES demand equal unity.

2. CES aggregator over international energy varieties delivers the following demand function (for the

energy distributor) for home i and foreign ℓ ̸= i

Dni,0
(
Ei,0, P̃i,0

)
=

bni,0P̃1−σ0
ni,0

∑j bji,0P̃1−σ0
ji,0

Ei,0, Dnℓ,0
(
Eℓ,0, P̃iℓ,0, P−iℓ,0

)
=

bnℓ,0P1−σ0
nℓ,0

biℓ,0P̃1−σ0
iℓ,0 + ∑j ̸=i bji,0P1−σ0

ji,0

Eℓ,0

and, price elasticities of demand:

ε
(ni,0)
ji,0 =

− [1 + (σk − 1) (1 − λni,0)] j = n

(σk − 1) λni,0 j ̸= n

and, the aggregate price of the energy composite for home i and foreign ℓ ̸= i,

Pi,0
(
P̃i,0
)
=

[
N

∑
j=1

bji,0P̃1−σ0
ji,0

] 1
1−σ0

, Pℓ,0
(

P̃iℓ,0, P−iℓ,0
)
=

[
biℓ,0P̃1−σ0

iℓ,0 + ∑
j ̸=i

bjℓ,0P1−σ0
jℓ,0

] 1
1−σ0

3. CES production function of final goods is described by:

Fn,k (Ln,k, Zn,k) =

[
(1 − κ̄n,k)

1
ς L

ς−1
ς

n,k + (κ̄n,k)
1
ς Z

ς−1
ς

n,k

] ς
ς−1

where ς is the elasticity of substitution between labor and energy input. With P̃n,0k = P̃n,0 +

τn,k1(n = i), cost minimization implies:

(a) Producer prices:

Pnℓ,k
(
wn, P̃n,0k

)
= dnℓ,k pn,k

(
(1 − κn,k)w1−ς

n + κn,k P̃1−ς
n,0k

) 1
1−ς ;

(b) Energy input use (CO2 emission):

Zn,k = Zn,k
(

P̃n,0k, wn, Qn,k
)
≡ zn,k

(
P̃n,0k, wn

)
Qn,k,

where zn,k
(

P̃n,0k, wn
)
= zn,k

 κ̄n,k P̃1−ς
n,0k

(1 − κ̄n,k)w
1−ς
n + κ̄n,k P̃1−ς

n,0k


ς

ς−1

;

and, the elasticities of:

ζn,k ≡
∂ ln Zn,k (.)

∂ ln P̃n,0
= −ς (1 − αn,k) , ζn ≡ ζn ≡

∂ ln ∑k Zn,k (.)
∂ ln P̃n,0k

= −ς (1 − αn)

where αn ≡ ∑g ̸=0 αn,g
Zn,g
Zn

is the average energy input cost share in country n.
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A.3 Auxiliary Variables

For completeness, we also reproduce the following auxiliary variables, which we make use of in our

derivations:

[industry-level total sales] Yn,k = Pnn,kQn,k

[industry-level carbon intensity (per value)] vn,k =
Zn,k
Yn,k

[industry-level carbon intensity (per quantity)] zn,k =
Zn,k
Qn,k

[within-industry international sales shares] ρni,k =
Pni,kCni,k

∑ℓ Pnℓ,kCnℓ,k
=

Pni,kCni,k
Yn,k

[within-industry international expenditure shares] λni,k =
P̃ni,kCni,k

∑m P̃mi,kCmi,k

[cross-industry expenditure shares] βi,k =
∑m P̃mi,kCmi,k

∑k ∑m P̃mi,kCmi,k
= ∑m P̃mi,kCmi,k

Ei

[CPI-adjusted climate damage cost] δ̃i = P̃i × δi; where P̃i ≡
(

∂Vi
∂Ei

)−1

B Unilaterally Optimal Policy

B.1 Expansive Statement of the Unilaterally Optimal Policy Problem

This section outlines the unilaterally optimal policy problem for the government of country i as the

tax-imposing country which we also refer to as home. The home’s government has access to a full set

of policy choices in the reformulated problem, namely the consumer prices of all goods that country

i produces, the consumer prices of all goods that country i consumes, and carbon taxes in country

i , Pi ≡
{
[P̃ji,k]j,k>0, [P̃ij,k]j ̸=i,k>0, [P̃ji,0]j, [P̃ij,0]j ̸=i, [τi,k]k>0

}
≡
{

P̃i, P̃−i, P̃i,0, P̃−i,0, τi
}

. For a clearer

exposition, we focus on the case in which tax rates in foreign countries are set to zero. Henceforth, we

use i exclusively to refer to home, and n or ℓ to refer to any country.

Formal Statement of the Unilaterally Optimal Policy Problem. The government of country i
chooses Pi to maximize its welfare:

Wi = Vi
(
Ei, P̃i

)
− δiZ(global) (B.1)

where Vi (.) is country i’s indirect utility function, P̃i ∈ Pi is to be selected by country i’s government,

δi is an exogenous climate damage parameter, and country i’s income Ei and global emission Z(global)

are determined in the system of general equilibrium (Equations B.2–B.15) as described below:

– Consumption quantities of the varieties of final goods and energy are given by Marshallian

demand functions Dnℓ,k (.) for k > 0 and Dnℓ,0 (.),

Cnℓ,k = Dnℓ,k
(
Ei, P̃i

)
∀ℓ, k > 0; (B.2)

Cnℓ,0 = Dnℓ,0
(
Ei,0, P̃i,0

)
∀ℓ, k = 0; (B.3)
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– Energy expenditures equal:

En,0 = ∑
k

αn,kPnn,kQn,k, ∀n; (B.4)

where the input cost share of energy is a function an,k (.) of wage and after-tax price of energy,

αn,k = an,k
(
wn, P̃n,0k

)
, ∀n, k > 0; P̃n,0k = P̃n,0 + τn,k1 (n = i) . (B.5)

– Distribution-level energy price index in home (i) and foreign countries (n ̸= i)

P̃i,0 = P̃i,0
(
P̃i,0
)

; P̃i,0 = [P̃ℓi,0]ℓ ∈ Pi, home (i); (B.6)

P̃n,0 = P̃n,0
(

P̃in,0, P−i,0
)

; P−i,0 = [Pℓℓ,0]ℓ ̸=i, foreign (n ̸= i) (B.7)

where P̃n,0 (.) for all n is a homogenous-of-degree-one function of (pre-carbon-tax) prices of

energy. In home country i, the pre-carbon tax prices of energy are chosen by country i’s govern-

ment, P̃i,0 = [P̃ℓi,0]
N
ℓ=1. In foreign countries n ̸= i, the price exported from home P̃in,0 is a policy

choice and the rest are determined by producer prices of energy elsewhere P−i,0 = [Pℓℓ,0]ℓ ̸=i.

– Producer prices of final goods are determines by a function P (.) that maps input prices in each

location to cost-minimizing producer prices. The producer price of final goods supplied by the

home country i are

Pin,k = Pin,k (Pi, wi) ∼ Pin,k
(

P̃ℓ,0k, wi
)

∀k > 0; (B.8)

where P̃i,0k = P̃i,0 + τi,k is the after-tax price of energy inputs used by industry k, which is fully

determined by policy Pi. The producer price of final goods supplied by country ℓ ̸= i are

Pℓn,k = Pℓn,k (Pi, wℓ, P−i,0) ∼ Pℓn,k
(
wℓ, P̃ℓ,0

(
P̃iℓ,0, P−i,0

))
∀ℓ ̸= i, k > 0 (B.9)

where P̃iℓ,0 ∈ Pi is the price of country i’s energy exports to ℓ, which is a policy choice, and

P̃ℓ,0 (.) for ℓ ̸= i is defined by B.7.

– Producer prices of energy are

Pℓℓ,0 = Pℓ,0 (wℓ, Qℓ,0) = pℓ,0wℓQ
ϕℓ

1−ϕℓ
ℓ,0 ∀ℓ, k = 0 (B.10)

where Pℓ,0 (.) is the corresponding function and ϕℓ
1−ϕℓ

denotes the inverse supply elasticity in

the energy sector. Energy varieties are traded without incurring iceberg trade costs (dℓn,0 = 1)

which sets the destination-specific producer price Pℓn,0 = dℓn,0Pℓℓ,0 at the source producer price

Pℓℓ,0.

– Output quantity, Qn,k (.), is a function that sums over all destination-specific sales:

Qn,k = Qn,k ([Cnℓ,k]ℓ) = ∑
ℓ

dnℓ,kCnℓ,k ∀n, k; (B.11)
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– Emissions at different levels of aggregation are described by:

Zn = ∑
k

Zn,k, ∀n; Z(global) = ∑
n

Zn (B.12)

Zn,k = zn,k
(

P̃n,0k, wn
)

Qn,k =

zn,k
(

P̃in,0, P−i,0, wn
)

Qn,k n ̸= i

zi,k (Pi, wi) Qi,k n = i

where zn,k (.) is a function representing emission per unit of output quantity in country n−industry

k.

– Labor market clearing condition in each country n is:

wn L̄n = ∑
k>0

[(1 − αn,k) Pnn,kQn,k] + (1 − ϕn) Pnn,0Qn,0 (B.13)

– National expenditure equals national income in home country (i), which is represented by the

following function Yi (.),

Ei = Yi =Yi (Pi, w, P0, C ≡ [Ci, C−i, Ci,0, C−i,0], Zi)

=wiLi + Πi (Pii,0, wi) + τ⊺
i Zi

+
(
P̃i − Pi (.)

)⊺ Ci +
(
P̃−i − P−i (.)

)⊺ C−i

+
(
P̃i,0 − Pi,0

)⊺ Ci,0 +
(
P̃−i,0 − P−i,0

)⊺ C−i,0; (B.14)

where:

– τi = [τi,k]k>0, P̃i = [P̃ji,k]j,k>0, P̃−i = [P̃ij,k]j ̸=i,k>0, P̃i,0 = [P̃ij,0]j, P̃−i,0 = [P̃ij,0]j ̸=i denote

carbon and after-tax prices, all which are elements of Pi.

– w = [wi, w−i] is the vector of wage rates in the home country i and foreign countries −i.

– P0 = [Pii,0, P−i,0] is the vector of producer prices of energy in the home country i and

foreign countries −i.

– C ≡ [Ci, C−i, Ci,0, C−i,0] denotes country i’s consumption and exports of final goods (Ci, C−i)

and energy (Ci,0, C−i,0).

* Ci = [Cji,k]j,k>0 is the matrix of country i’s consumption quantities of final goods;

* C−i = [Cin,k]n ̸=i,k>0 is the matrix of country i’s export quantities of final goods;

* Ci,0 = [Cij,0]j and C−i,0 = [Cji,0]j ̸=i denote country i’s quantities of input use and

exports of energy

– Zi = [Zi,k]k>0 is the vector of country i’s emissions by industry

– Pi (.) =
[
Pji,k (.)

]
j, k>0

collects the single-valued functions that describe the producer prices

of final-good varieties sold to home country i

– P−i (.) =
[
Pij,k (.)

]
j ̸=i, k>0

collects the single-valued functions that describe producer prices

of final-good varieties produced in home country i and sold to foreign markets.

– The single-valued producer price functions from the above two bullet points are specifi-

cally:

* Pin,k (Pi, wi) for all n and k > 0 is a function that maps input prices in the home econ-

omy to the producer prices of final goods Pin,k as defined under Equation B.8.
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* Pni,k (.) for n ̸= i and k > 0 is a function that maps input prices in foreign countries to

the producer prices of final goods Pni,k as defined under Equation B.9.

More specifically, the components of income in Equation (B.14) can be broken down as:

(policy instruments) Pi =
{

P̃i, P̃−i, P̃i,0, P̃−i,0, τi
}

(carbon tax revernues) τ⊺
i Zi = ∑k ̸=0 τi,kZi,k

(import tariffs and prod taxes on final goods)
(
P̃i − Pi

)⊺ Ci = ∑k ̸=0 ∑n
(

P̃ni,k − Pni,k
)

Cni,k

(export taxes on final goods)
(
P̃−i − P−i

)⊺ C−i = ∑k ̸=0 ∑n ̸=i
(

P̃in,k − Pin,k
)

Cin,k

(import tariffs and prod taxes on energy)
(
P̃i,0 − Pi,0

)⊺ Ci,0 = ∑n
(

P̃ni,0 − Pni,0
)

Cni,0

(export taxes on energy)
(
P̃−i,0 − P−i,0

)⊺ C−i,0 = ∑n ̸=i
(

P̃in,0 − Pin,0
)

Cin,0

National expenditure/income in foreign countries (n ̸= i),

En = Yn = Yn (wn, Pnn,0) = wnLn + Πn (wn, Pnn,0) , n ̸= i; (B.15)

where Yn (.) and Πn (.) are the functions that represent foreign income and profits.

Note on income function, Yi (.). Country i’s consumer prices, export prices, and carbon taxes Pi ≡{
P̃i, P̃−i, P̃i,0, P̃−i,0, τi

}
as well as its consumption quantities, export quantities, and emission quan-

tities (Ci, C−i, Ci,0, C−i,0, Zi) enter directly through tax revenues. In addition, Yi (.) depends on local

wage rate, wi, through three channels: wage bills wi L̄i, the profits collected in the energy sector Πi (.),

and the producer prices of goods that are made in home country i, Pij,k = Pij,k(wi, .). Moreover, Yi (.)
depends on the local producer price of energy, Pii,0, through the profit function in the energy sector,

Πi (.). Less obviously is the way Yi (.) depends on foreign wage rates w−i = [wn]n ̸=i and foreign

producer prices of energy P−i,0 = [Pnn,0]n ̸=i. To see this dependence, consider producer prices of final

goods from a foreign country n ̸= i, on which i’s import tariffs are applied: Pin,k is a function of n’s

wage rate, wn ∈ w−i, and n’s distribution-level price of energy P̃n,0, which is determined by coun-

try i’s exported price of energy to n, P̃in,0 ∈ Pi and other country’s exported prices of energy to n,

P̃jn,0 = Pjj,0, with [Pjj,0]j ̸=i ≡ P−i,0.

B.2 Assumption about Foreign Wages and Income

Assumption 1. Policy-induced changes in the relative wage rates among foreign countries and in the ratio of
wage-to-total income among foreign countries have no first-order effect on country i’s welfare in the neighbor-
hood of its optimal policy P∗

i .

Under Assumption 1 (henceforth, A1), the derivation of the optimal policy does not require mon-

itoring changes in wages and income levels in foreign countries (under the normalization that the

wage rate in one of foreign countries is normalized by choice of numeraire). Importantly, since our

analysis focuses on the optimal policy choice, this assumption is only needed in the vicinity of the

optimum, not for the entire range of admissible policy choices.

6



A1 addresses two effects. First, country i’s policy choice P̃ ∈ Pi, may alter the relative wage rates

among foreign countries, i.e., ∂ (wn/wn0) /∂P̃ for n, n0 ̸= i, and the wage-to-income ratios abroad, i.e.,

∂ (wnLn/Yn) /∂P̃ for all n ̸= i. Under A1, The first effect represents a transfer from one foreign coun-

try to another, while the second represents a transfer among agents within a foreign country. While

these extraterritorial transfers could theoretically influence country i’s welfare via income effects in

the global economy, their practical impact is negligible. This is because the transfers themselves are

small—approaching zero for smaller countries—and affect country i’s welfare only indirectly, primar-

ily through income effects tied to export tax revenues. A1 asserts that these effects are zero in the

vicinity of the optimum, where most welfare gains from extraterritorial income effects have already

been internalized by the full set of policy instruments.

Notably, A1 becomes redundant in a two-country model where labor is the sole factor of pro-

duction, as in Costinot et al. (2015). In this case, the neutrality of foreign wages is a consequence of

Walras’ law, with foreign income determined by its wage bill. Furthermore, A1 holds when the rest

of the world actively regulates its internal balance of market access in response to country i’s policy,

as in Lashkaripour and Lugovskyy (2023). Alternatively, A1 is satisfied if preferences in the rest of

the world are quasi-linear, as in Ossa (2011), with the linear good being exclusively traded internally

within the rest of the world.

In Appendix D, we numerically check the accuracy of our results under A1, showing that the error

introduced due to A1 is negligible.

B.3 Generic Statement of the First-Order Conditions w.r.t. P̃ ∈ Pi

Our goal is to solve the unilateral policy problem of country i as detailed in Appendix B.1. The

F.O.C. with respect to a generic policy instrument P̃ ∈ Pi ≡
{
[P̃ji,k]j,k,

[
P̃ij,k

]
j ̸=i, k

, [τi,k]k>0

}
, can be

decomposed into three terms:

∂Wi

∂P̃
=

∂Vi (.)
∂P̃

× 1
(

P̃ ∈ P̃i
)

︸ ︷︷ ︸
consumer price effect

+
∂Vi (.)

∂Ei

∂Ei

∂P̃︸ ︷︷ ︸
income effect

− δi
∂Z(global)

∂P̃︸ ︷︷ ︸
emission effect

= 0 (B.16)

The first term on the right-hand side represents the direct welfare impact of perturbing consumer

prices via policy. The second term represents the welfare gains from changes in income. The third

term represents the impact through altering global emissions. Noting that Ei = Yi (Pi, w, C, Zi, P0),

where C ≡ [Ci, C−i, Ci,0, C−i,0], the income effects can be expanded according to59:

∂Ei

∂P̃
=

∂Yi (.)
∂P̃︸ ︷︷ ︸

direct income effect

+
∂Yi (.)

∂w
∂w
∂P̃

+
∂Yi (.)

∂C
∂C
∂P̃

+
∂Yi (.)

∂Zi

∂Zi

∂P̃
+

∂Yi (.)
∂P0

∂P0

∂P̃︸ ︷︷ ︸
indirect income effect

. (B.17)

Additionally, since Z(global) = Zi1K + ∑n ̸=i Zn1K = ∑k Zi,k + ∑n ̸=i ∑k Zn,k, where Zn = zn (.) Qn, the

emission effects can be unpacked as:

∂Z(global)

∂P̃
=

∂Zi

∂P̃
1︸ ︷︷ ︸

home emission effect

+ z⊤−i
∂Q−i

∂P̃
+ ∑

n ̸=i

(
∂zn (.)

∂P̃
+

∂zn (.)
∂wn

∂wn

∂P̃
+

∂zn (.)
∂P−i,0

∂P−i,0

∂P̃

)
Qn︸ ︷︷ ︸

foreign emission effect

(B.18)

59 To keep our notation compact and easier to follow, we omit the transpose sign hereafter, with the understanding that
each product in the F.O.C.s represents compatible row and column vectors (or matrices), e.g., ∂Yi(.)

∂w
∂w
∂P̃ = ∑n

∂Yi(.)
∂wn

∂wn
∂P̃ .
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Equation B.16 with the income and emission effects given by Equations B.17 and B.18 are the basis

of our derivations below. We take three steps dealing with wage effects, local prices, and export prices.

Along these steps, we produce several lemmas summarizing our intermediate results. Proofs to the

lemmas are provided after putting the lemmas together to present the final solution.

B.4 Local Input Price Neutrality

As our first intermediate result, we show that given the availability of policy instruments to control

prices of domestically-produced goods, home’s income Yi is neutral to domestic factor prices, wi and

Pi,0, as formalized by the following lemma:

Lemma 1. If country i’s government is afforded sufficient policy instruments to regulate the consumer prices of
all domestically-produced goods

[
P̃in,k

]
n,k ∈ P̃i, then country i’s income is invariant to changes in local factor

prices, i.e., local wage rates and extraction price of energy, wi and Pii,0,

∂Yi (.)
∂wi

=
∂Yi (.)
∂Pii,0

= 0 (B.19)

The proofs of Lemma 1 and subsequent lemmas are provided in Appendix B.9. Lemma 1 does

not require the policy choice to be at the optimum, nor does it require the government to control the

prices of imported goods. Instead, it merely follows from producers’ cost minimization, as reflected

by Shepard’s lemma and Hotelling’s lemma, and market clearing conditions.

In addition, following Assumption A1, we can solve the first-order conditions disregarding the

local welfare effects due to policy-induced changes in foreign wages, w−i ≡ [wn]n ̸=i, and foreign

wage-to-income ratios [wn/En]n ̸=i. These effects correspond to:[
∂Yi (.)
∂w−i

+
∂Yi (.)
∂C−i

∂D̃−i (.)
∂w−i

]
∂w−i

∂P̃
− δi ∑

n ̸=i

∂zn (.)
∂wn

∂wn

∂P̃
≈ 0, (B.20)

where function D̃−i is the Marshalian demand function reformulated to include foreign wages as an

explicit input. In particular, D̃n
(
wn, P̃n

)
≡ Dn

(
En, P̃n

)
= Dn

(
1

υn
wn L̄n, P̃n

)
, where υn is the share of

wage payments to total income, which (invoking A1) is invariant to Pi.

B.5 Optimal Local Prices

We use the term “local prices” to refer to country i’s consumer prices (for domestic or imported vari-

eties) P̃i = [P̃ni,k]n,k and carbon taxes τi = [τi,k]k ̸=0. Invoking Assumption A1 (the expression shown

by Equation B.20) and applying Lemma 1, the generic F.O.C. (described by Equations B.16-B.17-B.18)

w.r.t. a local price instrument, P̃ ∈
{

P̃i, P̃i,0, τi
}

, reduces to:60

∂Vi (.)
∂P̃

+
∂Vi (.)

