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Abstract

Trade policy is often cast as a solution to the free-riding problem in international climate

agreements. This paper uncovers the extent to which trade policy can deliver on this promise.

We introduce abatement technology and carbon externality into a multi-country, multi-industry

quantitative trade model. Our framework accommodates a rich set of policy considerations,

including firm delocation, multilateral carbon leakage, and returns to scale in production and

abatement. By deriving simple analytical formulas for optimal carbon, production, and border

taxes, we are able to quantify the reduction in CO2 emissions under two prominent propos-

als that combine carbon pricing with trade policy. First, we show that carbon border taxes can

replicate at most 1% of the CO2 reduction attainable under global climate cooperation. By

comparison, Nordhaus’s (2015) climate club proposal can foster global climate cooperation and

reduce global CO2 emissions by up to 61%. This successful outcome hinges on both the US

and EU committing to the climate club as core members, using their collective trade penalties

to enforce climate cooperation by reluctant governments.
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1 Introduction

Climate change is accelerating at a worrying pace. Yet governments have failed in their attempts

to forge an agreement that can effectively combat climate change. Major climate agreements, like

the 1997 KYOTO PROTOCOL and the 2015 PARIS CLIMATE ACCORD, have failed to deliver a mean-

ingful reduction in carbon emissions. This failure is often attributed to the free-riding problem:

Countries have an incentive to free-ride on the rest of the world’s reduction in carbon emissions

without undertaking proportionate abatement themselves.

The failure of existing climate agreements has urged experts to devise alternative remedies

that are immune to the free-riding problem. Two proposals, in particular, have gained traction:

Proposal 1: Climate-conscious governments use carbon border taxes as a second-best policy to curb

carbon emissions in the rest of the world.1

Proposal 2: Climate-conscious governments form a climate club and incentivize climate coopera-

tion by reluctant governments via collective trade penalties (Nordhaus 2015).

Both proposals combine carbon pricing with trade policy but differ starkly in their approach.

Proposal 1 is grounded in unilateralism. It presumes that global climate cooperation is unlikely

to materialize, but unilateral policies can serve as an effective second best. Proposal 2 relies on

the presumption that unilateralism is ineffective and that the failure of recent global agreements

does not stem from the nature of multilateralism but a flawed architecture.

The tension between these two approaches remains unresolved, in part because measuring the

efficacy of Proposals 1 and 2 is challenging. To uncover the full potential of these proposals, one

must determine optimal carbon border taxes and optimal trade penalties under the climate club

model. This task is daunting even with state-of-the-art quantitative techniques. Rich theoretical

results can facilitate this task, but traditional theories of optimal climate policy in open economies

are based on stylized models and are not amenable to rich quantitative analysis. Given these chal-

lenges, existing analyses of Proposal 1 and 2 often focus on easy-to-implement but sub-optimal

carbon border taxes or trade penalties. Such analyses, for all their merits, only uncover the partial

efficacy of carbon border taxes or the climate club. Furthermore, they generally do not account

for scale economies in production and abatement or firm delocation in response to policy. Recent

micro-level evidence suggests that these previously overlooked margins are key to how firms cut

emissions in response to policy (Shapiro and Walker 2018).

In this paper, we overcome these challenges to uncover the full potential of carbon border taxes

and the climate club proposal. To this end, we introduce carbon externalities, abatement decisions,

and scale economies into a multi-country, multi-industry general equilibrium trade model. We

1 Carbon border taxes (or carbon border adjustments) are a prominent component of the EUROPEAN GREEN DEAL,
and are currently explored as a likely component of president Biden’s CLIMATE PLAN.

1



derive simple analytical formulas for unilaterally and globally optimal taxes that internalize cli-

mate damage from carbon emissions, misallocation due to scale economies, and terms-of-trade

effects. We map these formulas to data on international trade, production, and carbon emissions

to evaluate the full effectiveness of carbon border taxes and the climate club proposal.

Section 2 presents our theoretical model, which is a general equilibrium semi-parametric

Krugman model with many countries and industries. Our framework incorporates international

carbon externalities and firm-level abatement decisions, employing a generalized version of Copeland

and Taylor’s (2004) abatement technology. The resulting framework is particularly attractive as it

combines the carbon externality, misallocation-correcting, and terms-of-trade rationales for policy

intervention in a tractable and transparent fashion. Our theoretical model exhibits several features

that distinguish it from prior theories of climate policy in open economies. First, our framework

accommodates firm entry and multilateral carbon leakage in response to policy. These effects are

often absent in prior theories that employ partial equilibrium two-by-two models. Second, firm

entry, in our framework, creates economies of scale in both production and abatement. As it turns

out, these previously overlooked margins have basic implications for the ability of trade policy to

curb carbon emissions.

Sections 3 and 4 derive simple analytical formulas for optimal carbon, production, and bor-

der taxes in our multi-country, multi-industry general equilibrium framework. Our formulas for

optimal carbon border taxes and domestic carbon taxes, in particular, present a notable advance

over traditional theories. Aside from internalizing effects of multilateral leakage and economies

of scale, our formulas are amenable to the state-of-the-art quantitative analysis spanning many

countries and industries.

Our derivation of optimal policy is grounded in an envelope result that transforms our gen-

eral equilibrium optimal policy problem into a simpler quasi-partial equilibrium problem. Our

envelope result consists of two propositions: First, we show that general equilibrium wage effects

are welfare-neutral, at the optimum, when the government has access to a complete set of tax in-

struments. Second, general equilibrium income effects are also welfare-neutral, at the optimum,

when the government can tax all goods consumed in the domestic economy. Based on this re-

sult, one can derive optimal tax formulas while treating wages as invariant to policy and demand

schedules as indifferent to general equlibrium income changes.

Our analytical formulas indicate that the unilaterally optimal domestic carbon tax equals the

CPI-adjusted domestic disutility from carbon. This choice is sub-optimal from a global standpoint

as it fails to internalize home’s carbon externality on the rest of the world. Optimal domestic pro-

duction subsidies are, in turn, carbon-blind and solely restore marginal-cost pricing. Optimal

import tariffs and export subsidies are composed of a standard terms-of-trade improving com-

ponent as well as carbon border adjustments that penalize high-carbon imports and promote

low-carbon exports in each industry. These carbon border adjustments are smaller the higher the
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degree of scale economies in the targeted industry.

To put the above results in perspective, we also characterize optimal policy under global coop-

eration on trade and climate. To attain the first-best cooperative outcome, border taxes/subsidies

should be set to zero as they are inefficient from a global standpoint. Globally optimal carbon

taxes are, meanwhile, higher than the unilaterally optimal rate and equal to the CPI-adjusted

global disutility from carbon emissions. In other words, they internalize not only each coun-

try’s carbon externality on its domestic consumers but also consumers all over the world. We

complement these results with a characterization of a second-best cooperative outcome in which

governments can only use border taxes to pursue international climate objectives. This situation

is relevant when political pressures prevent governments from elevating domestic carbon taxes

beyond their unilaterally optimal level.

Sections 5 and 6 employ our analytical tax formulas together with required sufficient statistics

to uncover the efficacy of carbon border taxes and the climate club proposal at reducing carbon

emissions. As noted earlier, this task can be computationally infeasible without the aid of our

optimal tax formulas. Indeed, traditional analyses have often relied on easy-to-implement—but

sub-optimal—trade and carbon taxes.2 This approach, while fruitful, cannot uncover the full

potential of either carbon border taxes or the climate club.

With the aid of our theory, the efficacy of Proposals 1 and 2 can be computed as a function of

the following sufficient statistics: First, observable shares that can be constructed from national

and environmental accounts data. Second, the governments’ perceived disutility from climate

change, which can be inferred from their applied environmentally-related taxes. Third, structural

parameters consisting of the industry-level trade and scale elasticities as well as the carbon input

demand elasticity—all of which we estimate using existing techniques in the literature. To con-

struct these sufficient statistics, we merge trade, production, carbon emissions, and tax data from

multiple sources. Our compiled database covers 19 broadly defined industries which constitute

the entire vector of production across 13 major countries, the European Union, and an aggregate

of the rest of the world.

Our quantitative analysis indicates that carbon border taxes have limited efficacy—even when

set optimally by all countries. If all countries simultaneously adopt non-cooperative border taxes,

global carbon emissions will decline by a mere 0.6%. This is a modest reduction, which amounts

to 1% of the carbon reduction attainable under the globally-first-best carbon taxes. The inefficacy

of border taxes has less to do with their non-cooperative nature. We find that carbon border

taxes remain almost equally ineffective when set cooperatively to their globally optimal level. In

addition, if we were to overlook scale economies in production and abatement, non-cooperative

border taxes would deliver a 1.3% reduction in carbon emissions, which replicates only 2.2% of

the first-best outcome. While scale economies play a role, the reason behind the inefficacy of

2 Importantly, our analytical tax formulas indicate that optimal carbon border taxes have a simple and transparent
structure. As such, the policy-maker need not to sacrifice simplicity in the tax code to attain optimality.
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carbon border taxes appears more fundamental.

The inefficacy of carbon border taxes is driven by two main factors. First, carbon border

taxes are not granular enough to induce firm-level abatement. They penalize carbon emissions

based on the average carbon intensity of national industries rather than individual firms. Since

an individual firm takes the industry-level carbon intensity as given, carbon border taxes have

limited ability at regulating firm-level abatement in foreign locations. Second, carbon border

taxes are unable to target goods that do not cross international borders but are responsible for a

significant fraction of carbon emissions. In fact, a great share of carbon emissions is generated

by less tradable industries. Two-third of global carbon emissions are, for instance, generated by

industries with a trade-to-GDP ratio of less than 10%.

Turning to the climate club proposal, we specify the climate club game as one where the EU

and possibly the US are core members of the club and other countries play strategically. Core

members commit to the rules of membership: they impose optimal trade penalties against non-

members while setting zero trade taxes against member countries. They also adopt globally opti-

mal carbon taxes that correct their global carbon externality. A non-member country can retaliate

by applying non-cooperative trade taxes against members while keeping its other taxes at the

status quo. When joining the club, a country evaluates the trade-off between adopting higher-

than-unilaterally optimal carbon taxes versus exposure to trade penalties by club members.

Quantifying the effectiveness of the climate club proposal is challenging for two reasons. First,

without analytical formulas, the computation of optimal trade penalties is practically infeasible

with standard numerical optimization techniques. We overcome this barrier by appealing to our

analytical formulas for optimal trade penalties. Second, solving the climate club game is plagued

with the curse of dimensionality, as one has to search over an excessively large number of possible

climate club combinations. To overcome this challenge, we shrink the space of possible equilibria

via the iterative elimination of dominated strategies. This approach exploits a key property of the

climate club game, wherein net gains from joining the club rise with the size of the club.

We find that the climate club proposal—with optimal trade penalties—can be remarkably ef-

fective at reducing carbon emissions. The climate club’s success, however, depends crucially on

the makeup of its core members. If the EU alone initiates a climate club as a core member, no

other country will find it optimal to join the climate club. However, if the climate club is initi-

ated by the US and EU as core members, all other countries will join the club in succession. As

a result, global climate cooperation is achieved under which global carbon emissions decline by

61%.3 The intuition is that the EU, alone, does not possess sufficient market power to maintain a

climate club with unilateral trade penalties. The US and EU, however, possess enough collective

market power to enforce climate cooperation by reluctant governments. These results indicate

3 We report a range of values for the reduction in carbon emissions under global cooperation, with the 61% reduction
corresponding to our baseline specification. The reduction in carbon emissions can be lower depending on the values
assigned to the elasticity of carbon demand and the social cost of carbon.
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that trade policy tools are more effective when used as a penalty device to deter free-riding. The

commitment of the US is, however, crucial for these penalties to be effective.

Related Literature

Our work contributes to several strands of literature. First, we contribute to the theoretical liter-

ature on optimal trade and environmental taxes in open economies. A central insight from this

literature is that unilaterally optimal tariffs include a tax on the pollution content of imports (e.g.,

Markusen (1975); Copeland (1996); Hoel (1996)). This insight is typically derived within par-

tial equilibrium or two-country models that have been rarely used to guide general equilibrium

quantitative policy analysis. We complement this literature by characterizing optimal policy in

a multi-country multi-industry general equilibrium trade model that accommodates salient fea-

tures of the global economy and is designed to map to data.4

A notable exception is Kortum and Weisbach (2020) who characterize optimal trade, produc-

tion, and carbon taxes in a general equilibrium two-country Ricardian model à la Dornbusch et al.

(1977). Our paper complements Kortum and Weisbach (2020) in three ways. First, their analysis

explicitly specifies markets for energy, whereas our model extends Copeland and Taylor (2004) in

which energy markets are implicitly defined. Second, Kortum and Weisbach (2020) extend and

apply the primal approach formalized by Costinot et al. (2015) while we develop our methodol-

ogy based on the dual approach.5 Third, our theory accommodates arbitrarily many countries,

which is essential for evaluating the climate club proposal and is tightly connected to the quanti-

tative trade literature emphasizing the sufficient statistic approach.

Second, our analysis is related to an emerging body of quantitative work that analyzes the ef-

ficacy of trade policy at tackling climate objectives, e.g., Babiker (2005), Elliott et al. (2010), Nord-

haus (2015), Böhringer et al. (2016), Larch and Wanner (2017). Despite their rich structure, existing

analyses have mostly quantified the efficacy of easy-to-implement but sub-optimal trade policy

initiatives. This approach allows researchers to circumvent the computational difficulties asso-

ciated with optimal policy analysis. However, it does not uncover the full potential of border

taxes in tackling carbon emissions. In comparison, we derive analytical formulas for optimal pol-

icy, which help us bypass these computational difficulties and uncover the full potential of trade

policy at curbing carbon emissions.

Third, our intermediate envelope result speaks to an emerging literature that studies optimal

policy in modern quantitative trade models, e.g., Bartelme et al. (2019), Lashkaripour and Lugov-

skyy (2020), Beshkar and Lashkaripour (2020), Lashkaripour (2021), Caliendo et al. (2021). These

4 For a recent review of the literature on trade and the environment, see Copeland et al. (2021). For a recent discussion
of how the existing world trade system can incorporate policies to address climate change, see Staiger (2021).

5 Each of these approaches have their advantages. Under weak separability, the primal approach offers a powerful
tool to break down a high-dimensional optimal policy problem into low-dimensional sub-problems (Costinot et al.
(2015, 2020)). In comparison, we employ the dual approach and show that under this approach, a typical general
equilibrium optimal policy problem can be transformed into a simple quasi-partial equilibrium problem.
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studies have bridged a longstanding divide between classic partial equilibrium trade policy mod-

els and modern general equilibrium trade theories. This divide is partly driven by classic trade

policy models assuming away general equilibrium wage and income effects. Our envelope result

is a step forward in filling this divide. It shows that the simplifying assumptions that eliminate

wage and income effects can be relaxed without sacrificing tractability. This result, in particular,

is derived by borrowing and refining the dual approach in Lashkaripour and Lugovskyy (2020),

and extending it to environments with international externalities such as climate damage that go

beyond basic terms-of-trade effects.

Finally, we contribute to ongoing efforts to enhance quantitative trade theories. Over the past

two decades, quantitative trade models have been enriched to account for firm selection, scale

economies, input-output linkages, multinational production, and more (Costinot and Rodríguez-

Clare (2014)). But less attention has been paid to embedding environmental externalities into the

state-of-the-art quantitative trade models (Cherniwchan et al. (2017), Shapiro and Walker (2018)).

Our conceptual framework and optimal policy results take a step in this direction.

This paper is organized as follows: In Section 2 we present our theoretical framework. In Sec-

tion 3 we present our intermediate envelope result which we use to derive formulas for optimal

unilateral policy. In Section 4 we discuss international cooperative and non-cooperative Nash

outcomes. In Section 5 we map our theory with our optimal policy formulas to data, which we

use in Section 6 to quantify the efficacy of trade policy via the above-mentioned Proposals 1 and

2 at reducing global carbon emissions.

2 Theoretical Setup

The global economy consists of multiple countries indexed by i, j, n ∈ C and multiple industries

indexed by k, g ∈ K. Each country i is endowed by L̄i workers who are perfectly mobile across

industries but immobile across countries. Each worker supplies one unit of labor inelastically.

2.1 Demand

Subscript ji, k indexes a composite variety corresponding to origin j—destination i–industry k. The

representative consumer in country i maximizes a non-parametric utility function Ui(Qi) by

choosing the vector of quantities, Qi =
{

Qji,k
}

j∈C, k∈K
subject to the budget constraint, Yi =

∑j ∑k P̃ji,kQji,k, where Yi denotes national income, and P̃ji,k denotes the consumer price index

of composite variety ji, k. The tilde notation on price distinguishes between after-tax consumer

prices (P̃ji,k) and before-tax producer prices (Pji,k). Let P̃i = {P̃ji,k}j∈C, k∈K denote the entire vector

of after-tax consumer prices in country i.

The consumer’s problem implies an indirect utility function, Vi(Yi, P̃i), and a Marshallian de-

mand function, Qji,k = Dji,k(Yi, P̃i), for each variety ji, k. The Marshallian demand function is
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characterized by a set of demand elasticities. First, the elasticity of demand for variety (ji, k) with

respect to the price of variety (ni, g) is,

ε
(ni,g)
ji,k ≡

∂ lnDji,k(Yi, P̃i)

∂ ln P̃ni,g
.

Second, the elasticity of demand for ji, k with respect to income is:

ηji,k ≡
∂ lnDji,k(Yi, P̃i)

∂ ln Yi
.

While we impose no parametric restrictions on the demand function, we require that it satisfies

standard properties of Marshallian demand. We denote the own price elasticity of demand by

ε ji,k ≡ ε
(ji,k)
ji,k ≤ −1. Lastly, since every individual consumer is infinitesimally small, they do not

internalize the impact of their consumption choice on CO2 emissions.6

2.2 Supply and Abatement

Firms and Market Structure. Production in each origin j–industry k is conducted by monopolistically

competitive firms indexed by ω ∈ Ωj,k. A large pool of ex-ante identical firms can pay an entry

cost wj f̄ j,k to supply their differentiated variety to various destinations, with wj denoting the labor

wage rate in origin j and f̄ j,k denoting the labor requirement for entry. After paying the entry cost,

each firm operates with a CES production technology that combines labor and carbon inputs. The

gross production quantity of variety ji, k by firm ω is given by

d̄ji,kqji,k(ω) = ϕ̄j,k

[
(1− κ̄j,k)

(
lji,k(ω)

) ς−1
ς + κ̄j,k

(
zji,k(ω)

) ς−1
ς

] ς
ς−1

,

where d̄ji,k ≥ 1 denotes for iceberg trade cost associated with variety ji, k, with d̄jj,k = 1. On the

right-hand side, ljik(ω) and zji,k(ω) respectively denote the quantity of labor and carbon inputs,

while κ̄j,k ∈ [0, 1] and ϕ̄j,k > 0 are exogenously given factor intensities and total factor productivity

in origin country j–industry k. Parameter ς > 0 is the elasticity of substitution between labor and

carbon inputs. The above production function collapses to a Leontief function if ς → 0, a Cobb-

Douglas function if ς → 1, and a linear function if ς → ∞. Labor and carbon are gross substitute

if ς ∈ (1, ∞), and gross complements if ς ∈ (0, 1).

A firm’s optimal labor employment lji,k(ω) and carbon input choice zji,k(ω) depend on the

wage rate wj in the origin country and the industry-specific carbon tax, τj,k. Since firms originating

from the same country can be treated as symmetric, we henceforth drop the firm index ω. All

firms located in origin j–industry k employ the same amount of labor and carbon inputs, lji,k ≡

6 Throughout the paper we use carbon emissions interchangeably with CO2 emissions—both as a shorthand for green-
house gas emissions. We explain how disutility from emissions enters the government’s objective function in Section
2.5, and how emissions are measured in data in Section 5.3.
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lji,k(ω) and zji,k ≡ zji,k(ω), and supply a common net quantity qjik ≡ qji,k(ω) to destination i.

Formulating Production in terms of Abatement. The firms’ cost minimization problem can be

equivalently expressed as a tradeoff between production and abatement. In this equivalent speci-

fication, every firm devotes a fraction aj,k ∈ [0, 1] of its labor input to abatement activities and the

rest to production:

d̄ji,kqji,k = ϕ̄j,k
(
1− aj,k

)
lji,k.

Under this reformulation, the choice of abatement by cost-minimizing firms in origin j equals

(1− aj,k) = (1− κ̄j,k)
−ς

[
(1− κ̄j,k)

ς + (κ̄j,k)
ς

(
τj,k

wj

)1−ς
] ς

ς−1

. (1)

This equation indicates that a firm’s choice of abatement is a decreasing function of the carbon-

tax-to-wage ratio, with the extent of the relationship governed by the industry-specific carbon

intensity κ̄j,k and the elasticity of substitution between labor and carbon inputs, ς. Accordingly,

the input cost share of carbon, which we denote by αj,k, can be expressed as a function of abate-

ment:

αj,k = 1− (1− κ̄j,k)(1− aj,k)
− ς−1

ς . (2)

The firm-level CO2 emission per unit of output is then given by:

zji,k

d̄ji,kqji,k
=

[
1

κ̄j,k
−

1− κ̄j,k

κ̄j,k
(1− aj,k)

− ς−1
ς

] ς
ς−1

=

(
αj,k

κ̄j,k

) ς
ς−1

, (Firm-Level Emission)

and the firm-level marginal cost of production equals:7

cji,k =
d̄ji,k

ϕ̄j,k(1− κ̄j,k)
(1− aj,k)

− 1
ς wj. (Marginal Cost).

A typical firm faces the following trade-off: With a higher choice of abatement, aj,k, the firm incurs

a higher marginal cost of production, cji,k, but generates less CO2 emissions per unit of output, as

indicated by the equation labeled “(Firm-Level Emission).”8

Industry-Level Aggregates. The composite output of good ji, k (which corresponds to origin

7 Equivalently, we can express the cost share of carbon by αj,k = (κ̄j,k)
ς(τj,k)

1−ς/(cj,k)
1−ς, CO2 emissions

by zji,k/(d̄ji,kqji,k) = αj,kcji,k/τj,k, and the marginal cost by cji,k = d̄ji,k

[
(1− κ̄j,k)

ςw1−ς
j + (κ̄j,k)

ςτ
1−ς
j,k

]1/(1−ς)
.

To see the equivalence, consider that the definition of abatement yields 1 − aj,k ≡ d̄ji,kqji,k/ϕ̄j,klji,k =[
(1− κ̄j,k) + κ̄j,k(zji,k/lji,k)

(ς−1)/ς
]ς/(ς−1)

. Using the equation for αj,k, we can obtain zji,k/lji,k =
αj,kwj

(1−αj,k)τj,k
=

κ̄
ς
j,kτ
−ς
j,k

(1−κ̄j,k)ςw−ς
j

. Replacing for zji,k/lji,k in the expression for (1− aj,k) delivers Equation (1).

8 In the special case of ς → 1, our specification nests Copeland and Taylor (2004). In this special case, the CES
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j–destination i–industry k) aggregates over firm-level quantities, qji,k(ω). Namely,

Qji,k =

(∫
ω∈Ωj,k

qji,k(ω)
γk−1

γk dω

) γk
γk−1

,

where γk > 1 denotes the elasticity of substitution between firm-level varieties from the same ori-

gin country and industry. Faced with a substitution elasticity, γk, firms charge a constant markup

over marginal cost, which implies the following producer price index for composite variety ji, k:

Pji,k = M
1

1−γk
j,k

γk

γk − 1
d̄ji,k

ϕ̄j,k(1− κ̄j,k)
(1− aj,k)

− 1
ς wj. (Price)

In the above expression, Mj,k ≡
∣∣Ωj,k

∣∣ denotes the mass of firms in origin j–industry k. It is pinned

down by the free entry condition that requires entry costs, Mj,kwj f̄ j,k, be equal to gross profits

across all destinations, ∑i
1

γk
Pji,kQji,k. Noting that Pji,k = d̄ji,kPjj,k and defining industry-level out-

put quantity as, Qj,k ≡ ∑i d̄ji,kQji,k, the free-entry condition yields the following expression for the

mass of firms:

Mj,k =
Pjj,kQj,k

γk f̄ j,kwj
. (Free Entry)

Using Equations “(Price)” and “(Free Entry)”, we can express aggregate price indexes and CO2

emissions as functions of abatement and output in each origin-industry:

Pji,k = d̄ji,k p̄jj,kwj(1− aj,k)
1

ςγk
− 1

ς Q
− 1

γk
j,k (3)

Zj,k = z̄j,k

(
αj,k

κ̄j,k

) ς
ς−1

(1− aj,k)
1

ςγk Q
1− 1

γk
j,k (4)

In the above expressions, the input cost share of carbon, αj,k, is given by Equation (2), and p̄jj,k

and z̄j,k are exogenous shifters of price and CO2 emissions.9 Internal economies of scale are oper-

ative through both production and abatement, and are driven by firm entry. The resulting scale

production takes a Cobb-Douglas form, d̄ji,kqji,k = ϕ̄j,k

(
zji,k

)αj,k
(

lji,k

)1−αj,k
, in which the input cost share of carbon

αj,k is constant and equal to κ̄j,k. Accordingly, Equation “(Firm-level Emission)” collapses to zji,k/(d̄ji,kqji,k) = (1−
aj,k)

1/αj,k−1, with the corresponding marginal cost obtained by setting ς = 1 in Equation “(Marginal Cost).” We
depart from this special case since it imposes a restriction on the extent to which firms cut their CO2 emission in
response to policy. To see this, note that carbon inputs per dollar of production cost, zji,k/(cji,kqji,k), decreas with the
carbon tax rate τj,k at rate

∂ ln
(

zji,k/(cji,kqji,k)
)

∂ ln τj,k
= −1 + (1− ς)(1− αj,k).

The above elasticity approximately equals −ς if the cost share of carbon, αj,k, is sufficiently low. However, in the
special case of ς → 1, the above elasticity equals minus one, which may restrict the ability of the model to generate
an admissible magnitude of carbon reductions in response to climate policies. As such, we let this elasticity depend
on a free parameter, namely ς, which we later esimate.

9 Specifically, p̄jj,k ≡
(

γk f̄ j,k

)1/γk
(

γk
γk−1

1
ϕ̄j,k(1−κ̄j,k)

)(γk−1)/γk
, z̄j,k ≡

(
γk f̄ j,k/ p̄jj,k

)1/(γk−1)
. Both equation use the fact

that the mass of firms, Mj,k, can be expressed as a function of abatement and output, Mj,k = m̄j,k(1− aj,k)
1

ςγk
− 1

ς Q
1− 1

γk
j,k

where m̄j,k ≡ p̄jj,k/(γk f̄ j,k).
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effects impact both industry-level prices, Pji,k, and CO2 emissions, Zj,k, via the common term(
Qj,k/(1− aj,k)

1/ς
)−1/γk in Equations (3) and (4). This formulation nests constant-returns to scale

technologies as a special case where 1/γk → 0.

