Can Trade Policy Mitigate Climate Change?

Farid Farrokhi (Boston College) Ahmad Lashkaripour (Indiana University)

Decmeber 2024

Background

Existing Climate Agreements Have Failed to Deliver!

Cause of Failure: The Free-Riding Problem

Nordhaus (2015, AER)

"The fundamental reason is the strong incentives for free-riding in current international climate agreements [...] Many countries have an incentive to rely on the emissions reductions of others without taking proportionate domestic abatement."

Two Remedies for the *Free-Riding* Problem

Proposal #1: Carbon Border Taxes

- governments can use *carbon border taxes* as a *2nd-best* policy to curb (untaxed) CO₂ emissions beyond their jurisdiction
- the idea is to mimic 1st-best carbon pricing via border taxes

Proposal #2: Climate Club

- climate-conscious governments can forge a club and use *collective* and *contingent* trade penalties to deter free-riding.
- has the potential to achieve 1st-best carbon-pricing

Two Remedies for the *Free-Riding* Problem

Proposal #1: Carbon Border Taxes

- governments can use *carbon border taxes* as a *2nd-best* policy to curb (untaxed) CO₂ emissions beyond their jurisdiction
- the idea is to mimic 1st-best carbon pricing via border taxes

Proposal #2: Climate Club

- climate-conscious governments can forge a club and use *collective* and *contingent* trade penalties to deter free-riding.
- has the potential to achieve *1st-best* carbon-pricing & free trade!

Existing Assessments of Climate-Oriented Trade Policy

- We have a limited understanding of the efficacy of Proposals #1 & #2
- Computing the *maximal* efficacy of theses proposals is challenging:
 - infeasible with numerical optimization given high-dimensionality
 - theoretical representations of optimal policy can help, but existing theories are too stylized to guide quantitative analysis

Existing Assessments of Climate-Oriented Trade Policy

- We have a limited understanding of the efficacy of Proposals #1 & #2
- Computing the *maximal* efficacy of theses proposals is challenging:
 - infeasible with numerical optimization given high-dimensionality (>200 yrs)
 - theoretical representations of optimal policy can help, but existing theories are too stylized to guide quantitative analysis

Existing Assessments of Climate-Oriented Trade Policy

- We have a limited understanding of the efficacy of Proposals #1 & #2
- Computing the *maximal* efficacy of theses proposals is challenging:
 - infeasible with numerical optimization given high-dimensionality
 - theoretical representations of optimal policy can help, but existing theories are too stylized to guide quantitative analysis
 - past literature analyzes simplified variants of these proposals that can be easily quantified but are suboptimal —> unable to determine maximal efficacy

This Paper

1. Develop a rich model of trade with climate externalities

- general equilibrium + multi-industry + multi-country
- global energy markets \rightarrow carbon supply chains

This Paper

- 1. Develop a rich model of trade with climate externalities
 - general equilibrium + multi-industry + multi-country
 - global energy markets \rightarrow carbon supply chains
- 2. Derive analytical formulas for optimal *carbon border taxes* & *climate club penalties* under rich GE considerations

This Paper

- 1. Develop a rich model of trade with climate externalities
 - general equilibrium + multi-industry + multi-country
 - global energy markets \rightarrow carbon supply chains
- 2. Derive analytical formulas for optimal *carbon border taxes* & *climate club penalties* under rich GE considerations
- 3. Map model & theoretical formulas to data to uncover the maximal efficacy of two canonical climate policy proposals:
 - (Proposal 1) carbon border taxes
 - (Proposal 2) climate club

Theoritical Framework

Economic Environment

- Multiple countries: i, n = 1, ..., N
 - country *i* is endowed with \overline{L}_i units of labor and \overline{R}_i carbon reserves.
- Multiple industries:
 - energy: k = 0
 - final goods: k = 1, ..., K.
- All industries are perfectly competitive and tradable (s.t. trade costs)

Economic Environment

- Multiple countries: i, n = 1, ..., N
 - country *i* is endowed with \overline{L}_i units of labor and \overline{R}_i carbon reserves.
- Multiple industries:
 - energy: k = 0
 - final goods: k = 1, ..., K.
- All industries are perfectly competitive and tradable (s.t. trade costs)
- CO₂ emissions are determined by energy usage

Consumption

- Non-parametric utility aggregator across international varieties

variety $ni, k \sim$ origin *n*-destination *i*-industry k

- Demand for each variety is a function of
 - 1. expendable income: E_i

2. after tax prices:
$$\tilde{\mathbf{P}}_i = \left\{ \tilde{P}_{1i,k}, ..., \tilde{P}_{Ni,k} \right\}_{k=1,...,K}$$