∂Ei

[
∂Yi (.)

∂P̃
+

∂Yi (.)
∂Ci

∂Ci

∂P̃
+

∂Yi (.)
∂Ci,0

∂Ci,0

∂P̃
+

∂Yi (.)
∂Zi

∂Zi

∂P̃
+

∂Yi (.)
∂P−i,0

∂P−i,0

∂P̃

]
︸ ︷︷ ︸

∂Ei/∂P̃

− δi

(
∂Zi

∂P̃
1 + z−i

∂Q−i

∂P̃
+ ∑

n ̸=i

(
∂zn (.)
∂P−i,0

∂P−i,0

∂P̃

)
Qn

)
= 0

60 Note that local prices do not directly affect foreign consumption. Therefore, ∂Yi(.)
∂C

∂C
∂P̃ reduces to ∂Yi(.)

∂Ci

∂Ci
∂P̃ +

∂Yi(.)
∂Ci,0

∂Ci,0

∂P̃
for P̃ ∈

{
P̃i, τi

}
.
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Appealing to Roy’s identity and Shephard’s lemma, it follows that for any local price P̃ ∈
{

P̃i, P̃i,0, τi
}

,

the mechanical gains from revenue generation, ∂Vi(.)
∂Ei

∂Yi(.)
∂P̃ , are exactly offset by a proportional loss to

consumer surplus due to higher prices, ∂Vi(.)
∂P̃ . For instance, consider the imported price of industry k

from origin j, P̃ = P̃ji,k. When country i’s government raises P̃ji,k, i’s income increases proportional to

its imported quantity ∂Yi(.)
∂P̃ji,k

= Cji,k, whereas Roy’s identity implies ∂Vi(.)
∂P̃ji,k

= − ∂Vi(.)
∂Ei

× Cji,k. Together,
∂Vi(.)
∂P̃ji,k

+ ∂Vi(.)
∂Ei

∂Yi(.)
∂P̃ji,k

= 0.

Lemma 2. For any local price instrument, P̃ ∈
{

P̃i, P̃i,0, τi
}

,

∂Vi (.)
∂P̃︸ ︷︷ ︸

consumer price effect

+
∂Vi (.)

∂Ei

∂Yi (.)
∂P̃︸ ︷︷ ︸

direct income effect

= 0 (B.21)

Lemma 2 indicates that the “consumer price effect” in the F.O.C. described by Equations B.16-

B.17-B.18 exactly offsets the “direct income effect.” This result reduces the F.O.C. w.r.t. local prices

to:

∂Yi (.)
∂Ci

∂Ci

∂P̃
+

∂Yi (.)
∂Ci,0

∂Ci,0

∂P̃
+

∂Yi (.)
∂Zi

∂Zi

∂P̃
+

∂Yi (.)
∂P−i,0

−δ̃i

(
∂Zi

∂P̃
1 + z−i

∂Q−i

∂P̃
+ ∑

n ̸=i

(
∂zn (.)

∂P̃
+

∂zn (.)
∂wn

∂wn

∂P̃

)
Qn

)
= 0

where (recall that) δ̃i ≡ δi

(
∂Vi(.)

∂Ei

)−1
.

The next step is to expand and simplify the remaining terms in the above equation. We begin with

the terms ∂Yi(.)
∂Zi

and δ̃iz−i
∂Q−i

∂P̃ :

1. Under A1, local prices influence foreign output only through changes to local consumption of

foreign varieties.61 Applying the chain rule to Q−i = Q−i (.), we get:

δ̃iz−i
∂Q−i

∂P̃
= δ̃iz−i

∂Q−i (.)
∂Ci

∂Ci

∂P̃

where ∂Q−i(.)
∂Ci

is a matrix that stacks the partial derivative of the output function Qn,k (.), defined

by Equation B.11 for foreign countries n ̸= i w.r.t. their exports to home country i.

2. An increase in local emissions raises country i’s income proportional to its local carbon taxes:

∂Yi (.)
∂Zi

= τi

Using Lemma 2 and the above two expressions, the first-order condition w.r.t. local price, P̃ ∈{
P̃i, P̃i,0, τi

}
, can be simplified as follows:[

∂Yi (.)
∂Ci

− δ̃iz−i
∂Q−i (.)

∂Ci

]
∂Ci

∂P̃
+
[
τi − δ̃i1

] ∂Zi

∂P̃

+
∂Yi (.)
∂Ci,0

∂Ci,0

∂P̃
+

[
∂Yi (.)
∂P−i,0

− δ̃i ∑
n ̸=i

∂zn (.)
∂P−i,0

Qn

]
∂P−i,0

∂P̃
= 0 (B.22)

61 If we were not to invoke A1, we would also need to track changes in foreign consumption quantities via alterations
of foreign income levels. Specifically, ∂C−i

∂P̃ = ∂D−i(.)
∂P̃ + ∂D−i(.)

∂E−i

∂E−i
∂P̃ = 0, where the first term on the right-hand side is

zero by construction, and the second term is zero by invoking A1.
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The trick to further simplifying the above equation is to represent ∂P−i,0
∂P̃ in terms of ∂Ci,0

∂P̃ and merge

the energy price effects with the domestic demand effects. The following lemma enables this step.

Lemma. (E1) The term consisting of foreign energy price effects in Equation B.22 can be represented in terms
of local demand effects as [

∂Yi (.)
∂P−i,0

− δ̃i ∑
n ̸=i

∂zn (.)
∂P−i,0

Qn

]
∂P−i,0

∂P̃
= −Ω̃i,0P0

∂Ci,0

∂P̃
,

where Ω̃i,0 is an N × 1 vector whose element j is ω̃ji,0 = ∑n ̸=i ψ̃
(i,0)
nj ρni,0 + δ̃i ∑ℓ ̸=i ∑n ̸=i

[
ψ̃
(i,0)
ℓj ρℓn,0

ζn
P̃n,0

]
.

Here, ψ̃
(i,0)
nj ≡ ϕn

1−ϕn
ψ
(i,0)
nj

Yn,0
Yj,0

represents backward linkages in the energy sector, where ψ
(i,0)
nj is entry (n, j)of

matrix

Ψ(i,0) ≡ inv

IN −
[
1n ̸=i ∑

ℓ ̸=i

ϕj

1 − ϕj
ρnℓ,0ε

(jℓ,0)
nℓ,0

]
n,j

 .

Using Lemma E1, the F.O.C. can be written as:[
∂Yi (.)

∂Ci
− δ̃iz−i

∂Q−i (.)
∂Ci

]
∂Ci

∂P̃
+
[
τi − δ̃i1

] ∂Zi

∂P̃
(B.23)

+

[
∂Yi (.)
∂Ci,0

− Ω̃i,0P0

]
∂Ci,0

∂P̃
= 0

The solution to the above first-order condition can be obtained by solving three independent sub-
problems: 

τi − δ̃i1 = 0 (a)

∂Yi(.)
∂Ci

− δ̃iz−i
∂Q−i(.)

∂Ci
= 0 (b)

∂Yi(.)
∂Ci,0

− Ω̃i,0P0 = 0 (c)

(B.24)

Hence, we are able to characterize optimal local prices (and corresponding taxes) without having

to calculate the complex GE elasticities ∂Ci
∂P̃ , ∂Ci,0

∂P̃ , ∂Zi
∂P̃ . Sub-problem (a) determines the optimal local

carbon taxes; sub-problem (b) pins down import tariffs and production subsidies on final goods; and,

sub-problem (c) pins down the import tariffs and production subsidies on energy. To see this, note

that:
∂Yi (.)

∂Ci
=
(
P̃i − Pi

)
,

∂Yi (.)
∂Ci,0

=
(
P̃i,0 − Pi,0

)
, δ̃iz−i

∂Q−i (.)
∂Ci

= δ̃i ∑
n ̸=i

vnPni,

where (recall that) vn = [vn,k]k ̸=0 with vn,k = Zn,k/Yn,k as emission per dollar of output in country

n−industry k. In an expanded format, we could equivalently write Equation B.23 as:

∑
k ̸=0

(
P̃ii,k − Pii,k

) ∂Cii,k

∂P̃
+ ∑

n ̸=i
∑
k ̸=0

(
P̃ni,k −

(
1 + δ̃ivn,k

)
Pni,k

) ∂Cni,k

∂P̃(
P̃ii,0 − Pii,0

) ∂Cii,0

∂P̃
+ ∑

n ̸=i

(
P̃ni,0 − (1 + ω̃ni,0) Pni,0

) ∂Cni,0

∂P̃
+ ∑

k

(
τi,k − δ̃i

) ∂Zi,k

∂P̃
= 0 (B.25)

in conjunction with the solution to the sub-problems, Equation B.24, that are as follows in an expanded
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format: 

τi,k − δ̃i = 0, k > 0 (1) local carbon taxes

P̃ii,k − Pii,k = 0, k > 0 (b1) prod. tax on final goods

P̃ni,k −
(
1 + δ̃ivn,k

)
Pni,k = 0, n ̸= i, k > 0 (b2) import taxes on final goods

P̃ii,0 − Pii,0 = 0 (c1) prod. tax on energy

P̃ni,0 − (1 + ω̃ni,0) Pni,0, n ̸= i (c2) import taxes on energy

(B.26)

where the labels in front of each line describe the tax instrument that corresponds to each sub-problem.

Before deriving the optimal export prices, we present an envelope result to simplify the upcom-

ing derivation. As previously noted, the sub-problems characterized by Equation (B.24) (or their ex-

panded format in Equation B.26) eliminate the need to characterize the GE elasticities of local demand

and emissions with respect to local price instruments. Based on the same logic, if these sub-problems

are satisfied, they eliminate the need to characterize the GE elasticities with respect to export price

instruments. In other words, the conditions for optimality with respect to local prices, as defined by

Equation B.24, allow us to disregard the GE effects of export prices on local variables. The following

lemma formalizes this result:

Lemma 3. [Envelope result] The optimal local prices are the solution to the three sub-problems listed in Equa-
tion (B.24). Consequently, the following is satisfied for any policy instrument P̃ ∈ Pi, i.e., both local price and
export price instruments, provided that the policy choice is at the optimum P∗

i :[
∂Yi (.)

∂Ci
− δ̃iz−i

∂Q−i (.)
∂Ci

]
∂Ci

∂P̃
+
[
τi − δ̃i1

] ∂Zi

∂P̃

+

[
∂Yi (.)
∂Ci,0

− Ω̃i,0P0

]
∂Ci,0

∂P̃
= 0

B.6 Optimal Export Prices

The first-order condition w.r.t. any of country i’s export price instrument, P̃ ∈
{

P̃in
}

n ̸=i, can be written

as:

∂Vi (.)
∂Ei

[
∂Yi (.)

∂P̃
+

∂Yi (.)
∂C

∂C
∂P̃

+
∂Yi (.)

∂Zi

∂Zi

∂P̃
+

∂Yi (.)
∂P−i,0

∂P−i,0

∂P̃

]
︸ ︷︷ ︸

∂Ei/∂P̃

−δi

(
∂Zi

∂P̃
+ z−i

∂Q−i

∂P̃
+ ∑

n ̸=i

(
∂zn (.)

∂P̃
+

∂zn (.)
∂P−i,0

∂P−i,0

∂P̃

)
Qn

)
= 0,

where (recall that) C ≡ [Ci, C−i, Ci,0, C−i,0] and ∂Vi(.)
∂P̃ drops out because export prices do not explicitly

enter the indirect utility function.

Consider any of country i’s export prices in a given foreign country n ̸= i, P̃ ∈ P̃in = [P̃in,k]k.

Invoking Assumption A1, the impact of P̃ via changes that it induces to wages and income in all

foreign countries can be treated as negligible (up to Walras’s law). Therefore, P̃ influences demand

quantities around the world only through two channels: (i) directly, in foreign country n through

the matrix of price elasticities of country n’s Marshallian demand, Din (.); and (ii) indirectly, in the

home country i through GE effects on home’s income, Yi. Additionally, P̃ influences global emissions,

and the previous comment applies to the extent that the emission levels across countries scale up
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by their demand quantities. Consequently, for any of country i’s export prices in country n ̸= i,
P̃ ∈ P̃in = [P̃in,k]k, we can reorganize the first-order condition as:

∂Yi (.)
∂P̃

+
∂Yi (.)
∂Cin

∂Din (.)
∂P̃

+

[
∂Yi (.)

∂Ci
− δ̃iz−i

∂Q−i (.)
∂Ci

]
∂Ci

∂P̃

1
(

P̃ = P̃in,0
) ∂zn (.)

∂P̃
Qn − δ̃i ∑

j ̸=i
zj

∂Qj (.)
∂C jn

∂Djn (.)

∂P̃
+
[
τi − δ̃i1

] ∂Zi

∂P̃

∂Yi (.)
∂Ci,0

∂Ci,0

∂P̃
+

[
∂Yi (.)
∂P−i,0

− δ̃i ∑
n ̸=i

∂zn (.)
∂P−i,0

Qn

]
∂P−i,0

∂P̃
= 0 (B.27)

We provide an analog of Lemma E1 for the case of export price instruments, which allows us to

absorb the last line in the above equation into the terms appearing in the first two lines:

Lemma. (E2) The term consisting of foreign energy price effects in Equation B.27 can be represented in terms
of local demand effects as:[

∂Yi (.)
∂P−i,0

− δ̃i ∑
n ̸=i

∂zn (.)
∂P−i,0

Qn

]
∂P−i,0

∂P̃
= −Ω̃i,0P0

(
∂Ci,0

∂P̃in,k
+ 1

(
P̃ = P̃in,0

) ∂Dn,0 (.)
∂P̃in,0

)
,

where Ω̃i,0 is already defined in Lemma E1.

Using Lemma E2, we can rewrite the F.O.C. w.r.t. an export price instrument, P̃ ∈ P̃in, as

∂Yi (.)
∂P̃

+
∂Yi (.)
∂Cin

∂Din (.)
∂P̃

+

[
∂Yi (.)

∂Ci
− δ̃iz−i

∂Q−i (.)
∂Ci

]
∂Ci

∂P̃

1
(

P̃ = P̃in,0
) ∂zn (.)

∂P̃
Qn − δ̃i ∑

j ̸=i
zj

∂Qj (.)
∂C jn

∂Djn (.)

∂P̃
+
[
τi − δ̃i1

] ∂Zi

∂P̃

∂Yi (.)
∂Ci,0

∂Ci,0

∂P̃
− Ω̃i,0P0

(
∂Ci,0

∂P̃
+ 1

(
P̃ = P̃in,0

) ∂Dn,0 (.)
∂P̃

)
= 0 (B.28)

Invoking the envelope result (Lemma 3), the following must equal zero at the optimum,[
∂Yi (.)

∂Ci
− δ̃iz−i

∂Q−i (.)
∂Ci

]
∂Ci

∂P̃
+
[
τi − δ̃i1

] ∂Zi

∂P̃
+

[
∂Yi (.)
∂Ci,0

− Ω̃i,0P0

]
∂Ci,0

∂P̃
= 0

Therefore, the first-order conditions w.r.t. export prices of final goods P̃ = P̃ni,k (for all n ̸= i, k > 0)

and energy P̃ni,0 (for all n ̸= i) reduce to:62


∂Yi(.)
∂P̃ni,k

+ ∂Yi(.)
∂Cin

∂Din(.)
∂P̃ni,k

− δ̃i ∑j ̸=i zj
∂Qj(.)
∂C jn

∂Djn(.)
∂P̃ni,k

= 0, (k > 0) (d)

∂Yi(.)
∂P̃in,0

+ ∂Yi(.)
∂Cin

∂Din(.)
∂P̃in,0

+ ∂zn(.)
∂P̃in,0

Qn − Ω̃i,0P0
∂Dn,0(.)

∂P̃in,0
= 0, (k = 0) (e)

(B.29)

(General Version of) Proposition 1. Country i’s unilaterally optimal policy can be obtained by solving
the five sub-problems (a), (b), (c), (d), and (e) listed by Equations B.24 and B.29. Solving these sub-problems
involve taking partial derivatives of known functions w.r.t. to their arguments, without specifying complex
general equilibrium derivatives.

62 Note that the term δ̃i ∑j ̸=i zj
∂Qj(.)
∂C jn

∂Djn(.)
∂P̃ does not appear in the equation for the energy price instrument. This is be-

cause, in our notation, households consume energy through their purchases from a fictitious industry k0 ∈ {1, ..., K}
that converts the energy input bundle to a final good without generating any value added.
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Note that for simplicity in exposition, Proposition 1 in the main text assumes producer prices of

energy do not react to policy. In that case, sub-problem (c) in Equation B.24 reduces to P̃i,0 − Pi,0 = 0;

and sub-problem (e) in Equation B.29 simplifies as Ω̃i,0 collapses to zero. Proposition 1 in the main

text bundles the resulting expressions into three sub-problems that correspond to local carbon taxes,

import prices, and export prices.

Next, we can use the definition of function Yi (.), as described by Equation B.14, and invoke Shep-

herd’s lemma in the case of energy exports to characterize ∂Yi(.)
∂P̃ , which represents the mechanical

revenue gains from policy.

Lemma. (E3) The direct effect of export prices on income equals:

∂Yi (.)
∂P̃in,k

= Cin,k, for k ̸= 0;
∂Yi (.)
∂P̃in,0

= (1 + Λin,0)Cin,0,

where Λin,0 is the share of energy exports that are reimported via final good trade.63

Using Lemma E3 and noting that zj,g
∂Qj,k(.)
∂Cjn,k

= vj,gPjn,g,64 we can write the first-order condition

w.r.t. non-energy and energy export prices as:

Cin,k + ∑
g

(
P̃in,g − Pin,g

) ∂Din,g (.)

∂P̃in,k
− ∑

j ̸=i
∑
g

[
vj,gPjn,g

∂Djn,g (.)

∂P̃in,k

]
= 0 (B.30)

(
1 + Λin,0 +

ζn

Pn,0

)
Cin,0 +

(
P̃in,0 − Pin,0

) ∂Din,0 (.)
∂P̃in,0

+ ∑
j ̸=i

ω̃ji,0Pj,0
∂Djn,0 (.)

∂P̃in,0
= 0 (B.31)

where ζn is the partial elasticity of energy input demand (equivalently, emission) w.r.t. the energy

input price,

ζn ≡
∂ ln (∑k Zn,k (.))

∂ ln P̃n,0
= −ς (1 − αn) , where αn ≡ ∑

g ̸=0
αn,g

Zn,g

Zn

Lastly, using our short-hand notation for Marshallian demand elasticities,
∂ ln Djn,g(.)

∂ ln P̃in,k
∼ ε

(in,k)
jn,g , and

country n’s expenditure shares ein,g = P̃in,gCin,g/En, we can write the first-order conditions more

compactly as

[final goods] ein,k + ∑
g

(
1 −

Pin,g

P̃in,g

)
ein,gε

(in,k)
in,g − ∑

j ̸=i
∑
g

[
vj,gejn,gε

(in,k)
jn,g

]
= 0 (B.32)

[energy]
(

1 + Λin,0 +
ζn

Pn,0

)
ein,0 +

(
1 − Pin,0

P̃in,0

)
ein,0εin,0 + ∑

j ̸=i
ω̃ji,0ejn,0ε

(in,0)
jn,0 = 0 (B.33)

B.7 Proposition 2: Optimal Tax Formulas

Equations B.26, B.32, and B.33 characterize the optimal local carbon tax as well as the optimal consumer-

to-producer price wedges for all the goods associated with country i. From these, we can recover the

63 Specifically, Λin,0 = ∑k λin,0αn,k Pni,kCni,k

P̃in,0Cin,0
which can be shown to be also equal to Λin,0 = ∑k αn,kYn,kρni,k

∑k αn,kYn,k
, where ρni,k =

Pni,kCni,k/Yn,k denotes the sales share to country i out of total output Yn,k.
64 Specifically, zj,g

∂Qj,k(.)
∂Cjn,k

= zj,gdjn,g =
zj,gQj,g
Pjj,gQj,g

Pjn,g = vj,gPjn,g.
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corresponding tax rates as:

(
1 + tji,k

)
=

P̃ji,k

Pji,k
(j ̸= i),

1
1 + si,k

=
P̃ii,k

Pii,k
,

1
1 + xij,k

=
P̃ij,k

Pij,k
/

P̃ii,k

Pii,k
.

where, for completeness, we allow for si,k to denote the production subsidy, which, unlike export

subsidies, is applied irrespective of the final location of sale. We introduce si,k as an explicit policy

instrument in our derivation to demonstrate its redundancy—as claimed in the main text.