2.3 Tax Instruments & Revenues

The government in country i has access to a full set of border, production, and carbon tax instru-

ments necessary to replicate the unilaterally first-best outcome. These tax instruments include:10

1. Import tax, tji,k, applied to imported variety ji, k (tii,k = 0 by design);

2. Export subsidy, xij,k, applied to exported variety ij, k (xii,k = 0 by design);

3. Production subsidy, si,k, applied to all domestic output from industry k;

4. Carbon tax, τi,k, applied to the carbon content of domestic output from industry k.

Note that production and carbon taxes are applied irrespective of the location of final sales. The

first three tax instruments create a wedge between the after-tax consumer price, P̃ji,k, and before-

tax producer price, Pji,k, of a given variety (ji, k). Specifically, after-tax consumer prices are related

to before-tax producer prices according to:11

P̃ji,k =
(1 + tji,k)

(1 + si,k)(1 + xij,k)
Pji,k

In the case where only country i sets taxes, the following one-to-one mapping holds between the

set of tax instruments {tji,k, xij,k, si,k}j,k and the set of after-tax prices {P̃ji,k, P̃ij,k, P̃ii,k}j 6=i,k associated

with economy i:

(1 + tji,k) =
P̃ji,k

Pji,k
, (1 + xij,k) =

Pij,k

P̃ij,k

Pii,k

P̃ii,k
, (1 + si,k) =

Pii,k

P̃ii,k
. (5)

The government can, thus, replicate any choice of border and production tax-cum-subsidies with

the right choice of consumer-to-producer price wedges.

Carbon taxes, τi,k regulate firm-level abatement in origin i–industry k. Following Equation (1),

a higher carbon tax-to-wage ratio induces more abatement, ai,k, by cost-minimizing firms.12

Tax Revenues. Production, carbon, and border tax revenues are rebated to consumers in a

10 Consumption and abatement taxes are redundant as their effects can be perfectly mimicked with the appropriate
choice of the existing instruments, t, x, s, and τ.

11 An alternative way of representing this relationship is to replace subsidies with their tax equivalent: P̃ji,k = (1 +
tji,k)(1 + sa

i,k)(1 + xa
ij,k)Pji,k. Since the policy tools related to production and exports are typically applied in the form

of subsidies, we have replaced (1 + sa
i,k) = 1/(1 + si,k) and (1 + xa

ij,k) = 1/(1 + xij,k).
12 Notice that {tji,k, xji,k, si,k} are ad valorem wedges free of monetary units, whereas carbon taxes {τi,k} must be ap-

plied in units of say dollars, which explains why firms’ response to them is based on the carbon tax-to-wage ratio.

10



lump-sum fashion. We use Ti to denote the total tax revenues rebated to consumers in country i:

Ti =

carbon taxes︷ ︸︸ ︷
∑

k∈K

∑
j∈C

(
αj,k

γk − 1
γk

Pij,kQij,k

)
+

production subsidies︷ ︸︸ ︷
∑

k∈K

[(
P̃ii,k − Pii,k

)
Qii,k

]
(6)

+ ∑
k∈K

∑
j∈C,j 6=i

[(
P̃ji,k − Pji,k

)
Qji,k

]
︸ ︷︷ ︸

imports taxes

+ ∑
k∈K

∑
j∈C,j 6=i

[(
P̃ij,k − Pij,k

)
Qij,k

]
︸ ︷︷ ︸

exports subsidies

.

Note that Ti can be positive or negative depending on the makeup of country i’s taxes and subsi-

dies. If country i offers a sufficiently large amount of production and export subsides that exhaust

revenues, then Ti operates as a negative lump-sum tax on the consumers.

2.4 General Equilibrium

To streamline the presentation of our optimal policy results, we use a slightly unorthodox presen-

tation of general equilibrium. First, we characterize all equilibrium outcomes (aside from wages

and income levels) as a function of taxes, nationals-level wages, and income levels. We refer to

this outcome as a semi-equilibrium. Then, we define general equilibrium as a semi-equilibrium in

which wages and and income levels satisfy the market clearing and balanced budget conditions,

given the vector of taxes.

Definition. [Semi-equilibrium.] For any combination X = (I; Y, w) of taxes I = {tji,k, xij,k, si,k, τi,k}i,j 6=i,k,

income levels, Y = {Yi}i, and wages, w = {wi}i, a semi-equilibrium, labeled as S (X), consists of:

– firm-level abatement,
{

aj,k(X)
}

j,k, and carbon input cost share,
{

αj,k(X)
}

j,k, according to (1)–(2);

aggregate producer prices,
{

Pji,k(X)
}

j,i,k, and CO2 emissions,
{

Zj,k(X)
}

j,k , according to (3)–(4);

– aggregate demand quantities characterized by the non-parametric Marshallian demand function,
Qji,k(X) = Dji,k(Yi, P̃i(X)), for all ji, k, where after-tax prices P̃i(X) ≡

{
P̃ji,k(X)

}
j,k follow (5);

– national-level tax revenues {Ti(X)}i that are described by (6).

Definition. [General equilibrium.] Given taxes I, general equilibrium is a combination X = (I; Y, w)

such that the system of semi-equilibrium S (X) holds, and income levels, Y, and wages, w, satisfy the

market clearing conditions:13

wi L̄i − ∑
k∈K

∑
j∈C

(1− αi,k(X)
γk − 1

γk
)Pij,k(X)Qij,k(X) = 0, for all i ∈ C (7)

13 The labor market clearing condition (LMC) is equivalent to the balance trade condition (BTC),

∑k∈K ∑j 6=i∈C

(
1

1+tji,k
Pji,kQji,k − 1

1+tij,k
Pij,kQij,k

)
= 0, where exports and imports of every country i are mea-

sured in values outside the border of i (that are, exports are after-tax, but imports are before-tax). In our policy
analysis, we sometimes use (BTC) instead of (LMC).
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as well as the balanced budget conditions:

Yi = ∑
j

∑
k

P̃ji,k(X)Qji,k(X) = wi L̄i + Ti(X), for all i ∈ C (8)

Hereafter, when we express X = (I; Y, w) ∈ E , we mean to indicate that X is in the set of

feasible general equilibrium outcomes—i.e., it satisfies Equations (1)–(8).

Expenditure Shares and Carbon Intensities. To compress the notation, we define the following

variables. We use e and λ to denote expenditure shares. The within-industry expenditure share

of country i on variety ji, k (origin j–destination i–industry k) is denoted by λji,k,14 and the overall

expenditure share of country i on industry k is denoted by ei,k:

λji,k ≡
P̃ji,kQji,k

∑n∈C P̃ni,kQni,k
; ei,k =

∑n∈C P̃ni,kQni,k

∑n∈C ∑g∈K P̃ni,gQni,g
=

∑n∈C P̃ni,kQni,k

Yi
. (9)

Country i’s overall share of expenditure on variety ji, k is denoted by eji,k,

eji,k ≡
P̃ji,kQji,k

∑n∈C ∑g∈K P̃ni,gQni,g
=

P̃ji,kQji,k

Yi
= λji,kei,k. (10)

We use r to denote revenue shares. The share of variety ji, k from origin j–industry k’s total sales

revenues is denoted by rji,k, and the share of industry k from origin j’s total sales revenues is

denoted by rj,k:

rji,k ≡
Pji,kQji,k

∑n∈C Pjn,kQjn,k
; rj,k =

∑n∈C Pjn,kQjn,k

∑n∈C ∑g∈K Pjn,gQjn,g
. (11)

Lastly, vj,k denotes the carbon intensity per unit value of output in origin j–industry k. Namely,

vj,k ≡
Zj,k

Pjj,kQj,k
=

γk − 1
γk

αj,k

τj,k
∼ carbon intensity, (12)

where αj,k denotes the input cost share of carbon as given by Equation (2).

14 In our framework, abatement choices and scale economies alter comparative advantage. Under the assumption that
industry-level bundle of consumption is a CES aggregator across varieties of different origin countries with σk as the
elasticity of substitution between varieties in industry k, trade shares are:

λji,k =

(
d̄ji,kw̃j,k

)1−σk

∑j∈C

(
d̄ji,kw̃j,k

)1−σk
, where w̃j,k ≡ c̄j,k ×

(
(1− aj,k)

1
ςγk
− 1

ς

)
×
(

Q
− 1

γk
j,k

)
×
(

wj

)
,

where c̄j,k is a constant that is inversely proportional to ϕ̄j,k —i.e., total factor productivity of in the supplying
country-industry. Additionally, the potential to export, reflected by w̃j,k, is proportional to wage, altered by the cost
of abatement and scale economies. In a special case where production technology is constant returns to scale (i.e.,
1/γk → 0), and labor and carbon are combined in a Cobb-Douglas fashion (i.e., ς→ 1), w̃j,k = c̄j,k(1− aj,k)

−1wj.
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2.5 The Objective Function of Non-Cooperative Governments

To present a non-cooperative government’s objective function, we first specify the perceived cost

of CO2 emissions. We assume that the cost associated with CO2 emissions has two components:

1. A climate cost, φi (∑n ∑k Zn,k), where φi reflects the climate-related disutility per unit of CO2

emissions—as perceived by country i’s government.15

2. A pollution cost associated with the local pollutants (like oxides of nitrogen or sulfur) that

accompany CO2 emissions in the production process. We assume that production in i, k

generates ζ̄i,k units of local pollutants for every unit of CO2. Based on this assumption, the

disutility from local pollutants can be expressed as φ0
i

(
∑k Z0

i,k

)
= φ0

i

(
∑k ζ̄i,kZi,k

)
, where

Z0
i,k = ζ̄i,kZi,k denotes the bundle of local pollutants from origin i-industry k.

Let Z = [Zn,k]n∈C,k∈K be the long vector of CO2 emissions from all country-industry pairs and

define φik ≡ φ0
i ζ̄i,k. We can write country i’s disutility from CO2 emissions, ∆i(Z), as the sum of the

explicit climate cost and the implicit pollution cost:

∆i(Z) ≡ φi (∑n ∑k Zn,k) + φ0
i

(
∑k Z0

i,k

)
= ∑n ∑k (δni,kZn,k) where δni,k = φi + φi,k1(n = i).

(13)

The government’s objective is to maximize the utility from consumption net of the perceived

disutility from CO2 emissions. Let Ii stack the instruments of policy available to country i’s gov-

ernment, Ii ≡ {tji,k, xij,k, si,k, τi,k}j,k, and I ≡ {Ii}i∈C be the set of worldwide tax instruments. The

objective function of the government in country i can be expressed as follows for each combina-

tion X = (I; w, Y) of taxes, national wages, and income levels:

Wi(X) = Vi(wi L̄i + Ti(X), P̃i(X))− ∆i(Z(X)) (14)

The first term on the right-hand side represents the indirect utility from consumption, which

depends on total income, Yi = wi L̄i + Ti, and consumer prices, P̃i. The second term is the disutility

from CO2 emissions, as described by Equation (13). With the government’s objective function at

hand, we now define the unilaterally optimal policy.

Definition. The Unilaterally Optimal Policy for country i consists of tax instruments, I?i , that max-

imize country i’s welfare subject to general equilibrium conditions (1)–(8). Namely,

I?i = arg max Wi(Ii, Ī−i; w, Y) subject to (Ii, Ī−i; w, Y) ∈ E ,

where Wi is described by Equation (14) and Ī−i denotes policy choices in the rest of the world.

15 Since CO2 emission is a global bad, the government does not care from where a unit of CO2 is emitted. Moreover, φi re-
flects the disutility experienced by the residents of country i. Since the government in country i act non-cooperatively,
it does not care about the climate cost experienced by individuals in the rest of the world.
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To elucidate the above definition, Appendix A.1 presents an expanded version of the uni-

laterally optimal policy problem. Lastly, for the analysis that follows, it is instructive to define

φ̃i ≡ P̃iφi, φ̃i,k ≡ P̃iφi,k, and δ̃ni,k ≡ P̃iδni,k = φ̃i,k1(n = i) + φ̃i, as the CPI-adjusted welfare cost per

unit of CO2 emissions, where P̃i ≡ (∂Vi(.)/∂Yi)
−1 is the consumer price index in country i.

3 Unilaterally Optimal Carbon, Production and Border Taxes

In this section, we characterize a non-cooperative government’s unilaterally optimal policy that

consists of carbon, border, and production taxes. As we will discuss shortly, these taxes are free-

riding-proof but inefficient from a global standpoint. The unilaterally optimal policy corrects three

margins of inefficiency from a non-cooperative government’s viewpoint:

1. The local and transboundary carbon externality imposed on domestic consumers.

2. Misallocation caused by markup differences across industries.

3. Unexploited terms-of-trade gains in relation to the rest of the world.

Deriving analytical formulas for optimal policy is challenging when general equilibrium con-

siderations are taken into account. Traditional characterizations of optimal border and carbon

taxes circumvent such challenges by focusing on two-country or partial equilibrium setups. Also,

typically, they impose other simplifying assumptions like perfect competition, fixed location of

firms, fixed set of products, a constant share of carbon in production, and constant returns to

scale.

As an intermediate step, we develop a new methodological approach that overcomes the chal-

lenges facing general equilibrium optimal policy analysis. Our goal is to present a simple and

systematic way of characterizing optimal policy in quantitative trade models with applications

beyond this particular work. We present our theoretical proposition via an intermediate envelope

result, which forms the basis of our subsequent optimal policy formulas. Throughout the paper,

if not reported in the main text, our derivations and proofs are presented in the appendix.

3.1 Intermediate Envelope Result

The intermediate envelope result presented in this section converts our general equilibrium opti-

mal policy problem into a simpler problem characterized by a set of partial equilibrium deriva-

tives that treat wage and income as given. We establish this result in three steps.

Step 1: Reformulate the optimal policy problem in terms of consumer prices and abatement

The government in i can choose consumer prices P̃ji =
{

P̃ji,k
}

j 6=i, k , P̃ij =
{

P̃ij,k
}

j 6=i, k , P̃ii =
{

P̃ii,k
}

k

to replicate any set of border and production tax/subsidies tji ≡
{

tji,k
}

j 6=i, k, xi,j ≡
{

xij,k
}

j 6=i,k ,si,k ≡

14



{si,k}k according to Equation (5), and can choose abatement levels {ai,k}k to replicate any set

of carbon taxes {τi,k} according to Equation (1). Shifting the focus from the vector of taxes

Ii ≡ {tji,k, xij,k, si,k, τi,k}j 6=i, k to their target variables Pi ≡ {P̃ji,k, P̃ij,k, P̃ii,k, ai,k}j 6=i, k is useful, as it

emphasizes the distortion each tax instrument intends to correct. We invoke this observation to

convert our original optimal policy problem into a reformulated problem in which the government

chooses consumer prices and abatement levels, Pi, rather than tax instruments, Ii. The following

lemma presents that basic logic behind this reformulation.

Lemma 1. Given the optimal choice of prices and abatement levels, P?
i = {P̃?

ji,k, P̃?
ij,k, P̃?

ii,k, a?i,k}j 6=i,k, opti-

mal taxes/subsidies I?i = {t?ji,k, x?ij,k, s?i,k, τ?
i,k}j,k can be recovered according to:

1 + t?ji,k =
P̃?

ji,k
Pji,k

, 1 + x?ij,k =
Pij,k

P̃?
ij,k

Pii,k
P̃?

ii,k
, 1 + s?i,k =

Pii,k
P̃?

ii,k
, τ?

i,k =
γk−1

γk

αj,k(a?j,k)
vj,k(a?j,k)

Considering the above Lemma, we henceforth direct attention to a reformulated problem in

which Pi is chosen to maximize welfare, Wi, subject to equilibrium constraints. Since the rest of

the world is passive (e.g., P−i = 0) we herein drop P−i from the global policy vector. Altogether,

country i’s reformulated optimal policy problem can be specified as:

P?
i = arg max Wi(Pi; w, Y) subject to (Pi, w, Y) ∈ E r,

where E r denotes the set of policy-wage-income combinations that constitute a feasible general

equilibrium outcome. This set is defined analogous to E with details provided in Appendix A.2.

The optimal policy, based on the above problem, must satisfy the following first-order condition

(F.O.C.) with respect to each policy instrument P ∈ Pi:

dWi(P
?
i ; w?, Y?)

d lnP
=

∂Wi(P
?
i ; w?, Y?)

∂ lnP
+

∂Wi(P
?
i ; w?, Y?)

∂w
· dw

d lnP︸ ︷︷ ︸
GE wage effects

+
∂Wi(P

?
i ; w?, Y?)

∂Y
· dY

d lnP︸ ︷︷ ︸
GE income effects

= 0.

(15)

The first term on the right-hand side corresponds to the direct effect of P ∈ Pi on welfare, holding

income and wages fixed. The second two terms capture general equilibrium (GE) effects that

channel through changes in wage and income levels.16 We appeal to the above decomposition of

F.O.C.s to establish the welfare neutrality of wage and income effects at the optimum.

Step 2: Welfare-neutrality of wage effects at the optimum

Wage effects correspond to the welfare impacts of policy that channel through general equilibrium

changes in wages w ≡ {wi}i∈C. We show that these general equilibrium wage effects are welfare-

neutral at the optimum. That is, fixing Pi and Y at their unilaterally optimal level, a change in w

16 As detailed in Appendix A.4, dw/d lnP and dY/d lnP can be obtained by applying the Implicit Function Theorem
to the national-level labor market clearing and balanced budget conditionsEquations (7) and (8).
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has no first-order effect on country i’s welfare.

Lemma 2. General equilibrium wage effects are welfare neutral at the optimum, P?
i ,

∂Wi(P
?
i ; w?, Y?)

∂w
· dw

d lnP
= 0, ∀P ∈ Pi.

The above lemma is formally proven in Appendix B.1. Below, we provide a verbal summary.

The global vector of wages is composed of the local wage wi and foreign wages w−i ≡ {wn}n 6=i,

each of which is welfare-neutral for different reasons. The welfare neutrality of wi follows from

the fact that the government in i can tax every unit of output produced in country i irrespective

of industry and location of final sale. Since the choice vis-à-vis Pi fully determines consumer

prices in country i, wi can affect country i’s welfare only via its impact on national income, wiLi +

Ti(Pi; w, Y).17 Holding Pi fixed, the effect of wi on national income consists of two countervailing

elements: a positive effect on wage income and a negative effect on tax revenues. For any policy

choice Pi—and insofar as the labor market clearing condition holds—these two countervailing

effects exactly offset each other.

The welfare neutrality of w−i in the two-country case follows trivially from Walras’ law—since

one element of w−i can be always normalized to one. Beyond the two-country case, the neutrality

result is more subtle and derives from a combination of tax neutrality (in the spirit of the Lerner

symmetry) and the targeting principle—see Appendix B.1 for details. Consider, for instance, wj ∈
w−i. By the Lerner symmetry, any change in wj can be perfectly mimicked with a uniform shift

in country j’s import taxes and export subsidies. Setting Pi to its unilaterally optimal value, these

extraterritorial uniform tax changes have no first-order effect on Wi(Pi; w, Y). In other words, in

accordance with the targeting principle, any first-order gains from such extraterritorial uniform

tax changes will be already internalized by the optimum choice, P?
i .

Step 3: Welfare-neutrality of income effects at the optimum

Income effects corresponds to welfare impacts of policy that channel through general equilibrium

changes in national income, Y ≡ {Yi}i∈C. Following Lemma 2, we can evaluate and solve the

F.O.C. (15) while treating wages, w = w̄, as fixed. In addition, since foreign countries j 6= i are

passive, their income is tied to their wage rates: Ȳ−i =
{

w̄j L̄j
}

j 6=i, and can be also treated as fixed.

As such, we henceforth drop w̄ and Ȳ−i from our notation, and express the combination (Pi; w, Y)

as simply (Pi; Yi). Accordingly, the F.O.C. with respect to P ∈ Pi reduces from Equation (15) to

dWi(Pi; Yi)

d lnP
=

∂Wi(Pi; Yi)

∂ lnP
+

∂Wi(Pi; Yi)

∂Yi

dYi

d lnP
= 0. (16)

17 This claim rests on the implicit assumption that w−i is held constant, as w−i is itself welfare-neutral at the optimum.
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The way the above problem is set up, income effects channel exclusively through income-driven

changes in demand quantities.18 That is, after fixing Pi, any general equilibrium change in Yi

affects producer prices, emissions, and tax revenues only through shifts in demand schedules.

We can highlight this point by expressing these variables as Pji,k(Pi; Yi) = Pji,k(Pi, Qi(Pi, Yi)),

Zj,k(Pi; Yi) = Zj,k(Pi, Qi(Pi, Yi)), and Ti(Pi; Yi) = Ti(Pi, Qi(Pi, Yi)), where Qi ≡ {Qji,k, Qij,k}j∈C, k∈K

denotes the entire vector of country i’s output and consumption quantities, which is fully deter-

mined by country i’s policy choice, Pi, and income Yi.19 With this slight change in notation,

country i’s objective function can be expressed as:

Wi(Pi; Yi) ∼Wi(Pi, Qi(Pi; Yi)) = Vi(w̄i L̄i + Ti(Pi, Qi(Pi; Yi))︸ ︷︷ ︸
Yi

, P̃i)− ∆i (Z(Pi, Qi(Pi; Yi))) . (17)

We can, accordingly, elucidate income effects by rewriting the F.O.C. (16) in the following form

dWi(Pi, Qi)

d lnP
=

∂Wi(Pi, Qi)

∂ lnP
+

∂Wi(Pi, Qi)

∂ ln Qi
· ∂ ln Qi

∂ lnP
+

∂Wi(Pi, Qi)

∂Qi
· ∂Qi(Pi; Yi)

∂Yi

dYi

d lnP︸ ︷︷ ︸
GE income effects

= 0. (18)

Using Equation (17) and noting that P̃i ≡ (∂Vi(.)/∂Yi)
−1, the revised F.O.C. can be unpacked as

∂Wi(Pi ,Qi)
∂ lnP︷ ︸︸ ︷[

∂Ti(Pi, Qi)

∂ lnP
+ P̃i

∂Vi(Yi, P̃i)

∂ lnP
− P̃i

∂∆i (Z(Pi, Qi))

∂ lnP

]
+

[
∂Ti(Pi, Qi)

∂Qi
− P̃i

∂∆i (Z(Pi, Qi))

∂Qi

]
︸ ︷︷ ︸

∂Wi(Pi ,Qi)
∂Qi

· ∂Qi(Pi ,Yi)
∂ lnP

+

︷ ︸︸ ︷[
∂Ti(Pi, Qi)

∂Qi
− P̃i

∂∆i (Z(Pi, Qi))

∂Qi

]
· ∂Qi(Pi ,Yi)

∂Yi

dYi
dlnP = 0.

(19)

The first line expands the welfare effect of policy, P ∈ Pi, holding income fixed and the second

line expands general equilibrium income effect, as specified under Equation (18). We prove that

income effects are welfare-neutral at the optimum by establishing that ∂Wi(P
?
i ,Q?

i )
∂Qi

= 0. To this end,

consider the elements of Pi that correspond to a consumer price variable in country i—i.e., any

P ∈ P̃i, where P̃i ⊂ Pi is the vector of prices facing a consumers in country i. For this subset of

policy instruments, the first component of Equation (19) collapses to zero:

P ∈ P̃i =⇒ ∂Wi(Pi, Qi)

∂ lnP
= 0. (20)

18 To be clear, we are focusing on policy-income combinations that constitute a feasible general equilibrium outcomes,
i.e., (Pi; Yi) ∈ E r. See Appendix A.3 for a formal definition of general equilibrium in terms of (Pi; Yi).

19 Specifically, equilibrium values of Qi are given by demand schedules in country i, Qji,k = Djik(Yi, {P̃ji, P̃ii}j 6=i), for
the case where consumers in i purchase domestic or imported varieties, and demand schedules of foreign countries
j 6= i, Qij,k = Dijk(Ȳj = w̄j L̄j, {P̃ij, P̃−i,j(w̄−i)}i 6=j), for the case where producers in i sell abroad..
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This result follows from Roy’s identity and indicates that raising domestic consumer prices (for

a fixed demand schedule, Qi) has no net effect on country i’s welfare—the revenue gains from

this change are nullified by the loss to consumer surplus.20 Substituting Equation (20) into the

F.O.C. (Equation 18), one immediately notices that a necessary condition for optimality is that
∂Wi(P

?
i ,Q?

i )
∂Qi

= 0. Hence, general equilibrium income effect (as specified in Equation 18) must equal

zero at the optimum. It should be emphasized that this result holds only if all elements of P̃?
i ={

P̃?
ji, P̃?

ii

}
j 6=i
⊂ Pi are set optimally. The following lemma summarizes this result.

Lemma 3. If P̃i ⊂ Pi is chosen optimally, then general equilibrium income effects are welfare-neutral:

∂Wi(P
?
i ; w?, Y?)

∂Y
∼

∂Wi(P
?
i , Qi(P

?
i ; Y?

i ))

∂Yi
= 0.

Putting the Three Steps Together. We now combine Lemmas 1, 2, and 3 to establish an inter-

mediate envelope result that simplifies our general equilibrium optimal policy problem.

Theorem 1. [Intermediate Envelope Result] The system of F.O.C.s that determines country i’s unilat-

erally optimal policy, P?
i , can be derived and solved by treating wages as invariant to policy and demand

schedules as invariant to changes in income.

We refer to Theorem 1 as an “envelope” result because it demonstrates that, when all tax

instruments are set optimally, changes in wage and consumer income have no first-order effect

on welfare. Theorem 1 has implications well beyond this particular paper. It paves the way

for future analyses of optimal policy in quantitative general equilibrium trade models—a task

that has proven prohibitively challenging in the past. Indeed, traditional theories of optimal

trade policy are often disconnected from modern quantitative trade models in two assumptions.

First, traditional models assume that wages are fixed due to the presence of a sufficiently large

and traded homogeneous sector. Second, they assume that preferences are quasi-linear which

suppresses general equilibrium income effects. Theorem 1 indicates that neither assumption is

necessary to achieve tractability, provided that the government is granted sufficient instruments

in its policy set.In other words, our general equilibrium optimal policy problem can be solved as

if it were a partial equilibrium problem.

20 Specifically, Roy’s identity implies that P̃i
∂Vi(P̃i ,Yi)
∂ ln P̃ji,k

= −P̃ji,kQji,k. Moreover, since P̃ji,k ∈ Pi, it follows immediately

that ∂∆i(Z(Pi ,Qi))
∂P̃ji,k

= 0 and ∂Ti(Pi ,Qi)
∂ ln P̃ji,k

= P̃ji,kQji,k. The first equality holds because emission is fully determined by

abatement levels and quantities. The second reflects the effect of an after-tax price increase on tax revenues holding
the demand schedule fixed. Together, for P ∈ P̃i,

∂Wi(Pi, Qi)

∂ lnP
= P̃i

∂Vi(P̃i, Yi)

∂ lnP
+

∂Ti(Pi, Qi)

∂ lnP
− P̃i

∂∆i (Z(Pi, Qi))

∂ lnP
= −P̃ji,kQji,k + P̃ji,kQji,k + 0 = 0.
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3.2 Characterizing the Unilaterally Optimal Tax Schedule

Theorem 1 allows us to derive simple expressions for the F.O.C.s that determine the optimal pol-

icy in our general equilibrium model. Since we assume a non-parametric demand function, we

present the resulting system of F.O.C.s using the own- and cross-price elasticities of demand de-

fined in Section 2.1. The following lemma summarizes this step, with detailed derivations pro-

vided in Appendix B.2.