Consumption

- Non-parametric utility aggregator across international varieties

variety $ni, k \sim$ origin *n*-destination *i*-industry k

- Demand for each variety is a function of
 - 1. expendable income: E_i

2. after tax prices:
$$\tilde{\mathbf{P}}_i = \left\{ \tilde{P}_{1i,k}, ..., \tilde{P}_{Ni,k}
ight\}_{k=1,...,K}$$

demand function
$$\sim C_{ni,k} = \mathcal{D}_{ni,k} \left(E_i, \tilde{\mathbf{P}}_i \right)$$

indirect utility $\sim V_i \left(E_i, \tilde{\mathbf{P}}_i \right)$

Special Case: Cobb-Douglas-CES

$$U_{i} = \prod_{k=1}^{K} \left(\frac{C_{i,k}}{\beta_{i,k}}\right)^{\beta_{i,k}} \qquad \qquad C_{i,k} = \left[\sum_{n=1}^{N} C_{ni,k}^{\frac{\sigma_{k}-1}{\sigma_{k}}}\right]^{\frac{\sigma_{k}}{\sigma_{k}-1}}$$

Special Case: Cobb-Douglas-CES

$$U_i = \prod_{k=1}^K \left(\frac{C_{i,k}}{\beta_{i,k}}\right)^{\beta_{i,k}} \qquad \qquad C_{i,k} = \left[\sum_{n=1}^N C_{ni,k}^{\frac{\sigma_k - 1}{\sigma_k}}\right]^{\frac{\sigma_k}{\sigma_k - 1}}$$

- Marshallian emand function

$$\mathcal{D}_{ni,k}\left(E_{i},\tilde{\mathbf{P}}_{i}\right) = \left(\frac{\tilde{P}_{ni,k}}{\tilde{P}_{i,k}}\right)^{1-\sigma_{k}}\beta_{i,k}E_{i} \qquad \qquad \tilde{P}_{i,k} = \left(\sum_{j=1}^{N}\tilde{P}_{ji,k}^{1-\sigma_{k}}\right)^{\frac{1}{1-\sigma_{k}}}$$

- Indirect utility function

$$V_i\left(E_i, \tilde{\mathbf{P}}_i\right) = E_i/\tilde{P}_i \qquad \qquad ilde{P}_i = \prod_{k=1}^n \tilde{P}_{i,k}^{eta_{i,k}}$$

i.k

Production: Energy + Final Goods

- Energy extraction (k = 0) uses labor ($L_{i,0}$) and energy reserves (\bar{R}_i)
- A distributor aggregates energy varieties from various locations, Z_i ($C_{1i,0}$, ..., $C_{Ni,0}$), and sells them to downstream producers
- Production in industry k = 1, ..., K combines labor ($L_{i,k}$) and composite energy inputs ($Z_{i,k}$)

Production: Energy + Final Goods

- Energy extraction (k = 0) uses labor ($L_{i,0}$) and energy reserves (\bar{R}_i)
- A distributor aggregates energy varieties from various locations, Z_i ($C_{1i,0}$, ..., $C_{Ni,0}$), and sells them to downstream producers
- Production in industry k = 1, ..., K combines labor ($L_{i,k}$) and composite energy inputs ($Z_{i,k}$)

Energy Extraction (k = 0)

– Energy extraction uses labor and fixed supply of energy reserves \bar{R}_i :

$$Q_{i,0} = \bar{\varphi}_{i,0} L_{i,0}^{1-\phi} \bar{R}_i^{\phi}$$

- Optimal input choices imply an upward-sloping supply curve:

$$P_{ii,0} = \bar{p}_{i,0} Q_{i,0}^{\frac{\phi}{1-\phi}} w_i \qquad \qquad P_{ni,0} = d_{ni,0} P_{ii,0}$$

- The energy extracted by country *i* is sold internationally, with $C_{in,0}$ denoting the quantity sold to country *n*: $Q_{i,0} = \sum_{n} d_{in,0}C_{in,0}$

Energy Extraction (k = 0)

– Energy extraction uses labor and fixed supply of energy reserves \bar{R}_i :

$$Q_{i,0} = \bar{\varphi}_{i,0} L_{i,0}^{1-\phi} \bar{R}_i^{\phi}$$

- Optimal input choices imply an upward-sloping supply curve:

$$P_{ii,0} = \bar{p}_{i,0} Q_{i,0}^{\frac{\phi}{1-\phi}} w_i \qquad \qquad P_{ni,0} = d_{ni,0} P_{ii,0}$$

- The energy extracted by country *i* is sold internationally, with $C_{in,0}$ denoting the quantity sold to country *n*: $Q_{i,0} = \sum_{n} d_{in,0}C_{in,0}$

Energy Bundling & Distribution

- An national energy distributor aggregates international energy varieties ($C_{1i,0}, ..., C_{Ni,0}$) into a composite energy input (Z_i) and sells it to downstream producers

$$Z_i = Z_i (C_{1i,0}, ..., C_{Ni,0})$$

- The price of carbon inputs paid by industry k is the price of the composite energy bundle and the carbon tax

$$\tilde{P}_{i,0k} = \underbrace{\tilde{P}_{i,0}\left(\tilde{P}_{1i,0}, ..., \tilde{P}_{Ni,0}\right)}_{\text{price of energy bundle}} + \underbrace{\tau_{i,k}}_{\text{carbon tax}}$$