From the optimal local price wedges, we can deduce that the optimal policy consists of a uniform

carbon tax that is not supplemented with any production tax or subsidy (i.e., s∗i,k = s∗i,0 = 0),

τ∗
i,k ∼ τ∗

i = δ̃i (B.34)

and import tariffs that are carbon border adjustments for non-energy imports and the sum of terms-

of-trade- and climate-related restrictions for energy imports, encompassed in elasticity ω̃:

t∗ni,k = τ∗
i vn,k t∗ni,0 = ω̃ni,0. (B.35)

Here, ω̃ni,0 is a composite general equilibrium climate-adjusted inverse export supply elasticity that

can be decomposed as follows:

ω̃ni,0 ≡ ∑
ι ̸=i

ψ̃
(i,0)
ιn ριi,0︸ ︷︷ ︸

terms of trade

+ δ̃i ∑
ℓ ̸=i

∑
ι ̸=i

[
ψ̃
(i,0)
ℓn ρℓι,0

ζι

P̃ι,0

]
︸ ︷︷ ︸

climate related

The above formulas hold irrespective of the underlying consumption utility aggregator. The optimal

export tax can be recovered non-parametrically inverting and solving the system of Equations B.32

and B.33 market by market. As a practical step, we first derive the optimal export tax formula in the

semi-parametric case where preferences are additively separable across industries and generalized

separable within industries. In this case, ε
(ij,g)
ij,k = 0 if g ̸= k. Moreover, per Cournot aggregation,

−
(

1 − λij,k

)
ε
(ij,k)
nj,k = λij,k

(
1 + εij,k

)
, where λij,k denotes the within industry expenditure share. Plug-

ging these relationships into the F.O.C.s presented above, yields the following optimal export subsidy

formulas for non-energy and energy goods:(
1 + x∗ij,k

)
=

1 + εij,k

εij,k
∑
n ̸=i

[(
1 + δ̃iνn,k

)
λ̀nj,k

]
∼

1 + εij,k

εij,k
∑
ℓ ̸=i

[(
1 + t∗ni,k

)
λ̀nj,k

]
(B.36)

(
1 + x∗ij,0

)
=

1 + εij,0

εij,0
∑
n ̸=i

[(
1 + t∗ni,0

)
λ̀nj,0

]
−
(

Λij,0 + τ∗
i

ζ j

P̃j,0

)
1

εij,0
(B.37)

where εij,k ∼ ε
(ij,k)
ij,k denotes the own-price elasticity of demand and λ̀nj,k ≡ λnj,k/

(
1 − λij,k

)
, which

satisfies the adding up property, ∑ℓ ̸=i λ̀nj,k = 1. The above formulas describe the optimal policy non-

parametrically in terms of generic final and input demand elasticity values. In the CES case, these

elasticity values are given by εij,k = −σk + (σk − 1) λij,k, implying the following formulas for export

subsidies on final goods k > 0:

[CES preferences]
(

1 + x∗ij,k
)
=

σk − 1

1 + (σk − 1)
(

1 − λij,k

) ∑
ℓ ̸=i

[(
1 + t∗ni,k

)
λnj,k

]
.
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The expression for energy goods (k = 0) is similar under a CES aggregator, but it includes an addi-

tional term corresponding to the second term on the right-hand side of Equation B.37.

Non-Separable Preferences. Previously, we derived the optimal export tax formula for the case

where preferences are additively separable across industries. Here, we provide the formula for the

general case. Appealing to the aggregation property, eij,k +∑n,g enj,gε
(ij,k)
nj,g = 0, of Marshallian demand

functions, we can express the first-order condition w.r.t. the export price P̃ij,k, as follows:

− ∑
g ̸=0

[(
1 + x∗ij,g

)
eij,gε

(ij,k)
ij,g

]
− ∑

n ̸=i
∑
g ̸=0

[(
1 + δ̃iνn,g

)
enj,gε

(ij,k)
nj,g

]
= 0,

Noting that t∗ni,g = δ̃iνn,g, we can re-write the above equation in matrix notation as
eij,1ε

(ij,1)
ij,1 ... eij,Kε

(ij,1)
ij,K

...
. . .

...

eij,1ε
(ij,K)
ij,1 ... eij,Kε

(ij,K)
ij,K


︸ ︷︷ ︸

Eij


1 + x∗ij,1

...

1 + x∗ij,K


︸ ︷︷ ︸

1+x∗ij

= −
[

E1j · · · ENj

]
︸ ︷︷ ︸

E−ij


1 + t∗1j

...

1 + t∗Nj


︸ ︷︷ ︸

1+t∗i

,

where Enj is defined analogous to Eij for all n and t∗nj =
[
t∗nj,k

]
k

is a K × 1 vector consisting of optimal

tariffs on origin n varieties. Since | eij,kε
(ij,k)
ij,k | −∑k ̸=j eij,gε

(ij,k)
ij,g = eij,k + ∑n ̸=i ∑g eij,gε

(ij,k)
nj,g > 0, then Eij

is strict diagonally dominant. Hence, given the Lèvy-Desplanques Theorem, Eij is invertible (Horn

and Johnson (2012)) and the above system recovers 1 + x∗ij as

1 + x∗ij = −E−1
ij E−ij (1 + t∗i ) . (B.38)

B.8 Small Open Economy + CES-Cobb-Douglas

The small open economy case of our formulas can be helpful for obtaining intuition. Consider a

small open economy for which ρni,k ≈ λin,k ≈ 0. In addition, suppose preferences have a CES-Cobb-

Douglas parametrization. In that case, the optimal policy schedule becomes:

τ∗
i,k = τ∗

i = δ̃i/P̃i,0 [carbon tax]

t∗ni,k = δ̃ivn,k t∗ni,0 = 0 [import tax]

1 + x∗in,k =
σk−1

σk

(
1 + δ̃i ∑n ̸=i vn,kλnj,k

)
[export subsidy (non-energy)]

1 + x∗in,0 = σ0−1
σ0

+ ζn
σ0

(
δ̃i/P̃n,0

)
[export subsidy (energy)]

where, if the non-energy production function is also CES, then ζn = −ς (1 − αn), where αn = ∑ αn,g
Zn,g
Zn

is the average carbon cost share in country n.

B.9 Proof of Intermediate Lemmas

Proof of Lemma 1. Our goal is to prove the neutrality of local factor prices, ∂Yi(.)
∂wi

= ∂Yi(.)
∂Pii,0

= 0. We

begin with the neutrality of local wages. According to Shephard’s lemma, the derivative of the unit
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price of non-energy goods with respect to the wage rate (the price of labor inputs) is

∂ ln Pin,k (.)
∂ ln wi

= 1 − αi,k,

where 1 − αi,k is the cost share of labor in production and Pin,k(·) is the function that maps input

prices to the output price (Equation B.8), according to cost minimization. For energy goods, we have

a similar expression:
∂ ln Pi,0 (.)

∂ ln wi
= 1 − ϕi

where ϕi ∼ αi,0 denotes the cost share of energy reserves (i.e., non-labor inputs) in energy production

and Pi,0 (.) is given by Equation (B.10). Taking these into account, we compute the derivative of the

function Yi (.), according to Equation B.14, with respect to argument wi:

∂Yi (.)
∂wi

= Li − ∑
n

∂Pin (.)
∂wi

Cin = Li − ∑
n

∂ ln Pin (.)
∂ ln wi

Pin
wi

Cin

= Li −
1
wi

∑
n
(1 − αi)PinCin = Li − ∑

k
∑
n

Lin,k

where Li is the total labor supply in country i, Pin = Pin (.) is the vector of producer prices, and Cin

is the vector of corresponding consumption quantities. The last line uses (1 − ϕi) Pin,kCin = wiLin,k,

where Lin,k denotes the demand for labor services embedded in variety in, k. Since the total labor

demand ∑k ∑n Lin,k equals the total labor supply Li, due to the labor market clearing condition, we

conclude:
∂Yi (.)

∂wi
= 0

For the case of energy prices, we apply Hotelling’s lemma, which states:

∂Πi (Pi,0, wi)

∂Pi,0
= Qi,0,

where Πi(Pii,0, wi) is the function describing the surplus paid to energy reserve based on profit maxi-

mization, and Qi,0 is total output of the local energy sector. Taking the derivative of Yi(·) with respect

to Pii,0, we obtain:
∂Yi (.)
∂Pii,0

=
∂Πi (.)
∂Pii,0

− ∑
n

d̄in,0Cin,0 = Qi,0 − ∑
n

d̄in,0Cin,0.

The energy market clearing condition requires that the total supply and demand of energy goods are

equal: Qi,0 = ∑n d̄in,0Cin,0. Therefore, we find:

∂Yi(·)
∂Pii,0

= 0.

Proof of Lemma 2. Our goal is to show that for any local price P̃ ∈
{

P̃i, τi
}

, the following holds:

∂Vi (.)
∂Ei

∂Yi (.)
∂P̃

+
∂Vi (.)

∂P̃
= 0

We begin with the case of non-energy consumer prices P̃i. Using Roy’s identity, the direct consumer
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price effect equals:
∂Vi(·)
∂P̃ni,k

= −∂Vi(·)
∂Ei

Cni,k,

Differentiating the income function Yi(·) with respect to P̃ni,k yields ∂Yi(·)
∂P̃ni,k

= Cni,k. Combining these

results:
∂Vi (.)

∂Ei

∂Yi (.)
∂P̃ni,k

+
∂Vi (.)
∂P̃ni,k

=
∂Vi (.)

∂Ei
(Cni,k − Cni,k) = 0

Next, consider the case of local energy consumer prices. Using Roy’s identity:

∂Vi (.)
∂P̃ni,0

= −∂Vi (.)
∂Ei

C(H)
ni,0 ,

where C(H)
ni,0 denotes household consumption of energy. Our notation in the main text traces house-

holds’ consumption of energy via use of a fictitious industry that converts energy inputs to a non-

tradeable final good without creating any value added. We, however, work with a more explicit

notation here to track how energy prices affect the prices of final goods. By Shephard’s lemma:

∂ ln Pin,k (.)
∂ ln P̃i,0k

= αi,k,
∂ ln P̃i,0 (.)
∂ ln P̃ni,0

= λin,0.

Differentiating Yi (.) with respect to P̃ni,0 and applying the above relationships, yields:

∂Yi (.)
∂P̃ni,0

= Cni,0 − ∑
n

∑
k ̸=0

[
∂Pin,k (.)

∂P̃i,0k

∂
(

P̃i,0 + τi,k
)

∂P̃i,0

∂P̃i,0 (.)
∂P̃ni,0

]
Cin,k

= Cni,0 − ∑
n

∑
k ̸=0

[
αi,kλin,0

Pin,k

P̃ni,0

]
Cin,k = Cni,0 − ∑

n
∑
k ̸=0

Zin,k

Cin,k

C(P)
ni,0

Zi

Cin,k

C(H)
ni,0 + C(P)

ni,0

[
1 − ∑

n
∑
k ̸=0

Zin,k

Zi

]
= C(H)

ni,0 ,

where C(P)
ni,0 = 1

P̃ni,0
λin,0 ∑n ∑k ̸=0 [αi,kPin,kCin,k] denotes the demand for energy as a production input.

Combining with Roy’s identity:

∂Vi (.)
∂P̃ni,0

+
∂Vi (.)

∂Ei

∂Yi (.)
∂P̃ni,0

=
∂Vi (.)

∂Ei

(
C(H)

ni,0 − C(H)
ni,0

)
= 0

Finally, consider the case of local carbon taxes, τi. Since the carbon tax τi,k does not explicitly enter

the indirect utility function: ∂Vi(.)
∂τi,k

= 0. Differentiating Yi(·) with respect to τi,k yields:

∂Yi (.)
∂τi

= Zi − ∑
n

∑
k ̸=0

[
∂Pin,k (.)

∂P̃i,0k

∂
(

P̃i,0 + τi,k
)

∂P̃i,0k

]
Cin,k

= Zi − ∑
n

∑
k ̸=0

[
Zin,k

Cin,k
× 1
]

Cin,k = Zi − ∑
n

∑
k ̸=0

Zin,k = 0,

So, altogether, we get the intended result for local carbon taxes:

∂Vi (.)
∂τi,k

+
∂Vi (.)

∂Ei

∂Yi (.)
∂τi,k

= 0.
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Proof of Lemma E1. The proof proceeds in two steps: The first step characterizes the change in global

energy output, ∂Q0
∂P̃ , in terms of local demand changes, ∂Ci

∂P̃ , using the Implicit Function Theorem. Note

that country n’s energy output is Qn,0 = Qn,0 (.), where the function Qn,0 (.) is defined as

Qn,0 (Cn1,0, ..., CnN,0) ≡ ∑
ι

dnι,0Cnι,0,

where Cnι,0 = Dnι,0
(
Eι,0, P̃ι,0

)
. Also, following Equation (B.10) producer prices of energy are Pnι,0 =

Pnι,0 (.) where the function Pnι,0 (.) is now defined as

Pnι,0 (wn, Qn,0) ≡ p̄nι,0 wn Q
ϕn

1−ϕn
n .

Considering these functions, we can apply the chain rule to obtain:

∂ ln Qn,0

∂P̃
=

∂ ln Qn,0 (.)
∂ ln Cni,0

∂ ln Cni,0

∂P̃
+ ∑

j ̸=i
∑
ℓ ̸=i

∂ ln Qn,0 (.)
∂ ln Cnj,0

∂ ln Dnj,0 (.)

∂ ln P̃ℓj,0

∂ ln Pℓj (.)
∂ ln Qℓ,0

∂ ln Qℓ,0

∂P̃
,

The above expression can be further simplified by noting that ∂ ln Qn,0(.)
∂ ln Cni,0

= ρni,0 and
∂ ln Pℓj(.)
∂ ln Qℓ,0

= ϕℓ
1−ϕℓ

.

With these simplifications and leveraging our compact notation for Marshallian demand elasticities,
∂ ln Dnj,0(.)

∂ ln P̃ℓj,0
∼ ε

(ℓj,0)
nj,0 , the above equation can be rewritten in vector notation as:

∂ ln Q
∂P̃

= ρi,0
∂ ln Ci

∂P̃
+

[
∑
j ̸=i

ϕℓ

1 − ϕℓ
ρnj,0ε

(ℓj,0)
nj,0

]
n,ℓ︸ ︷︷ ︸

Υ(i,0)

∂ ln Q
∂P̃

,

where Υ(i,0) is an N × N square matrix. Inverting the above systems yields the following expression:

∂ ln Qn,0

∂ ln P̃
= ∑

j ̸=i
ψ
(i,0)
nj ρji,0

∂ ln Cji,0

∂ ln P̃
, (B.39)

where ψjn is the (n, j) entry of the matrix Ψ(i,0) ≡
(

I − Υ(i,0)
)−1

and measures forward linkages from

local energy demand to foreign energy prices.

In the second step, we use Equation B.39, to characterize ∂Yi(.)
∂P−i,0

∂P−i,0
∂P̃ and δ̃i ∑n ̸=i

∂zn(.)
∂P−i,0

∂P−i,0
∂P̃ Qn in

terms of ∂Ci
∂P̃ . Considering ∂Yi(.)

∂P−i,0
= C−ii,0, we get

∂Yi (.)
∂P−i,0

∂P−i,0

∂P̃
= ∑

n ̸=i
Cni,0

∂Pn,0

∂P̃
= ∑

n ̸=i
Pn,0Cni,0

∂ ln Pn,0 (.)
∂ ln Qn,0

∂ ln Qn,0

∂ ln P̃

= ∑
n ̸=i

∑
j ̸=i

[
Pn,0Cni,0

ϕn

1 − ϕn
ψ
(i,0)
nj ρji,0

∂ ln Cji,0

∂P̃

]

=∑
j ̸=i

∑
n ̸=i

[
ϕn

1 − ϕn
ψ
(i,0)
nj

Yn,0

Yj,0
ρni,0

]
Pj,0

∂Cji,0

∂P̃

=∑
j ̸=i

∑
n ̸=i

[
ψ̃
(i,0)
nj ρni,0

]
Pj,0

∂Cji,0

∂P̃
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where ψ̃
(i,0)
nj is the adjusted linkage coefficient normalized based on size and elasticity:

ψ̃
(i,0)
nj ≡ ϕn

1 − ϕn
ψ
(i,0)
nj

Yn,0

Yj,0
.

Using the same idea, we can specify the emission effects as

δ̃i ∑
n ̸=i

∂zn (.)
∂P−i,0

∂P−i,0

∂P̃
Qn = δ̃i ∑

n ̸=i
∑
ℓ ̸=i

Zn
∂ ln zn (.)
∂ ln P̃n,0

∂P̃n,0 (.)
∂ ln P̃ℓ,0

∂ ln Pℓ,0

∂P̃

= δ̃i ∑
ℓ ̸=i

[
∑
n ̸=i

Znςnλℓn,0

]
∂ ln Pℓ,0

∂P̃
= δ̃i ∑

ℓ ̸=i

[
∑
n ̸=i

Znςn
Pℓ,0Cℓn,0

P̃n,0Zn

]
∂ ln Pℓ,0

∂P̃

= δ̃i ∑
j ̸=i

∑
ℓ ̸=i

[
ϕℓ

1 − ϕℓ
ψ
(i,0)
ℓj

Yℓ,0

Yj,0
∑
n ̸=i

ρℓn,0
ςn

P̃n,0

]
Pj,0

∂Cji,0

∂P̃

= δ̃i ∑
j ̸=i

∑
ℓ ̸=i

[
ψ̃
(i,0)
ℓj ∑

n ̸=i
ρℓn,0

ςn

P̃n,0

]
Pj,0

∂Cji,0

∂P̃

where ψ̃
(i,0)
ℓj ≡ ϕℓ

1−ϕℓ
ψ
(i,0)
ℓj

Yℓ,0
Yj,0

. Utilizing the above equations, we can merge and formulate the terms

accounting for energy price effects as[
∂Yi (.)
∂P−i,0

− δ̃i ∑
n ̸=i

∂zn (.)
∂P−i,0

Qn

]
∂P−i,0

∂P̃
= −Ω̃i,0P0

∂Ci,0

∂P̃

where Ω̃i,0 is a N × 1 vector given by:

Ω̃i,0 =

[
∑
n ̸=i

ψ̃
(i,0)
nj ρni,0 + δ̃i ∑

ℓ ̸=i
∑
n ̸=i

[
ψ̃
(i,0)
ℓj ρℓn,0

ςn

P̃n,0

]]
j

The subscript i, 0 signifies that country i’s government is setting all the local and export energy prices

associated with location i (i.e., these price variables are pinned down by the policy choice , Pi).

Proof of Lemma E2. The proof of this lemma mirrors that of Lemma E1. Extrapolating from the proof

of Lemma E1, we can specify the change in global energy output in response to export price instru-

ment, P̃ as follows:

∂ ln Qℓ,0

∂ ln P̃
= ∑

j ̸=i
ψ
(i,0)
ℓj

(
ρji,0

∂ ln Cji,0

∂ ln P̃
+ ρjn,0

∂ ln Djn,0 (.)

∂ ln P̃
1
(

P̃ = P̃in,0
))

Here, 1
(

P̃ = P̃in,0
)

is an indicator variable that equals one if policy P̃ regulates energy export prices

to market n, and zero otherwise. The rationale is that, according to Assumption (A1), policy P̃ affects

energy demand only in the foreign market it targets and, indirectly, in the local market through gen-

eral equilibrium income effects. Using the above equation, and following the logic outline previously

under the proof of Lemma 3, we can write the foreign energy price-driven welfare effects associated
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with income changes as

∂Yi (.)
∂P−i,0

∂P−i,0

∂P̃
= ∑

n ̸=i
Cni,0

∂Pn,0

∂P̃
= ∑

n ̸=i
Pn,0Cni,0

∂ ln Pn,0 (.)
∂ ln Qn,0

∂ ln Qn,0

∂ ln P̃

= ∑
n ̸=i

∑
j ̸=i

[
Pn,0Cni,0

ϕn

1 − ϕn
ψ
(i,0)
nj

(
ρji,0

∂ ln Cji,0

∂P̃
+ ρjn,0

∂ ln Djn,0 (.)

∂ ln P̃

)]

=∑
j ̸=i

∑
n ̸=i

[
ϕn

1 − ϕn
ψ
(i,0)
nj

Yn,0

Yj,0
ρni,0

](
Pj,0

∂Cji,0

∂P̃
+ Pj,0

∂Djn,0 (.)

∂ ln P̃

)

=∑
j ̸=i

∑
n ̸=i

[
ψ̃
(i,0)
nj ρni,0

] (
Pj,0

∂Cji,0

∂P̃
+ Pj,0

∂Djn,0 (.)

∂ ln P̃

)

where ψ is the forward linkage coefficient defined earlier (under the proof of Lemma 3) and ψ̃
(i,0)
nj ≡

ϕn
1−ϕn

ψ
(i,0)
nj

Yn,0
Yj,0

. Likewise, the welfare effects associated with global emissions changes can be specified

as

δ̃i ∑
n ̸=i

∂zn (.)
∂P−i,0

∂P−i,0

∂P̃
Qn = δ̃i ∑

j ̸=i
∑
ℓ ̸=i

[
ψ̃
(i,0)
ℓj ∑

n ̸=i
ρℓn,0

ςn

P̃n,0

](
Pj,0

∂Cji,0

∂P̃
+ Pj,0

∂Djn,0 (.)

∂ ln P̃

)
Combining the above above equations, we can specify the welfare effects that channel through foreign

energy prices as[
∂Yi (.)
∂P−i,0

+ δ̃i ∑
n ̸=i

∂zn (.)
∂P−i,0

Qn

]
∂P−i,0

∂P̃
= −∑

j ̸=i
ω̃ji,0

(
Pj,0

∂Cji,0

∂P̃
+ Pj,0

∂Djn,0 (.)