Lemma 4. Country i’s optimal policy, P?
i , consisting of domestic & import prices {P̃ni,k}n,k, export prices

{P̃ij,k}j 6=i,k, and abatement levels {ai,k}k, solves the following system of F.O.C.s:

{P̃ni,k}n,k ∑g

[(
P̃?

ii,g
Pii,g
− 1

µg

(
1− αi,g

µg
+ δ̃ii,gvi,g

))
ε̃
(ni,k)
ii,g + ∑m 6=i

(
P̃?

mi,g
Pmi,g
−
(

1 + ωmi,g +
δ̃mi,gvm,g

µg

))
ε̃
(ni,k)
mi,g

]
= 0;

{P̃ij,k}j 6=i,k eij,k + ∑g

[(
1− 1

µg

(
1− αi,g

µg
+ δ̃ii,gvi,g

) P?
ij,g

P̃ij,g

)
ε̃
(ij,k)
ij,g −∑m 6=i

(
ωmi,g +

δ̃mi,gvm,g
µg

)
ε̃
(ij,k)
mj,g

]
= 0;

{ai,k}k δ̃ii,kvi,k(a?i,k)−
αi,k
µk

= 0;

where µk ≡ γk
γk−1 denotes the industry-specific markup, ε̃

(ni,g)
ji,k ≡ eji,kε

(ni,g)
ji,k is the expenditure-adjusted

demand elasticity, and ωji,k denotes the inverse of good ji, k’s general equilibrium supply elasticity.21

The optimality condition w.r.t. ai,k equalizes the marginal disutility from raising the cost of

production with the marginal utility from lowering CO2 emissions. Combining this condition

with Equation (12)—that relates the equilibrium carbon intensity to the carbon tax—yields the

following formula for the optimal carbon tax:

τ?
i,k = δ̃ii,k = φ̃i + φ̃i,k, (21)

where φ̃i ≡ P̃iφi, φ̃i,k ≡ P̃iφi,k, and δ̃ii,k ≡ P̃iδii,k denote the CPI-adjusted disutility from CO2 emis-

sions. The uniform term φ̃i corrects the climate externality associated with CO2 emissions, while

the industry-specific term, φ̃i,k, targets the local pollution that accompanies CO2 emissions. The

unilaterally optimal carbon tax, specified above, solely corrects economy i’s carbon externality on

domestic consumers. It is inefficient from a global standpoint as it fails to internalize economy i’s

carbon externality on consumers in the rest of the world.

The F.O.C.s in lemma 4 with respect to {P̃ni,k}n,k and {P̃ij,k}j 6=i,k constitute a system of 2K(N−

21 As explained in Appendix A.6, ωji,k summarizes how a contraction in good ji, k’s export supply affects the entire
vector of producer prices associated with country i’s economy. The same appendix provides an exact characterization
of ωji,k as well as a first-order approximation,

ωji,k ≈
− 1

γk
rji,k

1− 1
γk

∑ι 6=i rjι,kε jι,k

[
1− 1

γk

wi Li
wjLj

∑
n 6=i

ρi,krin,k
ρj,krjn,k

ε
(jn,k)
in,k

]
,

which depends on the industry-level degree pod scale economies, γk, revenues shares,
{

rji,k

}
, and

{
ρi,k
}

, and

reduced-form demand elasticities,
{

ε
(jn,k)
in,k

}
.
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1) + K independent equations and unknowns. In Appendix B.3, we show that this system has a

unique solution, which determines the optimal vector of price wedges,
{

P̃?
ii,k

Pii,k
,

P̃?
ji,k

Pji,k
,

P?
ij,k

P̃ij,k

}
j 6=i, k

. Based

on Lemma 1, we can convert these optimal price wedges into optimal tax and subsidy rates, as

presented under the following theorem.22

Theorem 2. The unilaterally optimal tax schedule for country i is given by

[import tax] 1 + t?ji,k = 1 + ωji,k + φ̃ivj,k
γk − 1

γk
∀j, k

[export subsidy] 1 + x?ij,k =
(

1 +
1

ε ij,k

)
χij,k ∀j, k

[domestic subsidy] 1 + s?i,k =
γk

γk − 1
∀k

[carbon tax] τ?
i,k = φ̃i + φ̃i,k ∀k (22)

where χij =

[
eij,gε

(ij,k)
ij,g

eij,kεij,k

]−1

k,g

(
IK +

[
∑n 6=i t?ni,genj,gε

(ij,k)
nj,g

∑n̂ 6=i,ĝ en̂j,ĝε
(ij,k)
n̂j,ĝ

]
k,g

)
1K is an export subsidy intended at lowering CO2

emissions in foreign industries whose output competes with ij, k.

To put it verbally, country i’s unilaterally optimal policy consists of (i) a uniform Pigouvian

carbon tax , φ̃i, adjusted for the local pollution externality that accompanies CO2 emissions, φ̃i,k,

(ii) industry-specific Pigouvian production subsidies, s?i,k, that eliminate cross-industry markup

heterogeneity, (iii) import taxes, t?ji,k that penalize high-carbon imports and capitalize on unex-

ploited import market power in relation to the rest of world, and (iv) export subsidies, x?ij,k, that

promote low-carbon exports and capitalize on unexploited export market power in relation to

the rest of the world. The fact that production subsides are carbon-blind is a manifestation of the

targeting principle. Carbon taxes, based on this principle, are the optimal instrument to curb the

carbon externality associated with domestic production, because they target the externality at its

source.23

Optimal border (i.e., import and export) taxes are designed to both improve the terms-of-

trade (ToT) and curb transboundary CO2 emissions. Below, we clarify this point by dissecting the

optimal import and export taxes/subsidies into (1) a terms-of-trade (ToT) driven component, and

(2) a carbon border tax/subsidy component. First, consider the optimal import tax on variety ji, k.

Following Theorem 2, this tax can be decomposed as

1 + t?ji,k = 1 + ωji,k︸ ︷︷ ︸
ToT driven

+ φ̃ivj,k
γk − 1

γk︸ ︷︷ ︸
carbon border tax

. (23)

22 In Appendix C, we also characterize optimal policy under second-best scenarios in which the government is unable
to use a subset of policy instruments in Pi. We look at three second-best scenarios: First, a scenario where carbon
taxes are inapplicable. Second, a scenario where export subsidies are inapplicable. Third, a scenario where the
government can use carbon taxes but is unable to use any other tax instrument in Pi.

23 Recall that that we assume a one-to-one correspondence between local pollutants and CO2 emissions. As a result,
carbon taxes directly correct both the climate externality from CO2 emissions and the local pollution externality from
non-CO2 emissions.
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The ToT-driven component is motivated by country i’s collective import market power vis-á-vis

partner j. This tax component creates a mark-down on the producer price of goods imported from

origin j–industry k, the optimal rate of which coincides with the inverse of good ji, k’s export sup-

ply elasticity, ωji,k. The CO2 border tax curbs the transboundary CO2 externality associated with

goods produced by origin j–industry k. These border tax measures are rationalized by the fact

that origin j’s non-cooperative carbon tax is sub-optimal—it fails to internalize origin j’s carbon

externality on the home country i 6= j.

Likewise, optimal export subsides are chosen to both improve the terms-of-trade (ToT) and

curb transboundary CO2 emissions. The export subsidy on good ij, k can be decomposed as

1 + x∗ij,k =
(

1 +
1

ε ij,k

)
︸ ︷︷ ︸

ToT driven

× χij,k︸ ︷︷ ︸
carbon border subsidy

. (24)

The ToT-driven term is analogous to an optimal markup, as if country i were pricing its compos-

ite export good as a single representative monopolist. The CO2 border subsidy promotes export

varieties that compete with high-carbon (high-v) foreign varieties in market j. The logic is that

subsidizing exports to market j lowers the output and CO2 emissions of high-carbon foreign in-

dustries by shrinking their sales to market j.24

3.3 Optimal Policy Formulas in Special Cases

Special Case: Ricardian Models. In the limit where γk → ∞ and f̄ j,k → 0, firms can be viewed

as perfectly competitive and our framework reduces to a Ricardian trade model. This special case

is isomorphic to the multi-industry Eaton and Kortum (2002) model. The optimal tax formulas in

the Ricardian case can be attained by plugging the following values into Theorem 2:

γk

γk − 1
→ 1; ωji,k → 0. (Ricardian Model)

An immediate implication is that optimal import taxes are uniform net of the carbon border tax.

Also, note that—in principle—Theorem 1 applies to a model with a continuum of industries. As

a result, in the limit where ε ij,k → ∞, our optimal tax formulas nest the optimal policy formulas

in Costinot et al. (2015), which is based on the Dornbusch et al. (1977) model.

Special Case: Cobb-Douglas-CES Preferences. To gain further intuition about the optimal policy

formulas presented under Theorem 2, consider a parametric case of the model where preferences

have a Cobb-Douglas-CES formulation. In particular,

24 To be clear, χij,k internalizes a second effect in addition to carbon reduction. Subsidizing exports to market j lowers
the scale of production in foreign industries that sell to both markets j and i. This reduction in scale, indirectly
impacts the producer price of goods imported by country i, and thus country i’s terms-of-trade. χij,k encompasses
an adjustment to account for such effects.
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Ui(Qi) = ∏
k

(
∑

j
b1/σk

ji,k Q
σk−1

σk
ji,k

)ēi,k
σk

σk−1

, (25)

where ēi,k denotes country i’s constant share of expenditure share on industry k, and σk denotes

the Armington elasticity of substitution between origin countries. The price elasticities of demand

in this special case are given by the following:

ε ji,k ≡ ε
(ji,k)
ji,k = −1− (σk− 1)(1− λji,k), ε

(ji,k)
ni,k = (σk− 1)λji,k (n 6= j); ε

(ji,k)
ni,g = 0 (g 6= k).

Plugging the above values into Theorem 2 yields the following formula for optimal import tax

and export subsidies in the Cobb-Douglas-CES case,

1 + t?ji,k = 1 + φ̃ivj,k
γk − 1

γk
+

− 1
γk

rji,k

[
1− σk−1

γk

wi L̄i
w?

j L̄j
∑` 6=i

ρi,kri`,k
ρj,krj`,k

λj`,k

]
1 + 1

γk
∑` 6=i rj`,k

[
1 + (σk − 1)(1− λj`,k)

]
1 + x?ij,k =

[
1 + ∑

n 6=i
tni,k

λnj,k

1− λij,k

](
1 +

1
(σk − 1) (1− λij,k)

)−1

. (26)

The last term in the first line corresponds to ωji,k. The term inside the brackets in the second

line corresponds to χij,k in Theorem 2. Absent carbon externalities (i.e., set vn,k = 0 for all n, k),

the above formulas collapse to the familiar optimal import/export tax formulas in multi-industry

quantitative trade models (see Lashkaripour and Lugovskyy (2020)). An illuminating special case

of the above formula is the small open economy case, for which rji,k ≈ λij,k ≈ 0. For a small open

economy, the optimal import tax and export subsidy formulas reduce to

1 + t?ji,k = 1 + φ̃ivj,k
γk − 1

γk

1 + x?ij,k =
[

1 + φ̃i
γk − 1

γk
V−ij,k

]
σk − 1

σk
,

where V−ij,k ≡ ∑n 6=i

[
vn,k

λnj,k
1−λij,k

]
is the average carbon intensity of foreign suppliers whose output

competes with good ij, k. This formula elucidates our earlier claim that optimal carbon border

subsidies promote exports to markets that are served heavily by high-carbon foreign suppliers.

3.4 Non-Cooperative Nash Equilibrium

Equipped with Theorem 2, we analyze a non-cooperative Nash equilibrium in which all countries

simultaneously apply their unilaterally optimal policy. Such an equilibrium is inefficient from a

global standpoint because all countries act non-cooperatively, and as such, they fail to internalize

their terms-of-trade and carbon externality on the rest of the world. To fix ideas, we present a

formal definition of the non-cooperative Nash equilibrium.

Definition. The Non-Cooperative Nash Equilibrium corresponds to a one-shot game where non-
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cooperative countries simultaneously choose their unilaterally optimal policy, taking policy choices

in other countries as given.

Since we consider a game in which non-cooperative governments choose their taxes unilat-

erally and simultaneously, the optimal policy of each country is still characterized by Theorem

1. One should, however, note that optimal policy choices are interdependent between countries.

More specifically, the optimal policy formulas under Theorem 1 depend on endogenous variables

such as trade shares, λnj,k, and carbon intensities, vj,k, which in turn depend on the policy choices

of all countries. The optimal tax and subsidy rates under the Nash equilibrium are, therefore,

different from those in an equilibrium in which a single country sets its policy unilaterally.

To highlight these interdependencies, consider country i’s optimal export subsidies and im-

port taxes. They depend on transboundary carbon intensities, {vj,k}j 6=i, which are regulated by

applied carbon taxes in other countries (j 6= i). Specifically, given τ?
j,k = δ̃jj,k = φ̃i + φ̃i,k for all

j ∈ C, Equation (12) implies the following carbon intensity in origin j:

v?j,k = αj,k
γk − 1

γk
δ̃−1

jj,k.

Supposing that preferences are Cobb-Douglas-CES, we can plug the above expression into Equa-

tion (26) to arrive at the following formulations for Nash carbon, production, and border tax rates.

Corollary 1. The non-cooperative Nash equilibrium under CD-CES demand is characterized by each coun-

try i ∈ C applying the following taxes—which implicitly depend on applied taxes in all other countries:

[import tax] 1 + t?ji,k = 1 + ωji,k + φ̃i

(
γk − 1

γk

)2 αj,k

τ?
j,k

[export subsidy] 1 + x?ij,k =
[
1 + ∑n 6=i t∗ni,k

λnj,k
1−λij,k

] (
1 + 1

(σk−1)(1−λij,k)

)−1

[domestic subsidy] 1 + s?i,k =
γk

γk − 1

[carbon tax] τ?
i,k = φ̃i,k + φ̃i

As noted earlier, the above policy schedule differs from the unilaterally optimal policy sched-

ule, i.e., Equation (22), in important ways. Above all, Nash carbon border taxes depend explicitly

on applied carbon taxes in other countries. The extent of carbon border taxation is, correspond-

ingly, regulated by cross-national differences in the perceived cost of CO2 emissions. To see this

clearly, suppose the perceived disutility from emissions is exclusively climate-related, i.e., φ̃i,k = 0.

The carbon tax in this case collapses to τ?
i,k = φ̃i and the carbon border tax applied by country i on

country j simplifies to
(
φ̃i/φ̃j

)
((γk − 1)/γk)

2 αj,k. If the government in country i cares more about

CO2 emissions than its counterpart in country j, i.e., φ̃i > φ̃i, then country i imposes a relatively

higher carbon border tax—after adjusting for the carbon input cost share, αj,k, and the degree of

23



scale economies in production, γk.25

4 Globally Optimal Carbon-and-Border Taxes

We now analyze scenarios where governments act cooperatively. That is, they cooperate to max-

imize global welfare rather than act unilaterally in their self-interest. Subsection 4.1 outlines the

first-best cooperative outcome under which cooperative governments coordinate their carbon tax

policies. Subsection 4.2 analyzes a second-best cooperative scenario under which governments

coordinate their carbon border taxes. Later in Section 6, we utilize these theoretical results to

quantify the consequences of global cooperation versus non-cooperation on climate issues.

4.1 Globally Optimal Carbon Taxes

The globally optimum (or first-best) outcome is attainable when all countries coordinate their

carbon taxes and correct their carbon externality on the rest of the world. Such a scenario is akin

to a deep multilateral agreement on trade and climate. Below, we formally define this scenario,

which we label global climate cooperation hereafter.

Definition. Global Climate Cooperation corresponds to an equilibrium wherein all governments

set their policy instruments cooperatively in order to maximize global welfare, ∑i Wi, subject to

equilibrium conditions (1)-(8).

Under global climate cooperation, all countries apply zero border taxes or subsidies, as these

policy measures are inefficient from a global standpoint. Globally optimal production subsidies

solely correct markup distortions, i.e., they restore marginal cost pricing in each industry. Glob-

ally optimal carbon taxes have Pigouvian underpinning and correct each origin’s local and trans-

boundary carbon externality. Put formally, the globally optimal policy has the following structure

in each country i:

x?i = t?i = 0; 1 + s?i,k =
γk

γk − 1
; τ?

i,k = φ̃i,k + ∑
j∈C

φ̃j︸ ︷︷ ︸
φ̃W

. (27)

Globally optimal carbon taxes in country-industry (i, k) consists of two components: (ii) one that

corrects the global climate externality associated with origin i’s CO2 emissions, φ̃W = ∑j∈C φ̃j, and

(i) one that corrects the local pollution externality accompanying CO2 emissions, φ̃i,k. The above

25 A similar logic explains why the square of the inverse markup,
(

γk−1
γk

)2
, appears in formulas specified under

Theorem 1. According to Equation (4), carbon intensity per unit of production, Zn,k/Qn,k is proportional to(
Qn,k/(1− an,k)

)−1/γk . That is, carbon intensity is affected by scale economies in both production and abatement,
governed by a common parameter γk. In the formula for optimal import taxes t?ji,k, the first (γk − 1)/γk reflects the
importing country i’s desire to dampen the CO2-reducing tariff given scale economies in “production”. The second
(γk − 1)/γk is due to the origin country j’s carbon taxes interacting with scale economies in “abatement”.
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formulas indicate that country i must raise its carbon tax when transitioning from the unilaterally

optimal to the globally optimal tax schedule. Assuming away the equilibrium change to P̃i, the

raise in the carbon tax when committing to cooperation equals:

τGlobal
i,k − τUnilateral

i,k ≈ φ̃W − φ̃i (28)

The free-riding problem that impedes global cooperation is clearly manifested in Equation (28).

When acting non-cooperatively, a country has no incentive to curb its carbon externality on resi-

dents of other countries. Accordingly, compensation schemes (such as international transfers that

incentivize cooperation) or penalty devices (such as border taxes that punish non-cooperation)

will lead to global climate cooperation if they imply national-level benefits that exceed the unilat-

eral cost of cooperation, (φ̃W − φ̃i).

4.2 Globally Optimal Carbon Border Taxes

As demonstrated above, the globally first-best policy for curbing CO2 emissions requires that

each country applies their globally optimal carbon tax. Suppose that—for political reasons—the

first-best policy choice is infeasible. In that case, carbon border taxes can be used as a second-

best cooperative policy measure to curb CO2 emissions. Globally optimal carbon border taxes

differ from their unilaterally optimal counterparts (characterized under Theorem 1) in that they

are chosen to maximize global rather than unilateral welfare.

To present our results succinctly, we suppose γk → ∞ which ensures that transboundary

carbon externalities are the only distortion carbon border taxes are targeting. Appendix D.1 shows

that (with international transfers) the globally optimal carbon border tax can be implemented

using the following import tax schedule,26

1 + t∗ji,k =
1 + (σk − 1)λii,k

1 + [1 + φ̃−iνi,k] (σk − 1)λii,k

(
1 + φ̃−jνj,k

)
, (29)

where φ̃−j = ∑ [φ̃n]− φ̃j measures economy j’s transboundary climate externality, which has been

overlooked by domestic carbon taxes. The globally optimal carbon border tax exhibits two key

differences from the unilaterally optimal carbon border tax presented under Theorem 1. First, it

penalizes import transactions based on their global climate externality. Second it includes an ad-

justment for cross-demand effects, because the application of carbon border taxes raises demand

for domestic varieties whose global carbon externality cannot been appropriately taxed. Carbon

border taxes should, accordingly, be set at a lower rate in markets where domestic suppliers are

highly competitive (as measured (σk − 1)λii,k) and high carbon-intensive (as measured by νi,k).27

Globally optimal carbon border taxes are larger and should be more effective than their uni-

26 The above formula derives from Cobb-Douglas-CES preferences. See Appendix D.1 for a more general formula.
27 Globally optimal carbon border tax rates concern the optimal choice of a global planner that can manipulate the
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laterally optimal counterparts. They, however, suffer from the same free-riding problem that has

paralyzed existing climate agreements. That is, individual countries will find it optimal to free-

ride and lower their carbon border tax from its globally optimal rate identified by Equation (29).

Doing so will benefit the tax-imposing country but will deteriorate global welfare. Considering

this limitation, an analysis based on globally optimal carbon border taxes may overstate the effi-

cacy of border measures. In Appendix D.3, we analyze a third type of carbon border adjustment

that is intended to level the playing field for domestic firms who are subjected to higher-than-

unilaterally optimal carbon taxes. As we note, these border adjustments may have limited efficacy

because restoring firm-level competitiveness can deteriorate the national-level terms of trade.

5 Mapping Theory to Data

In this section, we describe how the equilibrium relationships, including our optimal policy for-

mulas, map to data. Our objective is to use this mapping to quantify the full effectiveness of trade

policy at cutting global CO2 emissions. For our quantitative analysis, we consider the Cobb-

Douglas-CES case of our model and suppose that applied taxes in the baseline equilibrium (i.e,

the status-quo) are as follows: (i) Tariffs, {tji,k}, are given by observed applied tariffs; (ii) domes-

tic carbon taxes, {τi,k}, are at their unilaterally optimal and inferred from applied emission taxes;

(iii) production subsidies, {si,k}, and export subsidies, {xij,k}, are zero.

5.1 Non-cooperative Nash Equilibrium

With the aid of our unilaterally optimal tax formulas, we characterize the change in equilibrium

values when moving from the baseline equilibrium to the counterfactual non-cooperative Nash out-

come. This exercise requires information on expenditure shares, {λni,k, en,k}ni,k, revenue shares,

{rni,k}ni,k, labor shares, {`n,k}n,k, where `n,k ≡ Ln,k/L̄n is country n’s share of employment in in-

dustry k, carbon intensities and input cost shares, {vn,k, αn,k}n,k, and national wage and income

levels {wn L̄n, Yn}n. Let Bv stack the baseline data. Aside from Bv, we need information on applied

taxes and subsidies Bt ≡ {sn,k, xin,k, tni,k}ni,k, carbon disutility parameters Bφ = {φ̃n, φ̃n,k}n,k and

structural elasticities Be = {γk, σk, ς}k. Going forward, we let B ≡ {Bv,Bt,Bφ,Be} denote the set

of sufficient statistics needed to conduct our counterfactual analysis.

For any generic variable z, we denote its counterfactual value in the non-cooperative Nash

equilibrium as z?. Using the exact hat-algebra notation, we denote the change in variable z as

ẑ ≡ z?/z. To determine counterfactual outcomes under the Nash equilibrium, we solve a system

of equations consisting of equilibrium conditions and optimal tax formulas. The solution to this

system determines the unilaterally optimal tax and subsidy rates, Rt ≡ {s?n,k, τ?
n,k, x?in,k, t?ni,k}ni,k,

price of all traded goods universally. Hence, they need not to be paired with export subsides, as import tariffs
can adequately target and tax each export transaction from the global planner’s perspective. In fact, compounding
import tariffs with export subsides is inefficient from a global standpoint because it causes double marginalization.

26



changes to national wage and income {ŵn, Ŷn}n, changes to labor employment shares and output

quantities { ˆ̀n,k, Q̂n,k}n,k, changes to producer and consumer price indices {P̂ni,k, ˆ̃Pni,k, ˆ̃Pi,k, ˆ̃Pn}ni,k,

changes to expenditure and revenue shares {λ̂ni,k, r̂ni,k}ni,k, changes to carbon input cost shares,

abatement, CO2 emissions, and carbon intensities {α̂n,k, 1̂− an,k, Ẑn,k, v̂n,k}n,k, and changes to real

consumption and welfare {V̂n, Ŵn}n. We let Rv denote the set of non-tax-related outcomes and

R ≡ {Rt,Rv} to denote the full set of equilibrium outcomes we seek to solve.

In what follows we describe an approach that determines counterfactual outcomes, R, given

a minimal set of sufficient statistics, B ≡ {Bv,Bt,Bφ,Be}. For a clearer exposition, we herein

express all elements of B in blue. First, we present the set of equations that describe optimal

tax/subsidy formulas, which following Section 3.2 are given by:28



1 + t?ni,k = 1 + ω?
ni,k + φ̃ivn,kv̂n,k

ˆ̃
iP γk−1

γk
a) optimal imp tax (ni, k)

1 + x?in,k =
[
1 + 1

(σk−1)(1−λin,kλ̂in,k)

]−1

×
[
1 + ∑` 6=i

(
ω?

`i,k + φ̃i
ˆ̃Piv`,kv̂`,k

γk−1
γk

)
λ`n,kλ̂`n,k

1−λin,kλ̂in,k

] b) optimal exp tax (in, k)

̂1 + tni,k =
1+t?ni,k
1+tni,k

; ̂1 + xin,k = 1 + x?in,k

1̂ + sn,k = γk/(γk − 1); τ̂n,k =
ˆ̃Pn

d) all taxes in changes

(30)

Next, we present the set of equations that represent equilibrium conditions (e.g., optimal de-

mand, supply, and market clearing conditions). To formulate the change to equilibrium output

quantities, we invoke the labor market clearing condition in country-industry (n, k): wn`n,k L̄n =

(1− αn,k
γk−1

γk
)Pnn,kQn,k. Replacing for Pnn,k from Equation (3) and applying the hat algebra nota-

tion delivers:

Q̂n,k = [α̃n,k + (1− α̃n,k)α̂n,k]
γk

1−γk ( ˆ̀n,k)
γk

γk−1 (1̂− an,k)
1
ς , (31)

where α̃n,k ≡
(

1− αn,k
γk−1

γk

)−1
is observable given the information in B. The change to variety-

specific producer prices and the corresponding change to the CES and Cobb-Douglas consumer

price indices are, accordingly, given by



P̂ni,k = ŵn(1̂− an,k)
1−γk
ςγk
(
Q̂n,k

)− 1
γk a) producer price (ni, k)

ˆ̃Pni,k =
(1̂+tni,k)

(1̂+xni,k)(1̂+sn,k)
P̂ni,k b) consumer price (ni, k)

ˆ̃Pi,k =
[
∑N

n=1 λni,k(
ˆ̃Pni,k)

1−σk

] 1
1−σk c) consumer price (i, k)

ˆ̃Pi = ∏k(
ˆ̃Pi,k)

ei,k d) consumer price (i)

(32)

28 In the first and second lines, ω?
ni,k denotes the inverse of the export supply elasticity in the counterfactual equilibrium:

ω?
ni,k =

−(1/γk)rni,k r̂ni,k

[
1− σk−1

γk

wiŵi L̄i
wnŵn L̄n

∑` 6=i
ρi,k ρ̂i,kri`,k r̂i`,k

ρn,k ρ̂n,krn`,k r̂n`,k
λn`,kλ̂n`,k

]
1 + (1/γk)∑` 6=i rn`,k r̂n`,k

(
1 + (σk − 1)(1− λn`,kλ̂n`,k)

)
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Note that P̂ni,k, in the above equation, is regulated by changes to the wage rate, ŵn, scale of pro-

duction, Q̂n,k, and abatement, (1̂− an,k), all of which are core elements in the outcome set, R.