Final Good Production

– Production in Industries k = 1, ..., K uses labor & energy inputs:

$$Q_{i,k} = F_{i,k} \left(L_{i,k}, Z_{i,k} \right)$$

- The output price is a homogeneous of degree one function $\mathcal{P}_{i,k}(.)$ of wage and energy input price:

$$P_{in,k} = d_{in,k} \mathcal{P}_{i,k} \left(w_i, \tilde{P}_{i,0k} \right)$$

Final Good Production

– Production in Industries k = 1, ..., K uses labor & energy inputs:

$$Q_{i,k} = F_{i,k}\left(L_{i,k}, Z_{i,k}\right)$$

- The output price is a homogeneous of degree one function $\mathcal{P}_{i,k}(.)$ of wage and energy input price:

$$P_{in,k} = d_{in,k} \mathcal{P}_{i,k} \left(w_i, \tilde{P}_{i,0k} \right)$$

- CO₂ emissions depend on input prices & total output:

$$Z_{i,k} = z_{i,k} \left(w_i, \tilde{P}_{i,0k} \right) Q_{i,k} \quad with \qquad \frac{\partial z'_{i,k} \left(. \right)}{\partial \tilde{P}_{i,0k}} < 0$$

- a higher carbon tax raise energy price $\tilde{P}_{i,0k} \longrightarrow$ lower emissions $Z_{i,k}$

Final Good Production (CES case)

 $Z_{i,k} = z_{i,k} \times Q_{i,k}$ technique

scale

- Production in Industries k = 1, ..., K uses labor & energy inputs:

$$Q_{i,k} = \bar{\varphi}_{i,k} \left[\left(1 - \bar{\kappa}_{i,k}\right)^{\frac{1}{\varsigma}} L_{i,k}^{\frac{\varsigma-1}{\varsigma}} + \bar{\kappa}_{i,k}^{\frac{1}{\varsigma}} Z_{i,k}^{\frac{\varsigma-1}{\varsigma}} \right]^{\frac{\varsigma}{\varsigma-1}}$$

The output price is a function of wage and energy input price: _

$$P_{in,k} = \frac{d_{in,k}}{\bar{\varphi}_{n,k}} \left[(1 - \bar{\kappa}_{i,k}) w_i^{1-\varsigma} + \bar{\kappa}_{i,k} \tilde{P}_{i,0k}^{1-\varsigma} \right]^{\frac{1}{1-\varsigma}} \qquad \qquad \tilde{P}_{i,0k} = \left(\sum_j \tilde{P}_{ji,0}^{1-\sigma_0} \right)^{\frac{1}{1-\sigma_0}} + \tau_{i,k}$$

- CO₂ emissions depend on the carbon intensity $(z_{i,k})$ & total output:

$$z_{i,k} = \bar{z}_{i,k} \times \left(\frac{\bar{\kappa}_{i,k} \tilde{P}_{i,0k}^{1-\varsigma}}{(1-\bar{\kappa}_{i,k}) w_i^{1-\varsigma} + \bar{\kappa}_{i,k} \tilde{P}_{i,0k}^{1-\varsigma}} \right)^{\frac{\varsigma}{\varsigma-1}}$$

Welfare in country i is the sum of indirect utility from consumption and disutility from global CO₂ emissions: disutility from CO₂

Welfare in country *i* is the sum of indirect utility from consumption and disutility from global CO₂ emissions:

$$W_i \equiv V_i(E_i, \tilde{\mathbf{P}}_i) - \delta_i \sum_{n=1}^{\mathcal{N}} \sum_{k=1}^{\mathcal{K}} Z_{n,k}$$

Welfare in country *i* is the sum of indirect utility from consumption and disutility from global CO₂ emissions:

$$W_{i} \equiv V_{i}(E_{i}, \tilde{\mathbf{P}}_{i}) - \delta_{i} \sum_{n=1}^{\mathcal{N}} \sum_{k=1}^{\mathcal{K}} Z_{n,k}$$

$$\boxed{\text{CO}_{2} \text{ emissions from origin } n-\text{industry } k}$$

Welfare in country *i* is the sum of indirect utility from consumption and disutility from global CO_2 emissions:

$$W_i \equiv V_i(E_i, \tilde{\mathbf{P}}_i) - \delta_i \sum_{n=1}^{\mathcal{N}} \sum_{k=1}^{\mathcal{K}} Z_{n,k}$$

- $E_i = Y_i$ = factor rewarad + tax revenues
- $-\tilde{\mathbf{P}}_i$ represents after-tax prices in the local economy

Sources of Inefficiencies & Tax Instruments

From the **unilateral** perspective of country *i*

- firms do not internalize their CO₂ externality on residents of country *i*.
- unilateral trade restrictions can improve the terms-of-trade

From the global perspective

- firms do not internalize their global CO₂ externality
- free trade is efficient (+ lump sum international transfers)

Country i's unilaterally optimal outcome can be obtained via

- carbon taxes: τ
- border taxes: Import tariffs (t) + Export subsidy (x)