∂ ln P̃

)
= −Ωi,0P0

(
∂Ci,0

∂P̃in,k
+ 1

(
P̃ = P̃in,0

) ∂Dn,0 (.)
∂P̃in,0

)

Proof of Lemma E3. We want to show that ∂Yi(.)
∂P̃in,k

= [1 + Λin,01 (k = 0)]Cin,k. In the case of final goods

(k ̸= 0), the proof follows trivially from the definition of the function Yi (.). In the case of the energy

good the proof is more involved as energy export taxes are passed onto foreign producer prices for

final goods, influencing the import tariff revenue from final goods. In particular,

∂Yi (.)
∂P̃in,0

= Cin,0 + Cni
∂Pni (.)
∂ ln P̃n,0

∂ ln Pn,0 (.)
∂P̃in,0

The second term on the right-hand side reflects the fact that a fraction of energy export taxes are

passed on to domestic consumers via re-importation of the local energy content in foreign final goods.

This term can be expanded as follows using Shephard’s Lemma:

∂ ln Pni,k (.)
∂ ln P̃n,0

= αi,0,
∂ ln Pn,0 (.)

∂ ln P̃in,0
= λin,0

More specifically,

Cni
∂Pni (.)
∂ ln P̃n,0

∂ ln Pn,0 (.)
∂P̃in,0

= ∑
k ̸=0

Pni,k

P̃in,0

∂ ln Pni,k (.)
∂ ln P̃n,0

∂ ln Pn,0 (.)
∂ ln P̃in,0

= ∑
k ̸=0

Pni,kCni,kαn,k
λin,0

P̃in,0

= ∑
k ̸=0

Pni,kCni,k
P̃n,0Zn,k

Yn,k

P̃in,0Cin,0

P̃n,0Zn

1
P̃in,0

= ∑
k ̸=0

[
ρni,k

Zn,k

Zn

]
Cin,0
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where the term ∑k ̸=0

[
ρni,k

Zn,k
Zn

]
in the last line represents the share of local energy content re-imported

via the final good imports for country n, which we refer to by Λin,0:

Λin,0 ≡ ∑
k ̸=0

ρni,k
Zn,k

Zn
∼ ∑k αn,kYn,kρni,k

∑k αn,kYn,k
.

Plugging the simplified expression for price effects back into our initial expression for ∂Yi(.)
∂P̃in,0

, yields

∂Yi (.)
∂P̃in,0

= (1 + Λin,0)Cin,0.

C Optimal Cooperative Policies

This section characterizes optimal policy formulas for the globally first best. In this scenario, a global

planner maximizes a weighted average of log national welfare values, as the global welfare, subject to

the availability of lump-sum transfers. Note that the outcome of this scenario is equivalent to a Nash

bargaining game with side payments.

C.1 First-Best: Globally Optimal Carbon Taxes

We consider a planning problem where the planner maximizes the global welfare, as the weighted

average of log national welfare values, by setting prices and implementing income transfers. The

planner’s choice of transfers determine the share of national expenditure (πi) from global income, i.e.,

Ei = πiY, where Y = ∑i Yi. The optimal policy P ≡
{

P̃, τ, π
}

consisting of consumers prices, carbon

taxes, and inter-country transfers, can be obtained as the solution to following planning problem

max
P

∑
n

ϑn ln Wn, where Wn = Vn
(
En, P̃n

)
− δnZ(global)

subject to equilibrium constraints and the availability of lump-sum international transfers. In partic-

ular, Ei = πiY (P, w, P0, C, Z), where

Y (P, w, P0, C, Z) ≡ ∑
i
[wiLi + Πi (wi, Pi,0)] + ∑

i
∑
k

τi,kZi,k

+ ∑
i

(
P̃i − Pi (P, w)

)⊺ Ci + ∑
n,i

[(
P̃ni,0 − Pn,0

)
Cni,0

]
The Pareto weights, ϑn, are exogenous policy parameters that add up to one, ∑n ϑn = 1. As before,

let Wn = Vn (.) − δnZ(global) denote country n’s climate-adjusted welfare. The first-order condition

(∂W/∂P̃ = 0) with respect to a generic policy instrument P̃ ∈ P is

∑
n

(
ϑn

Wn

∂Vn (.)
∂En

πn

) [
∂Y (.)

∂P̃
+

∂Y (.)
∂w

∂w
∂P̃

+
∂Y (.)
∂P0

∂P0

∂P̃
+

∂Y (.)
∂C

∂C
∂P̃

+
∂Y (.)

∂Z
∂Z
∂P̃

]
︸ ︷︷ ︸

∂Y/∂P̃

+ ∑
n

[
ϑn

Wn

∂Vn (.)
∂P̃

]
−
{

∑
n

[
ϑn

Wn
δn

]
∂Z(global)

∂P̃

}
1 = 0
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The neutrality of inputs prices holds universally here, given that the planner sets output prices glob-

ally. Hence:
∂Y (.)

∂w
=

∂Y (.)
∂P0

= 0,

The above result can be shown in a virtually similar manner to Lemma 1 (Appendix B.4).

First-order Condition w.r.t. P̃i. The first-order condition with respect to local consumer prices in

country i, P̃i =
{

P̃ni,k
}
∈ P̃, is:

∑
n

(
ϑn

Wn

∂Vn (.)
∂En

πn

) [
∂Y (.)
∂P̃i

+
∂Y (.)

∂C
∂C
∂P̃i

+
∂Y (.)

∂Z
∂Z
∂P̃

]
+

ϑi
Wi

∂Vi (.)
∂P̃i

−
{

∑
n

[
ϑn

Wn
δn

]
∂Z(global)

∂P̃i

}
1 = 0

(C.1)

Also, taking the derivative of function Y (.) with respect to P̃i and appealing to Roy’s identity, we get

∂Y (.)
∂P̃i

= Ci,
∂Vi (.)

∂P̃i
= −∂Vi (.)

∂Ei
Ci

Plugging these expression back into Equation C.1, and noting thses intermediate properties:

– δ̃i ≡
(

∂Vi(.)
∂Ei

)−1
× δi,

– ∂Y(.)
∂C =

(
P̃ − P

)
and ∂Y(.)

∂Z = [τi,k]i,k ,

we can simplify the first-order condition with respect to P̃i as[
∑
n

(
πn

ϑn

Wn

∂Vn (.)
∂En

)
− ϑi

Wi

∂Vi (.)
∂Ei

]
Ci + ∑

n

(
πn

ϑn

Wn

∂Vn (.)
∂En

) [(
P̃ − P

)⊺ ∂C
∂P̃i

]

+ ∑
j

∑
k

[
∑
n

(
πn

ϑn

Wn

∂Vn (.)
∂En

)
τj,k − ∑

n

ϑn

Wn

∂Vn (.)
∂En

δ̃n

]
∂Zj,k

∂P̃i
= 0 (C.2)

First-order Condition w.r.t. τi,k and P̃i,0. The first-order condition w.r.t the instrument P̃ ∈
{
[τi,k]k ,

[
P̃ni,0

]
n

}
which regulates local energy prices in country i is:

∑
n

(
ϑn

Wn

∂Vn (.)
∂En

πn

) [
∂Y (.)

∂P̃
+

∂Y (.)
∂C

∂C
∂P̃

+
∂Y (.)

∂Z
∂Z
∂P̃

]
+

ϑi
Wi

∂Vi (.)
∂P̃

−
{

∑
n

[
ϑn

Wn
δn

]
∂Z
∂P̃

}
1 = 0

Trivially, ∂Vi (.) /∂P̃ = 0 since energy prices do not directly enter the consumer’s indirect utility

function.65 Moreover, following the logic of Lemma 2, we have

∂Y (.)
∂P̃

= 0, ∀P̃ ∈
{
[τi,k]k ,

[
P̃ni,0

]
n

}
The proof of ∂Y(.)

∂τi,k
= 0 follows trivially from that of Lemma 2. For pre-carbon-tax energy prices, the

equality can be shown by invoking Shephard’s lemma. In particular, cost minimization implies

65 As in the non-cooperative case, we could allow for direct energy consumption. In that case, the first-order condition
would include an additional term [

∑
n

(
πn

ϑn

Wn

∂Vn (.)
∂En

)
− ϑi

Wi

∂Vi (.)
∂Ei

]
C(H)

ni,0 ,

which automatically equals zero at the optimum. So, allowing for household energy consumption is inconsequential
for the optimal policy formulas presented later.
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– ∂ ln P̃i,0(.)
∂ ln P̃ni,0

= λni,0

– ∂ ln Pin,k(.)
∂ ln P̃i,0k

= αi,k where P̃i,0k
(

P̃i,0, τi,k
)
= P̃i,0 + τi,k.

Using these properties, it is straightforward to show that:

∂Y (.)
∂P̃ni,0

= Cni,0 − ∑
k ̸=0

∂ ln Pni,k (.)
∂ ln P̃i,0k

∂ ln P̃i,0k (.)
∂ ln P̃i,0

∂ ln P̃i,0 (.)
∂ ln P̃ni,0

Cni,k ×
Pni,k

P̃ni,0

= Cni,0 −
P̃i,0

P̃i,0k
∑
k
[αi,kPii,kQi,k]︸ ︷︷ ︸
∑k P̃i,0kZi,k

λni,0
1

P̃ni,0
= Cin,0 − Ei,0λin,0

1
P̃ni,0

= 0

Setting ∂Vi (.) /∂P̃ = ∂Yi (.) /∂P̃ = 0 in the first-order condition, and noting the intermediate proper-

ties,

– δ̃i ≡
(

∂Vi(.)
∂Ei

)−1
× δi

– ∂Y(.)
∂C =

(
P̃ − P

)
and ∂Y(.)

∂Z = [τi,k]i,k ,

we can further simplify the first-order condition with respect to P̃ ∈
{
[τi,k]k ,

[
P̃ni,0

]
n

}
as

∑
n

(
πn

ϑn

Wn

∂Vn (.)
∂En

) [(
P̃ − P

)⊺ ∂C
∂P̃

]
+∑

j

[
∑
n

(
πn

ϑn

Wn

∂Vn (.)
∂En

)
τj,k − ∑

n

ϑn

Wn

∂Vn (.)
∂En

δ̃n

]
∂Zj,k

∂P̃
= 0. (C.3)

Optimal Policy Formulas. The system of equations specified by (C.2) and (C.3) reduce the optimal

policy problem into three independent sub-problems:

(
P̃ − P

)⊺
= 0

∑n

(
πn

ϑn
Wn

∂Vn(.)
∂En

)
− ϑi

Wi

∂Vi(.)
∂Ei

= 0

∑n

(
πn

ϑn
Wn

∂Vn(.)
∂En

)
τj,k − ∑n

ϑn
Wn

∂Vn(.)
∂En

δ̃n = 0

The solution to the first sub-problem also requires zero good-specific taxes—i.e., P̃ji,k = Pji,k for all

ji, k. That is, from a global standpoint, optimal production and border taxes are all zero. Without

loss of generality, and for a clearer exposition, we solve the second and third sub-problems supposing

preferences are homothetic, i.e., ∂ ln Vn(.)
∂ ln En

= 1. Under this assumption, and noting that πn = En/ ∑ℓ Eℓ,

we can write the second sub-problem as

ϑi
Wi

Vi
Ei

∂ ln Vi (.)
∂ ln Ei

= ∑
n

(
πn

ϑn

Wn

Vn

En

∂ ln Vn (.)
∂ ln En

)
⇒ πi =

ϑiVi/Wi

∑n (ϑnVn/Wn)

from which we recover the optimal income shares, πE
i . Based on the third sub-problem the optimal

carbon τEi tax is a Pigouvian tax (from a global standpoint) that internalizes the global externality of

carbon emissions. Namely:

πE
i =

ϑi
Vi
Wi

∑n ϑn
Vn
Wn

, τEi = ∑
n

δ̃i. (C.4)
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Alternative Objective Function Specification. In the above, we chose the commonly-used weighted

sum of logs as a social welfare function. We emphasize that a different welfare aggregation used by the

planner may alter the globally optimal policy choice. Suppose the planner maximizes the following

welfare function,

max
P̃

∏
n

{(
Vn
(
Ei, P̃n

)
/ϑn

)ϑn
}
− δZ(global);

subject to equilibrium constraints, and the availability of lump-sum international transfers, whereby

Ei = πiY. In this specification, δ = ∆ (δ1, ..., δN) aggregates over the country-specific climate damage

parameters, with a simple sum, δ = ∑n δn, constituting a special case. Under this welfare function,

the same derivation steps, as outlined before, deliver the following optimal policy formula:

πE
i ∼ Ei

Y
= ϑi, τEn =

(
∏

n
P̃ϑn

n

)
δ (C.5)

and, as before, the optimal border taxes are zero. Note the two subtle differences compared to Equa-

tion (C.4). First, the optimal carbon tax, as before, internalizes the global carbon externality, but it

employs a different CPI deflator. Second, a country’s income share becomes precisely equal to the

weight assigned in the planner’s objective function.

D Numerical Checks on Optimal Policy Formulas

This section evaluates the numerical accuracy and speed efficiency of our quantitative approach in

solving optimal policy outcomes. In doing so, we particularly evaluate Assumption A1 which we

have invoked to derive our optimal policy formulas.

Specifically, we run a number of quantitative exercises in which we solve the unilaterally optimal

policy using a numerical search algorithm and compare its outcome to the one that we obtain from our

own method. Specifically, for each country i we solve the unilaterally optimal taxes using the Matlab’s

optimization toolbox.

Define a function that takes the set of new taxes (and the sufficient statistics) as input and delivers

the change to general equilibrium variables as output. We refer to this function as RV (RT ; B
)

where

RT =
{

I
′
i, I

′
−i

}
is the set of new taxes in home (i) and foreign countries (−i), and B denotes the suffi-

cient statistics. This function is the solution of the system of equations listed in the Appendix Section

G, which we numerically compute using the method of exact hat algebra. The numerical search algo-

rithm maximizes country i’s welfare by searching over country i’s new taxes, I
′
i =

{
t′ij,k, x′ij,k, τ′

i,k

}
j,k

,

taking as given other countries’ taxes I
′
−i = I−i at their status quo values.

In comparison, our own algorithm, which we refer to as the FL method, takes advantage of

an additional mapping, namely RT (RV ; B
)
, which takes equilibrium variables RV and sufficient

statistics B as input and delivers the new taxes as output. When considering the unilaterally op-

timal policy of country i, RT does not alter foreign taxes, I
′
−i = I−i, and computes home’s taxes,

I
′
i =

{
t′ij,k, x′ij,k, τ′

i,k

}
j,k

according to Proposition 2.

Below, we compare the outcome between the numerical search algorithm and the FL method.
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Welfare Comparisons. As a starting point, let the EU, the largest region in our sample, serve as

the home country. When the EU adopts its unilaterally optimal policy, its welfare increases by 0.33%

under the numerical search algorithm and by 0.32% using the FL method. This difference amounts

to just 0.01 percentage points, equivalent to a 4% change in relative terms. Panel (a) of Figure A.1

illustrates these welfare outcomes across individual countries, reflecting percentage changes from the

status quo to the equilibrium under the EU’s unilaterally optimal policy. Furthermore, global emis-

sions decrease by 2.18% based on numerical optimization, compared to a 2.13% reduction using the

FL method. While both approaches deliver comparable levels of accuracy, our method significantly

outperforms numerical optimization in terms of computational speed—a critical advantage for solv-

ing the outcomes of the climate club game. This point is detailed in the following subsection.

Figure A.1: Comparison: Welfare and Emission Effects Implied by Numerical Optimization vs.
FL

(a) EU (b) All

Moreover, the optimal tax rates exhibit a strong correlation between the two methods. Consistent

with Lerner symmetry, trade taxes are determined up to a uniform shift. As a result, we compare

trade taxes between the two methods by dividing import tariffs by export subsidies. The correlation

between these composite trade taxes across the two methods is 96.4%. Additionally, the optimal

local carbon taxes produced by the two methods are nearly identical: $53.61/tCO2 based on our

methodology and $53.56/tCO2 using the numerical algorithm.

Furthermore, our numerical exercises reveal that when the home country is smaller, the gap in

welfare predictions between the numerical optimization and the FL method tends to narrow. As in

the previous exercise, we conducted 18 additional simulations, each featuring a different country as

the home country adopting its unilaterally optimal policy. On average, across all 19 exercises, the

numerical search algorithm yields a home welfare level that is only 2% higher than that found by

the FL method. The correlation between trade taxes in these exercises is 92.7%, while the correlation

between carbon taxes is an impressive 99.98%. Panel (b) of Figure A.1 is similar to Panel (a), but it

consolidates the welfare outcomes from all exercises into a single overlay graph.
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Table A.1: Comparison of Speed Efficiency: Numerical Optimization vs. FL

Unilateral Policy Climate Club
numerical optimization 108 minutes >50 years
optimal policy formulas 3.5 seconds Under 4 minutes

Speed Efficiency. Unilateral Policy Outcomes. On average across the 19 exercises, it takes 108 minutes

for the numerical optimization to converge to an optimal vector of tax rates, with the minimum of 63

minutes and maximum of 176 minutes. In comparison, it only takes 3.5 seconds for the FL’s algorithm

to converge, ranging between 2.8 to 4.5 seconds. That is, the FL’s algorithm is 1800 times faster than

the numerical search algorithm.

Climate Clubs. The gains in computational speed for solving equilibrium under a country’s devia-

tion toward non-cooperative policy are vital when solving the climate club game.

With N = 19 countries in our sample and one core member, we need to solve approximately 4.7

million GE outcomes. To see this, note that each partitioning of non-core countries, (N(member), N(non-member)),

corresponds to a different GE outcome, resulting in 218 cases. Furthermore, for each of such partition-

ing, determining if any of the eighteen non-core countries has an incentive to deviate unilaterally

requires evaluating a new GE outcome. Thus, we must check 18 × 218 ≈ 4.7 million GE outcomes in

total. This amounts to 4.7× 108 (min) ≈ 500 million minutes, which equals more than 950 years. That

number can be reduced to ~54 years assuming one can exploit parallel processing over 18 cores when

checking deviations by non-core countries.

In contrast, by leveraging our optimal policy formulas and pruning the outcome space using our

iterative procedure, we solve the climate club game under 4 minutes. (see Table A.1).

To further clarify the importance of our quantitative improvements, consider that the numbers

mentioned above report the results for a given Carbon Tax Target. Our objective, however, is to deter-

mine the maximum Carbon Tax Target. To achieve this, we start by increasing the Carbon Tax Target

from a sufficiently low value in increments of $5 per ton of CO2. Once we identify the maximum

Carbon Tax Target at this level of precision, we refine our search by using this value as a starting point

and then increase the target in increments of $1 per ton of CO2. On average, for each scenario of core

members, we evaluate the climate club game under 10 different Carbon Tax Targets to determine the

maximum target. Under this metric, the numbers in Table A.1 under column “Climate Club” need to

be multiplied by 10.

Foreign Wage and Income Effects The above comparisons between the numerical search algo-

rithm and our method indicates minor differences in maximized welfare outcomes, supporting As-

sumption 1. Additionally, it is useful to examine Assumption A1 by looking at changes in wages and

wage-to-income ratios in foreign countries. Recall that A1 indicates that policy-induced changes to

relative wages and wage-to-income ratios among foreign countries have no first-order effect (in the

vicinity of the optimum) on home’s welfare. This doesn’t imply these changes are zero, though zero

changes would suffice for Assumption A1 to hold. With this in mind, we run a number of simulations

in which we alter trade taxes near the EU’s optimal policy outcome which we already have found

using the numerical search algorithm.

To fix the idea, consider a 5 percentage point increase in EU’s import tariffs starting from their
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optimal rates. Simulating the outcome under this policy change and comparing it with the outcome

under the EU’s optimal policy results in the following observations about non-EU wage rates and

income levels:

– Wage rates among non-EU countries fall by 2.25% relative to the EU’s wage rate; whereas the

wage rates of individual foreign countries relative to their average change very modestly, with

a maximum absolute value of 0.15%. Overall, the maximum deviation of foreign wages from

their mean is 15 times smaller than the change in the relative foreign-to-home wage rate.

– The wage-to-income ratio across foreign countries changes negligibly, with a maximum absolute

value of 0.015%.

We now run this exercise more systemically as follows. Consider 100 simulations, each of them corre-

sponding to random percentage point increases in EU’s import tariffs starting from their optimal rates.

Specifically, the increase in tariff for each industry-exporter pair relative to its optimal rate is drawn

independently from a uniform distribution between 0 and 0.1. On average across the 100 simulations:

– Wage rates among non-EU countries fall by 2.1% relative to the EU’s wage rate; whereas the

wage rates of individual foreign countries relative to their average change with a maximum

absolute value of 0.3%. Overall, the the maximum deviation of foreign wages is 7.8 times larger

than the relative change in foreign-to-home wage rate.

– The wage-to-income ratio across foreign countries alters negligibly, with a maximum absolute

value of 0.03%.

E Alternative Optimal Policy Designs

This section examines optimal policy under alternative objective functions and policy constraints.

First, we derive the globally optimal border taxes that maximize global welfare under second-best

conditions where carbon taxes are unavailable. Second, we characterize the unilateral policy frontier
by maximizing a weighted combination of domestic and foreign welfare using unilateral policy tools.

Third, we generalize our optimal policy formulas to explicitly include energy extraction taxes.

E.1 Second-Best: Globally Optimal Border Taxes

Consider a second-best cooperative scenario in which carbon taxation (or production and energy tax-

ation) is not politically feasible. The optimal policy, in this case, is obtained as the solution to a plan-

ning problem where the global planner selects border taxes and lump-sum transfers to maximize,

W ≡ ∑n ϑnWn. The policy set T̃ = {t, π} includes the global vector of trade taxes t =
{

tnℓ,k
}

n ̸=ℓ and

each country’s share from global income π = {πi} that determines lump-sum international transfers.