Given the change in consumer prices, the change in within-industry expenditure and revenue

shares can be calculated as
λ̂ni,k =

(
ˆ̃Pni,k
/ ˆ̃Pi,k

)1−σk
a) within-ind exp share (ni, k)

r̂ni,k =
(1̂+tni,k)

−1(1̂+xni,k)λ̂ni,kŶi

∑` rj`,k(1̂+tn`,k)−1(1̂+xn`,k)λ̂n`,kŶ`

b) within-ind rev share (ni, k)
(33)

The change in industry-level carbon input cost shares, CO2 emissions, abatement, and carbon

intensities are given by:

1̂− an,k =
[
(1− αn,k) + (αn,k) (τ̂n,k/ŵn)

1−ς
]ς/(ς−1)

a) abatement in country-industry (n, k)

α̂n,k =
1

αn,k
− 1−αn,k

αn,k
(1̂− an,k)

(1−ς)/ς b) carbon cost share in country-industry (n, k)

Ẑn,k = (α̂n,k)
ς/(ς−1) (1̂− an,k)

1
ςγk Q̂

1− 1
γk

n,k c) emission from country-industry (n, k)

v̂n,k = α̂n,k/τ̂n,k d) emission intensity of country-industry (n, k)
(34)

The expressions for 1̂− an,k, α̂n,k, Ẑn,k and v̂n,k respectively derive from applying the hat-algebra

notation to Equations (1), (2), (4), and (12). The change in wages and industry-level labor shares

are governed by the labor market clearing condition expressed in changes:


ŵn ˆ̀n,kwn`n,k L̄n = ∑j

[
(1−α̂n,kαn,k

γk−1
γk

)(1+s?n,k)(1+x?nj,k)

(1+t?nj,k)
λ̂nj,kλnj,kej,kŶjYj

]
a) LMC (n, k)

∑k
ˆ̀n,k`n,k = 1 b) sum of shares=1 (n)

(35)

The first line in the above equation ensures that the industry-level wage bill equals total sales

net of taxes/subsidies. The second line ensures that labor markets clear at the national level.29

Finally, the change in national income, Ŷn, is governed by the representative consumer’s budget

constraint (BC), which can be expressed in changes as follows:

ŶnYn = ŵnwn L̄n + ∑
k

∑
j

[
(α̂n,kαn,k

γk−1
γk

)(1 + s?n,k)(1 + x?nj,k)

(1 + t?nj,k)
λ̂nj,kλnj,kej,kŶjYj

]

+ ∑
k

∑
j


[
1− (1 + s?n,k)(1 + x?nj,k)

]
(1 + t?nj,k)

λ̂nj,kλnj,kej,kŶjYj +
t?nj,k

1 + t?jn,k
λ̂jn,kλjn,ken,kŶnYn

 . BC (n)

(36)

The above equation ensures that total income equals the wage bill plus tax revenues. The first

29 The second line sums over industry-level labor market clearing conditions, which can be described more compactly
as industry-level labor shares add up to one in the counterfactual equilibrium (i.e., ∑k `

?
n,k = 1).
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and second sums respectively denote carbon tax revenues and non-carbon tax revenues.30

Solving Equations (30)-(36) determines counterfactual Nash taxes and equilibrium outcomes,

R ≡ {Rt,Rv}, with information on a sufficient set of observable or estimable statistics, B ≡
{Bv,Bt,Bφ,Be}. Lastly, givenR and B, the change to real consumption and welfare can be calcu-

lated as:

V̂i =

(
Ŷi
ˆ̃Pi

)
, Ŵi =

Yi

Yi −∑n,k δ̃ni,kZn,k
V̂i︸ ︷︷ ︸

∆ consumption

− ∑
n,k

δ̃ni,kZn,k

Yi −∑n,k δ̃ni,kZn,k
Ẑn,k︸ ︷︷ ︸

∆ disutility from CO2

. (37)

5.2 Global Climate Cooperation

Taking the same approach, we can solve for equilibrium outcomes under the cooperative equilib-

rium wherein every country applies their globally optimal carbon tax—as specified by Equation

(27). The change in taxes from the baseline rate to the globally optimal rate are given by:


1̂ + tji,k =

1
1+tji,k

, ̂1 + xji,k = 1 a) border tax/subs

1̂ + sj,k = γk/(γk − 1) b) production subs

τ̂i,k =
ˆ̃Pi + ∑j 6=i

(
φ̃j

φ̃i,k+φ̃i

ˆ̃Pj

)
c) emission tax

(38)

Solving the optimal tax equations given by (38) along-side equilibrium conditions (31)–(37), de-

termines the change to equilibrium variables R ≡ {Rv,Rt} as a function of baseline data and

parameters B ≡ {Bv,Bt,Bφ,Be}. Note that the difference between non-cooperative and coop-

erative equilibrium outcomes is driven merely by differences in tax schedules between the two

scenarios—as indicated by the set of equations (30) and (38).

5.3 Baseline Data (Bv, Bt)

In this section, we describe the baseline data on trade, production, and emissions (labeled as Bv)

as well as data on applied taxes (labeled as Bt).

Data on Trade, Production, and Emissions. Data on international emissions and expenditure

levels are taken from the 2009 WIOD database on Input-Output Tables and Environmental Ac-

counts (Timmer et al. 2012).31 The WIOD reports the full matrix of international expenditure

levels across 41 major countries and 35 ISIC-level industries. Since the European Union (EU)

30 We solve the general equilibrium system specified by Equations (31)-(36) as a nested fixed point with two tiers. In the
inner tier, for a given schedule of taxes, all variables are solved to be in general equilibrium as required by Equations
(31)-(36). In the outer tier, given the fixed point of the inner tier (i.e., general equilibrium variables conditional on a
choice of taxes), we solve for optimal taxes according to Equation (30).

31 Our baseline year is 2009 as the most recent year with available information on trade and production, emission, and
environmentally related taxes. Specifically, 2009 is the last year reported in the WIOD Environmental Account and
the first year with a large coverage in environmentally-related tax data.
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often acts as one tax-imposing authority, we aggregate all EU members into one tax-imposing

region. To merge the WIOD data with our other data sets, we aggregate our sample into 19 indus-

tries, the details of which are listed in Table 1. After applying these aggregations, we are left with

15 regions (N = 15) and 19 industries (K = 19, covering tradeables and nontradeables), which

results in a 15× 15× 19 matrix describing expenditure levels, P̃ji,kQji,k, per origin j–destination

i–industry k.

The WIOD Environmental Accounts report emissions of several air pollutants by origin coun-

try and industry. First, we use these data to calculate CO2 equivalent (CO2e) emissions based on

global warming potential (GWP-100) from the IPCC (2014) report. The WGP-100 measures how

much emissions of one tonne of a gas will be absorbed in the atmosphere in a period of 100 years

relative to the emissions of one tonne of CO2. Using emission data of CO2 (carbon dioxide), CH4

(methane), and N2O (nitrous oxide), we calculate CO2e as Zi,k = ZCO2
i,k + 28× ZCH4

i,k + 265× ZN2O
i,k

for every pair of origin country and industry. According to the Environmental Protection Agency,

emissions of CO2, CH4, and N2O account for 97% of greenhouse gas emissions worldwide. Ac-

cordingly, we construct carbon intensity of origin i–industry k as:

vi,k =
Zi,k

Pii,kQi,k
=

(CO2e Emission)i,k

(Gross Output)i,k
,

where the numerator is measured in tonnes of CO2e, and the gross output is measured in US dol-

lars. Throughout the paper, we use carbon emission or CO2 emission as a shorthand for green-

house gases or CO2e.

Regarding non-CO2 local pollution, the WIOD Environmental Accounts reports (under the

category of acidification) the emissions of nitrogen oxides (NOx), sulfur oxides (SOx), and carbon

monoxide (CO) for every origin–industry pair. We consider the aggregate of these local emissions

as Z0
i,k, and define ζ̄i,k ≡ Z0

i,k/Zi,k, as the rate at which origin i-industry k generates non-CO2 local

pollutants per tonne of CO2 emissions.

Key Takeaways from Carbon Intensities across Industries. We report some key industry-level

statistics that will help us interpret the results emerging from our quantitative analysis in Sec-

tion 6. Table 1 reports the list of industries together with their main characteristics. We draw

two immediate conclusions: First, non-manufacturing industries such as Agriculture, Electricity,

and Transportation account for a huge share of global CO2 emissions. In contrast, manufacturing

as a whole (industries 3–14 as labeled in the table) account only for one-fifth of global CO2 emis-

sions. Second, there is an overall negative correlation between tradeablity and CO2 emission share

across industries (See Figure A.2 for the scatter plot of industries’ trade-to-GDP ratio against their

share from world CO2 emissions). For example, the most tradeable industries, namely, Machinery

& Electronics and Textiles & Leather, together account for less than 1% of global CO2 emissions,

while Electricity, Gas & Water and Agriculture that are among less tradeable industries account
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for more than half of global CO2 emissions. In fact, industries with a trade-to-GDP ratio higher

than 0.10 account for only one-third of global CO2 emissions. In other words, low-tradeable in-

dustries account for the majority of global CO2 emissions.

For detailed information on countries/regions in our sample, and their key characteristics, see

Table A.2. In our baseline year of 2009, the EU has the largest share of world GDP, at 27.1%, while

accounting for only 12.1% of world CO2 emissions. In contrast, China has the largest share of

CO2 emissions, at 23.9%, while accounting for 13.7% of world GDP. Across countries, the ratio of

Emission Share to GDP Share is the lowest for Japan (0.34) and the EU (0.45), and the highest for

India (2.90) and Russia (2.96).

Data on Applied Trade and Carbon Taxes. We compile data on applied tariffs in year 2009

from the United Nations Statistical Division, Trade Analysis and Information System (UNCTAD-

TRAINS). The 2009 version of UNCTAD-TRAINS covers 31 two-digit (in ISIC rev. 3) sectors, which

are aggregated into the 19 industries for which we have compiled international expenditure and

emissions data. The UNCTAD-TRAINS database reports multiple measures for applied tariffs.

Following the earlier quantitative trade literature, we use the “simple tariff line average” of the

“effectively applied tariff” (AHS). The applied tariff rates are reported for each origin–destination–

industry combination, except for instances where the origin country is a member of the Euro-

pean Union (EU). In such cases we assign applied tariffs based on the fact that EU tariffs are

reported, intra-EU trade is subject to no tariffs, and all EU members impose a common tariff on

non-members. Finally, in accordance with the World Trade Organization rules, we assume that

applied export and domestic subsidies are negligible, setting si,k = xij,k = 0 in all cases.

We make use of data on Environmental Taxes by Economic Activity from EUROSTAT as well as

Environmentally-related Taxes from OECD-PINE. The data from EUROSTAT report environmentally-

related taxes at the level of country-industry pairs, covering all European countries, based on

NACE rev. 2 industries, which we map to the 19 ISIC industries in our sample. The data from

OECD-PINE report environmentally-related tax data in every country as a percentage of that coun-

try’s GDP. Our quantitative analysis treats these environmentally-related taxes as “carbon taxes”

under the status quo, noting that carbon taxes in our framework are adjusted to account for local

pollution. See Appendix E for more details on our data construction.

Carbon Cost Shares. We recover carbon cost shares from data on carbon taxes, carbon intensi-

ties, and markups. Following Equation (12), the cost share of carbon can be calculated as:

αn,k =
γk

γk − 1
τnkZn,k

Pnn,kQn,k
= µn,kτn,kvn,k. (39)

On the right hand side of Equation (39), τnkZn,k is total emission tax paid by firms in origin

n−industry k, and the denominator, Pnn,kQn,k, is gross output. Together, with our markup pa-
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rameters, which we estimate below, we obtain αn,k for every country n-industry k. Table 1 reports

the average value for αn,k across countries for every industry k.

5.4 Estimation & Calibration of Model Parameters (Bφ, Be)

To evaluate policy outcomes, we need a set of parameters, Be = {γk, σk, ς}k, including the trade

elasticity, (σk − 1); the degree of firm-level market power, γk, which is tied to the markup, µk ≡
γk/(γk − 1); and the elasticity of input demand for carbon, ς. In addition, we require information

on the emission disutility parameters Bφ = {φ̃n, φ̃n,k}n,k. We estimate trade elasticities following

Caliendo and Parro (2015), estimate markups following the cost-based approach in De Loecker

and Warzynski (2012), and estimate the elasticity of input demand for carbon and the carbon

disutility parameters using environmentally-related tax data.

Markups. To estimate markups, we use firm-level data from COMPUSTAT data and closely fol-

low De Loecker et al. (2020) and Baqaee and Farhi (2020). To map COMPUSTAT data to industries

as defined in WIOD, we map disaggregated NAICS-level industries from COMPUSTAT to the 19

aggregate 2-digit ISIC-level industries (k = 1, ..., K = 19) as well as disaggregated 3-digit ISIC

industries. For every industry-year, we first estimate the output elasticity with respect to variable

input, based on Olley-Pakes procedure in which, expressed in firm-level logs of real values, our

dependent variable is sale and the variable input is COGS (Cost of Goods Sold). We use capital

expenditure as the proxy variable and gross capital stock as the state variable, and following the

usual practice in the literature, we control for a firm’s share of sales within disaggregated indus-

tries (which are 3-digit ISIC in our data). The resulting estimated coefficient of log variable input

gives the output elasticity θk,t, for every industry-year k, t. For every firm ω in industry k at year

t, the variable input share is the ratio of variable input (COGS) to sales, βk,t(ω). Using the first

order condition of the firm’s cost minimization, markups are then given by:

µk,t(ω) = θkt/βk,t(ω). (40)

To obtain markups at the level of industries, we aggregate firm-level markups to the level of 19

industries with the weight assigned to a firm given by within-industry firm’s sales share. We

report our markup estimates at the level of industries in Table 1.32

Trade Elasticity. We estimate trade elasticities, (σk − 1) by applying Caliendo and Parro’s (2015)

estimation technique to our 2009 data on trade values and applied tariffs. This approach recov-

ers (σk − 1) under the identifying assumption that applied tariffs are orthogonal to idiosyncratic

32 For the weight assigned to a firm we consider the three-year period of 2008, 2009, and 2010 to make our estimates
not sensitive to potential industry-level fluctuations in our baseline year of 2009. The resulting firm-level markup
estimates are on average 1.58, with 1.07 at 25th and 1.84 at 75th percentile.
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Table 1: Industry-Level Statistics and Elasticities

Industry
CO2 Emissions

(% of total)
Trade
GDP

Carbon
Intensity

(ν)

Carbon
Input Share

(α)

Trade
Elasticity

(σ− 1)
Markup

( γ
γ−1 )

1 Agriculture 19.9% 6.8% 100.0 0.020 2.05 1.46
2 Mining 8.0% 27.6% 40.4 0.019 1.80 1.53
3 Food 1.1% 9.0% 4.2 0.004 1.36 1.70
4 Textiles and Leather 0.4% 27.1% 4.2 0.005 0.86 2.11
5 Wood 0.2% 8.4% 5.4 0.010 3.42 1.28
6 Pulp and Paper 0.6% 8.9% 6.8 0.004 3.21 1.30
7 Coke and Petroleum 2.7% 17.9% 23.2 0.006 3.31 1.18
8 Chemicals 3.4% 24.6% 19.5 0.017 0.89 2.06
9 Rubber and Plastics 1.0% 14.0% 15.2 0.006 1.55 1.27
10 Non-Metallic Mineral 9.6% 13.1% 31.5 0.006 1.95 1.49
11 Metals 0.3% 25.9% 2.1 0.001 3.97 1.24
12 Machinery and Electronics 0.4% 37.1% 1.8 0.004 1.90 1.50
13 Transport Equipment 0.3% 23.3% 1.6 0.002 0.59 1.21
14 Manufacturing, Nec 0.4% 32.8% 10.1 0.005 0.59 1.91
15 Electricity, Gas and Water 32.0% 1.0% 205.5 0.018 7.14 1.12
16 Construction 0.9% 0.3% 2.1 0.008 7.14 1.10
17 Retail and Wholesale 1.8% 3.7% 2.6 0.009 6.93 1.14
18 Transportation 8.1% 10.9% 30.2 0.033 7.14 1.01
19 Other Services 9.0% 2.6% 4.1 0.007 1.59 1.60

Note: This table shows for every of the 19 industries the share from world CO2 emission, world-level trade-to-GDP
ratio, global average carbon intensity (tonnes of CO2 per dollar of output) normalized by that of agriculture, calibrated
carbon cost shares reported as unweighted mean across countries within every industry, estimated trade elasticities,
and markups. All CO2 measures are CO2 equivalent.

variations in bilateral trade costs. The estimated elasticity values are reported in Table 1.33

Carbon Input Demand Elasticity. We estimate the elasticity of input demand for carbon using

the following equation that describes the relative expenditure on carbon versus labor inputs as a

function of relative input prices:

ln
(

αi,k

1− αi,k

)
= (1− ς) ln

(
τi,k

wi

)
+ ς ln

(
κ̄i,k

1− κ̄i,k

)
. (41)

The term ς ln[κ̄i,k/(1− κ̄i,k)] is an exogenous demand residual specific to origin i and industry k.

We assume that ς ln[κ̄i,k/(1− κ̄i,k)] = Φk + ε i,k, where Φk is as an industry fixed effect capturing

systematic cross-industry differences in carbon input demand, and ε i,k accounts for measurement

errors and origin-specific variations in carbon input demand. We estimate the above equation

with origin and industry-level data on inferred carbon prices, τi,k, and carbon input cost shares,

αi,k. Consistent with our model, use value added per capita to proxy for national-level wages.

33 A necessary condition to ensure a unique equilibrium is (1− σk)/(1− γk) ≤ 1. We adjust our estimates of trade
elasticity for a few industries at a corner value to ensure uniqueness.
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Table 2: Estimation: input demand elasticity for carbon

OLS IV

1 - ς 0.330 0.374
(0.059) (0.126)

R-squared 0.57 –
1st stage F-stat (CD) – 41.7
Observations 266 266

Note: This table reports estimated values of ς, based on Equation (41). Each observation is a pair of country-industry,
and observations of RoW are dropped from both regressions. The first and second rows, respectively, report estimates
obtained from the OLS and IV (2SLS) estimators. Robust standard errors are reported in parentheses.

Estimating Equation (41) with ordinary least squares (OLS) can be problematic, as one sus-

pects that ln(τi,k/wi) and ε i,k are correlated—due to either reverse causality which is a standard

issue facing demand estimation, omitted variables, or measurement error. We address this prob-

lem by adopting an instrumental variable (IV) approach. We need an instrument that is correlated

with relative carbon price but uncorrelated with the error term. We use energy reserves in every

country i as an instrument for that location’s relative carbon price, τi,k/wi. Energy reserves cor-

respond to the sum of proven reserves of crude oil, natural gas, and coal, obtained from the BP

Statistical Review of World Energy for year 2010, aggregated in common units of Btu.34 The iden-

tifying assumption is that a country’s energy reserves affect carbon prices exclusively through the

supply channel. That is, local energy reserves are uncorrelated with each location’s unobserved

carbon demand shifter, implying that any effect of reserves on relative carbon input expenditure,

ln[αi,k/(1− αi,k)], channels through the price variable, ln(τi,k/wi). Table 2 reports the estimation

results. Our IV estimation delivers an estimated value of ς = 0.624, with an encouragingly high

first-stage F-statistics.

Perceived Disutility from Emissions. We recover the perceived disutility from emissions based

on two assumptions: (a) a country’s applied environmentally-related taxes correspond to its uni-

laterally optimal domestic tax on CO2 emissions and their implied non-CO2 local pollution; and

(b) the globally optimal carbon tax equals the global disutility from CO2 emissions. Namely,TE
i = ∑k(φ̃i,k + φ̃i)Zi,k (a)

SCC = ∑i φ̃i (b)
(42)

Here, TE
i denotes total environmentally-related taxes collected by country i, and SCC denotes the

Social Cost of Carbon. Estimating SCC is beyond the scope of our paper. Instead, we borrow

the SSC estimated by United States Government’s INTERAGENCY WORKING GROUP ON SOCIAL

COST OF GREENHOUSE GASES which reports a cost of $31 per tonne of CO2 in 2010.

34 Because “the rest of the world” (RoW) consists of various countries with different taxes, wages, and carbon demand,
we drop RoW from the sample used in this regression.
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We recover the relative values of φ̃i across countries by considering two key aspects of coun-

tries’ attitude toward climate policy. First, if all individuals (irrespective of nationality) cared

equally about climate change, then the disutility from CO2 emissions would be proportional

to country size. To account for the size effect, we impose the proportionality assumption that
φ̃i
φ̃j

∝ Yi
Yj

. Second, governments around the world exhibit starkly different levels of care for climate

change—even after we control for size. We do not intend to explain these differences, but we

suppose that governments’ care for CO2 emissions can be to some extent inferred from their at-

titude toward environmental issues. Under this presupposition, we can infer a country’s relative

care for CO2 emissions from their environmentally-related taxes in the spirit of revealed prefer-

ences. In particular, we let the relative care for CO2 emissions across countries be proportional to

their applied environmentally-related tax rates, i.e., φ̃i
φ̃j

∝ (TE
i /Zi)(

TE
j /Zj

) . Putting the pieces together, and

defining yi ≡ Yi/YW as country i′s share in world GDP, we specify country i’s perceived disutility

from CO2 emissions as φ̃i = h̄yi(TE
i /Zi). This specification leaves us with a single parameter, h̄,

which we calibrate using Equation 42-(b). Then, given the recovered values for {φ̃i}, we recover

{φ̃i,k} according to Equation 42-(a). Further details about our calibration strategy are presented in

Appendix E. Table A.2 reports our calibrated values for φ̃i for each country in our sample.35

Magnitudes of Optimal Border Taxes. To set the stage for our quantitative analysis, we discuss

the magnitude of unilaterally optimal border taxes as implied by our calibrated model. Recall

that unilaterally optimal border policies involve both import tariffs and export subsidies. By the

Lerner symmetry, however, only the combined rate of optimal import tariff and export subsidy

is determinate. Based on our calibrated model, the median combined optimal border tax rate

equals 52%—i.e., Median
(

1+optimal import tariff
1+optimal export subsidy

)
= 1.52. The combined optimal border tax rate

varies notably across industries, and to a lesser extent across countries—with corresponding 25th

and 75th percentiles at 1.26 and 1.74.36 These values are broadly consistent with existing estimates

obtained from models without carbon externalities (e.g., Ossa (2014)).

Optimal carbon border taxes (or subsidies) typically constitute a small portion of the optimal

import tariffs (or export subsidies). Each country’s optimal carbon border taxes vary considerably

across industries as they are larger in high-carbon industries and less punitive in high-return to

scale industries. Figure A.3 in Appendix G illuminates this point by plotting EU’s unilaterally

optimal carbon border taxes across various industries.37

35 Notice, we recover CPI-adjusted disutility parameters, φ̃i,k = P̃iφi,k and φ̃i = P̃iφi rather than φi,k and φi. This is
sufficient for performing our counterfactual equilibrium analyses, as explained in Section 5.

36 The variations in terms-of-trade component of optimal border taxes largely depend on the industry-level trade elas-
ticity, (σk − 1). As noted earlier, these elasticities govern the degree of national-level market power.

37 To give a broader sense of their potential magnitudes, Figure A.3 in Appendix G reports the optimal carbon border
tax rates both at our benchmark SCC of 31 $/tC, and for higher values of SCC.
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6 Quantitative Assessment of Climate Proposals 1 and 2

In this section, we use our theory and parameter estimates to evaluate two popular climate pro-

posals that combine carbon taxes with border measures.38 These proposals are cast as a remedy

for the free-riding problem in climate agreements. To fix ideas, we first provide a brief description

of each proposal:

Proposal 1. Non-cooperative carbon border taxes: non-cooperative governments use carbon border

taxes as a second-best policy to curb transboundary CO2 emissions.

Proposal 2. Climate Club: climate-conscious governments form a climate club wherein they com-

mit to globally optimum carbon taxes and use their collective trade penalties to incentivize

climate cooperation by non-members (Nordhaus 2015).

Below, we combine our analytical formulas for optimal policy from Section 3 with the quantitative

approach described in Section 5 to examine the efficacy of Proposals 1 and 2. Our analysis differs

from the prior literature since it considers optimal carbon border taxes and trade penalties. This

feature allows us to uncover the full (rather than partial) efficacy of the above proposals.

6.1 Proposal 1: The Efficacy of Non-Cooperative Border Taxes

Table 3 reports the change in CO2 emissions and welfare when non-cooperative governments

adopt their unilaterally optimal border and carbon taxes. We solve for the non-cooperative Nash

outcome using Corollary 1 and its quantitative implementation which was described in Section

5.39 Recall that carbon border taxes, in this scenario, are used as a second-best policy to curb

transboundary CO2 emissions. To put their efficacy in perspective, Table 3 also reports the conse-

quences of globally optimal (or first-best) carbon taxes.

Under the non-cooperative Nash equilibrium, where governments use border taxes to pursue

transboundary climate objectives, global CO2 emissions decline by a mere 0.6%. This number

corresponds to only 1% of the total CO2 reductions attainable under globally optimal carbon

taxes (i.e., 0.6/60.9 ≈ 1%). This result indicates that carbon border taxes are largely ineffective at

curbing transboundary CO2 emissions.

38 The policy characterization under Theorem 2 can be used in at least two ways: First, to evaluate a non-cooperative
outcome in which every government adopts its unilaterally optimal policy. Second, to calculate optimal trade penal-
ties on trading partners. That is, penalties that are capable of inflicting the maximum terms-of-trade externality on
other countries. Our analysis of carbon border taxes uses Theorem 2 in the former vein, while our analysis of the
climate club use this theorem in the latter vein.

39 Here, the baseline equilibrium is the one in which every country restores the marginal-cost-pricing by setting pro-
duction subsidy at 1 + si,k = γk/(γk − 1). This is a sensible baseline for this exercise because moving from no
production subsidies (which we assume to be the case in the observed data) to optimal ones at 1+ si,k = γk/(γk − 1)
can alone increase production everywhere in the world, hence contributing to increases in CO2 emissions. For com-
parison, we report in Table A.3 results we obtain for this exercise when the baseline equilibrium is given by the
observed data.
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Table 3: The Impact of Non-cooperative and Cooperative Tax Policies

Non-Cooperative Global Cooperation

Country ∆CO2 ∆V ∆W ∆CO2 ∆V ∆W

AUS -6.6% -1.9% -1.9% -46.4% -0.7% 0.3%
EU 0.7% -1.2% -1.3% -9.2% 0.0% 2.0%
BRA -6.0% -1.3% -1.3% -70.7% -1.3% -0.8%
CAN -12.6% -4.3% -4.3% -47.1% -0.6% 0.2%
CHN 3.0% -1.0% -1.0% -69.3% -1.3% -0.9%
IDN -3.1% -2.0% -2.0% -67.0% -1.7% -1.2%
IND 1.1% -4.4% -4.4% -76.0% -2.6% -2.1%
JPN 3.4% -0.9% -0.9% -23.1% -0.2% 1.5%
KOR 19.2% -2.2% -2.3% -47.5% -1.1% -0.1%
MEX -1.6% -3.2% -3.2% -79.5% -0.6% -0.4%
RUS -7.8% -3.8% -3.8% -80.2% -1.3% -0.9%
TUR -5.4% -4.1% -4.2% -40.1% -1.4% 0.1%
TWN 42.5% -2.5% -2.7% -64.1% -1.7% -1.0%
USA 1.3% -1.7% -1.7% -48.2% -0.3% 0.3%
RoW -6.0% -2.3% -2.3% -84.7% -1.0% -0.8%
Global -0.6% -1.7% -1.7% -61.0% -0.6% 0.4%

Note: This table shows for every country the change to CO2 emission, real consumption, and welfare from the base-
line to non-cooperative and cooperative equilibrium. The baseline is one in which production subsidies restore the
marginal-cost pricing in every industry and country. Optimal policy formulas for the non-cooperative outcome is
detailed in Section 5.1 and for the cooperative outcome in Section 5.2.