Optimal Policy

The **unilaterally optimal policy** of country *i* maximizes its national welfare taking policies in other countries as given:

 $\mathbb{I}_i^* = (\mathbf{t}_i^*, \mathbf{x}_i^*, \boldsymbol{ au}_i^*) = ext{arg max} \ W_i\left(\mathbb{I}_i, \overline{\mathbb{I}}_{-i}\right), \quad ext{subject to GE constraints.}$

Optimal Policy

The **unilaterally optimal policy** of country *i* maximizes its national welfare taking policies in other countries as given:

 $\mathbb{I}_i^* = (\mathbf{t}_i^*, \mathbf{x}_i^*, \boldsymbol{ au}_i^*) = ext{arg max} \ W_i\left(\mathbb{I}_i, \overline{\mathbb{I}}_{-i}
ight), \quad ext{subject to GE constraints.}$

The **efficient policy from a global standpoint**, maximizes global welfare by choosing all tax rates and transfers,

$$\mathbb{I}^{ imes} = \left\{ \mathbb{I}_{i}^{ imes}, \Delta_{i}^{ imes}
ight\}_{i} = ext{arg max} \; \; \sum_{i} \omega_{i} W_{i}\left(\mathbb{I}
ight), \quad ext{subject to GE constraints.}$$

Dual Decomposition Method

<u>Dual Approach</u>: reformulate the optimal policy problem by having the government directly select prices \longrightarrow recover optimal taxes from optimal price wedges

<u>Decomposition</u> of the GE optimal policy problem into sub-problems:

- solving for optimal policy requires solving an interdependent system of F.O.C.s containing complex GE derivative (e.g., $\partial E/\partial \tilde{P}$, $\partial Z/\partial \tilde{P}$)
- We decompose this system into independent sub-problems that do not involve GE derivatives.
- this method allows us to relax the strong simplifying assumptions of earlier studies without sacrificing the richness of GE.

Overview of Optimal Policy Formulas

Unilaterally Optimal Policy

- carbon tax: $au_{i,k}^*\equiv ilde{P}_{i,k0}- ilde{P}_{i,0}= ilde{\delta}_i$
- border taxes: manipulate ToT + tax foreign CO₂ emissions (comutation)
Overview of Optimal Policy Formulas

Unilaterally Optimal Policy

- carbon tax: $au_{i,k}^* = ilde{\delta}_i$
- border taxes: manipulate ToT + tax foreign CO₂ emissions formulas

Efficient policy from a global standpoint

- carbon tax: $au^{\star} = \sum_n \widetilde{\delta}_n$
- zero border taxes
- lump-sum international transfers

Overview of Optimal Policy Formulas

Unilaterally Optimal Policy

- carbon tax: $au_{i,k}^* = ilde{\delta}_i$
- border taxes: manipulate ToT + tax foreign CO₂ emissions formulas

Efficient policy from a global standpoint

- carbon tax: $au^{\star} = \sum_n \widetilde{\delta}_n$
- zero border taxes
- lump-sum international transfers

The Free-Riding Problem

 Free-riding occurs because the *unilaterally* optimal carbon tax is lower than the *globally* optimal rate
 globally optimal

unilaterally optimal

The Free-Riding Problem

 Free-riding occurs because the *unilaterally* optimal carbon tax is lower than the *globally* optimal rate
 globally optimal

- Two remedies for the free-riding problem:
 - 1. use *carbon border taxes* as a 2nd-best policy to mimic au^{\star}
 - 2. forge a climate club and use contingent trade penalties to deter free-riding

The Free-Riding Problem

 Free-riding occurs because the *unilaterally* optimal carbon tax is lower than the *globally* optimal rate
 globally optimal

- Two remedies for the free-riding problem:
 - 1. use *carbon border taxes* as a 2nd-best policy to mimic $au^{ imes}$
 - 2. forge a climate club and use contingent trade penalties to deter free-riding

We use our analytic formulas for optimal *carbon border taxes* & *climate club* penalties to determine the maximal efficacy of each policy.

Mapping Theory to Data

Quantitative Strategy

- Compute the counterfactual equilibrium under optimal policy:
 - (1) equilibrium allocation depends on optimal policy
 - (2) optimal policy depends on equilibrium allocation
 - jointly solve the systems of equations implied by (1) and (2).

Quantitative Strategy

- Compute the counterfactual equilibrium under optimal policy:
 - (1) equilibrium allocation depends on optimal policy
 - (2) optimal policy depends on equilibrium allocation (optimal policy formulas)
 - jointly solve the systems of equations implied by (1) and (2).