We reformulate the optimal policy problem as a problem where the central planner chooses prices

and income shares rather than tariffs and transfers. Since the central planner can set border taxes but

not domestic taxes/subsidies, she has control over the consumer prices of goods crossing international

borders—denoted by P̃(border) ≡
{

P̃ni,k
}

n ̸=i. The optimal policy problem is

max
π,P̃(border)

N

∑
i=1

ϑiWi, where Wi = Vi
(
Ei, P̃i

)
− δiZ(global)
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The solution to this problem determines the globally optimal border tax on a generic good ji, k as

1 + t⋆ji,k = P̃⋆
ji,k/Pji,k. The first-order condition with respect to P̃ ∈ P̃(border) is

∑
n

(
ϑn

∂Vn (.)
∂En

πn

) [
∂Y (.)

∂P̃
+

∂Y (.)
∂w

∂w
∂P̃

+
∂Y (.)
∂P0

∂P0

∂P̃
+

∂Y (.)
∂C

∂C
∂P̃

+
∂Y (.)

∂Z
∂Z
∂P̃

]
︸ ︷︷ ︸

∂Y/∂P̃

+ ∑
n

[
ϑn

∂Vn (.)
∂P̃

]
−
{

∑
n
[ϑnδn]

∂Z
∂P̃

}
1 = 0

where global income Y = Y(.) consists of factor payments plus tax revenues. Namely,

Y
(

P̃(border), w, P0, C, Z
)
= ∑

i
(wiLi + Πi) + ∑

g,i
∑
n ̸=i

[(
P̃ni,g − Pni,g

)
Cni,g

]
+ ∑

n
τ̄nZn

The last term represents carbon tax revenues based on pre-determined national tax rate τ̄n, not chosen

by the central planner. The logic for including this term is to accommodate settings where carbon

taxes can be exogenously in place, but governments cannot elevate them to the globally optimal rate,

τE. As explained in Appendix A.7, global income is invariant to factor prices, as changes in these

prices constitute pure transfers from one set of agents to another in the global economy. In particular,

∂Y (.)
∂w

∂w
∂P̃

=
∂Y (.)
∂P0

∂P0

∂P̃
= 0.

Applying the above result and rearranging the first-order condition yields:

∂W
∂P̃

=∑
n

(
ϑn

∂Vn (.)
∂En

πn

) [
∂Y (.)

∂C
∂C
∂P̃

+
∂Y (.)

∂Z
∂Z
∂P̃

]
− ∑

n
ϑn

(
πn

∂Vn (.)
∂En

− ∂Vn (.)
∂P̃

)
−
{

∑
n
[ϑnδn]

∂Z
∂P̃

}
1 = 0.

(E.1)

Following Appendix A.7, the optimal transfers, πE
i = ϑiVi

∑n ϑnVn
, equate the second term to zero:

∑
n

ϑn

(
πE

n
∂Vn (.)

∂En
− ∂Vn (.)

∂P̃

)
= 0

Hence, the first-order condition simplifies further to:

∂W
∂P̃

= ∑
n

(
ϑn

∂Vn (.)
∂En

πn

) [
∂Y (.)

∂C
∂C
∂P̃

+
∂Y (.)

∂Z
∂Z
∂P̃

]
−
{

∑
n
[ϑnδn]

∂Z
∂P̃

}
1 = 0. (E.2)

The terms consisting of income effects in the above equation can be unpacked by noting that ∂Y(.)
∂C =(

P̃ − P
)

and ∂Y(.)
∂Z = τ. In particular,

∂Y (.)
∂C

∂C
∂P̃

+
∂Y (.)

∂Z
∂Z
∂P̃

= ∑
g,i

∑
n ̸=i

[(
P̃ni,g − Pni,g

) ∂Cni,g

∂P̃

]
+ ∑

n

[
τ̄n

∂Zn

∂P̃

]
= 0.

Given pre-determined energy prices and carbon taxes, changes in global emissions are driven purely
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by scale effect. More specifically,

∂Zn

∂P̃
= ∑

g

[
zn,g

∂Qn,g

∂P̃

]
= ∑

g,i

[
zn,g

∂Qn,g (.)
∂Cni,g

∂Cni,g

∂P̃

]

= ∑
g,i

[
Zn,g

Qn,g
dni,g

∂Cni,g

∂P̃

]
= ∑

g,i

[
Zn,g

Yn,g
Pni,g

∂Cni,g

∂P̃

]
= ∑

g,i

[
vn,gPni,g

∂Cni,g

∂P̃

]
,

where vn,g = Zn,g/Yn,g where Yn,g = Pnn,gQn,g. Plugging the above expressions back onto Equation

(E.2) and considering that, we obtain the following necessary first-order condition for optimality:

∑
g,i

∑
n ̸=ι

[(
P̃ni,g −

[
1 +

(
τE − τ̄n

)
vn,g

]
Pni,g

) ∂Cni,g

∂P̃

]
− ∑

g,i

(
τE − τ̄ι

) [
νii,gPii,g

∂Cii,g

∂P̃

]
= 0,

where τE = ∑n δ̃n represents the globally optimal carbon tax under the first-best allocation. In our

previous derivations we did not have to characterize the general equilibrium demand elasticities, be-

cause we did not have a missing policy problem. Here, however, we must characterize the noted

elasticities, and to make progress we assume that demand for non-energy goods is income inelas-

tic. Under this assumption, the general equilibrium elasticities reduce to Mashallian elasticities, i.e.,
∂C

∂P̃ji,k
= ∂D(.)

∂P̃ji,k
. Using our compact notation for Marshallian demand elasticities, we get

∂ ln Cni,g

∂ ln P̃
=

ε
(ji,k)
ni,g P̃ = P̃ji,k ∈ P̃i

0 P̃ /∈ P̃i

indicating that price instrument P̃ influences demand locally. That is, if P̃ ∈ P̃i then the instrument

affect demand in country i but not other markets. This assumption simplifies the first-order condition

as follows after dividing all the terms by Ei and noting that eni,g = P̃ni,gCni,g/Ei

∑
g

∑
n ̸=i

[(
1 −

[
1 +

(
τE − τ̄n

)
vn,g

] Pni,g

P̃ni,g

)
eni,gε

(ji,k)
ni,g

]
−
(

τE − τ̄i

)
∑
g

[
vi,geii,gε

(ji,k)
ii,g

]
= 0.

To simplify the above equation further, we appeal to a corollary of the Slutsky equation, eni,gε
(ji,k)
ni,g =

eji,kε
(ni,g)
ji,k and note that demand is homogeneous of degree zero, whereby ∑n ̸=i ∑g ε

(ni,g)
ji,k = −∑g ε

(ii,g)
ji,k .

Invoking these properties of demand simplifies the first-order condition as:

∑
n ̸=i

∑
g

(1 +
(

τE − τ̄n

)
vn,g

) 1

1 + tEni,g

ε
(ni,g)
ji,k

− ∑
g

[(
1 +

(
τE − τ̄i

)
vi,g

)
ε
(ii,g)
ji,k

]
= 0. (E.3)

The first-order condition described by Equation (E.3) represents a system of equations that can be con-

densed using matrix notation. In particular, invert the following matrix-equivalent system to obtain

the N(K − 1)× 1 vector of optimal import tariffs TE−ii =

[
1

1+tEji,g

]
j,k

per destination i,

TE−ii =
(

Ẽ(−ii)
−ii

)−1
Ẽ(ii)
−ii 1K,

where1 is a K × 1 column vector of ones; and Ẽ(−ii)
−ii and Ẽ(ii)

−ii are respectively (N − 1)K × N(K − 1)
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and N(K − 1)× K matrixes of untaxed-carbon-adjusted demand elasticities:

Ẽ(−ii)
−ii ≡

[(
1 +

(
τE − τ̄n

)
vn,g

)
ε
(ni,g)
ji,k

]
jk,ng

; Ẽ(ii)
−ii ≡

[(
1 +

(
τE − τ̄i

)
vi,g

)
ε
(ii,g)
ji,k

]
jk,g

.

CES Preferences with Additive Separability Across Industries. We can derive simple formulas

for the globally optimal carbon border taxes in the special case where preferences are additively sep-

arable across industries and CES within industries. In that case, Marshallian demand elasticities are

given by:

ε
ni,g
ji,k = 0 if g ̸= k; ε

(ni,k)
ji,k = (σk − 1)λni,k if n ̸= j; ε

(ji,k)
ji,k = −1 − (σk − 1)(1 − λji,k).

Plugging these elasticity values back into Equation (E.3) delivers the following first-order condition

w.r.t. the price of good ji, k:

∑
n ̸=i

 1

1 + tEni,k

(
1 +

(
τE − τ̄n

)
νn,k

) [
(σk − 1) λni,k − 1n=jσk

] =
[
1 +

(
τE − τ̄i

)
νi,k

]
(σk − 1) λii,k

The symmetry in the above equation asserts that that T E
ni,k ≡

(
1 +

(
τE − τ̄n

)
νn,k

)
/
(

1 + tEni,k

)
must

be independent of origin subscripts n and uniform across all export partners—i.e., T E
ni,k = T E

i,k . In-

voking this observation, it is straightforward to solve for T E
ni,k, which yields:

1 + tEni,k =
1 + (σk − 1) λii,k

1 +
[
1 +

(
τE − τ̄i

)
vi,k
]
(σk − 1) λii,k

[
1 +

(
τE − τ̄n

)
vn,k

]
.

To provide intuition, the second term (on the right-hand side) is a border carbon tax based on the

difference between the applied carbon tax and globally optimal rate in origin n. The first term is ad-

justment to mitigate substitutability between the taxable traded varieties and the non-traded variety

ii, k. This term collapses to zero when when there is no substitutability (i.e., σk = 1) or when the

non-traded variety is already taxed at the optimal rate (i.e., τ̄i = τE).

E.2 Country i’s Unilateral Policy Frontier

This section characterizes an alternative unilateral policy design in which the home government max-

imizes its national welfare augmented by a weighted average of foreign welfare values. This char-

acterization, by varying the weights assigned to foreign countries, traces out country i’s unilateral
policy frontier, representing the spectrum of welfare outcomes achievable through the unilateral policy

instruments, Pi. Each point on country i’s unilateral policy frontier is the solution to the following

planning problem:

max
Pi

Vi
(
Ei, P̃i

)
− δiZ(global) + ∑

n ̸=i

[
ϑni

(
Vn (.)− δnZ(global)

)]
,

subject to equilibrium constraints. Here, ϑni is the weight that country i assigns to country n’s welfare

relative to its own welfare. For a given set of weights ϑi ≡ {ϑni}n ̸=i, we denote the solution by PB
i (ϑi).

It is important to note that the unilateral policy frontier does not include the globally first-best outcome

due to the fact that country i does not have access to policy instruments of other countries. However,

it encompasses the following canonical policy scenarios:
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1. If ϑni = 0 for all n ̸= i. Then, the solution PB
i corresponds with the unilaterally optimal policy,

P∗
i , which we derived earlier.

2. If ϑni < 0 for a subset of countries n ∈ Ñ ⊂ N/{i}, the solution PB
i imposes a sanction on

countries in C̃. In that case, country i manipulates its terms-of-trade vis-a-vis countries in C̃ to

impose extra penalty (relative to the above case) on them, as in Becko (2024).

3. The weigh assignment {ϑni}n ̸=i is such that the foreign welfare, W−i = ∑n ̸=i ϑni

(
Vn (.)− δnZ(global)

)
is preserved. In that case, the solution PB

i aligns with the externality-free unilaterally-optimal

policy, as studied in Kortum and Weisbach (2020).

Methodologically, we take the same steps as in our earlier derivation of unilaterally optimal policy.

Here, the only difference is that we should trace out the policy effects on foreign welfare through

its inclusion in the objective function. For simplicity, we focus on the case of Cobb-Douglas-CES

preferences for a small open economy, for which we obtain PB
i for any set of welfare weights, ϑni, as

follows:

τBi = δ̃i + ∑n ̸=i ϑ̃ni δ̃n [carbon tax]

1 + tBni,k = (1 + t̄i) + τBi vi,k, tBni,0 = t̄i [import tax]

1 + xBin,k =
σk−1

σk
(1 + t̄i) +

1
σk

ϑ̃ni +
σk−1

σk
τBi ∑j ̸=i

[
vj,kλnj,k

]
[export subsidy (final good)]

1 + xBin,0 = σ0−1
σ0

(1 + t̄i) +
1
σ0

ϑ̃ni +
ζn
σ0

τBi
P̃n,0

[export subsidy (energy)]

where ϑ̃ni is defined as: ϑ̃ni = ϑni
P̃i
P̃n

, reflecting the fact that a nominal income transfer between two

countries translates to a welfare transfer up to their relative consumer price indexes. (Recall that the

consumer price index is given by P̃n ≡ [∂Vn/∂En]−1, and δ̃n ≡ P̃nδn). In a special case with quasi-

linear demand and a large enough freely-traded sector, it is implied that P̃i = P̃n, and so, ϑ̃ni = ϑni.

Compared to the unilaterally optimal policy, which we have derived in details and extensively

discussed earlier, the above policy outline is generically different in two ways: (i) The carbon tax,

τBi , equals the domestic externality, δ̃i, plus a weighted sum of foreign externalities, ∑n ϑ̃ni δ̃n. (ii)
The terms-of-trade components of border taxes are adjusted according to the welfare weights. For

example, for final-good export subsidies, the optimal border policy formula is:

1 + xBni,k =
σk − 1

σk
(1 + t̄i) +

1
σk

ϑ̃ni︸ ︷︷ ︸
terms of trade

+
σk − 1

σk
τBi ∑

j ̸=i

[
vj,kλnj,k

]
︸ ︷︷ ︸

carbon border adjustment

where 1
σk

ϑ̃ni is now part of the terms of trade manipulation, and the carbon border adjustment is itself

regulated by the welfare weights implicit in τBi = δ̃i + ∑n ̸=i ϑ̃ni δ̃n.

Consider a point on the frontier that corresponds to the case where the weights assigned to foreign

countries adjusted for the consumer price indices are one, wherein ϑ̃ni = 1 for all n ̸= i. In that case,

the home country taxes carbon at the globally optimal rate, τBi = ∑n δ̃n, and exerts no terms of trade

externality on foreign countries. However, as emphasized in the main text, governments acting in

their own self interest often veer away from this ideal policy point. This tendency mirrors the ongoing

issue of free riding in climate action, which has been our main motivation for brining in trade policy to

the issue of international climate agreements.

Lastly, we use Figure A.6 to illustrate the policy frontier when country i is the EU. To construct
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the figure, we have used our calibrated model, running simulations by varying the weight that the

EU assigns to non-EU countries. For simplicity, a common weight is assigned to all non-EU countries.

The peak point, where the EU’s welfare is maximized, corresponds to zero weights assigned to non-

EU countries. When the weight that the EU assigns to non-EU countries becomes positive, the EU

exerts a lower level of terms-of-trade transfers from non-EU countries. Therefore, relative to the peak

point, the EU’s welfare falls and the welfare of non-EU countries rises. In contrast, when the weight is

negative, the EU’s border policy becomes more punitive against non-EU countries, but that comes at

a welfare cost to the EU (relative to its welfare under the optimal unilateral policy, and not necessarily

relative to the status quo). The two points labelled as “Externality-Free” and “Maximal Sanction” on

the figure highlight these two alternatives.

In addition, Figure A.7 shows the effects of EU’s unilateral policy on welfare and carbon emissions

along the weight that the EU assigns to non-EU countries. A higher weight raises the non-EU’s welfare

at the cost of the EU’s welfare. Also note that, a higher weight leads to a larger emission reduction

at the global level, which comes from the emission reduction in the EU, partially offset by the carbon

leakage via the increase in emissions in non-EU regions.

E.3 Optimal Policy Formulas with Energy Extraction Taxes

Our optimal policy framework accommodates extraction subsidies or taxes as the wedge between the

producer and consumer price of energy (as the good that the energy extraction industry produces),

with the corresponding subsidy rate denoted by (1 + si,0) = Pii,0/P̃ii,0. Our derivations in Appendix

B yielded s∗i,0 = 0, indicating that extraction tax-cum-subsidies are unnecessary for obtaining the

unilaterally or globally optimal outcomes. Nonetheless, we are able to reformulate our optimal policy

formulas to explicitly include extraction taxes. Below, we present these formulas and explain the logic

for why extraction taxes are redundant.

Unilaterally Optimal Policy with Extraction Taxes. To present the unilaterally optimal policy

formulas with extraction taxes, we introduce Ti,0 to directly denote the ad valorem extraction tax rate.

More formally,

1 +Ti,0 ≡ P̃ii,0

Pii,0
= (1 + xin,0)

P̃in,0

Pin,0
=

1
1 + si,0

.

Proposition 2 implicitly shows that the optimal extraction tax rate can be set to zero (s∗i,0 = T ∗
i,0 =

0). That is, when demand-side carbon taxes and energy border taxes are available, extraction taxes

become redundant. We first demonstrate this redundancy and then use it to obtain optimal policy

formulas allowing for an arbitrary extraction tax. Suppose the government seeks to implement an

extraction tax Ti,0 > 0, yielding the following domestic and foreign energy prices (without other

taxes):

P̃(a)
i,0 = P̃i,0 ((1 +Ti,0) Pii,0, P−ii,0) , P̃(a)

n,0 = P̃n,0 ((1 +Ti,0) Pin,0, P−in,0) (for n ̸= i)

These prices can alternatively be reproduced without extraction taxes using the following mix of

energy border taxes and demand-side carbon taxes:

1 + tni,0 =
1

1 +Ti,0
, 1 + xni,0 =

1
1 +Ti,0

, τi = Ti,0P̃i,0.
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To show this, we need to prove that the above tax combination yields the same after-tax energy prices

as the extraction tax. For the domestic energy price, the equivalence can be shown as follows:

P̃(b)
i,0 =P̃i,0 (Pii,0, (1 + ti,0)

⊺ P−ii,0) + τi = P̃i,0

(
Pii,0,

1
1 +Ti,0

P−ii,0

)
+Ti,0P̃(b)

i,0

= (1 +Ti,0) P̃i,0

(
Pii,0,

1
1 +Ti,0

P−ii,0

)
= P̃i,0 ((1 +Ti,0) Pii,0, P−ii,0) = P̃(a)

i,0 ,

where ti,0 collects the energy import taxes and the second line uses the fact that the price aggregator,

P̃i,0 (.), is a homogeneous of degree one function. The first term, above, is the price under the energy

import and demand-side carbon tax mix, P̃(b)
i,0 . The last line shows that this price equals the price

under the extraction tax, P̃(a)
i,0 . Next, consider the foreign energy price. Under country i’s energy

export subsidy, the foreign price is:

P̃(b)
n,0 = P̃n,0

(
1

1 + xin,0
Pin,0, P−in,0

)
= P̃n,0 ((1 +Ti,0) Pin,0, P−in,0) = P̃(a)

n,0 ,

which, by construction, equals the foreign energy price under the extraction tax. These equalities re-

veal that any energy price vector can be obtained without extraction taxes and by using demand-side

carbon taxes and energy border taxes/subsidies alone. In other words, extraction taxes are redundant

when these other instruments are available. Leveraging the noted redundancy, the unilaterally opti-

mal policy schedule could be more generally represented to include an extraction tax. We demonstrate

this for the small open economy case under CES preferences. For an arbitrary choice of extraction tax,

T ∗
i,0, the unilaterally optimal policy can be alternatively represented as

τ∗
i = δ̃i −T ∗

i,0P̃i,0, [carbon tax]

t∗ni,k = t̄i + τ∗
i vn,k 1 + t∗ni,0 = (1 + t̄i)

(
1 +T ∗

i,0

)
[import tax]

1 + x∗in,k = (1 + t̄i)
σk−1

σk
+ τ∗

i ∑j ̸=i

[
λjn,kvj,k

]
σk−1

σk
[export subsidy (non-energy)]

1 + x∗in,0 =
[
(1 + t̄i)

σ0−1
σ0

+ τ∗
i

1
σ0

ζn
P̃n,0

] (
1 +T ∗

i,0

)
[export subsidy (energy)]

Our baseline representation sets T ∗
i,0 = 0, but we could have alternatively set τ∗

i = 0 and load the

carbon tax entirely on extraction via T ∗
i,0 = δ̃i/P̃i,0.

Globally Optimal Policy. Our baseline model shows that the globally optimal outcome requires

setting a Pigouvian wedge, represented by ∑n δ̃n, between the producer and consumer price of en-

ergy worldwide. This wedge and the optimal allocation can be achieved with demand-side carbon

taxes (τEi ) plus lump-sum transfers or through extraction taxes (T E
i,0 ) plus lump-sum transfers. The

optimal tax rate in each case is given by

τEi = ∑
n

δ̃n, or T E
i,0 = ∑

n

[
δ̃n
]

/P̃i,0.
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Both of the the above policies deliver the optimal Pigouvian wedge as demonstrated below:

price under extraction tax︷ ︸︸ ︷
P̃i,0

((
1 + sE1,0

)
P1i,0, ...,

(
1 + sEN,0

)
PNi,0

)
=

(
1 +

∑n
[
δ̃n
]

P̃i,0

)
P̃i,0 (P1i,0, ..., PNi,0)

= P̃i,0 (P1i,0, ..., PNi,0) + ∑
n

[
δ̃n
]
= P̃i,0 (P1i,0, ..., PNi,0) + τEi︸ ︷︷ ︸

price under input-side carbon tax

.