The limited efficacy of carbon border taxes can be attributed to two main factors. First, carbon

border taxes are not granular enough to induce firm-level abatement in the rest of the world. Car-

bon border taxes penalize CO2 emissions based on the origin country–industry’s average carbon

intensity. Individual firms, however, are incapable of lowering the origin and industry-wide car-

bon intensity. Carbon border taxes, as a result, cannot induce individual firms in foreign countries

to undertake additional abatement.

Second, a large portion of CO2 emissions are associated with goods and services that never

cross international borders. The “Agriculture” and “Electricity, Gas, and Water” sectors, for ex-

ample, account for 52% of global CO2 emissions but have trade-to-GDP ratios of only 0.07 and

0.01, respectively (see Table 1). Figure (A.2) (in the appendix) plots industries’ tradeability against

their share from global emission. A basic takeaway is that the majority of CO2 emissions are as-

sociated with industries that exhibit low levels of tradeability.40

The modest CO2 reduction obtained with non-cooperative border taxes is accompanied by

possibly strong and negative consumption effects. The average country loses 1.7% of its real

consumption under the non-cooperative Nash equilibrium while gaining negligibly from the re-

ductions in CO2 emissions. By comparison, globally optimal carbon taxes deliver 60.9% reduction

in global CO2 emissions, accompanied by an only 0.6% loss to real global consumption. Together,

40 For instance, 84% of global CO2 emissions are associated with industries that exhibit a trade-to-GDP ratio lower than
0.15. See Section 5.3 and Figure A.2 for more details.
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these figures translate to a 0.3% increase in climate-adjusted welfare under globally optimal carbon

taxes.

Increasing vs Constant Returns to Scale. To elucidate the role of scale economies, we redo the

above exercise under the case of constant returns to scale (CRS). Detailed results corresponding

to this exercise are reported in Table A.4 of Appendix G. We find that global adoption of non-

cooperative carbon/border taxes leads to a 1.3% reduction in global CO2 emissions under CRS,

compared to 0.6% under IRS. That is, overlooking scale economies leads to overstating the efficacy

of carbon border taxes by a factor of two. Even then, non-cooperative border taxes can reproduce

only 2.2% of the CO2 reduction attainable under globally optimal carbon taxes.

Comparing outcomes under the IRS and CRS cases highlights the role of firm delocation. Under

IRS, non-cooperative border taxes (which are meant to curb transboundary emissions) lead to

an increase in CO2 emissions in several countries. This outcome is reversed or is notably less

pronounced under CRS. The difference derives from firm delocation effects under IRS. When

firms are subjected to border tax hikes, they relocate to larger markets to evade such taxes. These

delocation effects can raise the scale of production and CO2 emissions even in climate-conscious

regions like the EU that charge a relatively high carbon tax.

Alternative Specifications & Sensitivity Analysis. We consider several alternative specifica-

tions to examine the robustness of our claims about the efficacy of carbon border taxes. These

auxiliary results are reported in Table A.5 in Appendix G. First, we redo our analysis by assign-

ing an alternative value to the social cost of carbon (SCC). Following Cai and Lontzek (2019) we

set SCC at 68 $/tC, compared to 31 $/tC in our main analysis.41 Second, we consider a special

case of our model that features the Cobb-Douglas abatement technology used by Copeland and

Taylor (2004). In this case, the elasticity of substitution between labor and carbon, ς, is set to one,

compared to ς = 0.624 in our main analysis. We repeat our analysis under these alternative spec-

ifications for both the IRS and CRS cases of our model. Third, we consider an alternative policy

scenario in which governments do not pursue terms-of-trade objectives. In this case, border taxes

are chosen solely to reduce transboundary CO2 emissions.42 We compare the outcome arising

from this counterfactual policy scenario to a baseline with zero tariffs and another with currently

applied tariffs.

Lastly, we report the consequences of globally optimal carbon border taxes in Appendix F. As

noted in Section 4.2, globally optimal carbon border taxes are relevant when governments are

cooperative on climate issues but can only use border tax measures to curb global CO2 emissions.

41 They report 61 $/tC for 2005 and 87 $/tC for 2020. Making a linear assumption, we arrive at 68 $/tC for 2009, which
is our baseline year.

42 We conduct this exercise by assigning a zero weight to the terms-of-trade component of the optimal border tax. Such
a tax schedule can be rationalized as the optimal choice of a government that assigns zero weight to terms-of-trade
gains in their objective function, but values CO2 reduction.
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In Appendix F we use our analytical formula for globally optimal carbon border taxes (Equation

29) to compute the efficacy of these taxes. The results reported in Table A.1 of Appendix F indicate

that globally optimal carbon border taxes can reduce global CO2 emissions by only 0.3%, as they

suffer from the same limitations as non-cooperative carbon border taxes.

Under each alternative specification and policy scenario, carbon border taxes deliver a limited

reduction in global CO2 emissions. Our main specification, recall, indicated that carbon border

taxes can replicate 1% of the globally first-best carbon reduction. Across all the alternative speci-

fications and scenarios we consider, the corresponding number ranges between 0.5% and 3.7%.43

To illustrate this point clearly, Table A.5 in the appendix reports the extent of CO2 reduction in

each scenario relative to the globally first-best outcome.

6.2 Proposal 2: The Efficacy of a Climate Club with Trade Penalties

Our previous findings indicated that non-cooperative border taxes are a poor substitute for glob-

ally optimal carbon taxes. The latter is, however, difficult to implement due to the free-riding

problem. All countries—even those with a high disutility from CO2 emissions—have an incen-

tive to free-ride on the rest of the world’s carbon abatement without undertaking proportionate

abatement themselves. This problem is exacerbated by international misalignment in climate

objectives, as some governments may find the burden of globally optimal carbon taxes dispro-

portionately large to justify commitment to international climate agreements.

Seeking a solution to this problem, Nordhaus (2015) proposes that climate-conscience govern-

ments form a climate club, and enforce climate cooperation via collective trade penalties against

non-members. Quantifying the full effectiveness of the climate club has proven prohibitively

challenging. It involves solving a high-dimensional strategic game in which countries apply op-

timal trade penalties on each other—a task is impractical with standard numerical optimization

techniques. Our optimal import and export tax formulas, by design, characterize the maximum

terms-of-trade penalty countries can inflict on their trading partners. In this sense, they determine

the optimal trade tax penalty on non-cooperative countries in the climate club model. With the

aid of these formulas, we can bypass the computational challenges that have impeded the past

literature, and uncover the full efficacy of the climate club.

To set the stage for our analysis, we formally specify the climate club game. We let a subset of

countries be core members of the club and other countries play strategically. Table 4 details the

structure of the one-shot climate club game. To provide a verbal description, core members of the

climate club commit to the rules of membership in the club and other governments choose their

strategies (i.e., whether or not to join the club and what taxes to adopt in each case) simultane-

ously. The outcome is a Nash equilibrium if no country has an incentive to deviate:

43 These findings have little precedent as they uncover the consequences of optimal carbon border adjustments. They,
nonetheless, echo previous findings on this topic. Larch and Wanner (2017), for instance, find that equalizing implied
international carbon taxes via border adjustments, reduces global CO2 emissions by only 0.5%.

39



Table 4: Climate Club Game - Main Specification
Border taxes/subsidies set by

Members Non-members
Against Members zero unilaterally optimal
Against Non-members unilaterally optimal status quo (i.e., applied tariffs)

Carbon taxes set by
Members Non-members

globally optimal status quo (i.e., unilaterally optimal)

– Rules of Membership—A member country must set zero border taxes against other members

while imposing unilaterally optimal trade penalties (in the form of border taxes) against

non-members. A member must adopt a globally optimal carbon tax that corrects the global

externality associated with its CO2 emissions. By design, core members commit to these

rules, and others adopt them only if they decide to join the club.

– Non-members’ Response—A non-member country can retaliate against member countries by

applying its unilaterally optimal import taxes and export subsidies against them. Other

than this, non-member countries retain their status quo tax policies: They keep their existing

applied tariffs against other non-members and maintain their existing domestic carbon tax

(that is suboptimal from a global standpoint).44

A non-member’s decision to join the club is governed by the following trade-off: By joining the

club the country incurs an efficiency loss due to adopting a higher-than-unilaterally-optimal car-

bon tax, but it escapes trade penalties imposed by climate club members. Another cost is that

upon joining the climate, a country will find itself in a trade war with non-member countries.

Overall, for a country to join the club, the cost of trade penalties imposed by club members must

exceed the implied cost of joining the club. These costs evolve with the size of the climate club: A

larger club posses greater collective market power and can impose more effective trade penalties

to enforce further membership.

As an intermediate step, we find that the club-of-all nations is a Nash equilibrium no mat-

ter who the core members are. This point is illustrated in Figure 1, where every bar reports the

national-level welfare gains from staying in the club-of-all-nations relative to withdrawing uni-

laterally. Larger countries with relatively low climate concerns, such as China or Brazil, exhibit

the lowest net gains from climate club membership. This intermediate finding is, however, infor-

mative only if the club-of-all nations is the unique Nash equilibrium.

Next, we wish to determine if the club-of-all-nations is the unique Nash equilibrium. This task

44 We are here adopting a conservative approach in which the motivation of non-members to join the club is mainly
driven by members’ penalty taxes. To see this clearly, suppose we were to allow non-member countries to set their
unilaterally optimal border taxes against other non-members. In that case, non-members would have an extra motive
beyond climate-related concerns to join the club, as there would be a trade war between non-member countries.
Then, joining the club would be a way to escape from that trade war. In contrast, in our specification the motivation
to join the club stems merely from members’ trade penalties.
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Figure 1: Welfare Gains of Staying vs Leaving the Club-of-All-Nations

Note: This figure shows for every country the percentage change to welfare of staying in the club-of-all-nations relative
to leaving the club-of-all-nations unilaterally.

is complicated by the curse of dimensionality: with m core members, we have to check 2N−m

combinations of national-level strategies. Without a systemic way to shrink the outcome space,

the aforementioned task will be virtually infeasible with standard computational techniques. We

overcome this computational barrier by way of iterative elimination of dominated strategies, us-

ing our optimal tax formulas to expedite each iteration. In the first round, we identify the set of

countries for which joining the club is a dominant strategy. Given the set of countries that join the

club in the first round, we identify the set of countries for which joining the club is a dominant

strategy in the second round and so forth.45

We confirm that when the EU is the only core climate club member, the club-of-only-EU is

also a Nash equilibrium. That is, the net gains from joining the club-of-only-EU is negative for

every country when all other countries also stay out. Accordingly, the EU alone cannot overcome

the free-riding problem that has impeded past climate agreements. To overcome the free-riding

problem, the set of core members must be larger than only the EU.

We next consider the case where the EU and the US commit to the climate club as core mem-

bers. This coalition creates sufficient incentives for some of the US and EU’s major trading part-

ners to join the club in the first and second rounds. The accession of these new members incen-

tivizes other countries—who were previously reluctant—to join the club in subsequent rounds,

leading to the club-of-all-nations as the unique Nash equilibrium. Chart 5 shows the sequence by

which joining the climate club becomes a dominant strategy for various countries.46

These results indicate that, with sufficient commitment, the climate club proposal can suc-

cessfully overcome the free-riding problem and induce global climate cooperation. As reported

earlier, global climate cooperation will bring along a 61% reduction in global CO2 emissions. Out

of this 61% reduction, 8.3% is accounted for by the core members, the EU and US, and the remain-

45 A key property of the climate club game that makes this approach clinical is that the net gains from joining the club
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Table 5: Climate Club Game - Successive Dominant Strategies

Core Members 1st Round 2nd Round 3rd Round 4th Round
EU, USA CAN, RoW AUS, IND, JPN, KOR, MEX, RUS, TUR, TWN CHN BRA, IDN

ing 52.7% derives from non-core member’s abatement. Overall, these results indicate that the

climate club’s success hinges on the make-up of its core members. The EU alone lacks sufficient

market power to induce global climate cooperation. The EU and US together, however, possess

enough collective market power to incentivize climate cooperation across the globe.

Sensitivity Analysis & Tradeoff between Carbon Tax Target and Participation. Our baseline

analysis found that a US-EU climate club can induce global climate cooperation and deliver the

globally first-best outcome. Below, we examine the sensitivity of this result along two dimensions.

We recalculate (1) the reduction in CO2 emissions under the globally first-best outcome, and (2)

the performance of the climate club at reaching this outcome under alternative values for the

carbon demand elasticity, ς, and the social cost of carbon (SCC).

Figure A.5 in Appendix G plots the reduction in global CO2 emissions under the globally

first-best outcome for all ς ∈ (0, 1), under two values of SCC: namely, 31 $/tC, as in our main

specification, and 68$/tC, which is borrowed from Cai and Lontzek (2019). As expected, the

estimated reduction in global CO2 emissions is lower the smaller the carbon demand elasticity.

The intuition is that firms cut their CO2 emissions less aggressively when it is harder to substitute

carbon inputs with labor in response to a carbon tax hike. The least amount of globally-first-best

CO2 reduction occurs under the Leontief production function, where ς→ 0. In this limiting case,

global CO2 emissions decline by 10% and 15% for SCC values of 31 $/tC and 68 $/tC.

Tables A.7-A.9 in Appendix G depict the performance of the climate club when the SCC equals

68$/tC instead of 31$/tC, and when ς is set at 0.25 or 0.99 instead of 0.63. Each table shows

the rounds of successive membership, maintaining the assumption that the EU and US are core

members. In the case where ς = 0.99, we obtain similar results as in our main specification. When

SCC is raised to 68$/tC or the carbon demand elasticity, ς, is set at 0.25, the club-of-all-nations is

no longer a Nash equilibrium, since Brazil, China, India, and Indonesia choose to stay out of the

club. All the other countries, however, join the club in successive rounds.

These findings highlight a key trade-off facing the design of the climate club. If the SSC is high,

rise with the size of the club. For example, a country that stays outside of the club in the first round may find
it optimal to join the club in the second round provided that one or two additional countries join the club in the
first round. While our game is a one-shot static game, this procedure can provide a rare glimpse into the possible
expansion path of the climate club.

46 In addition, we have performed this analysis for the constant-returns-to-scale version of our model. Our main

takeaways remain the same: the club-of-all-nations is a Nash equilibrium; and, both the EU and US are required to
be core members to make the club-of-all-nations the unique outcome. Figure A.4 and Chart A.6 show these results
under the CRS case. Under CRS, the net gains from joining the club are somewhat larger than IRS, leading to only
three rounds to reach the club-of-all-nations as the unique outcome, with a bit larger net gains of staying there
compared to those under IRS.
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the globally optimal carbon tax rate can be too high to justify membership by some countries. In

such cases, core members can incentivize participation by lowering the carbon tax requirement

below its globally optimal level. Indeed, for any set of model parameters, the club-of-all-nations

can be formed via a carbon tax target that is higher than the unilaterally optimal rate but possibly

lower than the globally optimal rate implied by larger values of the SCC. The trade-off is that each

club member cuts their emissions to a lesser extent but the club elicits more participation.47

7 Conclusion

The realization that we are approaching a tipping point in climate change has raised public aware-

ness of climate policy. Experts are advocating for the use of border tax measures to mitigate global

CO2 emissions and climate change. This paper examined two popular climate proposals that

leverage border tax measures, but in fundamentally different ways: The first proposal advocates

for carbon border taxes as a second-best device to curb transboundary CO2 emissions. The second

proposal (namely, the climate club) advocates for border taxes as a penalty device to incentivize

climate cooperation by reluctant governments.

To evaluate these two climate proposals, we characterized optimal border and carbon tax poli-

cies in a multi-country, multi-industry, general equilibrium trade model featuring abatement tech-

nology, scale economies, and transboundary carbon externality. Our analysis delivered simple an-

alytical formulas for unilaterally and globally optimal carbon and border taxes. Capitalizing on

our theoretical framework and optimal policy formulas, we computed the full efficacy of carbon

border taxes and the climate club proposal—a task that has eluded the past literature.

Our findings indicated that carbon border taxes can replicate only 1% of the CO2 reduction

attainable under globally first-best carbon taxes. In contrast, optimal trade penalties under the

climate club model can deliver the globally first-best outcome and reduce global CO2 emissions by

61%. This successful outcome, however, hinges on the initial makeup of the climate club’s core

members—it is possible only if, in addition to the European Union, the United States commits to

the climate club as a core member.
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A Theoretical Preliminaries

A.1 Detailed Statement of the Unilaterally Optimal Policy Problem

We layout the unilaterally optimal policy for the government in country i, with minimal set of
equations that constrain the problem with general equilibrium relationships. We do this for
the reformulated optimal policy problem, as discussed under Lemma 1. We denote by Pi ≡
{P̃ii,k, P̃ji,k, P̃ij,k, ai,k}j 6=i,j∈C, k∈K the policy instruments in country i, by P̃i ≡ {P̃ji,k}j∈C, k∈K ∈ Pi
the vector of consumer prices in country i, by w ≡{wj}j∈C the vector of wages, and by Z ≡
{Zn,g}n∈C, g∈K the long vector of CO2 emissions. The problem of the government in country i is:

max
Pi

Vi(Yi, P̃i)− ∆i(Z),

subject to the general equilibrium relationships, characterized by the following: for all i, j ∈ C,and
k ∈ K,

(Optimal Demand) Qji,k = Dji,k(Yi, P̃i)

(Aggregate Output) Qj,k = ∑
i

d̄ji,kQji,k

(Producer Price) Pji,k(wj, aj,k; Qj,k) = d̄ji,k p̄jj,kwj(1− aj,k)
1

ςγk
− 1

ς Q
− 1

γk
j,k

(Carbon Cost Share) αj,k = 1− (1− κ̄j,k)(1− aj,k)
1−ς

ς

(Carbon Emission) Zj,k = z̄j,k

(
αj,k

κ̄j,k

) ς
ς−1

(1− aj,k)
1

ςγk Q
1− 1

γk
j,k

(Income = Revneue) Yi = wi L̄i + ∑
k, j 6=i

[(
P̃ji,k − Pji,k

)
Qji,k

]
+ ∑

k, j

[(
P̃ij,k − (1− αi,k

γk − 1
γk

)Pij,k

)
Qij,k

]
(Balanced Trade) Bi ≡∑

j 6=i
∑

k
Pji,kQji,k −∑

j 6=i
∑

k
P̃ij,kQij,k = 0

The demand function Dji,k(Yi, P̃i) is characterized by the set of price and income elasticities
of demand, defined in Section 2.1. (Aggregate Output) indicates the output quantity in country
j−industry k. Equations (Producer Price), (Carbon Cost Share), and (Carbon Emission) repro-
duce (3), (2), and (4). Equation (Income = Revenue) reproduces (8) by replacing for taxes from
(6), and (Balanced Trade) is equivalent to labor market clearing condition (7) —See footnote 13).
Throughput our proof, we assign the labor in one foreign country as the numeraire.

A.2 Expressing General Equilibrium as a Function of (Pi; w, Y)

Consider system S (Pi, w, Y) that defines a semi-equilibrium (similar to that in Section 2.4) by
encompassing all equilibrium conditions excluding the national-level labor-market clearing and
balanced budget conditions. This system determines equilibrium outcomes (other than w and Y)
conditional on choices of policy, wages, and income levels.

In the main text, we defined general equilibrium by using the combination X = (I; w, Y).
Here, we define

Xr = (Pi; w, Y),

where the tilde notation on Xr indicates that we are considering the reformulated problem, in
which the government uses P, rather than I, as the set of policy instruments. In addition, since
the unilaterally optimal policy of government i takes policy choices in other countries as given,
here we simplify the notation by setting taxes in the rest of the world to zero and exclude P−i
from Xr.
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Definition. [Semi-equilibrium expressed in terms of Xr = (Pi; w, Y)] A semi-equilibrium, la-
beled as S (Pi, w, Y), consists of the following set of equations: For all n, j ∈ C,and k ∈ K:

(Optimal Demand) Qnj,k(X
r) =

{
Dni,k(P̃i, Yi) if j = i
Dnj,k(P̃ij, {P̃nj(X

r)}n 6=i, Yj) if j 6= i
(Indusry Output) Qn,k(X

r) = ∑j∈C d̄nj,kQnj,k(X
r)

(Producer Price) Pnj,k(X
r) = d̄nj,k p̄nn,kwn (1− an,k)

1
ςγk
− 1

ς (Qn,k(X
r))
− 1

γk

(Carbon Cost Share) αn,k(X
r) = 1− (1− κ̄n,k) (1− an,k)

1−ς
ς

(Carbon Emission) Zn,k(X
r) = z̄n,k

(
αn,k(X

r)
κ̄n,k

) ς
ς−1

(1− an,k)
1

ςγk (Qn,k(X
r))

1− 1
γk

(Tax Revenues) Tn(Xr) =


∑k, j 6=i

[(
P̃ji,k − Pji,k(X

r)
)

Qji,k(X
r)
]

if n = i

+∑k, j

[(
P̃ij,k − (1− αn,k(X

r) γk−1
γk

)Pij,k(X
r)
)

Qij,k(X
r)
]

0 if n 6= i

Here, P̃i ⊂ Pi is the vector of consumer prices in home country i, P̃ij ⊂ Pi is the vector of
consumer prices in foreign country j of varieties produced in home, and ai,k ∈ Pi is the abatement
in home. All these are instruments of policy to be chosen by the home government that is indexed
by i. In contrast, every foreign country n 6= i has some fixed abatement level an,k = ān,k and no
tax revenues Tn = 0. As noted earlier, the semi-equilibrium S (Pi, w, Y) characterizes quantities,
producer prices, carbon cost shares, carbon emissions, and tax revenues in all economies as a
function of Xr = (Pi; w, Y). Correspondingly, welfare in country i can be expressed as,

Wi(X
r) = Vi(wi L̄i + Ti(X

r), P̃i)− ∆i(Z(Xr)),

where note that P̃i ⊂ Xr. By design, semi-equilibrium S (Pi, w, Y) excludes the national-level la-
bor market clearing and balanced budget conditions. Instead, it takes w and Y as given, and char-
acterizes equilibrium outcomes as a function of Pi, w, and Y. All combinations Xr = (Pi; w, Y),
however, are not necessarily consistent with the labor market clearing and balanced budget con-
ditions. So, when characterizing optimal policy we must restrict attention to the feasible policy–
wage–income combinations.

Definition. [General equilibrium expressed in terms of Xr = (Pi; w, Y)] Given the policy in-
struments Pi, a general equilibrium is a combination Xr = (Pi; Y, w) such that the system of
semi-equilibrium S (Pi, w, Y) holds, and income levels and wages, (Y, w), satisfy the national-
level labor market clearing and balanced budget conditions:

wi L̄i − ∑
k∈K

∑
j∈C

(1− αi,k(X
r)

γk − 1
γk

)Pij,k(X̃)Qij,k(X
r) = 0, (LMC)

Yi = wi L̄i + Ti(X
r), (BB)

A.3 Expressing General Equilibrium as a Function of (Pi; Yi)

Following Lemma 2, when needed, we can treat wages, w̄ = {w̄n}n∈C, as fixed; and since each
foreign country j 6= i is passive and does not impose taxes, its income, Ȳj = w̄j L̄j, can be also
treated as fixed. Hence, we can reduce the combination (Pi; w, Y) to (Pi; Yi), and redefine the
general equilibrium accordingly. Consider a system in which wages and income levels in foreign
countries are constant, and all equilibrium conditions hold excluding the balanced budget condi-
tion. We refer to this system of equations as a semi-equilibrium defined in terms of (Pi; Yi), which
we label as S (Pi, Yi).
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Definition. [Semi-equilibrium expressed in terms of (Pi; Yi)] A semi-equilibrium, labeled as
S (Pi, Yi), consists of the following set of equations: For all n, j ∈ C,and k ∈ K,

(Optimal Demand) Qnj,k(Pi; Yi) =

{
Dni,k(P̃i, Yi) if j = i
Dnj,k(P̃ij, {P̃nj(Pi; Yi)}n 6=i, Ȳj) if j 6= i

(Indusry Output) Qn,k(Pi; Yi) = ∑j∈C d̄nj,kQnj,k(Pi; Yi)

(Producer Price) Pnj,k(Pi; Yi) = d̄nj,k p̄nn,kw̄n (1− an,k)
1

ςγk
− 1

ς (Qn,k(Pi; Yi))
− 1

γk

(Carbon Cost Share) αn,k(Pi; Yi) = 1− (1− κ̄n,k) (1− an,k)
1−ς

ς

(Carbon Emission) Zn,k(Pi; Yi) = z̄n,k

(
αn,k(Pi ;Yi)

κ̄n,k

) ς
ς−1

(1− an,k)
1

ςγk (Qn,k(Pi; Yi))
1− 1

γk

(Taxes) Tn(Pi; Yi) =


∑k, j 6=i

[(
P̃ji,k − Pji,k(Pi; Yi)

)
Qji,k(Pi; Yi)

]
if n = i

+∑k, j

[(
P̃ij,k − (1− αi,k(Pi; Yi)

γk−1
γk

)Pij,k(Pi; Yi)
)

Qij,k(Pi; Yi)
]

0 if n 6= i
(LMC) w̄i L̄i −∑k∈K ∑j∈C(1− αi,k(Pi; Yi)

γk−1
γk

)Pij,k(Pi; Yi)Qij,k(Pi; Yi) = 0

In the system of semi-equilibrium S (Pi, Yi) compared to S (Pi, w, Y), we drop w and Y−i ≡
{Yj}j 6=i, while we add the labor market clearing condition (LMC). That is, we are considering
fixed wages that satisfy LMC. We can correspondingly express welfare in country i as,

Wi(Pi; Yi) = Vi(w̄i L̄i + Ti(Pi; Yi), P̃i)− ∆i(Z(Pi; Yi)).

where P̃i is itself a subset of Pi.

Definition. [General equilibrium expressed in terms of (Pi; Yi)] Given the policy instrument, Pi,
a general equilibrium is a combination (Pi; Yi) such that the system of semi-equilibrium S (Pi, Yi)
holds, and country i’s income, Yi, satisfies the balanced budget condition:

Yi = w̄i L̄i + Ti(Pi; Yi), (BB)

A.4 Characterizing Equilibrium Wage and Income Effects

Suppose we formulate all equilibrium variables as a function of Pi, w, and Y as detailed in Ap-
pendix A.2. The feasible vector of wages, w, and income levels, Y, solve the system of labor
market clearing conditions:

f1(Pi; w, Y) ≡ w1L1 −∑j∈C ∑k∈K

[
(1− α1,k(Pi; w, Y)γk−1

γk
)P1j,k(Pi; w, Y)Q1j,k(Pi; w, Y)

]
= 0

...

fN(Pi; w, Y) ≡ wN LN −∑j∈C ∑k∈K

[
(1− αN,k(Pi; w, Y)γk−1

γk
)PNj,k(Pi; w, Y)QNj,k(Pi; w, Y)

]
= 0

(A.1)
and the national-level balanced budget conditions:

g1(Pi; w, Y) ≡ Y1 − w1L1 − T1(Pi; w, Y) = 0
...
gN(Pi; w, Y) ≡ YN − wN LN − TN(Pi; w, Y) = 0

.