Quantitative Strategy

- Compute the counterfactual equilibrium under optimal policy:
 - (1) equilibrium allocation depends on optimal policy
 - (2) optimal policy depends on equilibrium allocation (optimal policy formulas)
 - jointly solve the systems of equations implied by (1) and (2).
- Sufficient statistics
 - data: trade, production, & CO₂ emissions + applied taxes data
 - parameters: trade elasticities + energy input demand elasticity + $\left\{ ilde{\delta}_i
 ight\}_i$

Quantitative Assessment of Proposals 1 and 2

Summary of Proposal 1

- Proposal 1: Governments incorporate carbon border taxes in their trade policy to reduce transboundary carbon emissions.
- We simulate a non-cooperative equilibrium in which governments simultaneously choose their unilaterally optimal policy, which includes
 - unilaterally optimal carbon taxes
 - carbon border taxes

Summary of Proposal 1

- Proposal 1: Governments incorporate carbon border taxes in their trade policy to reduce transboundary carbon emissions.
- We simulate a non-cooperative equilibrium in which governments simultaneously choose their unilaterally optimal policy, which includes
 - unilaterally optimal carbon taxes
 - carbon border taxes
- Governments with little care for climate damage, apply little-to-no carbon border taxes

	Non-Cooperative							Global Cooperation			
	Carbon + Border Tax			Carbon Tax			(first-best)				
Country	ΔCO_2	ΔV	ΔW		ΔCO_2	ΔV	ΔW	ΔCO_2	ΔV	ΔW	
EU	-22.2%	-0.3%	-0.0%		-21.2%	-0.0%	0.2%	-38.5%	-0.4%	1.7%	
Canada	8.3%	-1.6%	-1.5%		3.5%	-0.1%	0.0%	-42.6%	-1.2%	-0.6%	
China	-9.7%	-0.1%	0.1%		-8.3%	0.0%	0.1%	-39.0%	-1.7%	-0.6%	
Indonesia	1.7%	-0.2%	-0.1%		2.4%	-0.0%	0.1%	-42.9%	-3.1%	-2.7%	
Japan	-2.2%	-0.3%	-0.1%		-0.6%	0.0%	0.1%	-39.1%	-1.5%	-0.5%	
Russia	7.3%	-1.3%	-1.3%		3.5%	-0.2%	-0.2%	-43.8%	-0.0%	0.1%	
Saudi Arabia	12.2%	-3.9%	-3.9%		4.8%	-0.6%	-0.6%	-45.8%	-0.6%	-0.5%	
USA	-3.8%	-0.3%	-0.3%		-1.9%	0.0%	0.0%	-43.0%	-1.7%	-1.3%	
Global	-6.5%	-0.5%	-0.2%		-5.4%	-0.0%	0.2%	-41.0%	-0.6%	1.1%	

	Non-Cooperative							Global Cooperation			
	Carbon + Border Tax			Carbon Tax			(first-best)				
Country	ΔCO_2	ΔV	ΔW		ΔCO_2	ΔV	ΔW	ΔCO_2	ΔV	ΔW	
EU	-22.2%	-0.3%	-0.0%		-21.2%	-0.0%	0.2%	-38.5%	-0.4%	1.7%	
Canada	8.3%	-1.6%	-1.5%		3.5%	-0.1%	0.0%	-42.6%	-1.2%	-0.6%	
China	-9.7%	-0.1%	0.1%		-8.3%	0.0%	0.1%	-39.0%	-1.7%	-0.6%	
Indonesia	1.7%	-0.2%	-0.1%		2.4%	-0.0%	0.1%	-42.9%	-3.1%	-2.7%	
Japan	-2.2%	-0.3%	-0.1%		-0.6%	0.0%	0.1%	-39.1%	-1.5%	-0.5%	
Russia	7.3%	-1.3%	-1.3%		3.5%	-0.2%	-0.2%	-43.8%	-0.0%	0.1%	
Saudi Arabia	12.2%	-3.9%	-3.9%		4.8%	-0.6%	-0.6%	-45.8%	-0.6%	-0.5%	
USA	-3.8%	-0.3%	-0.3%		-1.9%	0.0%	0.0%	-43.0%	-1.7%	-1.3%	
Global	-6.5%	-0.5%	-0.2%		-5.4%	-0.0%	0.2%	-41.0%	-0.6%	1.1%	

	Non-Cooperative							Global Cooperation			
	Carbon + Border Tax			Carbon Tax			(first-best)				
Country	ΔCO_2	ΔV	ΔW		ΔCO_2	ΔV	ΔW	ΔCO_2	ΔV	ΔW	
EU	-22.2%	-0.3%	-0.0%		-21.2%	-0.0%	0.2%	-38.5%	-0.4%	1.7%	
Canada	8.3%	-1.6%	-1.5%		3.5%	-0.1%	0.0%	-42.6%	-1.2%	-0.6%	
China	-9.7%	-0.1%	0.1%		-8.3%	0.0%	0.1%	-39.0%	-1.7%	-0.6%	
Indonesia	1.7%	-0.2%	-0.1%		2.4%	-0.0%	0.1%	-42.9%	-3.1%	-2.7%	
Japan	-2.2%	-0.3%	-0.1%		-0.6%	0.0%	0.1%	-39.1%	-1.5%	-0.5%	
Russia	7.3%	-1.3%	-1.3%		3.5%	-0.2%	-0.2%	-43.8%	-0.0%	0.1%	
Saudi Arabia	12.2%	-3.9%	-3.9%		4.8%	-0.6%	-0.6%	-45.8%	-0.6%	-0.5%	
USA	-3.8%	-0.3%	-0.3%		-1.9%	0.0%	0.0%	-43.0%	-1.7%	-1.3%	
Global	-6.5%	-0.5%	-0.2%		-5.4%	-0.0%	0.2%	-41.0%	-0.6%	1.1%	