More generally, any mix of demand-side carbon taxes and extraction taxes that satisfy τEi +T E
i,0 P̃i,0 =

∑n δ̃n, along with lump-sum transfers, could implement the globally optimal outcome. Importantly,

without transfers, τEi and T E
i,0 , do not deliver identical welfare outcomes at the national level. Hence,

the lump-sum transfers that supplement each tax choice are different. The reason is that carbon tax

revenues accrue primarily to major energy consumers under demand-side energy taxes and to major

producers under extraction taxes. So, the optimal transfers should be adjusted based on revenue

streams. However, the choice of transfers does not affect the overall effectiveness of global carbon

taxes, which is our main focus.

F Carbon Accounting

We obtain information on CO2 emissions from the GTAP database. In our analysis, CO2 emissions are

exclusively associated with the use of fossil fuels. Therefore, we exclude emissions from (i) non-CO2

greenhouse gas emissions such as methane, (ii) CO2 emissions that are associated with the production

process such as those in the cement industry. We count CO2 emissions at the location of energy use

by end-users (i.e., non-energy industries and households). We combine all energy types into a single

composite energy industry, labeled as industry “0,” and calculate the CO2 emissions associated with

both direct and indirect energy use. We track the indirect emissions associated with energy purchases,

and do not account for the energy embedded in other intermediate inputs. For example, consider the

steel industry. It directly generates emissions, e.g., from burning coal at the location of steel production.

Moreover, steel production indirectly generates emissions by using electricity, the production of which

involves burning coal. We observe direct emissions in the data and calculate the indirect emissions,

as elaborated below.

Initially, consider a closed economy, denoting energy types by e ∈ {1, ..., E}. Specifically, the data

differentiates between the following energy types: coal, crude oil, natural gas, refined oil products

and electricity & gas manufacture. Let Z(direct)
e denote the direct CO2 emissions from production of

energy type e and Ye as its gross output. By accounting, Ye comprises total usage for both energy

generation and non-energy production, with Xee′ representing the amount of type e energy used for

type e’ energy generation and Ce representing energy usage for non-energy production. To generate

one dollar of type e′ energy, aee′ dollars of type e energy inputs are required, leading to Xee′ = aee′Ye′ .

Input-Output accounting entails that Y(E×1) = A(E×E)Y(E×1) + C(E×1), from which we derive Y =

(I − A)−1 C, where (I − A)−1 ≡ B is the Leontief inverse describing energy input-output flows. The

effective carbon intensity for each energy type (i.e., emissions per dollar of output) is then given by

ṽe′ = ∑E
e=1

[
bee′
(

Z(direct)
e /Ye

)]
, where bee′ is the entry (e, e′) of the Leontief inverse.

The emissions per dollar of output in non-energy sectors (k = 1, ..., K) encompass direct emissions,

denoted by Z(direct)
k , arising from combustion of fossil fuels during production, as well as indirect
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emissions tied to energy generation. The latter can be computed as Z(indirect)
k = ∑e ṽeXek, where ṽe

was defined above, and Xek denotes the value from type e energy inputs used by industry k. The total

emissions for industry k are thus represented by Zk = Z(direct)
k + Z(indirect)

k .

The above procedure can be extrapolated to open economies as follows. Let vector Y(NE×1) = [Yne]

represent gross energy output by type for each country n; let A = [ane,ie′ ](NE×NE) denote the global

energy input-output matrix; and let C = [Cne](NE×1) represent total energy sales to non-energy sectors

by type and country. The accounting equation for energy flows can be expressed as Y = AY + C, im-

plying an NE× NE global Leontief Inverse matrix B = (I − A)−1 = [bne,ie′ ]. The effective emission per

dollar of output generated by energy type e′ in country i equals ṽi,e′ = ∑n,e bne,ie′ (Zn,e/Yn,e) and the in-

direct emissions associated with country i−industry k are represented by Z(indirect)
i,k = ∑n,e′ ṽn,e′Xne′,ik.

The total emissions per industry is the sum of direct and indirect emissions, Zi,k = Z(direct)
i,k +Z(indirect)

i,k .

A similar procedure yields the total emissions associated with household consumption, Zi,hhd.

The above procedure can be thought of as “carbon accounting” because it ensures the global bal-

ance of carbon flows:

∑
i

[
Zi,hhd +

K

∑
k=1

[Zi,k]

]
= ∑

i

[
Z(direct)

i,hhd +
K

∑
k=1

[
Z(direct)

i,k

]
+

E

∑
e=1

[
Z(direct)

i,e

]]
.

G Equilibrium in Changes

This section outlines the equations describing the change in non-policy variables as a function of

policy change RT =
{

x′ij,k, t′ji,k, τ′
i,k

}
and the sufficient statistics B as specified in Section 4 of the

paper. Let z′ denote the value of a generic variable z in the counterfactual equilibrium, with ẑ ≡
z′/z denoting the corresponding change using the exact hat-algebra notation. The change to variety-

specific producer prices and CES and Cobb-Douglas consumer price indices, for energy (k = 0) and

final goods (k = 1, ..., K), are given by

P̂ji,k = P̂jj,k =

[(
1 − αj,k

)
ŵ1−ς

j + αj,k
̂̃P1−ς

j,0k

] 1
1−ς

a) producer price (ij, k ≥ 1)

P̂ji,0 = P̂jj,0 = ŵ
1−ϕj
j r̂

ϕj
j b) producer price (ij, k = 0)̂̃Pji,k =

(
1̂ + tji,k

) (
̂1 + xji,k

)−1
P̂ji,k c) consumer price (ij, k ≥ 0)̂̃Pi,k =

[
∑N

j=1 λji,k
̂̃P1−σk

ji,k

]
1

1−σk d) consumer price index (i, k > 0)

̂̃Pi,0 =

[
∑N

j=1 λji,0
̂̃P1−σk

ji,0

]
1

1−σk e) distribution-level energy price (i, k = 0)̂̃Pi,0k =
̂̃Pi,0P̃i,0 + τ′

i,k e) after-carbon-tax energy price (i, k = 0)̂̃Pi = ∏k

(̂̃Pβi,k
i,k

)
f) final consumer price (i)

(G.1)

Note that the change to the producer price of each final good, P̂ji,k, is governed by the change to the

wage rate, ŵj, and final price of energy inputs, ̂̃Pj,0k, which itself depends on the change to inter-

national producer prices, {P̂jj,0}j, baseline energy expenditures shares, {λji,0}j, and optimal policy

choices. The change in industry-level labor and energy input cost shares, carbon emissions, carbon
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intensities, and output quantities are given by

(
1̂ − αi,k

)
=
(

ŵi/P̂ii,k

)1−ς
, α̂i,k =

(̂̃Pi,0k/P̂ii,k

)1−ς
a) labor and energy cost share (i, k ≥ 1)

Q̂i,k = ℓ̂i,k ×
(

1̂ − αi,k

) ς
1−ς b) final good output quantity (i, k ≥ 1)

Q̂i,0 = r̂i/P̂ii,0 c) energy output quantity (i, k = 0)

Ẑi,k = α̂
ς

ς−1
i,k × Q̂i,k d) industry-level carbon emission (i, k ≥ 1)

v̂i,k = α̂
ς

ς−1
i,k /P̂ii,k e) industry-level carbon intensity (i, k ≥ 1)

Ẑi = ∑K
k=1

[
(Zi,k/Zi)× Ẑi,k

]
f) national carbon emission from country (i)

Ẑ(global) = ∑N
i=1

[(
Zi/Z(global)

)
× Ẑi

]
g) global carbon emission

(G.2)

The noted changes in prices and quantities determine the change in international trade shares and

flows (X̃ij,k ≡ P̃ij,kCij,k and Xij,k ≡ Pij,kCij,k). In particular,



λ̂ji,k =
(̂̃Pji,k

/̂̃Pi,k

)1−σk
a) international expenditure shares (ji, k ≥ 0)

X̃′
ij,k ≡ P̃′

ij,kC′
ij,k = λ̂ij,kλij,kβ j,kŶjYj b) after-tax trade flows of final goods (ij, k ≥ 1)

X′
ij,k ≡ P′

ij,kC′
ij,k =

(
1 + t′ij,k

)−1 (
1 + x′ij,k

)
X̃′

ij,k c) before-tax trade flows of final goods (ij, k ≥ 1)

X̃′
ij,0 = λ̂ij,0λij,0 ∑K

k=1

[
α̂j,kαj,k
1+τ′j,k

∑N
n=1

(
X′

ij,k

)]
d) after-tax trade flows of energy (ij, 0)

X′
ij,0 =

(
1 + t′ij,0

)−1 (
1 + x′ij,0

)
X̃′

ij,0 d) before-tax trade flows of energy (ij, 0)
(G.3)

The change in wages and industry-level labor shares are governed by the labor market clearing (LMC)

conditions in the counterfactual equilibrium:
ℓ̂i,0 = r̂i/ŵi a) LMC (i, k = 0)

ℓ̂i,kℓi,kŵiwi L̄i = ∑N
j=1(1̂ − αi,k)X′

ij,k b) LMC (i, k ≥ 1)

ℓ̂i,0ℓi,0 + ∑K
k=1 ℓ̂i,kℓi,k = 1 c) National LMC (i)

(G.4)

The first two conditions ensure that the industry-level wage bill equals payments to workers in the

energy and final good industries. The third line ensures that labor markets clear at the national level.

The change in the rental rate of carbon reserves is, accordingly, governed by the energy market clear-

ing condition that connects the global energy demand to energy extraction in each country:

r̂iriR̄i =ϕi ∑
j

(
X′

ij,0

)
(G.5)

The change to tax revenues equals the net change to revenues from import tariffs (the first term on the

right-hand side of the following equation), export subsidies (second term), and carbon taxes (third
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term),

T̂iTi =
K

∑
k=0

∑
n ̸=i

[
t′ni,k

1 + t′ni,k
X̃′

ni,k

]
(G.6)

+
K

∑
k=0

N

∑
n=1


[
1 −

(
1 + x′in,k

)]
(

1 + t′in,k

) X̃′
in,k


+

K

∑
k=1

N

∑
n=1

( τ′
i,k

1 + τ′
i,k

)
α̂i,kαi,k

(
1 + x′in,k

)
(

1 + t′in,k

) X̃′
in,k

 .

Finally, the change in national income, Ŷi, is governed by the representative consumer’s budget con-

straint:

ŶiYi = ŵiwi L̄i + r̂iriR̄i + T̂iTi. (G.7)

Solving Equations (G.1)-(G.7) in conjunction with the optimal policy equations in each policy sce-

nario determines counterfactual equilibrium outcomes, R ≡
{
RT , RV}, which in turn determine the

change to real consumption and welfare as

V̂i =
Ŷî̃Pi

, Ŵi =

(
Yi

Yi − δ̃iZ(global)

)
V̂i︸ ︷︷ ︸

Indirect Utility

−
(

δ̃iZ(global)

Yi − δ̃iZ(global)

)
Ẑ(global)

︸ ︷︷ ︸
Climate Damage Disutility

. (G.8)

We solve the general equilibrium system using a nested fixed point approach with two tiers. In the

inner tier, given a preliminary guess of taxes, all non-tax variables are solved to satisfy the equilibrium

conditions stipulated by Equations (G.1)-(G.7). The outer tier solves for optimal taxes conditional on

the fixed point achieved in the inner tier.

H Extensions

H.1 Increasing Returns to Scale Industries à la Krugman

In this section, we derive the unilaterally optimal policy in an extension where production technolo-

gies of final goods feature increasing-returns-to-scale. For this purpose, we incorporate firm-level

product differentiation and love-for-variety à la Krugman into our baseline model. Scale economies,

and the inefficiency they introduce to the market outcome, occur in this setting because firms fail to

fully internalize the social gains from new varieties when making entry decisions. Despite this micro-

foundation, this setting is also isomorphic to one in which there are external economies of scale, as

we explain below. In any case, the resulting scale economies present an additional rationale for policy

intervention, influencing the optimal design of carbon border taxes. We employ the optimal policy

formulas derived here to assess the sensitivity of our baseline quantitative findings (pertaining to the

effectiveness of Proposals 1 and 2) to the inclusion of increasing returns to scale industries.

H.1.1 The Economic Setting

The representative consumer maximizes a non-parametric utility aggregator Ui

({
Cni,k

}
n,k

)
, where

each composite consumption bundle Cni,k (corresponding to origin n–destination i–industry k) aggre-
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gates over firm-level quantities, qni,k (ω). Specifically,

Cni,k =

(∫
ω∈Ωn,k

qni,k (ω)
γk−1

γk dω

) γk
γk−1

,

where γk > 1 denotes the elasticity of substitution between firm varieties from the same origin coun-

try and industry. We assume that γ0 → ∞, which, as will become evident shortly, retains no love of

variety for energy products that originate from energy producers within an exporter country. Firm ω

operating in country n–industry k is characterized by productivity φn,k (ω). As in our baseline model,

a prototypical firm combines labor and energy inputs using a CES aggregator with elasticity ς, which

yields the following marginal cost based on cost minimization:

cni,k (ω) =
d̄ni,k

φn,k (ω)
× cn,k; cn,k =

[
(1 − κ̄n,k)

ς w1−ς
n + κ̄

ς
n,k P̃1−ς

n,0k

]1/(1−ς)

The cost share of carbon input is, accordingly, given by αn,k = κ̄
ς
n,k
(

P̃n,0k/cn,k
)1−ς. Firms compete

under monopolistic competition and charge a constant markup over marginal cost, i.e., pni,k (ω) =
γk

γk−1 cni,k (ω). The CES producer price index associated with output bundle Cni,k can be, accordingly,

expressed as

Pni,k = M
1

γk−1

n,k
γk

γk − 1
dni,k

φn,k
cn,k, where φn,k ≡

[∫
ω∈Ωn,k

φn,k (ω)1−γk dω

] 1
1−γk

The mass of entrants is governed by the free entry condition. Each firm incurs a sunk entry cost

cn,k f (e)n,k , upon which its productivity is realized. The mass of entrants, Mn,k, ensures that the ex-ante

profit per firm 1
γk

Pnn,kQn,k/Mn,k equals the entry cost, cn,k f (e)n,k , in each location and industry. Namely,

Mn,k =
Pnn,kQn,k

γkcn,k f (e)n,k

, where Qn,k = ∑
n

d̄ni,kCni,k

Plugging Mn,k from the above equation back into our earlier expression for Pni,k determines the mass

of entrants in terms of total output, Qn,k. Plugging the implied expression for Mn,k back into the CES

producer price index and noting that cn,k ∝ wn (1 − αn,k)
1

ς−1 , delivers

Pni,k = dni,k pnn,kwn (1 − αn,k)
1

ς−1 Q
− 1

γk
n,k

where pnn,k collects all the constant price shifters apart from the iceberg trade cost, with the term Q
− 1

γk
n,k

accounting for economies scale driven by love for variety. As before, the producer price of energy in

country i is given by:

Pin,0 = Pii,0 = p̄ii,0wi Q
ϕi

1−ϕi
i,0 ,

consistent with the implicit assumption that γ0 → ∞. The carbon emissions associated with final

production can be measured as Zn,k = αn,kPnn,kQn,k/P̃n,0k, per cost minimization. Noting that Pnn,k ∝

cn,kQ
− 1

γk
n,k and P̃n,0k ∝ cn,kα

1
ς−1
n , we then obtain

Zi,k = z̄i,k × α
ς

ς−1
i,k × Q

1− 1
γk

i,k ,
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where zi,k encompasses constant emissions shifters. From the above equation we can produce the

following function that maps policy, input prices, and output scale to emission per unit of output

quantity. In the case of local emissions,

zi,k (Pi, wi, Qi,k) = z̄i,k

 κ̄i,k P̃1−ς
i,0k

κ̄i,k P̃1−ς
i,0k + (1 − κ̄i,k)w1−ς

i


ς

ς−1

Q
− 1

γk
i,k , where P̃i,0k = P̃i,0

(
P̃i,0
)
+ τi,k.

where P̃i,0
(
P̃i,0
)

is the energy price aggregator, which aggregates over the after-tax price of internationally-

sourced energy prices, P̃i,0 ∈ Pi. Energy intensity in foreign country n ̸= i, meanwhile, depends on

the price of the energy variety sourced from home, P̃in,k ∈ Pi, as well as energy prices from vari-

ous foreign locations, P−i,0, and the carbon tax in that country, which is set to zero without loss of

generality. Namely,

zn,k
(

P̃in,0, P−i,0, wi, Qi
)
= z̄n,k

 κ̄n,k P̃1−ς
n,0k

κ̄n,k P̃1−ς
n,0k + (1 − κ̄n,k)w1−ς

n


ς

ς−1

Q
− 1

γk
n,k , where P̃n,0k = P̃n,0

(
P̃in,k, P−i,0

)
+ τ̄n,0

Isomorphism with External Economies of Scale. Consider an alternative formulation in which

production technologies of final goods (k = 1, ..., K) feature external economies of scale that are op-

erative at the industry level. Specifically, there is a measure one of symmetric firms in each country-

industry (n, k), each with total factor productivity that equals φn,k = φ̄n,k Qµk
n,k with µk ≥ 0 denoting

the scale elasticity. An individual firm does not internalize the impact of its production on the ag-

gregate total factor productivity, and so, the producer price is given by Pnn,k =
cn,k
φ̄n,k

Q−µk
n,k . Per cost

minimization as before,

cn,k =
[
(1 − κ̄n,k)w1−ς

n + κ̄n,k P̃1−ς
n,0k

]1/(1−ς)
∝ wn (1 − αn,k)

1
ς−1 ,

indicating that the cost share of energy input equals αn,k = κ̄n,k
(

P̃n,0k/cn,k
)1−ς, and the carbon emis-

sion equals Zn,k = αn,kPnn,kQn,k/P̃n,0k. Taking note of these points, Pni,k = dni,k p(ext)
nn,k wn (1 − αn,k)

1
ς−1 Q−µk

n,k ,

and Zn,k = z̄(ext)
n,k × α

ς
ς−1
n,k × Q1−µk

n,k . This setting, therefore, is isomorphic to the above Krugman-type

extension provided that p(ext)
nn,k = pnn,k, z̄(ext)

n,k = z̄n,k, and µk = 1/γk.

H.1.2 Unilaterally Optimal Policy Problem

As in our baseline model, we determine country i’s unilaterally optimal policy as follow: The govern-

ment in country i selects Pi =
{

P̃ij,k, P̃ji,k, αi,k

}
j,k

to maximize the climate-adjusted national welfare,

Vi
(
Ei, P̃i

)
− δiZ(global), subject to equilibrium constraints.

We retrieve the unilaterally optimal taxes from the optimal policy solution, P∗
i , similar to our

baseline but with an added policy instrument, sn,k, denoting production subsidies. With the added

instrument, the wedges between consumer and producer prices are given by:

P̃ni,k =
(1 + tni,k)

(1 + sn,k) (1 + xni,k)
× Pni,k, P̃i,0k = P̃i,0 + τi,k,
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where tii,k = xii,k = 0, by definition. The optimal tax rates can be, therefore, determined as

1 + t∗ji,k =
P̃∗

ji,k

Pji,k
,

(
1 + x∗ij,k

)−1
=

P̃∗
ij,k/Pij,k

P∗
ii,k/Pii,k

,
(

1 + s∗i,k
)−1

=
P̃∗

ii,k

Pii,k
τ∗

i,k =
α∗i,kYi,k

Zi,k
− P̃i,0.

Our derivation here deals with the small open economy case, whereby producer prices in the rest of

world (and aggregate variables, w−i, and E−i, ) are invariant to Pi. It is straightforward to verify

that our domestic wage-neutrality result continues to hold in this setting. Hence, we can derive the

first-order conditions while disregarding general equilibrium wage effects, as they are welfare neutral

in the reformulated problem. With this background in mind, we derive the F.O.C.s w.r.t. each element

of Pi.

H.1.3 First-Order Conditions

To guide the derivations, we produce the balance of budget, which requires total expenditure (Ei) to

be equal to total income (Yi), as the sum of factor income and tax revenues:

Yi = Yi (Pi, wi, Pi,0, C, Zi, Qi) =wiLi + Πi (Pi,0, wi) + τ⊤
i Zi

+
(
P̃i,0 − Pi,0

)⊤ Ci,0 +
(
P̃−i,0 − P−i,0

)⊤ C−i,0

+
(
P̃i − Pi (Pi, wi, Qi)

)⊤ Ci +
(
P̃−i − P−i

)⊤ C−i;

where the function differs from the baseline constant-returns to scale case in that local producer prices

Pi (.) depend on the local output scale, reflecting scale economies.

∂Vi (.)
∂Ei

[
∂Yi (.)

∂P̃
+

∂Yi (.)
∂wi

∂w
∂P̃

+
∂Yi (.)
∂Pi,0

∂Pi,0

∂P̃
+

∂Yi (.)
∂C

∂C
∂P̃

+
∂Yi (.)

∂Zi

∂Zi

∂P̃
+

∂Yi (.)
∂Qi

∂Qi
∂P̃

]
︸ ︷︷ ︸

∂Ei/∂P̃

+
∂Vi (.)