Note that by Walras’ law one equation is redundant so we can assign one element of w as the
numeraire:

∑
n

fn(Pi; w, Y) = 0. [Walras’ Law].
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Recall that the F.O.C. with respect to any P ∈ Pi, can be stated as follows:

dWi(P
?
i ; w?, Y?)

d lnP
=

∂Wi(P
?
i ; w?, Y?)

∂ lnP
+

∂Wi(P
?
i ; w?, Y?)

∂w
· dw

d lnP︸ ︷︷ ︸
GE wage effects

+
∂Wi(P

?
i ; w?, Y?)

∂Y
· dY

d lnP︸ ︷︷ ︸
GE income effects

= 0

We can characterize the terms dw
d lnP and dY

d lnP in the F.O.C. by applying the Implicit Function The-
orem to the above system of equations characterized by functions f (Pi; w, Y) ≡ { fn(Pi; w, Y)}n
and g(Pi; w, Y) ≡ {gn(Pi; w, Y)}n as follows:

[ dw
d lnP

dY
d lnP

]
=

[
∂ f (Pi ;w,Y)

∂w
∂ f (Pi ;w,Y)

∂Y
∂g(Pi ;w,Y)

∂w
∂g(Pi ;w,Y)

∂Y

]−1

︸ ︷︷ ︸
A−1

i

[
∂ f (Pi ;w,Y)

d lnP
∂g(Pi ;w,Y)

d lnP

]
. (A.2)

Approximating dw−i
d lnP . Note that with only two countries, i.e., C = {i,−i}, Walras’ law implies

that dw−i
d lnP = 0. Below, we show for all practical purposes, dw−i

d lnP ≈ 0 up to a choice of numeraire.
This result is especially helpful when characterizing optimal policy in second-best scenarios. Let
us briefly focus on Cobb-Douglas abatement technologies and constant returns to scale produc-
tion (γk → ∞). This simplification helps us convey our main point succinctly; but does not imply
it. We can characterize the top-left block in matrix Ai:

∂ f (Pi; w, Y)
∂w

=


∂ f1(Pi ;w,Y)

∂w1

∂ f1(Pi ;w,Y)
∂w2

· · · ∂ f1(Pi ;w,Y)
∂wN

∂ f2(Pi ;w,Y)
∂w1

∂ f2(Pi ;w,Y)
∂w2

· · · ∂ f2(Pi ;w,Y)
∂wN

...
. . . . . .

...
∂ fN(Pi ;w,Y)

∂w1

∂ fN(Pi ;w,Y)
∂w2

· · · ∂ fN(Pi ;w,Y)
∂wN



=


−∑n 6=i ∑k,g

[
ρ1n,kε

(1n,g)
1n,k

]
· · · −∑n 6=i ∑k,g

[
ρ1n,kε

(Nn,g)
1n,k

]
−∑n 6=i ∑k,g

[
ρ2n,kε

(1n,g)
2n,k

]
· · · −∑n 6=i ∑k,g

[
ρ2n,kε

(Nn,g)
2n,k

]
...

. . .
...

−∑n 6=i ∑k,g

[
ρNn,kε

(1n,g)
Nn,k

]
· · · −∑n 6=i ∑k,g

[
ρNn,kε

(Nn,g)
Nn,k

]

 ,

where recall that ρjn,k denotes the good-specific labor shares and ε
(`n,g)
jn,k denotes the elasticity of good jn, k’s

demand w.r.t. the price of good `n, g. Likewise, the top-right block in matrix Ai can be expressed as follows:

∂ f (Pi; w, Y)
∂Y

=


∂ f1(.)
∂Y1

· · · ∂ f1(.)
∂YN

...
. . .

...
∂ fN(.)

∂Y1
· · · ∂ fN(.)

∂YN

 =


−∑k [ρ11,kη11,k]

w1L1
Y1

· · · −∑ [ρ1N,kη1N,k]
w1L1

Y1
...

. . .
...

−∑k [ρN1,kηN1,k]
wN LN

YN
· · · −∑k [ρNN,kηNN,k]

wN LN
YN

 .

where ηjn,k denotes the income elasticity of demand associated with good jn, k. Under Cobb-Douglas-CES

preferences, ηjn,k = 1 for all jn, k. Also, the elements of ∂ f (Pi ;w,Y)
∂w can be represented as follows:

∑
n 6=i

∑
k,g

[
ρ`n,kε

(jn,g)
`n,k

]
=

{
ρ`i + ∑n 6=i ∑k [(σk − 1)(1− λ`n,k)ρ`n,k] if ` = j

−∑n 6=i ∑k

[
(σk − 1)ρ`n,kλjn,k

]
if ` 6= j

.

Actual data indicate that ρ`j,k ≈ ∑n 6=i ρ`n,kλjn,k ≈ 0 if j 6= `. Appealing to this observation, the top-right
and left blocks of Ai are near-diagonal matrixes:

∂ f (Pi; w, Y)
∂Y

≈ diag ([ρnn]n) ;
∂ f (Pi; w, Y)

∂w
≈ diag

([
∑
k
(σk − 1)ρn,k

]
n

)
.
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Now, move on to the bottom-left and right block of matrix Ai in Equation A.2. Here, we appeal to the fact
that the rest of world (outside of i) is passive, indicating that Tn(Pi; w, Y) = 0 if n 6= i. Hence, the top-left
and right blocks of Ai (aside from Row i) can written as

∂g(Pi; w, Y)
∂w

≈

 −1 · · · 0
...

. . .
...

0 · · · −1

 ;
∂g(Pi; w, Y)

∂Y
≈

 1 · · · 0
...

. . .
...

0 · · · 1

 .

Note that both matrixes are different from the identity matrix, as Row i should account for the non-carbon
tax revenues collected by country i. However, Row i is unimportant for our following line of argument.
We only need that the above two matrixes be near-diagonal. Given the properties of block matrixes and
Equation A.2, the vector dw

d lnP can be calculated as

dw
d lnP

=

(
∂ f
∂w
− ∂ f

∂Y

(
∂g
∂Y

)−1 ∂g
∂w

)−1
∂ f

∂ lnP
−
(

∂ f
∂w
− ∂ f

∂Y

(
∂g
∂Y

)−1 ∂g
∂w

)−1
∂ f
∂Y

(
∂g
∂Y

)−1 ∂g
∂ lnP

. (A.3)

Note that the evaluation of the above equation is simplified by the fact that the elements of Ai are
near-diagonal. Next, we need to characterize ∂g(.)

∂ lnP and ∂ f (.)
∂ lnP . To this end, we consider the case

where P = P̃ji,k and assign wj as the numeraire. The derivative of f−j (i.e., f excluding row j)
w.r.t. P̃ji,k holding w, Y, and Pi − P̃ji,k fixed is given by:

∂ f−j(Pi; w, Y)

∂ ln P̃ji,k
=



∂ f1(Pi ;w,Y)
∂ ln P̃ji,k

∂ f2(Pi ;w,Y)
∂ ln P̃ji,k

...
∂ fN(Pi ;w,Y)

∂ ln P̃ji,k

 =


∑g ρ1i,gε

(ji,k)
1i,g

∑g ρ2i,gε
(ji,k)
2i,g

...

∑g ρNi,gε
(ji,k)
Ni,g

 Cobb-Douglas-CES
−−−−−−−−−−−−−→

=



ρ1i,k
...

ρj−1i,k
ρj+1i,k

...
ρNi,k


(σk− 1)λji,k

It is easy to check that the elements of
∂g−j(Pi ;w,Y)

∂ ln P̃ji,k
are zero apart from the i’th element. Combining

these two observations with Equation A.3 yields

dlnw−i,j

d ln P̃ji,k
≈
[

σk − 1
∑g(σg − 1)ρn,g

ρni,kλji,k

]
n 6=i,j

≈ 0,

where w−i,j = w−
{

wi, wj
}

and the last line follows from the empirical observation that ρni,kλji,k ≈
0 if n 6= i. The same steps can be taken with regards to any other price instrument in Pi. Further-
more, the above argument goes through if we allow for a finite γk and a variable αn,k.

A.5 Emission-related Elasticities

Recall that total emission, as a function of abatement and output, is given by

Zj,k = z̄j,k

(
αj,k

κ̄j,k

) ς
ς−1

(1− aj,k)
1

ςγk Q
1− 1

γk
j,k , where αj,k = 1− (1− κ̄j,k)(1− aj,k)

− ς−1
ς

To track the policy response of emission we use two following partial derivatives. The first one,
accounts for scale effects in emission:

∂ ln Zj,k(aj,k, Qj,k)

∂ ln Qj,k
= 1− 1

γk
, (A.4)
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and, the second one accounts for abatement effects in emission:

∂ ln Zj,k(aj,k, Qj,k)

∂ ln(1− aj,k)
=

1
αj,k

+
1

ςγk
− 1. (A.5)

Note that ai,k is directly chosen by the policy-maker in our reformulated optimal policy problem.
Qj,k = Qj,k(Pi) is implicitly determined by the government’s choice of policy instruments, Pi ≡
{P̃ii,k, P̃ji,k, P̃ij,k, ai,k}j 6=i,j∈C, k∈K.

In addition, recall that the cost share of carbon, αi,k, is endogenous, and its value depends on
the choice of abatement. Using Equations (1) and (2), the partial derivative of αi,k w.r.t. the choice
of (1− ai,k) is given by:

∂ ln αi,k

∂ ln(1− ai,k)
= −1− ς

ς

1− αi,k

αi,k

Notice, in the special case of ς → 1, i.e., when production technology features a Cobb-Douglas
between carbon and labor, then the cost share of carbon is a constant parameter which does not
change with the choice of abatement.

A.6 Export Supply Elasticities

Below, we define and characterize the export supply elasticity. To that end, we first introduce
some intermediate partial derivatives that enter the export supply elasticity formula. These par-
tial derivatives are also independently useful to our subsequent optimal analysis.

Following Lashkaripour and Lugovskyy (2020), the definition for the general equilibrium export
supply elasticity can be expressed as follows

ωji,k ≡
1

rji,kρj,k
∑
g

[
wiLi

wjLj
ρi,g

(
∂ ln Pii,g

∂ ln Qji,k

)
Pi ,w,Y

+ ∑
n 6=i

wnLn

wjLj
rni,gρn,g

(
∂ ln Pni,g

∂ ln Qji,k

)
Pi ,w,Y

]
, (A.6)

where rni,g = Pni,gQni,g/ ∑ι∈C

(
Pnι,gQnι,g

)
and ρn,g = ∑ι∈C

(
Pnι,gQnι,g

)
/wnLn respectively denote

the good ni, g-specific and industry-wide sales shares associated with origin n ∈ C. The above
expression accounts for the fact that a change in the export supply of good ji, k will affect the pro-
ducer price of goods supplied by origin j–industry k as well as other suppliers via cross-demand
effects.

Before unpacking and simplifying Equation A.6, let us provide a brief description. Contract-
ing the supply of good ji, k (i.e., Qji,k) increases the price of goods supplied by origin j–industry k
through firm-entry (or scale) effects. Holding Pi, w, and Y constant, this change in price can affect
the demand facing other suppliers via cross-demand effects in markets outside of i. Consumer
prices in destination i are fixed by the government’s choice vis-à-vis Pi. So, once we fix Pi, a
change in Pin,g has no bearing on the demand for other suppliers in market i. Outside of market
i, however, a change in producer prices is completely passed on to consumer prices. Considering
this, a change in Pjn,k (which recall is triggered by a contraction in Qji,k) influences the demand
for all suppliers serving market n. This change in demand, in turn, impacts the producer price of
goods supplied by each international industry through scale effects. Equation A.6 measures how
these changes impact country i’s ToT.

We can follow the procedure in Lashkaripour and Lugovskyy (2020) to derive a simple first-
order approximation for ωji,k in the absence of cross-industry demand effects. To this end, note
that the producer price of good ni, g is given by Pni,g = d̄ni,gPnn,g, where d̄ni,g denotes a constant
iceberg trade cost and Pnn,g denotes the price of goods supplied by origin n–industry g in the
domestic market. As detailed in Section 2.2, Pnn,g is an explicit function of origin n–industry g’s
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abatement, wage, and output schedule:

Pnn,g(an,g, wn, Qn1,g, ..., QnN,g) = p̄nn,gwn(1− an,g)
1

ςγg−
1
ςQn,g(Qn1,g, ...QnN,g)

− 1
γg ,

where Qn,g(.) is total effective output in origin j–industry k, as given by

Qj,k(Qj1,k, ...QjN,k) = d̄j1,kQj1,k + ... + d̄jN,kQjN,k.

Considering the above formulation, characterizing ωji,k requires that we first characterize
(

∂ ln Pni,g
∂ ln Qji,k

)
Pi ,w,Y

=(
∂ ln Pii,g
∂ ln Qji,k

)
Pi ,w,Y

for each origin n–industry g. For this purpose, define the following function for each

origin j–industry k that treats Pi , w, and Y as given. In particular,

Fj,g(Qi,g, Pg) ≡ Pjj,g − p̄jj,gwj(1− āj,g)
1

ςγg−
1
ς

[
d̄ji,gQ̄ji,g + ∑

n 6=i
d̄jn,gQjn,g(d−in,g � P−i,g)

]− 1
γg

= 0.

In the above formulation, Qi,g ≡
{

Q1i,g, ..., QNi,g
}

denotes the vector of demand for industry g
goods in destination i; vector Pg ≡

{
P``,g

}
is the global vector of producer prices in industry

g and P−i,g = Pg −
{

Pii,g
}

encompasses the producer price for each origin aside from i. Corre-
spondingly, P̃−in,g ≡ d−in,g � P−i,g denotes the vector of consumer prices associated with non-i
origins in destination n 6= i. Finally, the function Qn`,g(P̃−in,g) = Dnι,g(P̃−in,g, P̃in,g, Yn) derives
from the Marshallian demand function, treating P̃in,g ∈ P̄i , wn ∈ w, and Yn ∈ Y as given. For
any given Pi, w, and Y, the global vector of produce prices, Pg, can be characterized as a function,
Qi,g, based on the following system:

F1,g(Q1i,g, ..., QNi,g, P11,g, ..., PNN,g) = 0
...
FN,g(Q1i,g, ..., QNi,g, P11,g, ..., PNN,g) = 0

.

Applying the Implicit Function Theorem to the above system of equations, yields the following
matrix of inverse export supply elasticities:
(

∂ ln P11,k
∂ ln Q1i,k

)
Pi ,w,Y

· · ·
(

∂P11,k
∂ ln QNi,k

)
Pi ,w,Y

...
. . .

...(
∂ ln PNN,k
∂ ln Q1i,k

)
Pi ,w,Y

· · ·
(

∂PNN,k
∂ ln QNi,k

)
Pi ,w,Y

 = −


∂F1,k(.)

∂ ln P11,k
· · · ∂F1,k(.)

∂ ln PNN,k
...

. . .
...

∂FN,k(.)
∂ ln P11,k

· · · ∂FN,k(.)
∂ ln PNN,k


−1

︸ ︷︷ ︸
Ai


∂F1,k(.)

∂ ln Q1i,k
· · · ∂F1,k(.)

∂ ln QNi,k
...

. . .
...

∂FN,k(.)
∂ ln Q1i,k

· · · ∂FN,k(.)
∂ ln QNi,k

 ,

(A.7)
Since function Fi,k(.) treats Pi, w, and Y as given, each element of the matrices on the right-hand
side can be specified as follows:

∂Fn,k(.)
∂ ln Pjj,k

= 1j=n + 1j 6=i
1

γg
∑
` 6=i

[
rn`,kε

(j`,k)
n`,k

]
;

∂Fn,k(.)
∂ ln Qji,k

= 1j=n
1

γg
rji,k.

Considering the above expression for ∂Fn,k(.)/∂ ln Pjj,k, it is straightforward to show that Ai is
diagonally-dominant. Hence, following Lashkaripour and Lugovskyy (2020), we can produce a
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simple first-order approximation for A−1
i around rji,k ≈ 0 (for j 6= i), which yields the following:

(
∂ ln Pnn,g

∂ ln Qji,g

)
Pi ,w,Y

≈


− 1

γg rni,g

1+ 1
γg ∑ι 6=i rnι,gε

(nι,g)
nι,g

n = j
1

γg rji,g

1+ 1
γg ∑ι 6=i rnι,gε

(nι,g)
nι,g

(
1

γg
∑ι 6=i rnι,gε

(jι,g)
nι,g

)
n 6= j

.

We can then plug the above expression back into into Equation A.6 to produce the following
approximation for the export supply elasticity—noting that rni,g × rji,g ≈ 0 if j 6= i and n 6= i:

ωji,k ≈
− 1

γk
rji,k

1 + 1
γk

∑ι 6=i rjι,kε jι,k

[
1− 1

γk

wiLi

wjLj
∑
n 6=i

ρi,krin,k

ρj,krji,k
ε
(jn,k)
in,k

]
.

B Proofs and Derivations for Unilaterally Optimal Policy

B.1 Proof of Lemma 2

We prove the welfare neutrality of wage effects in two steps. First, we show that insofar as the
system is in general equilibrium a change in the wage rate of the home country i, does not change
the welfare there. Second, we show that if the system is in general equilibrium at the govern-
ment’s choice of policy is at the optimum, then a chnage in the wage rates of foreign countries
does not have an effect on the welfare at home. Together, this means, provided that the policy is
at the optimum, welfare at home remains unchanged in response to general equilibrium effects
from changes in the worldwide vector of wages.

Step 1. First, we show that in general equilibrium, home’s welfare is invariant to changes in
home’s wage. Consider any policy–wage-income combination that satisfies general equilibrium
constraints, i.e., X = (Pi; w, Y) ∈ E r. Then,

∂Wi(X)

∂wi
=

[
∂Vi(.)

∂Yi
− 1

Yi
∑

j
∑

k

(
δji,kZj,k

∂ ln Zj,k(.)
∂ ln Qj,k

∂ ln Qj,k(.)
∂ ln Qji,k

∂ lnDji,k(.)
∂ ln Yi

)]
∂

Yi︷ ︸︸ ︷
(wiLi + Ti(X))

∂ ln wi
= 0

We establish the welfare neutrality of home’s wage, wi, by proving that:

∂ (w?
i Li + Ti(P

?
i ; w?, Y?))

∂ ln wi
= 0 ⇒ ∂Wi(X

?)

∂wi
= 0.

To be clear, the above partial derivative w.r.t. wi is applied holding the policy vector Pi, wages in
the rest of the world, w−i, and the income vector, Y, as unchanged. Using the expression for tax
revenues,

Ti(X) =

carbon taxes︷ ︸︸ ︷
∑

k∈K

∑
j∈C

(
αj,k(X)

γk − 1
γk

Pij,k(X)Qij,k(X)

)
+

production subsidies︷ ︸︸ ︷
∑

k∈K

[(
P̃ii,k − Pii,k(X)

)
Qii,k(X)

]
+ ∑

k∈K

∑
j∈C,j 6=i

[(
P̃ji,k − Pji,k(X)

)
Qji,k(X)

]
︸ ︷︷ ︸

imports taxes

+ ∑
k∈K

∑
j∈C,j 6=i

[(
P̃ij,k − Pij,k(X)

)
Qij,k(X)

]
︸ ︷︷ ︸

exports subsidies

,
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we can express the partial derivative of country i’s total income from wage payments and tax
revenues (wiLi + Ti(X)) w.r.t. wi as

∂ (wiLi + Ti(X))

∂ ln wi
= wi L̄i −∑

k
∑
j 6=i

([
∂ ln Pji,k(X)

∂ ln wi
+

∂ ln Qji,k(X)

∂ ln wi

]
Pji,kQji,k

)

−∑
k

∑
j

[(
(1− αi,k(X)

γk − 1
γk

)

[
∂ ln Pij,k(X)

∂ ln wi
+

∂ ln Qij,k(X)

∂ ln wi

]
− αi,k(X)

γk − 1
γk

∂ ln αi,k(X)

∂ ln wi

)
Pij,kQij,k

]
.

(B.1)

Demand in market j 6= i is given by the Marshallian demand function, Qij,k(X) = Dij,k(Yj, P̃ij, P̃−ij),
and is fully determined by Yj ∈ Y, P̃ij ∈ Pi, and P̃−ij. The price vector P̃−ij, which encompasses
all consumer price variables unassociated with exporter i, is itself fully determined by Pi and w−i
(see Appendix A.2). Hence, holding all elements of X aside from wi constant, Qij,k(X) is invariant
to any change in wi. Likewise, demand in the home market i, Qji,k(X) = Dji,k(Yi, P̃i), is fully
determined by Yi ∈ Y and P̃i ∈ Pi. So, holding all elements of X aside from wi constant, Qji,k(X)
is also invariant to any change in wi. These observations entail that (for all k, and for j 6= i),

∂ ln Qij,k(X)

∂ ln wi
=

∂ ln Qij,k(X)

∂ ln wi
= 0.

Producer prices associated with origin j 6= i are given by Pji,k = p̄jj,kwj(1− aj,k)
1

ςγk
− 1

ςQj,k(Qj1,k, ...QjN,k)
− 1

γk .
As such, they are fully determined by wj ∈ w−i, abatement choices, aj,k, and demand quantities,
{Qjn,,k}n. Abatement and demand quantities associated with origin j are themselves fully de-
termined by w−i, Pi, and Y. So, holding all elements of X aside from wi constant, Pji,k(X) is
invariant to any change in wi. Likewise, producer prices associated with origin i are given by

Pij,k = p̄ii,kwi(1− ai,k)
1

ςγk
− 1

ςQi,k(Qi1,k, ...QiN,k)
− 1

γk . Hence, Pij,k (net of wi) is fully determined by
abatement, ai,k ∈ Pi, and demand quantities, {Qin,,k}n, which are themselves fully determined by
Pi, w−i, and Y. So, holding w−i, Pi, and Y constant, any change in wi is fully passed on to Pij,k(X).
Combining these arguments yields the following partial derivatives:

∂ ln Pij,k(X)

∂ ln wi
= 1,

∂ ln Pji,k(X)

∂ ln wi
= 0 (if j 6= i).

Lastly, αi,k(X) = 1− (1− κ̄i,k)(1− ai,k)
− ς−1

ς is fully determined by ai,k ∈ Pi. Hence, holding Pi
constant, the change in wi has no effect on the carbon cost share, i.e., ∂ ln αi,k(X)/∂ ln wi = 0.
Plugging these partial derivative values into Equation B.1 implies

∂ (wiLi + Ti(X))

∂ ln wi
=

(
wi L̄i −∑

k, j
(1− αi,k

γk − 1
γk

)Pij,kQij,k

)
︸ ︷︷ ︸

=0 (by labor market clearing)

= 0,

where the right-hand side term in the parentheses equals zero since the system is in general equi-
librium, i.e., X = (Pi; wi, w−i, Y) ∈ E r, which guarantees that the labor market clearing condition
(7) holds. Notice, the above derivations hold whether or not the policy vector Pi is at the opti-
mum. While this is a striking result, we remain to be interested in the above derivative when
it is evaluated at the optimum —i.e., the policy–wage-income combination which we index by
(?), X? = (P?

i ; w?, Y?) ∈ E r. The reason, as we show in Step 2, is that the effects of wages for-
eign countries on home’s welfare is neutral only at the optimum. Hence, the claim that the entire
vector of wages, w = {wn}n, is welfare neutral will be true only at the optimum.
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Step 2. In the two country case, dw−i
dP = 0 for all P ∈ Pi ≡ {P̃ji,k, P̃ij,k, P̃ii,k}j 6=i,k by choice of nu-

meraire. Beyond the two country case, we can infer from actual data that dw−i
dP ≈ 0 for all P ∈ Pi—

a point already established in Appendix A.4. These results indicate that wage effects in the rest of
the world are, in general, welfare neutral—either exactly or to a first-order approximation. This
result holds even in second-best scenarios where the government is banned from manipulating a
subset of price instruments in Pi. In the first-best scenario we can establish the welfare neutrality
of international wage effects using the multiplicity of optimal policy choices and the Targeting
Principle. We first establish the result regarding multiplicity of optimal policy choices. To present
this result, we use X ≡ (Ii, I−i, wi, w−i, Yi, Y−i) to denote a global policy-wage-income combina-
tion, with Ii = (si, ti, xi, τi). As before, we use E to denote the set of feasible policy-wage-income
combinations that satisfy general equilibrium constraints, as defined in Section 2.4. Considering
this choice of notation, we want to prove the following result, which is a basic extension of Lemma
1 in Lashkaripour and Lugovskyy (2020) to an economy with carbon externality and abatement.

Lemma 5. For any a and ã ∈ R+, the following two results hold: (1) if X = (1 + ti, t−i, 1 + xi, x−i, 1 +
si, s−i, τi, τ−i; wi, w−i, Yi, Y−i) ∈ E , then

X′ = (a(1 + ti), t−i, a(1 + xi), x−i,
1
ã
(1 + si), s−i,

a
ã

τi, τ−i;
a
ã

wi, w−i, aYi, Y−i) ∈ E ;

and (2) Welfare is preserved under policy-wage combination X and X′: Wn(X′) = Wn(X) for all n ∈ C.

Proof. The proof closely follows the proof of Lemma 1 in Lashkaripour and Lugovskyy (2020).
The only difference is that the labor market clearing condition must be adjusted to account for
abatement activity. To restate the objective of the proof, consider two policy-wage combinations,
X = (s, t, x, τ; w), and X′ = (s′, t′, x′, τ′; w′), that differ in uniform shifters a and ã ∈ R+ with
regards to country i’s taxes:

1+ x′i = a (1 + xi) ; 1+ t′i = a (1 + ti) ; ; 1+ s′i = (1 + si) /ã; ; w′i = (a/ã)wi; τ′i = (a/ã) τi;

but consist of the same tax levels in the rest world (namely, −i):

1 + x′−i = 1 + x−i 1 + t′−i = 1 + t−i 1 + s′−i = 1 + s−i w′−i = w−i; τ′−i = τ−i.

Our goal is to prove that (i) if X ∈ E then X′ ∈ E , and (ii) Wn(X′) = Wn(X) for all n ∈ C.

Step 1. The first step proves that Q(X′) = Q(X) using two intermediate claims. The first
claim posits that if we suppose Q(X′) = Q(X)), then the implied nominal income and price
levels under X and X′ are the same up to a scale. Stated mathematically,

[Claim 1] Q(X′) = Q(X) =⇒
{

P̃i (X
′) = aP̃i (X) ;

P̃−i (X
′) = P̃−i (X) ;

.

In the above formulation P̃i = {P̃1i, ..., P̃Ni} denotes the entire vector of consumer price indexes
in destination i, and Q ≡ {Qn`,g}n,`,g is the entire vector of equilibrium quantities. To prove the
above claim, we compute nominal income and consumer price indexes under X and X′ starting
from the assumption that Q(X′) = Q(X). First, consider nominal price indexes. To simplify the
notation for prices, define

δjn,k(X) ≡ ρjn,k
(
1− aj,k(X)

) 1
ςγk
− 1

ς Qj,k(X)
− 1

γk .