	Non-Cooperative							Global Cooperation			
	Carbon + Border Tax			Carbon Tax			(first-best)				
Country	ΔCO_2	ΔV	ΔW		ΔCO_2	ΔV	ΔW	ΔCO_2	ΔV	ΔW	
EU	-22.2%	-0.3%	-0.0%		-21.2%	-0.0%	0.2%	-38.5%	-0.4%	1.7%	
Canada	8.3%	-1.6%	-1.5%		3.5%	-0.1%	0.0%	-42.6%	-1.2%	-0.6%	
China	-9.7%	-0.1%	0.1%		-8.3%	0.0%	0.1%	-39.0%	-1.7%	-0.6%	
Indonesia	1.7%	-0.2%	-0.1%		2.4%	-0.0%	0.1%	-42.9%	-3.1%	-2.7%	
Japan	-2.2%	-0.3%	-0.1%		-0.6%	0.0%	0.1%	-39.1%	-1.5%	-0.5%	
Russia	7.3%	-1.3%	-1.3%		3.5%	-0.2%	-0.2%	-43.8%	-0.0%	0.1%	
Saudi Arabia	12.2%	-3.9%	-3.9%		4.8%	-0.6%	-0.6%	-45.8%	-0.6%	-0.5%	
USA	-3.8%	-0.3%	-0.3%		-1.9%	0.0%	0.0%	-43.0%	-1.7%	-1.3%	
Global	-6.5%	-0.5%	-0.2%		-5.4%	-0.0%	0.2%	-41.0%	-0.6%	1.1%	

- Non-cooperative carbon and border taxes

$$\Delta \mathbf{CO}_2 = \underbrace{5.4\%}_{domestic \ tax} + \underbrace{1.1\%}_{border \ tax} = 6.5\%$$

- Non-cooperative carbon and border taxes

$$\Delta \mathbf{CO}_2 = \underbrace{5.4\%}_{domestic \ tax} + \underbrace{1.1\%}_{border \ tax} = 6.5\%$$

- Global climate cooperation (1st-best)

$$\Delta CO_2 = 5.4\% + 35.6\% = 41\%$$

- Non-cooperative carbon and border taxes

$$\Delta \mathbf{CO}_2 = \underbrace{5.4\%}_{domestic \ tax} + \underbrace{1.1\%}_{border \ tax} = 6.5\%$$

- Global climate cooperation (1st-best)

$$\Delta CO_2 = 5.4\% + 35.6\% = 41\%$$

Headline Result: non-cooperative border taxes replicate 3.1% $(\frac{1.1\%}{35.6\%})$ of the CO₂ reduction attainable under global cooperation.

Discussion: Inefficacy of Carbon Border Taxes

Three factors limit the efficacy of carbon border taxes:

- 1. border taxes have difficulty targeting non-traded CO₂ emissions, which constitute a large fraction of global emissions
- 2. carbon border taxes are not sufficiently granular to target individual firms with high carbon intensity
- 3. carbon leakage through GE channels *e.g.*, leakage from the EU to Russia & Saudi Arabia

Summary of Proposal 2

- Proposal 2: a set of core members forge a Climate Club

- core members move first, all other countries play simultaneously afterwards.
- Carbon pricing requirements:
 - all members must raise their carbon price to the carbon price target $(\tau^{\rm target} \leq \tau^{\,\star})$
- Accession to the Climate Club is incentivized by trade penalties:
 - free trade among club members + optimal trade penalties on non-members
 - non-members can retaliate computational challenges

The Climate Club's Carbon Price Target

- Ideally, the carbon price target is the maximal price that yields universal participation
 - In this case the climate club will not disrupt global free trade
- The maximal carbon price target depends on the makeup of the climate club's core members
 - a larger block of core members → more effective trade penalties
 → more participation to escape penalties

The Climate Club's Carbon Price Target

- Ideally, the carbon price target is the maximal price that yields universal participation
 - In this case the climate club will not disrupt global free trade
- The maximal carbon price target depends on the makeup of the climate club's core members
 - a larger block of core members → more effective trade penalties
 → more participation to escape penalties
- We measure the efficacy of the climate club for several combinations of core member

Results: EU-US Climate Club

Core members: {EU,US}

- maximal carbon price target = 53 (per tCO₂)
- Iterative rounds whereby countries join the club:
 - Round 1: Brazil, Canada, Korea, Turkey, RO Eurasia
 - Round 2: Russia, RO Americas
 - Round 3: Africa, Mexico, Saudi, Arabia, Japan
 - Round 4: China, Indonesia, RO Asia, RO Middle East
 - Round 5: Australia, India