∂P̃
− δi

(
∂Zi

∂P̃
+ z−i

∂Q−i

∂P̃
+

∂zn (.)
∂P̃

Qn + Q−i
∂z−i (.)
∂Q−i

∂Q−i

∂P̃

)
1︸ ︷︷ ︸

∂Z(global)/∂P̃

= 0

Given the small open economy assumption and Lemma 1, we have:

∂Yi (.)
∂wi

=
∂Yi (.)
∂Pi,0

∂Pi,0

∂P̃
= 0

(i) Optimal Local Prices. Consider a local price instrument P̃ ∈
{

P̃i, τi
}

. Extrapolating from

Lemma 2 in Appendix B, the local price instruments satisfy:

∂Vi (.)
∂Ei

∂Yi (.)
∂P̃

+
∂Vi (.)

∂P̃
= 0

Also local price instruments cannot influence carbon prices abroad, indicating that ∂zn(.)
∂P̃ = 0. Hence,

the first-order condition with respect to t P̃ ∈
{

P̃i, τi
}

reduces to

∂Yi (.)
∂C

∂C
∂P̃

+
∂Yi (.)

∂Zi

∂Zi

∂P̃
+

∂Yi (.)
∂Qi

∂Qi
∂P̃

− δ̃i

[
∂Zi

∂P̃
+ z−i

∂Q−i

∂P̃

]
1 = 0

We can simplify the above equation by differentiating the functions Yi (.) and zn (.) with respect to

specific arguments, which implies:
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– ∂Yi(.)
∂C

∂C
∂P̃ = ∂Yi(.)

∂Ci

∂Ci
∂P̃ =

(
P̃i − Pi

) ∂Ci
∂P̃

– ∂Yi(.)
∂Zi

∂Zi
∂P̃ = ∑ τi,k

∂Zi,k
∂P̃

– ∂Yi(.)
∂Qi

∂Qi
∂P̃ = −∑n ∑g Cin,g

∂Pin,g(.)
∂Qi,g

∂Qi,g

∂P̃ = ∑n ∑g ρin,gPii,g
∂ ln Pin,g(.)

∂ ln Qi,g

∂Qi,g

∂P̃

– δ̃i

[
∂Zi
∂P̃ + z−i

∂Q−i
∂P̃ + Q−i

∂z−i(.)
∂Q−i

∂Q−i
∂P̃

]
1 = δ̃i ∑k

∂Zi,k
∂P̃ + ∑n ̸=i ∑g

(
1 + ∂ ln zn,g(.)

∂ ln Qn,g

)
zn,g

∂Qn,g

∂P̃

where ρin,g =
Pin,gCin,g

Yi,g
denotes the sales share. The the GE derivative of output with respect to policy

in the above expressions can be specified in terms of demand derivatives, by noting the function

Qn,g = Qn,g

({
Cnι,g

}
ι,g

)
= ∑ι dnι,gCnι,g. In particular,

∂Qn,g

∂P̃
=

∂Qn,g (.)
∂Cni,g

∂Cni,g

∂P̃
= dni,g

∂Cni,g

∂P̃
.

Plugging these expressions back into first-order condition, and noting that ∂ ln zn,g(.)
∂ ln Qn,g

=
∂ ln Pin,g(.)

∂ ln Qi,g
=

− 1
γg

for all n and g, yields

∑
n ̸=i

∑
g

(
P̃ni,g −

(
1 +

[
1 − 1

γg

]
zn,g

Pii,g

)
Pni,g

)
∂Cni,g

∂P̃
−∑

g

[
P̃ii,g −

(
1 − ∑

n

ρin,g

γg

)
Pii,g

]
∂Cii,g

∂P̃
+∑

(
τi,k − δ̃i

) ∂Zi,k

∂P̃
= 0

Note that ∑n ρin,g = 1 and zn,0 = 0 by construction. Also, zn,g = vn,gPnn,g where νn,g = Zn,g/Yn,g is

emissions per dollar value. Hence, our final expression for the first-order condition with respect to

local prices can be stated as:

∑
n ̸=i

∑
g

[(
P̃ni,g −

(
1 +

γg − 1
γg

δ̃ivi,g

)
Pni,g

)
∂Cni,g

∂P̃

]
+ ∑

n ̸=i

[(
P̃ni,0 − Pni,0

) ∂Cni,0

∂P̃

]

+∑
g

[(
P̃ii,g −

γg − 1
γg

Pii,g

)
∂Cii,g

∂P̃

]
+ ∑

g

(
τi,k − δ̃i

) ∂Zi,k

∂P̃
= 0. (H.1)

(ii) Final good export prices. Consider the export price instrument P̃ ∈
{

P̃in,k
}

k, which regulates

export levels to market n ̸= i. The export price instrument P̃ does not directly enter the indirect utility

function of the home country, i.e., ∂Vi(.)
∂P̃ = 0. However, a change in P̃ affects revenues and emissions

both through direct effects on demand Cn in market n and through its general equilibrium effect on

the domestic demand, Ci. The F.O.C. representing these effects is

∂Yi (.)
∂P̃

+
∂Yi (.)

∂Cn

∂Dn (.)
∂P̃

+
∂Yi (.)

∂Ci

∂Ci

∂P̃
+

∂Yi (.)
∂Zi

∂Zi

∂P̃
+

∂Yi (.)
∂Qi

∂Qi
∂P̃

−δ̃i

[
1

∂Zi

∂P̃
+ z−i

∂Q−i

∂P̃
+ Q−i

∂z−i (.)
∂Q−i

∂Q−i

∂P̃

]
= 0

which after reorganizing the terms and noting that ∂Q
∂P̃ = ∂Q(.)

∂C
∂C
∂P̃ , delivers:

∂Yi (.)
∂P̃

+
∂Yi (.)

∂Cn

∂Dn (.)
∂P̃

+
∂Yi (.)

∂Qi

∂Qi (.)
∂Cn

∂Dn (.)
∂P̃

− δ̃i

[
z−i

∂Q−i (.)
∂Cn

+ Q−i
∂z−i (.)
∂Q−i

∂Q−i (.)
∂Cn

]
∂Dn (.)

∂P̃

+

[
∂Yi (.)

∂Ci
− ∂Yi (.)

∂Qi

∂Qi (.)
∂Ci

− δ̃iz−i
∂Q−i (.)

∂Ci

]
∂Ci

∂P̃
+

[
∂Yi (.)

∂Zi
− δ̃i1

]
∂Zi

∂P̃
= 0 (H.2)

The second line is zero, given the optimality of local prices (akin to Lemma 4 in Appendix B). The

terms in the first line can be unpacked and simplified as follows by focusing on a specific instrument
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P̃ = P̃in,k:

– ∂Yi(.)
∂P̃in,k

= Cin,k

– ∂Yi(.)
∂Cn

∂Dn(.)
∂P̃in,k

= ∑g
(

P̃in,g − Pin,g
) ∂Din,g(.)

∂P̃in,k

– ∂Yi(.)
∂Qi

∂Qi(.)
∂Cn

∂Dn(.)
∂P̃in,k

= ∑g Cin,g
∂Pin,g(.)

∂Qi,g

∂Qi,g(.)
∂Cin,g

∂Din,g(.)
∂P̃in,k

= −∑g
1

γg
Pin,g

∂Din,g(.)
∂P̃in,k

– z−i
∂Q−i(.)

∂Cn

∂Dn(.)
∂P̃in,k

= ∑ℓ ̸=i ∑g zℓ,gdℓn,g
∂Dℓn,g(.)

∂P̃in,k
= ∑ℓ ̸=i ∑g νℓ,gPℓn,g

∂Dℓn,g(.)
∂P̃in,k

– Q−i
∂z−i(.)
∂Q−i

∂Q−i(.)
∂Cn

∂Dn(.)
∂P̃in,k

= ∑ℓ ̸=i ∑g Qℓ,g
∂zℓ,g(.)
∂Qℓ,g

∂Qℓ,g(.)
∂Cℓn,g

∂Dℓn,g(.)
∂P̃in,k

= − 1
γg

∑ℓ ̸=i ∑g νℓ,gPℓn,g
∂Dℓn,g(.)

∂P̃in,k

Plugging these expression into Equation H.2 and recalling that the terms in the second line are zero at

the optimum, yields

Cin,k + ∑
g

(
P̃in,g −

γg − 1
γg

Pin,g

)
∂Din,g (.)

∂P̃in,k
− δ̃i ∑

ℓ ̸=i
∑
g

γg − 1
γg

νℓ,gPℓn,g
∂Dℓn,g (.)

∂P̃in,k
= 0

Using our compact notation for
∂ ln Din,g(.)

∂ ln P̃in,k
∼ ε

(in,k)
in,g for demand elasticities and diving both sides of the

expression by En yields

ein,k + ∑
g

[(
1 −

γg − 1
γg

P̃in,g

P̃in,g

)
ein,gε

(in,k)
in,g

]
− δ̃i ∑

n ̸=i
∑
g

[
γg − 1

γg
vn,geℓn,gε

(in,k)
ℓn,g

]
= 0

where ein,k = P̃in,kCin,k/En denotes the expenditure share. With additively separable preferences, we

can simplify the above condition further by noting that ε
(in,k)
ℓn,g = − λin,k

1−λin,k

(
1 + ε

(in,k)
in,k

)
, delivering:[(

1 +
1

εin,k

)
− γk − 1

γk

Pin,k

P̃in,k

]
εin,k − δ̃i

γk − 1
γk

∑
ℓ ̸=i

[νℓ,kλℓn,k] (1 + εin,k) = 0 (H.3)

As before, εin,k ∼ ε
(in,k)
in,k represents the own-price elasticity of demand to condense the notation.

(iii) Energy export prices . Consider the price P̃in,0 of energy exported to foreign market n ̸= i. In

addition to the welfare effects exerted by final good export prices, energy export prices influences the

price of the composite energy bundle, P̃n,0, and, thus, the energy intensity zn = zn (.). Accounting for

these additional effects, the F.O.C.s becomes:

∂Yi (.)
∂P̃

+
∂Yi (.)

∂Cn

∂Dn (.)
∂P̃

+
∂Yi (.)

∂Ci

∂Ci

∂P̃
+

∂Yi (.)
∂Zi

∂Zi

∂P̃
+

∂Yi (.)
∂Qi

∂Qi
∂P̃

−δ̃i

[
1

∂Zi

∂P̃
+ z−i

∂Q−i

∂P̃
+ Q−i

∂z−i (.)
∂Q−i

∂Q−i

∂P̃
+ Qn

∂zn (.)
∂P̃

]
= 0

Considering that energy prices only influence the demand for energy goods, we can simply and rearrange

the above equations as

∂Yi (.)
∂P̃

+
∂Yi (.)
∂Cn,0

∂Dn,0 (.)
∂P̃

+
∂Yi (.)
∂Qi,0

∂Qi,0 (.)
∂Cn,0

∂Dn,0 (.)
∂P̃

− δ̃iQn
∂zn (.)

∂P̃

+

[
∂Yi (.)

∂Ci
− ∂Yi (.)

∂Qi

∂Qi (.)
∂Ci

− δ̃iz−i
∂Q−i (.)

∂Ci

]
∂Ci

∂P̃
+

[
∂Yi (.)

∂Zi
− δ̃i1

]
∂Zi

∂P̃
= 0 (H.4)
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The second line is zero, given the optimality of local prices (akin to Lemma 4 in Appendix B). The

terms in the first line can be unpacked and simplified as follows by focusing on a specific instrument

P̃ = P̃in,k:

– ∂Yi(.)
∂P̃in,0

= (1 − Λin,0)Cin,0 following Lemma 6 in Appendix B, with Λin,0 ≈ 0 for small open

economy.

– ∂Yi(.)
∂Cn,0

∂Dn,0(.)
∂P̃in,0

=
(

P̃in,0 − Pin,0
) ∂Din,0(.)

∂P̃in,0

– ∂Yi(.)
∂Qi,0

∂Qi,0(.)
∂Cn,0

∂Dn,0(.)
∂P̃in,0

= − 1
γ0

Pin,0
∂Din,0(.)

∂P̃in,0

– δ̃iQn
∂zn(.)

∂P̃ = δ̃i ∑g Qn,g
∂zn,g(.)

∂P̃n,0

∂P̃n,0
∂P̃in,0

= δ̃i ∑g
zn,gQn,g

P̃in,0

∂ ln zn,g(.)
∂ ln P̃n,0

∂ ln P̃n,0
∂ ln P̃in,0

= δ̃i
Zn

P̃in,0
ζnλin,0 = −δ̃i

ζn
P̃n,0

Cin,0

Plugging these expression into Equation H.4 and recalling that the terms in the second line are zero at

the optimum, yields

Cin,0

(
1 − δ̃i

ζ j

P̃n,0

)
+

(
P̃in,0 −

γ0 − 1
γ0

Pin,0

)
∂Din,0 (.)

∂P̃in,0
= 0

Since we have assumed that there is no love-of-variety for energy, i.e., γ0 → ∞, we can set γ0−1
γ0

= 1.

Considering this and using our compact notation for ∂ ln Din,0(.)
∂ ln P̃in,0

∼ εin,0 for demand elasticities we can

further simplify the F.O.C. with respect to energy export prices as(
1 − δ̃i

ζ j

P̃j,0

)
+

(
1 −

Pij,0

P̃in,0

)
εin,0 = 0. (H.5)

H.1.4 Jointly Solving the system of First-Order Conditions

Solving the system of F.O.C.s with respect to all elements of Pi (Equations H.1, H.3, and H.5) and fol-

lowing the same steps as in our baseline derivation (Appendix B) yields the following characterization

of the unilaterally optimal policy with increasing-returns-to-scale final-good industries:

τ∗
i = δ̃i ∼ δi P̃i, s∗i,k =

1
γk−1 [carbon tax & domestic subsidy]

t∗ni,k = t̄i +
γk−1

γk
τ∗

i vn,k t∗ni,0 = t̄i [import tax (energy and non-energy)]

1 + x∗in,k = (1 + t̄i)
σk−1

σk
+ γk−1

γk
τ∗

i ∑j ̸=i

[
λjn,kvj,k

]
σk−1

σk
[export subsidy (non-energy)]

1 + x∗in,0 = (1 + t̄i)
σ0−1

σ0
+ τ∗

i
1
σ0

ζn
P̃n,0

[export subsidy (energy)]

In the above representation, t̄i is an arbitrary tax shifter, which accounts for the multiplicity of optimal

policy schedules, according to Lerner symmetry. This tax shifter scales up all nominal variables asso-

ciated with country i by a factor of (1 + t̄i). Less visible in the expressions, the shifter also scales the

carbon tax and associated carbon border adjustments through its effect on the consumer price index

P̃i.

The above formulas differ from the baseline constant-returns-to-scale version of our model in

two aspects. First, they incorporate domestic subsidies addressing the distortions that arise from

different degrees of scale economies across industries. However, these subsidies are carbon-blind,

since carbon is already optimally priced through τ∗
i . Second, the carbon border adjustment includes a

scale adjustment, γk−1
γk

∈ (0, 1). The rationale is that carbon border taxes curb emissions by reducing

the scale of output. Under increasing-returns-to-scale industries, the carbon intensity (Z/Q) increases
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with a reduction in output (Q), according to: Zi,k
Qi,k

= z̄i,k × α
ς

ς−1
i,k × Q

− 1
γk

i,k . Thus, the optimal carbon

border tax must strike a balance between a lower output and a higher unit carbon content. This

tradeoff applies the adjustment, γk−1
γk

, to carbon border taxes.

H.2 Melitz Model with Firm Selection

This appendix extends the Krugman-type model presented in Appendix H.2 to accommodate firm

selection into export markets à la Melitz (2003). We show that the Melitz-type model is isomorphic to

the Krugman-type model under a set of standard assumptions. Our derivation closely follows Kuch-

eryavyy et al. (2023). The setting is akin to that described in Appendix H.1, but with two alterations:

(i) A pool of potential firms can pay an entry cost ci,k f (e)i,k to draw their total factor productivity from

a Pareto distribution, Gi,k(φ) = 1 − φ−θk . (ii) After realizing their total factor productivity, firms must

pay a fixed export cost yn f̄ (x)
in,k to serve market n, which is paid in terms of the income per worker, yn,

in the destination market.

As before, Mi,k denotes the mass of firms that pay the fixed entry cost to operate from (i, k). Given

the fixed export cost, only firms with a productivity above φ∗
in,k serve market n. The CES price index of

the national-level composite (in, k) is, thus, Pin,k =

[
Mi,k

∫ ∞
φ∗

in,k

(
1
φ γ̄kd̄in,kci,k

)1−γk
dGi,k (φ)

] 1
1−γk

, which

can be written in terms of the productivity cutoff, φ∗
in,k, if θk > γk − 1. Specifically,

P1−γk
in,k =

θk
θk − γk + 1

Mi,k
(
γ̄kd̄in,kci,k

)1−γk
(

φ∗
in,k

)γk−θk−1
(H.6)

To determine the mass of operating firms, note that the profits of a firm with productivity φ collected

from sales in market n are given by πin,k(φ) = 1
γk

pin,k (φ) qin,k (φ)− yn f̄ (x)
in,k. The CES demand func-

tion facing the firm is qin,k (φ) = pin,k (φ)−γk Pγk−1
in,k Xin,k, where we use Xin,k ≡ Pin,kCin,k to compactly

denote aggregate sales.66 The productivity cutoff, φ∗
in,k, is determined by the zero cut-off profit condi-

tion, πin,k

(
φ∗

ij,k

)
= 0, and can be written as a function of the price index, Pin,k,

φ∗
in,k =

γk
γk−1 d̄in,kci,k

Pin,k

 Xin,k

γkyn f̄ (x)
in,k

 1
1−γk

. (H.7)

It follows from combining Equations (H.6) and (H.7) that (Aggregate Marketing Costs)in,k =
θk−γk+1

θkγk
×

Xin,k. Therefore, the gross ex-ante profits of a firm operating from (i, k) are ∑n

[(
1

γk
− θk−γk+1

θkγk

)
Xin,k

]
=

γk−1
θkγk

Pii,kQi,k. The free entry condition, which equates the gross ex-ante profits to the entry costs, there-

fore, yields Mi,k =
γk−1
θkγk

Pii,kQi,k

ci,k f̄ (e)i,k

. Consolidating these points with Equations (H.6) and (H.7) and noting

that yi ≡ Yi/L̄i, the aggregate price index of national-level varieties can be obtained as:

P1−σk
in,k = Γ̄in,k ×

(
d̄in,kci,k

)−(1+θk)ρk × Qρk
i,k × P

− 1−σk
1−γk

(γk−θk−1)ρk

n,k (H.8)

66 More specifically, demand is determined by after-tax consumer prices as qin,k (φ) = p̃in,k (φ)−γk P̃γk−1
in,k X̃in,k, but since

all varieties associated with triplet (ni, k) are subjected to the same tax, we can write demand alternatively in terms
of pre-tax prices.
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where Γ̄in,k is a constant and ρk ≡
[
1 + θk+1

σk−1 − θk
γk−1

]−1
.67 To establish that the present model is

isomorphic to the Krugman-type model examined in Section H.1, we define the following composite

elasticities:

σ
(Melitz)
k ≡ 1 + (1 + θk) ρk, γ

(Melitz)
k ≡ (1 + θk) (H.9)

Noting that (1 − σk) +
1−σk
1−γk

(γk − θk − 1) ρk = − (1 + θk) ρk, we define the following variety-level

auxiliary price index,

Pin,k = Γ̄
1/
(

1−σ
(Melitz)
k

)
in,k × d̄in,k × ci,k × Q

−1/γ
(Melitz)
k

i,k (H.10)

The auxiliary price index, described by Equation (H.10), is closely related to the true price index, Pij,k,

according to: (
Pin,k

Pn,k

)1−σ
(Melitz)
k

=

(
Pin,k

Pn,k

)1−σk

= λin,k

Using the above expressions and noting that P1−σk
n,k = ∑i P1−σk

in,k , we obtain Pn,k = ∑i

[
P

1−σ
(Melitz)
k

in,k

] 1

1−σ
(Melitz)
k .

Next, we introduce taxes under the standard assumption that they are applied prior to the markup,

acting as a cost-shifter. Taking similar steps as in the above derivations, we get the following formu-

lation for consumer prices indexes and trade shares:

(Aggregate Price Index- Melitz) P̃n,k = ∑
i

[
P̃

1−σ
(Melitz)
k

in,k

] 1

1−σ
(Melitz)
k

(Aggregate Demand Function - Melitz) Din,k
(
Ei, P̃ i

)
=

P̃
1−σ

(Melitz)
k

in,k

∑j P̃
1−σ

(Melitz)
k

ij,k

βi,kEi,

where P̃in,k is the consumer price index which is determined by the producer price index and taxes

as below.