By assumption, aj,k(X
′) = aj,k(X) and Qj,k(X

′) = Qj,k(X), indicating thatδjn,k(X) = δjn,k(X
′) =

δjn,k. Now, consider the price index of a generic good ji, k imported by i from origin j 6= i. Invok-
ing Equations 3 and 5, the consumer price index of good ji, k under X′ and X exhibit the following
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relationship:

P̃ji,k(X
′) = δji,k

1 + t′ji,k
(1 + x′ji,k)(1 + s′j,k)

w′j = δji,k
a(1 + tji,k)

(1 + xji,k)(1 + sj,k)
wj = aP̃ji,k(X),

where the third equality follows from the fact that 1+ t′ji,k = a(1+ tji,k), while w′j = wj, x′ji,k = xji,k,
and s′j,k = sj,k (since wj ∈ w−i, xji,k ∈ x−i, and sj,k ∈ s−i). Second, consider a typical good ii, k that
is produced and consumed locally in country i. The consumer price of ii, k under combination X′

can be related to its price under X as follows

P̃ii,k(X
′) = δii,k

1
1 + s′i,k

w′i = δii,k
1

1
ã (1 + si,k)

× a
ã

wi = aP̃ii,k(X),

where the third equality follows from the fact that 1 + s′i,k = (1 + si,k)/ã and w′i = awi/ã. Third,
consider the price of a typical good ij, k export by i to destination market j 6= i. The consumer
price of ij, k under combination X′ can be related to its price under X as follows:

P̃ij,k(X
′) = δij,k

1 + t′ij,k
(1 + x′ij,k)(1 + s′i,k)

w′i = δij,k
1 + tij,k

a(1 + x′ij,k)×
1
ã (1 + s′i,k)

× a
ã

wi = P̃ij,k(X),

where the third equality follows from the fact that 1+ x′ij,k = a(1+ xij,k), 1+ si,k = (1+ s′i,k)/ã, and
w′i = awi/ã; while t′ij,k = tji,k since tji,k ∈ t−i. Lastly, is follows trivially that P̃jn,k(X

′) = P̃jn,k(X) if
j and n 6= i. Considering that P̃i =

{
P̃ji, P̃ii

}
, the above equations establish that

P̃i
(
X′
)
= aP̃i (X) , P̃−i

(
X′
)
= P̃−i (X) . (B.2)

which amounts to Claim (1). Stepping back, Claim (1) starts from the assumption that Q(X′) =
Q(X). Our next claim indicates that this assumption is validated by the nominal income and
price levels implied by X′ and X. Below, we state this lemma noting that it follows trivially from
the Marshallian demand function, Qji,k = Dji,k(Yi, P̃i), being homogeneous of degree zero. In
particular,

[Claim 2] ∀a ∈ R+ :

{
P̃i (X

′) = aP̃i (X) Y′i = aYi

P̃−i (X
′) = P̃−i (X) Y′−i = Y−i

=⇒ Q(X′) = Q(X).

Together, Claims (1) and (2) establish that equilibrium quantities should be indeed identical under
policy-wage combinations X and X′. That is, Q(X′) = Q(X).

Step 2. The second step uses the fact Q(X′) = Q(X) to establish that if X ∈ E then X′ ∈ E .
That is, w′i =

a
ã wi and Y′i = aYi satisfy the labor market clearing and balanced budget conditions

given tax vector I′, provided that wi and Yi satisfy the same conditions given tax vector I. To
simplify the presentation, we hereafter use X ≡ X (X) and X ′ ≡ X (X′) to denote the value of
a generic variable X under policy-wage-income combinations X and X′. Starting with the labor
market clearing condition, our goal is to show that if wiLi = ∑k ∑j

[
(1− αi,k)

γk−1
γk

Pij,kQij,k

]
then

w′i Li = ∑k ∑j

[
(1− α′i,k)

γk−1
γk

P′ij,kQ′ij,k
]
. This result can be established as follows. First, starting from the

labor market clearing condition under X = (I; w, Y) and the fact that w′i = a
ã wi, we can produce the

following equation:

w′i Li =
a
ã

wiLi =
a
ã ∑

k
∑

j

[
(1− αi,k)

γk − 1
γk

(1 + xij,k)(1 + si,k)

1 + tij,k
P̃ij,kQij,k

]

= ∑
k

∑
j

[
(1− αi,k)

γk − 1
γk

a(1 + xij,k)
1
ã (1 + si,k)

1 + tij,k
P̃ij,kQij,k

]
.
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Note that—by construction—1 + t′ji,k = (1 + tji,k)/a, 1 + xij,k = (1 + x′ij,k)/a, 1 + si,k = (1 +

s′i,k)/ã. Also, Step 1 of the proof already established that Q′ij,k = Qij,k and P̃′ij,k = P̃ij,k for all
ij, k. The carbon cost share is also the same under X and X′ (i.e., α′i,k = αi,k) given that αi,k is
determined by the wage-to-carbon tax ratio and that τ′i,k/w′i = τi,k/wi, by construction. Plugging
these relationships into the last line of the above equation delivers the desired result that X′is
consistent with the labor market clearing condition:

w′i Li = ∑
k

∑
j

[
(1− α′i,k)

γk − 1
γk

(1 + x′ij,k)(1 + s′ i,k)

1 + t′ij,k
P̃′ij,kQ′ij,k

]
= ∑

k
∑

j

[
(1− α′i,k)

γk − 1
γk

P′ij,kQ′ij,k

]
.

Next, consider the balance budget condition our goal is to show that Y′i = w′i Li + T′i if Yi =
wiLi + Ti, where T′i and Ti are respectively the tax revenues under combinations X and X′. Note
that by construction Y′i = aYi, which implies:

Yi = aYi = awiL + a ∑
k

∑
j

(
αi,k

γk − 1
γk

Pij,kQij,k

)
+ a ∑

k

[(
1

1 + si,k
− 1
)

Pii,kQii,k

]
+ a ∑

k
∑
j 6=i

(
tji,k

(1 + xji,k)(1 + sj,k)
Pji,kQji,k +

[
1

(1 + xij,k)(1 + si,k)
− 1
]

Pij,kQij,k

)
. (B.3)

Noting that the labor market clearing condition, wiLi − ∑k ∑j

[(
1− αi,k

γk−1
γk

)
Pij,kQij,k

]
= 0, is

satisfied under combination Xi, we can subtract the following (equal zero) term,( a
ã
− a
)

wiLi +
( a

ã
− a
)

∑
k

∑
j

(
(1− αi,k)

γk − 1
γk

Pij,kQij,k

)
= 0,

from Equation B.3 to arrive at the following updated expression for Y′i :

Y′i =
a
ã

wiLi + a ∑
k

∑
j

(
αi,k

γk − 1
γk

Pij,kQij,k

)
+ ∑

k

[(
a

1 + si,k
− a

ã

)
Pii,kQii,k

]
+∑

k
∑
j 6=i

(
atji,k

(1 + xji,k)(1 + sj,k)
Pji,kQji,k +

[
a

(1 + xij,k)(1 + si,k)
− a

ã

]
Pij,kQij,k

)

=
a
ã

wiLi + ∑
k

∑
j

(
αi,k

γk − 1
γk

a(1 + xij,k)
1
ã (1 + si,k)

1 + tij,k
P̃ij,kQij,k

)
+ ∑

k

[(
1− 1

ã
(1 + si,k)

)
aP̃ii,kQii,k

]

+∑
j,k

[(
1− 1

a(1 + tji,k)

)
aP̃ji,kQji,k +

[
1

1 + tij,k
−

a(1 + xij,k)× 1
ã (1 + si,k)

1 + tij,k

]
P̃ij,kQij,k

]
. (B.4)

Noting that the balanced trade condition, ∑k ∑j 6=i

(
1

1+tji,k
P̃ji,kQji,k − 1

1+tij,k
P̃ij,kQij,k

)
= 0, is satisfied

under combination Ti, we can subtract the following (equal zero) term,

(1− a)∑
k

∑
j 6=i

(
1

1 + tji,k
P̃ji,kQji,k −

1
1 + tij,k

P̃ij,kQij,k

)
= 0,

from Equation B.4 to update the expression for Y′i as follows:

Y′i =
a
ã

wiLi + ∑
k

∑
j

(
α′i,k

γk − 1
γk

a(1 + xij,k)
1
ã (1 + si,k)

1 + tij,k
P̃ij,kQij,k

)
+ ∑

k

[(
1− 1

ã
(1 + si,k)

)
aP̃ii,kQii,k

]

+ ∑
j,k

[(
1− 1

a(1 + tji,k)

)
aP̃ji,kQji,k +

[
1

1 + tij,k
−

a(1 + xij,k)× 1
ã (1 + si,k)

1 + tij,k

]
P̃ij,kQij,k

]
.
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Observe that policy-wage-income combinations X and X′ are constructed such that 1 + t′ji,k =

a(1 + tji,k), 1 + x′ij,k = a(1 + xij,k), 1 + si,k = (1 + s′i,k)/ã, w′i = awi/ã, and t′ij,k = tji,k. Also, Step
1 of the proof established that Q′ii,k = Qii,k, Q′ji,k = Qji,k, Q′ij,k = Qij,k, P̃ii,k = aPii,k, P′ji,k = aP̃ji,k,
P̃′ij,k = P̃ij,k, and α′i,k = αi,k. Plugging these expressions into the above equation yields

Y′i = w′i Li + ∑
k

∑
j

(
αi,k

γk − 1
γk

P′ij,kQ′ij,k

)
+ ∑

k

[(
1

1 + s′i,k
− 1

)
P′ii,kQ′ii,k

]

+ ∑
k

∑
j 6=i

(
t′ji,k

(1 + x′ji,k)(1 + s′j,k)
P′ji,kQ′ji,k +

[
1

(1 + x′ij,k)(1 + s′i,k)
− 1

]
P′ij,kQ′ij,k

)
,

which ensures that combination X′ is consistent with the balanced budget condition, Y′i = w′i Li + Ti.
Combing the above findings we can conclude that

X = (I, w, Y) ∈ E =⇒ X′ = (I′, w′, Y′) ∈ E

where I′ = (a(1 + ti), t−i, a(1 + xi), x−i, 1
ã (1 + si), s−i, a

ã τi, τ−i), w = ( a
ã wi, w−i), and Y = (aYi, Y−i). More-

over, since Q(X′) = Q(X) it should be the case that Wn(X′) = Wn(X) for all n ∈ C, which estab-
lishes both claims under Lemma 5.

Now we present our international wage neutrality argument based on Lemma 5. Suppose the
government in i solves a problem where it can set the entire vector of prices globally. This choice
vector includes the extraterritorial price P̃jn,k, where j and n 6= i. The revenue from extraterritorial
price manipulations are rebated to foreign consumers. Lemma 5 ensures that the choice with
respect to the global price vector can replicate any welfare gains from wage effects. That is, if
P̃∗jn,k = Pjn,k for all j and n 6= i, it should be the case that ∂W i/∂w−i = 0. We can prove that
this is the case as follows: Since revenues from extraterritorial taxes accrue to foreign economies,
the gains from P̃jn,k channel exclusively through the effect on country i’s export and import tax
revenues. By the Targeting principle, however, these indirect gains will be internalized by the
optimal choice P?

i that directly regulates country i’s import/export tax revenues.

B.2 Solving the System of F.O.C.s: Proofs of Lemmas 3-4 & Theorems 1-2.

Recall that the set of policy instruments given to the government of country i is given by Pi ≡{
P̃ij, P̃ji, P̃ii, ai

}
j 6=i. Furthermore, we express variety-level demand quantities in country i by the

Marshallian demand function, Qjik = Dji,k(Yi, P̃i), that is a function of income Yi and after-tax
consumer prices in country i, P̃i ≡ {P̃ji, P̃ii}j 6=i ∈ Pi. Since all equilibrium values are a function of
(Pi, Yi), demand quantities in foreign countries j 6= i for varieties made in home country i, can be
expressed as Qij,k(Pi, Yi). Together, demand quantities can be expressed as Qi(Pi, Yi), where Qi is
the quantity of all varieties that home country i consumes (domestically purchased or imported)
and exports, i.e., Qi ≡ {Qji,k, Qij,k}j∈C, k∈K.

Next, let us reproduce the unilaterally optimal policy problem of country i,

max
Pi

Wi(Pi; Yi) subject to (Pi;Yi)∈E r
Y,

where E r
Y is the feasible set of policy-income pairs (Pi; Yi) that satisfy the general equilibrium

constraints, as formally defined in Appendix A.3. Recall that in this reformulation, vector of
wages, w̄, can be treated as fixed. As detailed in Section 3.1, prices {Pji,k}j,k, emission levels
{Zj,k}j,k, taxes {Ti,k}k, etc., are functions of (Pi; Yi) in a way that their dependence on income Yi
channels exclusively via demand quantities Qi(Pi; Yi). As such, we can express prices as Pji,k =
Pji,k(Pi; Yi) = Pji,k(Pi; Qi(Pi; Yi)), emission levels as Zj,k = Zji,k(Pi; Yi) = Zji,k(Pi; Qi(Pi; Yi)),
taxes as Ti,k = Ti,k(Pi; Yi) = Ti,k(Pi; Qi(Pi; Yi)), and so forth. Consequently, the objective function
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of country i can be written in the following way:

Wi(Pi; Qi(Pi; Yi)) = Vi(w̄i L̄i + Ti(Pi; Qi(Pi; Yi))︸ ︷︷ ︸
Yi

, P̃i)− ∆i (Z(Pi; Qi(Pi; Yi))) ,

The first order condition with respect to each of policy instruments P ∈ Pi ≡ {P̃ji,k, P̃ij,k, P̃ii,k, ai,k}j 6=i, k
delivers the following equation:

∂Ti(Pi ,Qi)
∂ lnP + P̃i

∂Vi(Yi ,P̃i)
∂ lnP − P̃i

∂∆i(Z(Pi ,Qi))
∂ lnP

+
[

∂Ti(Pi ,Qi)
∂Qi

− P̃i
∂∆i(Z(Pi ,Qi))

∂Qi

]
· ∂Qi(Pi ,Yi)

∂ lnP

+
[

∂Ti(Pi ,Qi)
∂Qi

− P̃i
∂∆i(Z(Pi ,Qi))

∂Qi

]
· ∂Qi(Pi ,Yi)

∂Yi

dYi
dlnP = 0

(B.5)

where P̃i ≡
(

∂Vi(.)
∂Yi

)−1
is the consumer price index. In what follows, as a detailed analysis of

unilaterally optimal policy, we undertake the task of solving for the system of F.O.C.s described
by Equation (B.5). In doing so, we will provide proofs and derivations for Lemma 3, Theorem 1,
Lemma 4, and Theorem 2.

Before moving forward, let us emphasize three important details:

1. To economize on notation, we occasionally express demand quantities simply as Qi without
explicitly stating its functional specification, Qi = Qi(Pi; Yi).

2. Following Lemma 2, we are treating the vector of wages, w = w̄, as constant throughout
our proof. So, all partial derivatives should be interpreted as partial derivatives that hold
w constant. In addition, every time we partially differentiate w.r.t. policy instrument P ∈
Pi, we are fixing the remaining elements of Pi—because the government directly chooses
every single element of Pi. To connect this point to the forthcoming choice of notation, the
partial derivative w.r.t. policy instrument P ∈ Pi takes Yi, w, and Pi − {P} as fixed, e.g.,
∂Qji,k(Pi ;Yi)

∂ lnP ≡
(

∂Qji,k(Pi ;Yi)

∂ lnP

)
Yi ,w,Pi−{P}

.

3. The same point applies to our notation for partial derivatives when holding demand quan-
tities fixed, e.g., ∂Ti(Pi ;Qi)

∂ lnP ∼
(

∂Ti(Pi ;Qi)
∂ lnP

)
Qi ,w,Pi−{P}

.

With these points in mind, we now proceed with the proof of Lemmas 3 and 4,. Our goal is to
unpack Equation (B.5) with respect to all policy instruments, namely: (i) domestic and import
prices P̃i ≡ {P̃ii, P̃ji}j 6=i, (ii) abatement levels ai, (iii) export prices {P̃ij}j 6=i. We establish the
welfare-neutrality of income effect within step (i), which we use in our analysis of steps (ii) and
(iii).

B.2.1 F.O.C.s for Domestic and Import Prices: P̃i ≡ {P̃ii, P̃ji}j 6=i

Consider P = P̃ji,k ∈ P̃i = {P̃ii, P̃ji}, that is in the set of consumer prices in i—either domestic
(j = i) or imported (j 6= i) varieties. We unpack the three terms in the first line of Equation (B.5):

– Holding the demand schedule Qi fixed, an increase in consumer price P̃ji,k raises tax rev-
enues mechanically in proportion to demand quantity. In particular,

∂Ti(Pi, Qi)

∂ ln P̃ji,k
= P̃ji,kQji,k.

– Applying the Roy’s identity, we can express the effect of raising consumer price P̃ji,k on
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consumer surplus (i.e., indirect utility) as

P̃i
∂Vi(P̃i, Yi)

∂ ln P̃ji,k
= −P̃ji,kQji,k.

– Holding output quantities fixed, emission depends only on abatement which is pinned
down by the choice set Pi (see equations 2 and 4). Hence, the change in P̃ji,k has no direct
effect on CO2 emissions given Qi and Pi − {P̃ji,k}:

∂∆i (Z(Pi, Qi))

∂P̃ji,k
= 0.

Combining the three bullet points listed above, the first line of Equation (B.5) collapses to zero
when P = P̃ji,k ∈ P̃i. Namely,

∂Ti(Pi, Qi)

∂ ln P̃ji,k
+ P̃i

∂Vi(P̃i, Yi)

∂ ln P̃ji,k
− ∂∆i (Z(Pi, Qi))

∂P̃ji,k
= 0

Hence, for P = P̃ji,k ∈ P̃i, Equation (B.5) reduces to[
∂Ti(Pi ,Qi)

∂Qi
− P̃i

∂∆i(Z(Pi ,Qi))
∂Qi

]
· ∂Qi(Pi ,Yi)

∂ ln P̃ji,k

+
[

∂Ti(Pi ,Qi)
∂Qi

− P̃i
∂∆i(Z(Pi ,Qi))

∂Qi

]
· ∂Qi(Pi ,Yi)

∂Yi

dYi
dlnP̃ji,k

= 0.
(B.6)

The first line of Equation (B.6) accounts for the general equilibrium welfare effects of raising P̃ji,k ∈
P̃i while holding income Yi fixed—this is true because the first line of Equation (B.5) turned out to
be zero for P̃ji,k ∈ P̃i— and, the second line summarizes general equilibrium income effects. The
trivial solution to Equation (B.6) ensures that

∂Wi(Pi, Qi)

∂Qi
=

∂Ti(Pi, Qi)

∂Qi
− P̃i

∂∆i (Z(Pi, Qi))

∂Qi
= 0. (B.7)

It is important to show that this trivial solution is the unique solution to the system of equations
described by Equation (B.6) —which constitutes N × K equations. We undertake this task in
Appendix B.3 where we show that the trivial solution (from which Equation (B.7) derives) is the
unique solution to the system of Equations (B.6). That is, Equation (B.7) outlines the necessary
and sufficient conditions for optimality w.r.t. P̃ji,k ∈ Pi, starting from Equation (B.5).

Importantly, Equation (B.7) establishes the welfare-neutrality of income effects at the optimum—
as stated under Lemma 3 of the main text. Specifically, the solution to Equation (B.5) requires that
∂Wi(Pi ,Qi)

∂Qi
= 0, from which it follows that for each P ∈ Pi, the general equilibrium income effects

add up to zero: [
∂Ti(Pi, Qi)

∂Qi
− P̃i

∂∆i (Z(Pi, Qi))

∂Qi

]
· ∂Qi(Pi, Yi)

∂Yi

dYi

dlnP
= 0 (B.8)

The above equation states that at the optimal policy choice P?
i , the last line of Equation (B.5)

must equal zero for every P ∈ Pi. In other words, we can simplify the first-order conditions
characterized by Equation (B.5) by the dropping the term corresponding to general equilibrium
income effects. This result, which holds under very generic conditions, implies that in deriving
the first-order conditions demand can be treated as income inelastic.

Next, we unpack and simplify Equation (B.7), which characterizes the optimal choice w.r.t.
P̃ji,k ∈ Pi. As outlined in Appendix A.3 , taxes collected by country i’s government, Ti(.), and
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emission levels from all origin-industry locations, {Zn,g(.)}n,g, are formulated as follows:

Ti(Pi; Yi) = ∑g

[(
P̃ii,g − (1− αi,g(Pi; Yi)

γg−1
γg

)Pii,g(Pi; Yi)
)

Qii,g(Pi; Yi)
]

+∑n 6=i ∑g

[(
P̃in,g − (1− αi,g(Pi; Yi)

γg−1
γg

)Pin,g(Pi; Yi)
)

Qin,g(Pi; Yi)
]

+∑n 6=i ∑g
[
(P̃ni,g − Pni,g(Pi; Yi))Qni,g(Pi; Yi)

]
Zn,g(Pi; Yi) = z̄n,g

(
αn,g(Pi ;Yi)

κ̄n,g

) ς
ς−1 (

1− an,g
) 1

ςγg
(
Qn,g(Pi; Yi)

)1− 1
γg ;

where αn,g(Pi; Yi) = 1− (1− κ̄n,g)
(
1− an,g

) 1−ς
ς .

(B.9)

We continue to derive the partial derivative of taxes Ti(Pi; Yi) and emissions Zn,g(Pi; Yi) w.r.t.
P = P̃ji,k ∈ P̃i. Starting with tax revenues,

∂Ti(Pi, Qi)

∂Qi
· ∂Qi(Pi, Yi)

∂ ln P̃ji,k
= ∑

n 6=i
∑
g

(P̃ni,g − Pni,g

)
Qni,g

(
∂ ln Qni,g

∂ ln P̃ji,k

)
Yi

− Pni,gQni,g ∑
`

∑
s

( ∂ ln Pni,g

∂ ln Q`i,s

)
Pi ,Yi

(
∂ ln Q`i,s

∂ ln P̃ji,k

)
Yi


+ ∑

n 6=i
∑
g

−ψi,gPin,gQin,g

 ∂ ln Pin,g(..., Qii,g)

∂ ln Qii,g

(
∂ ln Qii,g

∂ ln P̃ji,k

)
Yi

+ ∑
` 6=i

∑
s

(
∂ ln Pin,g

∂ ln Q`i,s

)
Pi ,Yi

(
∂ ln Q`i,s

∂ ln P̃ji,k

)
Yi


+ ∑

g

[P̃ii,g − ψi,gPii,g

]
Qii,g

(
∂ ln Qii,g

∂ ln P̃ji,k

)
Yi

− ψi,gPii,gQii,g

 ∂ ln Pii,g(..., Qii,g)

∂ ln Qii,g

(
∂ ln Qii,g

∂ ln P̃ji,k

)
Yi

+ ∑
` 6=i

∑
s

(
∂ ln Pin,g

∂ ln Q`i,s

)
Pi ,Yi

(
∂ ln Q`i,s

∂ ln P̃ji,k

)
Yi

 ,

(B.10)

where ψi,g ≡
(

1− αi,g
γg−1

γg

)
and in the second line we set

(
∂ ln Qin,g

∂ ln P̃ji,k

)
Yi

= 0 for n 6= i. To simplify

the above equation, we use Marshallian elasticities to denote how demand quantities react to a
change in consumer price P̃ji,k ∈ P̃i. In particular,(

∂ ln Qni,g

∂ ln P̃ji,k

)
Yi

=
∂ lnDni,g(Yi, P̃i)

∂ ln P̃ji,k
≡ ε

(ji,k)
ni,g , (B.11)

where ε
(ji,k)
ni,g is the price elasticity of demand. To characterize the change in producer prices we

invoke the free-entry condition and refer to the definitions and derivations in Appendix A.6.
In particular, the partial derivative of producer prices in Equation (B.10) can be represented as
follows:

∑n

[
Pin,gQin,g

(
∂ ln Pin,g
∂ ln Qii,g

)
Pi ,Yi

(
∂ ln Qii,g

∂ ln P̃ji,k

)
Yi

]
= − rii,g

γg
Pii,gQi,gε

(ji,k)
ii,g , Producer price of home i;

∑g ∑n 6=i

[
Pni,gQni,g

(
∂ ln Pni,g
∂ ln Qji,k

)
Pi ,Yi

]
+ ∑g

[
Pii,gQi,g

(
∂ ln Pii,g
∂ ln Qji,k

)
Pi ,Yi

]
= ωji,kPji,kQji,k, Producer price of foreign n 6= i.

(B.12)
where Pii,gQi,g = ∑n Pin,gQin,g denotes origin i–industry g’s total sales and rii,g = Pii,gQii,g/ ∑n Pin,gQin,g
denotes the sales share associated with variety ii, g. The first line in the above equation, follows
from (i) the free-entry condition, and (ii) the fact that all consumer prices associated with pro-
duction in origin i are fully pinned down by the policy vector Pi.48 The second line follows from
our previous definition for the general equilibrium export supply elasticity, ωji,k, which was for-
mally presented in Appendix A.6. Recall that ωji,k can itself be fully characterized in terms of
Marshallian demand elasticities and expenditure/revenue shares.

48 This explains the difference between the derivatives for producer price of home i, Pii,g, and of foreign n 6= i, Pnn,g. The
case of n 6= i is more involved because prices charged by n 6= i for itself and any third country ` 6= i, P̃n`,g = Pn`,g,
is not a policy choice of country i’s government, and so, we must track its change in general equilibrium—see
Appendix A.6 for more details.

17



Replacing the partial derivative expressions (B.11) and (B.12) back into Equation (B.10) yields49

∂Ti(Pi ,Qi)
∂Qi

·
(

∂Qi(Pi ,Yi)
∂ ln P̃ji,k

)
Yi

= ∑n 6=i ∑g

[
P̃ni,gQni,g

(
1− (ωni,g + 1) Pni,g

P̃ni,g

)
ε
(ji,k)
ni,g

]
−∑g

[
Pii,gQi,g(1− αi,g

γg−1
γg

)
(
− rii,g

γg

)
ε
(ji,k)
ii,g

]
+ ∑g

[
P̃ii,gQii,g

(
1− (1− αi,g

γg−1
γg

)
Pii,g

P̃ii,g

)
ε
(ji,k)
ii,g

]
,

(B.13)
Next, we characterize the partial derivative of emission levels w.r.t. P̃ji,k ∈ Pi. Before moving
forward, note from Equation (2) that αi,k is exclusively a function of (1− ai,k), Hence, the value of
αi,k remains unchanged in response to a choice of P̃ji,k given that αi,k is pined down by ai,k = Pi,k.
Recalling that ∆i (Z(Pi, Yi)) = ∑n,g δni,gZn,g(Pi; Yi), we obtain

∂(∆i(Z(Pi ,Qi)))
∂ ln Qi

(
∂Qi(Pi ,Yi)

∂ ln P̃ji,k

)
Yi

= ∑g ∑n

[
δni,g

∂Zn,g(...;Qn,g)
∂ ln Qn,g

∂ ln Qn,g(Qn1,g,...,QnN,g)
∂ ln Qni,g

(
∂ ln Qni,g

∂ ln P̃ji,k

)
Yi

]
= ∑g ∑n

[
δni,gvn,gPni,gQni,g(

γg−1
γg

)ε
(ji,k)
ni,g

] (B.14)

where the second line follows from the fact that (i) ∂Zn,g(...;Qj,g)
∂ ln Qn,g

=
γg−1

γg
Zn,g, (ii) ∂ ln Qn,g(Qn1,k ,...,QnN,k)

∂ ln Qni,g
=

rni,g ≡ Pni,gQni,g/(Pnn,gQn,g) , and (iii) vn,g ≡ Zn,g/Pnn,gQn,g, which is defined to denote CO2
emissions per unit value of output.