Results: EU-US Climate Club

Core members: {EU,US}

- maximal carbon price target = \$53 (per tCO₂)
- Iterative rounds whereby countries join the club:
 - Round 1: Brazil, Canada, Korea, Turkey, RO Eurasia
 - Round 2: Russia, RO Americas
 - Round 3: Africa, Mexico, Saudi, Arabia, Japan
 - Round 4: China, Indonesia, RO Asia, RO Middle East
 - Round 5: Australia, India
- Reduction in global CO_2 emissions = 18.3%

- compared to 6.5% (non-cooperative policies) and 41% (globally first best)

Results: Alternative Climate Club Scenarios

- Core members: {EU, US}
 - maximal carbon price target = \$53 (per tCO₂)
 - reduction in global CO₂ emissions = 18.3%

Results: Alternative Climate Club Scenarios

- Core members: {EU, US}
 - maximal carbon price target = \$53 (per tCO₂)
 - reduction in global CO_2 emissions = 18.3%
- Core members: $\{EU\}$
 - maximal carbon price target = 37 (per tCO₂)
 - reduction in global CO_2 emissions = 13.7%

Results: Alternative Climate Club Scenarios

- Core members: {EU, US}
 - maximal carbon price target = \$53 (per tCO₂)
 - reduction in global CO_2 emissions = 18.3%
- Core members: $\{EU\}$
 - maximal carbon price target = 37 (per tCO₂)
 - reduction in global CO_2 emissions = 13.7%
- Core members: {EU,US,China}
 - maximal carbon price target = 90 (per tCO₂)
 - reduction in global CO₂ emissions = 28.2%

Summary of Findings

- Carbon border taxes are a poor 2nd-best policy for curbing CO₂ emissions, because
 - they cannot target less-traded but high-carbon industries
 - they are not granular enough to target individual firms

Summary of Findings

- Carbon border taxes are a poor 2nd-best policy for curbing CO₂ emissions, because
 - they cannot target less-traded but high-carbon industries
 - they are not granular enough to target individual firms
- The climate club can be highly effective at curbing CO₂ emissions...
 - but its efficacy hinges critically on (*i*) the make-up of core members and (*ii*) selecting the right target to avoid decoupling
 - China is a crucial player: a club without China is less effective and may trigger East-West decoupling

Thank You.

Related Literature

- Theories of environmental policy in an international setting
 - Unilateral policy: Markusen (1975), Copeland (1996), Hoel (1996), Kortum-Wiesbach (2022)
 - Issue linkage in international cooperation: Barrett (1997), Maggi (2016), Nordhaus (2015)
- Quantitative assessment of environmental/energy policies
 - Babiker (2005), Elliot et al (2010), Bohringer et al (2016), Larch and Wanner (2017), Farrokhi (2020), Shapiro (2020) among many others
- Optimal trade policy in general equilibrium
 - Costinot et al (2015), Bartelme et al (2022), Lashkaripour-Lugovskyy (2023)

Data on Observable Statistics

- Trade, production, and CO₂ emissions
 - Source: GTAP Database (2014)
 - 19 countries (13 largest countries + the EU + 5 aggregate regions) Countries
 - energy industry + 17 non-energy industries Industries
 - link energy to downstream industries via input-output tables Carbon Accounting

- Baseline taxes:

- Import tariffs: GTAP
- Environmentally-related Taxes: OECD-PINE

Estimated Parameters

- Trade Elasticity
 - Caliendo and Parro's (2015) methodology applied to trade and tariff data
- Energy input demand elasticity
 - IV estimation of energy demand equation
- Disutility from carbon emissions, ($ilde{\delta}_i)$
 - $\sum_i ilde{\delta}_i \sim \mathsf{SCC} =$ \$99 per tCO $_2$ for 2014 (latest EPA report)
 - Recover $\tilde{\delta}_i$, by revealed preferences of governments, from environmentally-related taxes

	Industry	Emissions	Trade/GDP	Carbon	Carbon	Trade	
		(as % of sum)	Ratio	Intensity	Cost Share	Elasticity	
1	Agriculture	4.2%	8.8%	100.0	0.031	2.13	
2	Other Mining	1.9%	27.3%	181.4	0.057	2.13	
3	Food	3.3%	8.0%	45.9	0.016	3.54	
4	Textile	1.9%	22.6%	59.7	0.021	5.69	
5	Wood	0.5%	8.4%	61.0	0.027	5.94	
6	Paper	2.1%	8.8%	125.9	0.062	5.94	
7	Chemicals	9.5%	21.9%	179.6	0.064	9.05	
8	Plastics	1.8%	13.5%	89.0	0.056	9.05	
9	Nonmetallic Minerals	8.6%	5.8%	458.0	0.125	14.5	
10	Metals	14.7%	14.9%	205.0	0.068	14.5	
11	Electronics and Machinery	3.0%	30.0%	42.1	0.023	4.57	
12	Motor Vehicles	1.2%	23.4%	34.0	0.014	1.93	
13	Other Manufacturing	0.6%	21.8%	41.7	0.032	1.93	
14	Construction	1.5%	0.6%	59.2	0.026	5.69	
15	Wholesale and Retail	3.6%	2.4%	34.7	0.017	5.69	
16	Transportation	27.3%	10.5%	498.0	0.176	5.69	
17	Other Services	14.5%	3.1%	26.6	0.012	5.69	