P̃in,k =
(1 + tin,k)

(1 + xin,k) (1 + si,k)
Pin,k, Pin,k = Γ̄

1/
(

1−σ
(Melitz)
k

)
in,k d̄in,kci,k Q

−1/γ
(Melitz)
k

i,k

Lastly, the balance-of-budget condition entails that Ei = Yi, where total income is given by following

(Balance of Budget - Melitz) Yi = ϱi [wi L̄i + riR̄i + Ti]

with ϱn ≡
(

1 − ∑k

[
θk−γk+1

θkγk
βn,k

])−1
denoting a correction that accounts for income from fixed cost

payments. The wage and rental rates are determined by factor market clearing conditions as in ear-

lier models, and so are the tax revenues. Letting P̃i = ∏k P̃βi,k
i,k denote the consumer price index, the

unilaterally optimal policy maximizes welfare, Wi = ϱi (wi L̄i + riR̄i + Ti) /P̃i − δiZ(global) subject to

the equilibrium conditions specified above. Considering the exact correspondence between the equi-

librium conditions in the Melitz-Pareto model and the Krugman model studied in Appendix H.2, we

67 Specifically, Γ̄in,k has the following representation:

Γ̄in,k =

 1
θk − γk + 1

[γk/ (γk − 1)]−(1+θk)

f̄ (e)i,k

γ
− γk−θk−1

1−γk
k

ρk

×

 βn,k L̄n

γk f̄ (x)
in,k

ρk
γk−θk−1

1−γk
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can deduce that the unilaterally optimal policy for a small open economy are described by:

τ∗
i = δ̃

(Melitz)
i ∼ δi

ϱi
P̃i, s∗i,k =

1
γ
(Melitz)
k −1

[carbon tax & domestic subsidy]

t∗ni,k = t̄i +
γ
(Melitz)
k −1

γ
(Melitz)
k

τ∗
i vn,k t∗ni,0 = t̄i [import tax (energy & non-energy)]

1 + x∗in,k = (1 + t̄i)
σ
(Melitz)
k −1

σ
(Melitz)
k

+
γ
(Melitz)
k −1

γ
(Melitz)
k

τ∗
i ∑j ̸=i

[
λjn,kvj,k

]
σ
(Melitz)
k −1

σ
(Melitz)
k

[export subsidy (non-energy)]

1 + x∗in,0 = (1 + t̄i)
σ0−1

σ0
+ τ∗

i
1
σ0

ζn
P̃n,0

[export subsidy (energy)]
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I Additional Figures and Tables

Figure A.2: Industry-level Share of Global Emissions vs Trade-to-GDP Ratio

Notes: This figure shows the scatter plot of CO2 emission for each industry as a share of total emissions against
industry-level trade-to-GDP ratios.
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Figure A.3: Unilaterally Optimal Carbon Import Taxes of the EU

Notes: This figure shows for every industry the carbon import taxes adopted optimally and unilaterally by the EU.
Holding an industry fixed, the unilaterally optimal import taxes differ across exporting countries since the carbon
intensity of imported goods (carbon content per dollar of sales) varies across exporting countries. For each industry,
the figure shows the 10th percentile, median, and 90th percentile of these carbon border tax rates across countries.
These numbers are produced using the carbon disutility cost, equivalent to 53.2 $/tCO2, for the EU. In the absence of
general equilibrium effects, adopting a higher carbon disutility cost for the EU proportionately scales up each point in
the figure.
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Figure A.4: Welfare Gains of Staying vs Leaving the Club-of-all-nations

(a) Core: EU (b) Core: EU+US

(c) Core: EU+US+China
Notes: This figure shows the percentage change to welfare of staying relative to withdrawing unilaterally for each non-
core country in different scenarios of the climate club: In Panel (a), the EU is the sole core member and the carbon tax
target is 36 ($/tCO2). In Panel (b), the EU and US are the core members and the carbon tax target is 53 ($/tCO2). In
Panel (c), the EU, US, and China are the core members and the carbon tax target is 89 ($/tCO2). In all three cases, the
carbon tax target is the maximal target under which the club-of-all-nations emerges as the unique Nash equilibrium.
In Panel (a) and (b), if we raised the tax target, the cub-of-all-nations would be still an equilibrium but not the unique
equilibrium. But in Panel (c), if we raised the tax target, the club-of-all-nations would not be an equilibrium anymore.
As shown in Panel (c), India is a marginal country that would withdraw if we raised the tax target. In addition, we
evaluate the gains for core countries by comparing their welfare in the final outcome of the club relative to the status
quo (not relative to the case where they unilaterally withdraw). Relative to the status quo: in case (a), the EU’s welfare
increases by 0.68%; in case (b), the welfare of the EU and US, respectively, increases by 0.85% and 0.10%; and in case
(c), the welfare of the EU, US, and China increases, respectively, by 1.06%, 0.01%, and 0.39%.
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Figure A.5: Carbon Disutility Costs: Baseline vs Alternative Specification

Notes: This figure shows the carbon disutility cost, δ̃i, for each country in our main specification versus an alternative
specification, as discussed in Section 6.1. In both specifications, the sum, ∑i δ̃i, equals the social cost of carbon at 156
($/tCO2). In our main specification, the relative value of δ̃i is larger for more populated countries, and controlling
for population size, it is proportional to countries’ environmentally-related taxes per unit of GDP. In the alternative
specification, the relative value of δ̃i is set based on the estimates of country-level social cost of carbon taken from
Ricke et al. (2018).
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Figure A.6: The Unilateral Policy Frontier of the EU

Notes: This figure shows the frontier of the EU’s unilateral policy (EU as “Home”) obtained from varying the weights
that the EU assigns to the welfare of non-EU countries. The frontier illustrates the percentage change in the EU’s
welfare on y-axis against the percentage change in the ROW’s welfare on x-axis (as an aggregation over the welfare
of all non-EU countries). Each point on the frontier corresponds to a common weight that the EU assigns to non-
EU countries. The maximum possible change in the EU’s welfare corresponds to the point labelled as “Unilaterally
Optimal” which is obtained when the EU assigns a zero weight to the ROW. By increasing ROW’s weight from zero
to positive values, we move along the frontier toward the right-hand side of the Unilaterally Optimal point. The point
labelled as “Externality-Free” corresponds to the case where the EU’s unilateral policy preserves the ROW’s welfare
relative to the status quo. By decreasing ROW’s weight from zero to negative values, we move along the frontier to the
left-hand side of the Unilaterally Optimal point. The point labelled as “Maximal Sanction” corresponds the case where
the EU’s policy maximally hurts the ROW without reducing its own welfare. See Appendix E.2 for details including
the policy formulas.
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Figure A.7: The EU Unilateral Policy’s Impact on Welfare and Emissions Along the Frontier

Notes: These figures show welfare and carbon emission changes in response to EU’s unilateral policy (EU as “Home”)
obtained from varying the weight that the EU assigns to the welfare of non-EU countries. The x-axis shows the common
weight that the EU assigns to non-EU countries. The y-axis shows the percentage change in welfare (three top figures)
and carbon emissions (bottom three figures) in the EU, ROW as aggregate of non-EU countries, and the world. See
Appendix E.2 for details including the policy formulas.

Figure A.8: Model Predictions vs Actual Emissions Response to Observed Carbon Tax Changes

(a) (b)
Notes: Panel (a) displays the model-predicted changes in CO2 emissions (∆Z(model)) for each country in response to
the observed changes in average carbon taxes from 2014 to 2022 (∆τ(data)). The predictions are based on our model
calibrated to 2014 data as the baseline year; and, the year 2022 is the most recent year with available carbon tax and
emissions data. The average carbon tax is calculated as the total carbon tax revenue in a country divided by the coun-
try’s total CO2 emissions, using data from the World Bank Carbon Pricing Dashboard. This differs from implied carbon
prices of specific policies—for example, the EU Emissions Trading System (EU-ETS) permit price, since EU countries
have other climate policies and the EU-ETS covers only part of EU emissions. Panel (b) shows the difference between
the predicted and actual CO2 emission changes over this period (∆Z(model) − ∆Z(data)). This difference is visually illus-
trated using the red double arrows for the USA, EU, and India. The difference between observed and predicted changes
can help validate our model in the spirit of the IV-based test proposed by Adao et al. (2024). Crucially, note that our
exercise remains suggestive due to data limitations. With that caveat, if the correlation between

(
∆Z(model) − ∆Z(data)

)
and ∆τ(data) is indistinguishable from zero, we cannot reject the null that our model is misspecified. The correlation
between the noted variables is 0.17 with a p-value of 0.49, which is statistically indistinguishable from zero.
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Figure A.9: CO2 Emission Reduction in Response to Globally Optimal Carbon Tax at Different
Values of the SC-CO2

Notes: This figure compares our model’s predicted global emission reductions to projections from other leading studies.
The solid black line shows the percent reduction in global CO2 emissions under the globally optimal carbon tax in our
model, evaluated at different social costs of CO2. The star indicates our model’s predicted reduction under a social
cost of $156/tCO2, which is our preferred value. The other dots represent reductions predicted by other studies:
(1) DICE-2023 represents the predicted emissions reduction in 2050 relative to a baseline without counterfactually
elevated carbon prices (Barrage and Nordhaus, 2023). (2) CGE-1 to CGE-4 are average projected reductions across 10
computable general equilibrium (CGE) models, each projecting global emission reduction in 2030 relative to baseline—
See Table 1 in Böhringer et al. (2021) for the list of models and Makarov et al. (2021) and Chepeliev et al. (2021) for
further illustrations. (3) IMF-ENV represents projected emissions reduction under the International Monetary Fund’s
recursive dynamic neoclassical model for 2030 relative to baseline (Chateau et al., 2022). (4) Kohlscheen et al represents
empirical estimate of emission reductions from various climate policies’ implied carbon pricing across 121 countries
(Kohlscheen et al., 2021).
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Figure A.10: Emission Changes in Proposal 1: CRS vs IRS

Notes: This figure shows CO2 emission changes from carbon border taxes under Proposal 1 for each country and at
the level of the world, for the main model with constant-returns-to-scale (CRS) final-goods technologies and in the
extended model with increasing-returns-to-scale (IRS) final-goods technologies.

Table A.2: Accounting of CO2 Emissions

Direct Emission Total Emission
MtCO2 Share MtCO2 Share

Energy Types
Coal 155 0.5% 0 0.0%
Crude Oil 282 0.9% 0 0.0%
Natural Gas 188 0.6% 0 0.0%
Refined Oil 1033 3.4% 0 0.0%
Electricity and Gas Manuf. 12920 42.6% 0 0.0%
Aggregate 14578 48.1% 0 0.0%

Downstream Industries
1 Agriculture 512 1.7% 945 3.1%
2 RO of Mining 158 0.5% 411 1.4%
3 Food 333 1.1% 731 2.4%
4 Textiles 101 0.3% 415 1.4%
5 Wood 33 0.1% 116 0.4%
6 Paper 174 0.6% 469 1.5%
7 Chemicals 890 2.9% 2106 6.9%
8 Plastics 130 0.4% 390 1.3%
9 Mineral 1369 4.5% 1895 6.2%

10 Metals 1392 4.6% 3260 10.7%
11 Machinery and Electronics 149 0.5% 660 2.2%
12 Transport Equipment 60 0.2% 266 0.9%
13 Manuf, Nec 57 0.2% 125 0.4%
14 Construction 175 0.6% 329 1.1%
15 Retail and Wholesale 163 0.5% 807 2.7%
16 Transportation 5089 16.8% 6082 20.1%
17 Other Services 908 3.0% 3256 10.7%

Aggregate 11693 38.6% 22261 73.4%

Households 4056 13.4% 8066 26.6%

Global 30327 100.0% 30327 100.0%

Notes: This table shows CO2 emissions by industries and households, based on direct and total emissions, with “total
emissions” including direct and indirect CO2 emissions associated with purchases of energy. The carbon accounting
shown in this table requires us to exclude non-CO2 greenhouse gas emissions and CO2 emissions associated with
manufacturing process that do not arise from using fossil fuel energy. See Section 4.2 for a detailed description, and
note that our procedure ensures the accounting of carbon flows.
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Table A.3: Estimates of Trade Elasticity Parameters

Industry Industry Code (σk) Obs.

Agriculture 1 4.80 28,228
( 0.41)

Other Mining 2 11.16 49,255
( 1.17)

Food 3 4.80 28,228
( 0.41)

Textiles 4 5.25 13,418
( 0.79)

Wood 5 7.50 7,424
( 1.94)

Paper 6 7.55 8,728
( 2.00)

Chemicals 7 9.60 25,464
( 0.93)

Plastic 8 9.60 25,464
( 0.93)

Minerals 9 6.27 9,482
( 1.60)

Metals 10 6.99 12,548
( 2.17)

Electronics & Machinery 11 4.98 13,148
( 1.69)

Motor Vehicles 12 5.88 12,742
( 1.36)

Other Mfg 13 5.80 12,498
( 1.05)

Energy 101-105 11.16 49,255
( 1.17)

Notes: This table reports our estimated trade elasticity parameters based on the specification described in Section 4.2.
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Table A.4: Estimation: Energy Demand Elasticity
(1) (2) (3)

Estimate -0.93 -0.63 -0.65

S.E. (0.14) (0.14) (0.17)

Industry FE Y Y Y

Country FE N N Y

Additional Controls N Y N

R-squared 0.46 0.52 0.63

Observations 2040 2006 2040

Notes: This table reports OLS estimates of the energy demand elasticity (−ς), based on Equation (28). Standard errors are clustered

at the country level. Each observation is a pair of country-industry across 120 countries and 17 non-energy industries. Energy use

for each industry aggregates purchases of refined oil products, electricity and manufactured gas in oil equivalent units. Total cost for

each industry equals payments to factors of production and intermediate inputs. All columns include an industry FE and Column

(3) additionally includes a country FE. Column (2) controls for country-level effects using variables that approximate country-wide

unobserved production costs and energy demand, consisting of industrial expenditure per worker, national energy reserves, and

domestic expenditure share in the energy sector.

Table A.5: Climate Club Game with the EU as Core at Maximum Carbon Tax Target ($/tCO2)

Core EU
Round 1 Brazil, Korea, Turkiye, RO Eurasia
Round 2 China
Round 3 Australia, Indonesia, India, Japan, Russia, United States, Africa, RO Asia and Oceania, RO Middle East
Round 4 Canada, Mexico, Saudi Arabia, RO Americas

Notes: This table shows the convergence of our solution method via successive rounds to a club of all nations, for the
case in which the EU is the sole core member and the carbon tax target is at its maximal value of 36 $/tCO2. A country
unilaterally evaluates to join or leave at each round given the club configuration at its previous round.

Table A.6: Climate Club Game with the EU, US & China as Core at Maximum Carbon Tax Target
($/tCO2)

Core EU, China, United States
Round 1 Australia, Brazil, Canada, Japan, Korea, Mexico, Turkiye, Africa, RO Americas, RO Eurasia
Round 2 Indonesia, Russia, Saudi Arabia, RO Asia and Oceania, RO Middle East
Round 3 India

Notes: This table shows the convergence of our solution method via successive rounds to a club of all nations, for the
case in which the EU, US, and China are core members and the carbon tax target is at its maximal value of 89 $/tCO2.
A country unilaterally evaluates to join or leave at each round given the club configuration at its previous round.
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Table A.7: Noncooperative Outcomes under Alternative Specifications

Non-Cooperative Globally
Carbon+Border Tax Carbon Tax Border Tax First Best

Main Specification -6.6% -5.4% -1.2% -41.0%
Alt SCC -4.4% -3.3% -1.2% -28.6%
Alt Carbon Disutility -4.6% -3.5% -1.1% -41.4%
Alt Trade Elast -6.6% -5.4% -1.2% -40.9%
Alt Energy Demand Elast -8.0% -6.6% -1.5% -48.9%
Alt Energy Supply Elast -4.1% -3.3% -0.9% -33.8%

Notes: This table shows outcomes under Proposal 1 (carbon border taxes) for five alternative specifications regarding
the social cost of carbon, disutility parameters from carbon emissions, trade elasticity parameters, energy input de-
mand elasticity and energy supply elasticity. See Section 6.1 for details of of these alternative parameterizations. The
table shows the percentage change in global carbon emission under noncooperative carbon & border taxes (first col-
umn) and under only carbon taxes (second column). The implied difference between these two outcomes corresponds
to the column under “Border Tax.” As a benchmark for comparison, the emission reduction under the globally first
best is reported in the last column.

Table A.8: Climate Club Outcomes under Alternative Specifications

Specification Core Members Max Tax ∆ CO2 ∆ CO2 Col 2 divided
($/tCO2) Climate Club First Best by Col 3

(1) (2) (3) (4)

Alt SCC EU 25 -9.7% -28.6% 0.34
EU+US 52 -18.3% -28.6% 0.64
EU+US+CHN 89 -28.0% -28.6% 0.98

Alt Carbon Disutility EU 33 -12.4% -41.4% 0.30
EU+US 68 -22.8% -41.4% 0.55
EU+US+CHN 94 -29.1% -41.4% 0.70

Alt Trade Elasticity EU 36 -13.3% -40.9% 0.33
EU+US 66 -22.2% -40.9% 0.54
EU+US+CHN 89 -27.9% -40.9% 0.68

Alt Energy Demand Elasticity EU 34 -15.3% -48.9% 0.31
EU+US 50 -21.4% -48.9% 0.44
EU+US+CHN 80 -31.1% -48.9% 0.64

Alt Energy Supply Elasticity EU 21 -5.1% -33.8% 0.15
EU+US 52 -12.4% -33.8% 0.37
EU+US+CHN 82 -19.1% -33.8% 0.57

Notes: This table shows outcomes under Proposal 2 (Climate Club), for three scenarios of core countries (EU, EU+USA,
EU+USA+China), and for five alternative specifications regarding the social cost of carbon, disutility parameters from
carbon emissions, trade elasticity parameters, energy input demand elasticity and energy supply elasticity. See Section
6.1 for details of these alternative parameterizations. The table shows the maximal carbon tax target that supports the
club-of-all-nation, percentage change in global carbon emission, the percentage change emission reduction achieved
under globally first best, and the fraction of the first-best emission reduction that the club replicates.
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Table A.9: Non-Cooperative and Cooperative Policy Outcomes under Increasing Returns to Scale

Non-Cooperative Globally Cooperative
Carbon + Border Tax Carbon Tax

Country ∆CO2 ∆V ∆W ∆CO2 ∆V ∆W ∆CO2 ∆V ∆W

Australia -1.8% -0.7% -0.6% 1.7% -0.0% 0.1% -36.1% -1.8% -1.1%
EU -19.0% -0.3% -0.1% -19.4% -0.0% 0.2% -34.7% -0.5% 1.4%
Brazil -2.4% -0.1% 0.3% -0.8% 0.0% 0.3% -35.8% 0.7% 2.8%
Canada 4.1% -2.0% -2.0% 3.8% -0.0% 0.0% -40.0% -1.6% -1.1%
China -8.2% -0.2% -0.0% -7.5% 0.0% 0.1% -36.0% -1.4% -0.4%
Indonesia 0.1% -0.3% -0.2% 2.1% -0.0% 0.1% -40.6% -2.9% -2.5%
India -4.8% -0.5% 0.3% -5.0% 0.0% 0.7% -43.4% 6.6% 12.6%
Japan -1.7% -0.3% -0.2% -0.5% 0.0% 0.1% -35.7% -1.9% -1.1%
Korea 0.6% 0.1% 0.3% 0.9% 0.0% 0.2% -36.5% 1.5% 2.9%
Mexico 3.8% -1.7% -1.7% 2.9% -0.0% 0.0% -38.9% -1.1% -0.9%
Russia 6.1% -1.5% -1.5% 3.6% -0.2% -0.2% -41.8% 0.2% 0.2%
Saudi Arabia 8.7% -4.0% -4.0% 5.9% -0.6% -0.6% -39.8% -6.7% -6.6%
Turkey -3.7% -0.7% -0.0% -0.0% 0.1% 0.7% -36.4% 3.0% 8.3%
USA -3.7% -0.4% -0.3% -1.6% 0.0% 0.0% -39.6% -2.0% -1.7%
Africa -12.8% -1.5% -0.3% -9.2% -0.1% 1.1% -39.8% 10.7% 22.1%
RO Americas -5.5% -0.7% -0.3% -2.8% -0.0% 0.4% -38.6% 2.9% 6.3%
RO Asia -5.0% -1.3% -1.2% -0.4% 0.0% 0.2% -37.9% -0.0% 1.2%
RO Eurasia 0.4% -1.3% -1.3% 3.8% -0.1% -0.1% -43.4% -0.9% -0.7%
RO Middle East 2.7% -2.8% -2.8% 4.3% -0.3% -0.3% -40.9% -1.2% -1.0%

Global -5.9% -0.6% -0.3% -4.8% -0.0% 0.2% -38.1% -0.5% 1.0%

Notes: For the extended version of our model a la Krugman that features increasing returns to scale in final good indus-
tries, this table shows for every country the change to CO2 emission, real consumption, and welfare under noncoop-
erative and cooperative policy equilibrium. Here, the baseline corresponds to an equilibrium in which each country’s
import tariffs and domestic carbon taxes are set at their applied rates in 2014, export subsidies are zero, and production
subsidies correct for markup misallocation. The Krugman-type extension of our model and the optimal policy formu-
las in that setting are presented briefly in Section 6.3, with all the details provided in Section H.1 of the appendix.

Table A.10: Climate Club Outcomes under Increasing Returns to Scale

Max Carbon Reduction in
Core Price Target ($/tCO2) World CO2

EU 34 14.8%
EU+USA 46 18.6%
EU+USA+CHN 86 29.3%

Notes: For the extended version of our model a la Krugman that features increasing returns to scale in final good indus-
tries, this table shows the climate club outcomes of the maximal carbon price target and the corresponding reduction
in global CO2 emissions for three scenario of the core countries (EU, EU+USA, EU+USA+China). The Krugman-type
extension of our model and the optimal policy formulas in that setting are presented briefly in Section 6.3, with all the
details provided in Section H.1 of the appendix.
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