		Share of	Share of	Emission	Emission	Disutility
		World Output	World	per capita	Intensity	(% of the sum)
1	Australia (AUS)	1.8%	1.2%	239.9	146.8	1.0%
2	EU	25.9%	11.7%	100.0	100.0	34.0%
З	Brazil (BRA)	2.8%	1.7%	38.8	135.3	3.9%
4	Canada (CAN)	1.9%	1.5%	199.1	175.6	0.8%
5	China (CHN)	17.7%	30.3%	102.9	377.9	13.4%
6	Indonesia (IDN)	1.0%	1.4%	25.9	302.2	0.3%
7	India (IND)	2.4%	6.8%	24.4	618.8	8.0%
8	Japan (JPN)	6.2%	3.6%	129.5	127.7	3.8%
9	Korea (KOR)	2.2%	1.9%	169.5	189.2	2.0%
10	Mexico (MEX)	1.4%	1.4%	52.0	218.7	0.2%
11	Russia (RUS)	1.9%	3.8%	121.8	436.1	0.1%
12	Saudi Arabia (SAU)	0.4%	1.3%	195.1	750.0	0.0%
13	Turkey (TUR)	1.0%	1.1%	67.3	245.5	3.1%
14	USA	20.4%	15.0%	217.7	161.7	4.3%
15	Africa	2.6%	3.4%	13.7	286.0	14.2%
16	RO Americas	3.0%	2.6%	41.5	194.8	6.3%
17	RO Asia and Oceania	5.1%	5.9%	31.7	253.2	4.2%
18	RO Eurasia	0.7%	2.0%	68.3	674.5	0.1%
19	RO Middle East	1.6%	3.5%	78.5	493.4	0.2%

Proposal 2: Computational Challenges

Characterizing all Nash equilibria faces two major challenges:

- 1. Computing optimal trade penalties is strenuous with numerical optimization
 - Our analytical formulas for optimal trade penalties help overcome this challenge.
- 2. Nash outcomes must be identified over 2^N possible outcomes.¹
 - To overcome the *curse of dimensionality*, we note that net benefits from joining the climate club rise with the number of existing members.
 - We use iterative elimination of dominated strategies to shrink the outcome space

Return

 ^{1}N denotes the number of countries that are not core members.

Unilaterally-Optimal Policy Formulas

Notation: $\sigma - 1$ (trade elasticity) v (CO₂per dollar) ζ (energy input demand elasticity)

$$au_i^* = ilde{\delta}_i \sim \delta_i ilde{P}_i$$
 [carbon price]

$$t_{ni,k}^* = \bar{t}_i + \tau_i^* v_{n,k} \qquad t_{ni,0}^* = \bar{t}_i \qquad [\text{import tax}]$$

$$1 + x_{in,k}^* = (1 + \bar{t}_i) \frac{\sigma_k - 1}{\sigma_k} + \tau_i^* \sum_{j \neq i} [\lambda_{jn,k} v_{j,k}] \frac{\sigma_k - 1}{\sigma_k} \quad [\text{export subsidy } k \neq 0]$$

$$1 + x_{in,0}^* = (1 + \bar{t}_i) \frac{\sigma_0 - 1}{\sigma_0} + \tau_i^* \frac{1}{\sigma_0} \frac{\zeta_n}{\bar{P}_{n,0}} \quad [\text{export subsidy } k = 0]$$

Unilaterally-Optimal Policy Formulas

Notation: $\sigma - 1$ (trade elasticity) v (CO₂per dollar) ζ (energy input demand elasticity)

$$\begin{split} \tau_{i}^{*} &= \tilde{\delta}_{i} \sim \delta_{i} \tilde{P}_{i} & \text{[carbon price]} \\ t_{ni,k}^{*} &= \bar{t}_{i} + \overbrace{\tau_{i}^{*} v_{n,k}}^{\text{carbon border tax}} t_{ni,0}^{*} &= \bar{t}_{i} & \text{[import tax]} \\ 1 + x_{in,k}^{*} &= (1 + \bar{t}_{i}) \frac{\sigma_{k} - 1}{\sigma_{k}} + \tau_{i}^{*} \sum_{j \neq i} [\lambda_{jn,k} v_{j,k}] \frac{\sigma_{k} - 1}{\sigma_{k}} & \text{[export subsidy } k \neq 0] \\ 1 + x_{in,0}^{*} &= (1 + \bar{t}_{i}) \frac{\sigma_{0} - 1}{\sigma_{0}} + \tau_{i}^{*} \frac{1}{\sigma_{0}} \frac{\zeta_{n}}{\tilde{P}_{n,0}} & \text{[export subsidy } k = 0] \end{split}$$