Now we can plug Equations (B.13) and (B.14) back into Equation (B.7). Recall that Equation
(B.7) describes the necessary conditions for optimality w.r.t. P̃ji,k ∈ Pi. Doing so delivers the
following expression, which is essentially the simplified first-order condition w.r.t. P̃ji,k ∈ Pi:

∑
g

[
Ψii,geii,gε

(ii,k)
ii,g

]
+ ∑

n 6=i
∑
g

[
Ψni,geni,gε

(ji,k)
ni,g

]
= 0, for all {ji, k}j,k (B.15)

where eni,g ≡ P̃ni,gQni,g/Yi denotes gross expenditure shares and Ψii,g and Ψni,g are composite
terms defines as follows:

Ψii,g ≡ 1−
(

γg − 1
γg

) [
(1− αi,g

γg − 1
γg

) + δ̃ii,gvi,g

]
Pii,g

P̃ii,g
for all {i, g}g (B.16)

Ψni,g ≡ 1−
(
(1 + ωni,g) +

γg − 1
γg

δ̃ni,gvn,g

)
Pni,g

P̃ni,g
, for all {ni, g}n 6=i,g (B.17)

To be clear, δ̃ni,g ≡ P̃iδni,g denotes the CPI-adjusted disutility for carbon. The trivial solution to the
system of equations characterized by Equation (B.15) ensures that

Ψii,g = Ψni,g = 0, for all n 6= i, g

As noted earlier Appendix B.3 proves that this trivial solution is the unique solution to the system
of Equations (B.15) . From Ψii,g = Ψni,g = 0 for all n 6= i and all g, we can can immediately derive
the following formulas for optimal import taxes and production subsidies:

1 + t?ni,g =
P̃?

ni,g
Pni,g

= 1 + ωni,g + δ̃ni,gvn,g
γg−1

γg

1 + s?i,g =
P?

ii,g

P̃?
ii,g

=
γg

γg−1

. (B.18)

B.2.2 Spelling out the Welfare Neutrality of Income Effects

Before characterizing the optimal abatement levels and export subsidies, let us elucidate the result
about the welfare neutrality of income effects. Recall that third line of the original F.O.C. (namely,

49 To be clear about notation, the second line in Equation B.13 uses Pii,gQi,g = ∑n Pin,gQin,g to denote industry-wide
sales.
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Equation (B.5)) represents general equilibrium income effects. Suppose we included this line
when solving the first-order condition w.r.t. P̃ji,k. Then, we would arrive at the following system
of N × K equations:

∑g

[
Ψii,geii,gε

(ii,k)
ii,g + ∑n 6=i Ψni,geni,gε

(ji,k)
ni,g

]
+
[
∑g Ψi,geii,gηii,g + ∑n 6=i ∑g Ψni,geni,gηni,g

]
d ln Yi

d ln P̃ji,k
= 0, for all {ji, k}j,k

(B.19)

where ηni,g ≡
(

∂ ln Qnig
∂ ln Yi

)
Pi

=
∂ lnDni,g(Yi ,P̃i)

∂ ln Yi
is the income elasticity of demand. The second line in

Equation (B.15) corresponds to the same equation presented in its compact form under Equation
(B.8). We could equivalently express the system characterized by Equation B.19 in matrix notation
as

ΨiẼ
(ji,k)
i + ΨiΓ̃i

(
d ln Yi

d ln P̃ji,k

)
= 0, for all {ji, k}j,k

where Ψi is a NK × 1 column vector, whereas Ẽ(ji,k)
i and Γ̃i are 1× NK row vectors consisting of

expenditure-adjusted demand elasticities:

Ψi ≡
[

Ψ1i,1 ... ΨNi,1 Ψ1i,2 ... ΨNi,2 ... Ψ1i,K ... ΨNi,K
]

;

Ẽ(ji,k)
i ≡

[
e1i,1ε

(ji,k)
1i,1 · · · e1i,Kε

(ji,k)
1i,K e2i,1ε

(ji,k)
2i,1 · · · e2i,Kε

(ji,k)
2i,K ... eNi,1ε

(ji,k)
Ni,1 · · · eNi,Kε

(ji,k)
Ni,K

]T
;

Γ̃i ≡
[

e1i,1η1i,1 · · · e1i,Kη1i,K e2i,1η2i,1 · · · e2i,Kε2i,K ... eNi,1ηNi,1 · · · eNi,KηNi,K
]T .

Our result about the neutrality of income effects can be seen most clearly by inspecting the above
equation. The trivial, unique solution to the system ensures that Ψi = 0NK×1. Hence, the general
equilibrium income effect (i.e., the second term in the above equation, ΨiΓ̃i) has to be equal to
zero. Again, this result follows from setting Ψi = 0NK×1, which means that import tariffs and
production subsidies are set to their optimum values, as characterized by Equation (B.18).

B.2.3 F.O.C.s for Abatement: ai

Next, we characterize and simplify the first-order condition w.r.t. (1− ai,k) ∈ Pi to characterize
optimal abatement, a?i,k. To this end, we appeal the general characterization of the first-order
conditions under Equation (B.5), and set P = ai,k. The third line of Equation (B.5) equals zero
given our earlier result about the neutrality of income effects (which holds if P̃i ≡ {P̃ii, P̃ji}j 6=i is
chosen optimally). In addition, the second line of Equation (B.5) is trivially zero, because holding
national income, Yi = wiLi + Ti, and Pi − {ai,k} fixed, demand quantities are invariant to the
choice of abatement. Namely,

∂Qni,g(Pi, Yi)

∂ ln(1− ai,k)
= 0, for all n, g

Consequently, what all remains is the task of unpacking the first line in Equation (B.5). Since all
instruments except for ai,k (i.e., Pi − {ai,k}) are held fixed, the choice of abatement has no direct
effect on the indirect utility from consumption, Vi,(

∂Vi(.)
∂ ln(1− ai,k)

)
Yi

= 0.
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The choice of abatement, however, affects the indirect utility from consumption through its effect
on tax revenues. In particular,

∂Ti(Pi ,Qi)
∂ ln(1−ai,k)

= −∑N
j=1

(
(1− αi,k

γk−1
γk

)Pij,kQij,k
∂ ln Pii,k(Pi ,Qi)

∂ ln(1−ai,k)

)
+ ∑N

j=1

(
αi,k

γk−1
γk

Pij,kQij,k
∂ ln αi,k(Pi ,Qi)

∂ ln(1−ai,k)

)
= −∑N

j=1

[
(1− αi,k

γk−1
γk

) 1
ς (

1−γk
γk

) + γk−1
γk

1−ς
ς (1− αi,k)

]
Pij,kQij,k

= αi,k

(
γk−1

γk

) (
1

ςγk
+ 1

αi,k
− 1
)

Pii,kQi,k

where the second line uses ∂ ln Pii,k(Pi ,Qi)
∂ ln(1−ai,k)

= 1
ς (

1−γk
γk

) according to Equation 3 and ∂ ln αi,k(Pi ,Qi)
∂ ln(1−ai,k)

=

− 1−ς
ς

1−αi,k
αi,k

according to Equation 2. In the third line, Pii,kQi,k = ∑N
j=1 Pij,kQij,k total sales associated

with origin i–industry k.
Lastly, the choice of abatement affects local carbon emissions and the corresponding disutility

from carbon, ∆i (Z(Pi, Qi)) = ∑n ∑i
[
δni,gZn,g(Pi, Qi)

]
. These effects are described by the follow-

ing partial derivative:
∂∆i (Z(Pi, Qi))

∂ ln(1− ai,k)
=

(
1

ςγk
+

1
αi,k
− 1
)

δii,kZi,k.

Next, we plug the expressions for ∂Ti(.)
∂ ln(1−ai,k)

and ∂∆i(Z(.))
∂ ln(1−ai,k)

back into Equation (B.5) for the case
where P = (1− ai,k). In this process we not that the third line in Equation (B.5) equals zero when
the remaining elements of Pi are chosen optimally. This step yields the following optimality
condition w.r.t. abatement:

αi,k

(
γk − 1

γk

)(
1

ςγk
+

1
αi,k
− 1
)

Pii,kQi,k − P̃i

(
1

ςγk
+

1
αi,k
− 1
)

δii,kZi,k = 0 (B.20)

⇒
αi,k

(
γk−1

γk

)
δ̃ii,k

− Zi,k

Pii,kQi,k
= 0

In the above expression, δ̃ii,k = P̃iδii,k denotes the CPI-adjusted disutility per unit of CO2 emissions
and vi,k ≡

Zi,k
Pii,kQi,k

denotes carbon intensity (i.e., CO2 emissions per unit value). Firm-level cost-
minimization implies the following relationship between carbon intensity and carbon taxes: νi,k =
γk−1

γk

αi,k
τi,k

. Appealing to this relationship, the last line in the above equation delivers the following
formula for country i’s unilaterally optimal carbon taxes:

τ?
i,k = δ̃ii,k. (B.21)

B.2.4 F.O.C.s for Exported Prices: {P̃ij}j 6=i

Finally, we characterize and simplify the first-order condition w.r.t. P̃ij,k ∈ Pi to characterize opti-
mal vector of export prices to destination j, P̃?

ij. To this end, we appeal the general characterization
of the first-order conditions under Equation (B.5), and set P = Pij,k for all j 6= i and all k. Follow-
ing our earlier result about the neutrality of income effects, we can set the third line of Equation
(B.5) to zero (given that P̃i ≡ {P̃ii, P̃ji}j 6=i is chosen optimally). The direct effect of P̃ij,k on the
indirect utility from consumption is also zero in Equation (B.5). That is because consumer prices
in a foreign location j 6= i do not directly enter the indirect utility function, Vi(Yi, P̃i):

P̃ij,k /∈ P̃i =⇒
(

∂Vi(Yi, P̃i)

∂ ln P̃ij,k

)
Yi

= 0
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Given the above observations, we can organize the remaining terms in Equation (B.5) to arrive at
the following expression for optimality w.r.t. P̃ij,k:

∂Ti(Pi, Qi)

∂ ln P̃ij,k
+

∂Ti(Pi, Qi)

∂Qi

∂Qi(Pi, Yi)

∂ ln P̃ij,k︸ ︷︷ ︸
∂Ti(Pi ,Yi)
∂ ln P̃ij,k

−P̃i

[
∂∆i (Z(Pi, Qi))

∂ ln P̃ij,k
+

∂∆i (Z(Pi, Qi))

∂Qi
· ∂Qi(Pi, Yi)

∂ ln P̃ij,k

]
︸ ︷︷ ︸

∂∆i(Z(Pi ,Yi))
∂ ln P̃ij,k

= 0
(B.22)

We now unpack the non-zero terms in Equation (B.22), starting with the partial derivative of tax
revenues. The mechanical effect of export prices on tax revenues, holding demand quantities
fixed, is proportional to export quantity of the taxed variety. Specifically given that P̃ij,k ∈ Pi,

∂Ti(Pi, Qi)

∂ ln P̃ij,k
= P̃ij,kQij,k. (B.23)

The next step is to characterize the behavioral and general equilibrium effects of P̃ij,k on tax rev-
enues. These former tracks the change in demand quantities in response to a change in export
price P̃ij,k, holding income levels fixed. Taking a partial derivative from the tax revenue function
(B.9) and noting that P̃ij,k ∈ Pi, we obtain,

∂Ti(Pi, Qi)

∂Qi
· ∂Qi(Pi, Yi)

∂ ln P̃ij,k
= ∑

n 6=i
∑
g

−Pni,gQni,g ∑
`

∑
s

( ∂ ln Pni,g

∂ ln Q`j,s

)
Pi ,Yi

(
∂ ln Q`j,s

∂ ln P̃ij,k

)
Yi


+ ∑

g

−ψi,gPii,gQii,g

 ∂ ln Pii,g(..., Qij,g)

∂ ln Qij,g

(
∂ ln Qii,g

∂ ln P̃ji,k

)
Yi

+ ∑
` 6=i

∑
s

(
∂ ln Pii,g

∂ ln Q`j,s

)
Pi ,Yi

(
∂ ln Q`j,s

∂ ln P̃ij,k

)
Yi


+∑

g

[P̃ij,g − ψi,gPij,g

]
Qij,g

(
∂ ln Qij,g

∂ ln P̃ij,k

)
Yi

− ∑
n 6=i

ψi,gPin,gQin,g

 ∂ ln Pin,g(..., Qij,g)

∂ ln Qij,g

(
∂ ln Qij,g

∂ ln P̃ij,k

)
Yi

+ ∑
` 6=i

∑
s

(
∂ ln Pin,g

∂ ln Q`j,s

)
Pi ,Yi

(
∂ ln Q`j,s

∂ ln P̃ij,k

)
Yi

 ,

(B.24)

where ψi,g ≡
(

1− αi,g
γg−1

γg

)
. Let us briefly elaborate on the derivation: Noticing that j 6= i is

a foreign destination, a change in prices in that destination has no direct effect on the demand
schedule in market i: (1)

(
∂ ln Qii,g

∂ ln P̃ij,k

)
Yi

=
(

∂ ln Qni,g

∂ ln P̃ij,k

)
Yi

= 0, and (2)
(

∂ ln Qin,g

∂ ln P̃ij,k

)
Yi

= 0 for n 6= j. As

before, we characterize the change in producer prices by invoking the free-entry condition and
referring to the definitions and derivations in Appendix A.6. In particular, the partial derivative
of producers in Equation (B.24) can be represented as follows:

∑n

[
Pin,gQin,g

(
∂ ln Pin,g
∂ ln Qij,g

)
Pi ,Yi

(
∂ ln Qij,g

∂ ln P̃ij,k

)
Yi

]
= − rij,g

γg
Pii,gQi,gε

(ij,k)
ij,g , Producer price of home i;

∑g ∑n 6=i

[
Pni,gQni,g

(
∂ ln Pni,g
∂ ln Qij,k

)
Pi ,Yi

]
+ ∑g

[
Pii,gQi,g

(
∂ ln Pii,g
∂ ln Qij,k

)
Pi ,Yi

]
= ωji,kPij,kQij,k, Producer price of foreign n 6= i.

where, as before, Pii,gQi,g = ∑n Pin,gQin,g denotes origin i–industry g’s total sales and rij,g denotes
the sales share associated with variety ij, g. To repeat ourselves, the first line in the above equation
follows from (1) the free-entry condition, and (2) the fact that all consumer prices associated with
production in origin i are fully pinned down by the policy vector Pi.50 The second line follows
from our definition for the general equilibrium export supply elasticity (ωji,g) in Appendix ?? and

50 This explains the difference between the derivatives for producer price of home i, Pii,g, and of foreign n 6= i, Pnn,g. The
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the fact that Pni,gQni,g

(
∂ ln Pni,g
∂ ln Qnj,k

)
Pi ,Yi

= Pnj,gQnj,g

(
∂ ln Pni,g
∂ ln Qni,k

)
Pi ,Yi

.51

Plugging the above expressions for partial derivatives into Equation B.24 and noting that(
∂ ln Qij,g

∂ ln P̃ij,k

)
Yi

= ε
(ij,k)
ij,g , simplifies Equation B.24 as follows:

∂Ti(Pi ,Qi)
∂Qi

· ∂Qi(Pi ,Yi)
∂ ln P̃ij,k

= P̃ij,kQij,k + ∑g

[(
P̃ij,g − (1− αi,g

γg−1
γg

)Pij,g

)
Qij,gε

(ij,k)
ij,g

]
−∑g

[
−(1− αi,g

γg−1
γg

)
rij,g
γg

ε
(ij,k)
ij,g ∑n

(
Pin,gQin,g

)]
−∑n 6=i ∑g

[
Pni,gQni,gωnj,gε

(ij,k)
nj,g

]
Replacing for rij,g ×∑n

(
Pin,gQin,g

)
= Pij,gQij,g in the first line and combining the sums in the first

and second lines further simplifies Equation B.24 as

∂Ti(Pi ,Qi)
∂Qi

· ∂Qi(Pi ,Yi)
∂ ln P̃ij,k

= P̃ij,kQij,k + ∑g

[(
P̃ij,g − (1− αi,g

γg−1
γg

)
γg−1

γg
Pij,g

)
Qij,gε

(ij,k)
ij,g

]
−∑n 6=i ∑g

(
Pnj,gQnj,gωni,gε

(ij,k)
nj,g

)
(B.25)

We now turn to the second line of Equation (B.22) that tracks the effect of a change in ex-
port price, P̃ij,k, on the disutility from global CO2 emissions, Z. To characterize these effects, we
use (B.9) that specifies CO2 emissions as a function of (Pi, Yi). Taking partial derivatives from
Z(Pi, Yi) w.r.t. P̃ij,k ∈ Pi delivers

∂∆i(Z(Pi ;Yi))
∂ ln P̃ij,k

=
∂∆i (Z(Pi, Qi))

∂ ln P̃ij,k︸ ︷︷ ︸
=0

+ ∂∆i(Z(Pi ,Qi))
∂Qi

· ∂Qi(Pi ,Yi)
∂ ln P̃ij,k

= ∑n,g

[
δni,g

∂Zn,g(...,Qn,g)
∂ ln Qnj,g

∂ ln Qn,g(Qn1,g,...,QnN,g)
∂ ln Qnj,g

(
∂ ln Qnj,g

∂ ln P̃ij,k

)
Yi

]
= ∑n ∑g

[
δni,gvn,g

γg−1
γg

Pnj,gQnj,gε
(ij,k)
nj,g

]
,

(B.26)

where the last line follows from (1) ∂Zn,g(...;Qj,g)
∂ ln Qn,g

=
γg−1

γg
Zn,g, (2) ∂ ln Qn,g(Qn1,k ,...,QnN,k)

∂ ln Qnj,g
= Pnj,gQnj,g/(Pnn,gQn,g)

, and (3) vn,g ≡ Zn,g/Pnn,gQn,g. Plugging Equation (B.25) and the last line in Equation (B.26) back
into (B.22), and dividing everything by P̃ij,kQij,k delivers a simplified expression for the first-order
condition w.r.t. P̃ij,k:

1+ ∑g

[(
1−

(
1− αi,g

γg−1
γg

+ δ̃ii,gvi,g

)
γg−1

γg

Pij,g

P̃ij,g

)
eij,g
eij,k

ε
(ij,k)
ij,g

]
−∑n 6=i ∑g

[(
ωni,g + δ̃ni,gvn,g

γg−1
γg

)
Pnj,g

P̃nj,g

enj,g
eij,k

ε
(ij,k)
nj,g

]
= 0

(B.27)

As before, δ̃ni,g ≡ P̃i × δni,g denotes the CPI-adjusted disutility from CO2 emissions and enj,g ≡
(P̃nj,gQnj,g)/Yj denotes the gross expenditure share on variety nj, g. Following Equations (B.18)
and (B.21), when import taxes, production subsidies, and carbon taxes are set optimally, we can
simplify Equation B.27 by setting ωni,g + δ̃ni,gvn,g

γg−1
γg

= t?ni,g, and δ̃ii,gvi,g(τ
?
i,g)− αi,g

γg−1
γg

= 0. To
recover the optimal export subsidy formula from Equation B.27, we guess the following formula-

case of n 6= i is more involved because prices charged by n 6= i for itself and any third country ` 6= i, P̃n`,g = Pn`,g,
is not a policy choice of country i’s government, and so, we must track its change in general equilibrium—see
Appendix ?? for more details.

51 More specifically, this relationship can be derived as follows:

Pni,gQni,g

(
∂ ln Pni,g
∂ ln Qnj,k

)
Pi ,Yi

= Pni,gQni,g

(
∂ ln Pnn,g
∂ ln Qn,g

)
Yi

∂ ln Qn,g(Qn1,g ,...,QnN,g)
∂ ln Qnj,g

= rnj,kPni,gQni,g

(
∂ ln Pnn,g
∂ ln Qn,g

)
Yi

= rni,kPnj,gQnj,g

(
∂ ln Pnn,g
∂ ln Qn,g

)
Yi
= Pnj,gQnj,g

(
∂ ln Pnn,g
∂ ln Qn,g

)
Yi

∂ ln Qn,g(Qn1,g ,...,QnN,g)
∂ ln Qni,g

= Pnj,gQnj,g

(
∂ ln Pni,g
∂ ln Qni,k

)
Pi ,Yi

.
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tion which features a composite shifter, χij.g:

(1 + xij,g) ≡
Pij,g

P̃ij,g

Pii,g

P̃ii,g
=

γg

γg − 1
Pij,g

P̃ij,g
=

(
1 +

1
ε ij,g

)
χij,g (B.28)

To be clear about the notation, ε ij,k ∼ ε
(ij,k)
ij,k denotes the own the price elasticity of demand. Our

objective is to determine χij,g so that the above formula satisfies the first-order condition described
by Equation B.27. Plugging the above guess back into the Equation B.27 yields the following
equation in terms of Xij,k:

1 + ∑
g

1− χij,k
1 + ε

(ij,k)
ij,k

ε
(ij,k)
ij,k

 eij,gε
(ij,k)
ij,g

eij,k

−∑
n 6=i

∑
g

t?ni,g

enj,gε
(ij,k)
nj,g

eij,k

 = 0; [P̃ij,k]

To simplify the above equation, we net out the zero-sum terms using Cournot aggregation,1 +

∑g

[
eij,g
eij,k

ε
(ij,k)
ij,g

]
= −∑n 6=i ∑g

[
enj,g
eij,k

ε
(ij,k)
nj,g

]
, and divide everything by 1 + ε ij,k. This step simplifies the

above equation as follows:

−∑
g

χij,k
eij,g

eij,k

ε
(ij,k)
ij,g

ε
(ij,k)
ij,k

−∑
n 6=i

∑
g

 (1 + t?ni,g)enj,gε
(ij,k)
nj,g

eij,k

(
1 + ε

(ij,k)
ij,k

)
 = 0.

Noting that
(

1 + ε
(ij,k)
ij,k

)
eij,k = −∑n 6=i ∑g enj,gε

(ij,k)
nj,g , we can re-write the above equation in matrix

notation as 
eij,1
eij,1

ε
(ij,1)
ij,1

ε
(ij,1)
ij,1

... eij,K
eij,1

ε
(ij,1)
ij,K

ε
(ij,1)
ij,1

...
. . .

...
eij,1
eij,K

ε
(ij,K)
ij,1

ε
(ij,K)
ij,K

... eij,K
eij,K

ε
(ij,K)
ij,K

ε
(ij,K)
ij,K


︸ ︷︷ ︸

Eij

χij,1
...

χij,K

 =


1 +

∑n 6=i ∑g t?ni,genj,gε
(ij,1)
nj,g

∑n 6=i ∑g enj,gε
(ij,1)
nj,g

...

1 +
∑n 6=i ∑g t?ni,genj,gε

(ij,K)
nj,g

∑n 6=i ∑g enj,gε
(ij,K)
nj,g

 .

Since | eij,kε
(ij,k)
ij,k | −∑k 6=j eij,gε

(ij,k)
ij,g = eij,k + ∑n 6=i ∑g eij,gε

(ij,k)
nj,g > 0, then Eij =

[
eij,gε

(ij,k)
ij,g

eij,kε
(ij,k)
ij,k

]
k,g

is strict

diagonally dominant. Hence, given the Lèvy-Desplanques Theorem, Eij is invertible (Horn and
Johnson (2012)) and the above system recovers χij as

χij =

 eij,gε
(ij,k)
ij,g

eij,kε
(ij,k)
ij,k

−1

k,g

1K +

∑n 6=i t?ni,genj,gε
(ij,k)
nj,g

∑n 6=i ∑g enj,gε
(ij,k)
nj,g


k

 . (B.29)

Putting together Equations (B.18), (B.21), and (B.28), with χij,k (which is given by Equation
(B.29)), country i’s unilaterally optimal policy schedule can be summarized as

1 + s?i,k =
γk

γk−1 ; τ?
i,k = δ̃ii,k

1 + t?ji,k = (1 + ωji,k) + δ̃ji,k

(
γk−1

γk

)
vj,k

1 + x?ij,k =
(

1 + 1
εij,k

)
χij,k

. (B.30)
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B.3 Uniqueness of Solution to the F.O.C.s

The first-order conditions w.r.t. P̃ji,k and P̃ii,k (second line in Lemma 4) are inter-dependent. These
condition, however, regulate optimal consumer-to-producer price ratios in market i, i.e., P̃?

ji,g/Pji,g,
and do not show up in the first-order conditions w.r.t. export prices, P̃ij,k. Setting τ?

i,k = δ̃ii,k,
the interdependent first-order conditions w.r.t. P̃ji,k and P̃ii,k amount to NK equations and NK
unknowns, which are summarized by the following matrix equation:


e1i,1ε

(1i,1)
1i,1 · · · eNi,ε

(1i,1)
Ni,1 · · · e1i,Kε

(1i,1)
1i,K · · · eNi,Kε

(1i,1)
Ni,K

...
. . . . . . . . .

...
e1i,1ε

(Ni,K)
1i,1 · · · eNi,ε

(Ni,K)
Ni,1 · · · e1i,Kε

(Ni,K)
1i,K · · · eNi,Kε

(Ni,K)
Ni,K





P̃?
1i,k

P1i,1
−
(

1 + ω1i,k + δ̃1i,kv1,k
γk−1

γk

)
...

P̃?
ii,k

Pii,k
− γk−1

γk
...

P̃?
Ni,k

PNi,k
−
(

1 + ωNi,k + δ̃Ni,kvN,k
γk−1

γk

)


= 0.

(B.31)
The first matrix is NK × NK and the second is NK × 1. Inverting the above matrix equation
identifies the optimal tariff, 1 + t?ji,k = P̃?

ji,k/Pji,k, and production subsidy, 1 + s?i,k = Pii,k/P̃?
ii,k

independent from the choice of export subsidies (or Pij,k/P̃?
ij,k). To perform this step, we first

prove that the system of equations specified by (B.31) is invertible.

Lemma 6. The square matrix, Ξ =
[
eji,kε

(ni,g)
ji,k

]
ng,jk

, is non-singular, with | det(Ξ) |> ∏n,k eni,k > 0

The proof of this lemma can be put as follows. Following Proposition 2.E.2 in Mas-Colell et al.
(1995) the Walrasian demand function satisfies eji,k =| eji,kε

(ji,k)
ji,k | −∑n,g 6=j,k | eni,gε

(ji,k)
ni,g |. Because

there exists a ji, k such that eji,k > 0, the matrix Ξ is strictly diagonally dominant. The Lèvy-
Desplanques Theorem (Horn and Johnson (2012)), therefore, ensures that Ξ is non-singular. The
lower bound on det(Ξ) follows trivially from Gerschgorin’s circle theorem. Specifically, following
Ostrowski (1952),

| det (Ξ) |≥∏
j

∏
k

(
| eji,kε

(ji,k)
ji,k | − ∑

n,g 6=j,k
| eni,gε

(ji,k)
ni,g |

)
= ∏

j
∏

k
eji,k > 0.

Given Lemma 6, the trivial solution to Equation B.31, which we presented by Equation (B.18),
must be the unique solution.

C Proofs and Derivations for Second-best Policies

In this appendix, we analyze unilaterally optimal policy choices under second-best scenarios
where the government is unable to use a subset of policy instruments in Pi. To fix ideas, we
formally define our notation of second-best.

Definition. The Unilaterally Second-best Policy for country i is achieved by choosing a subset of
policy instruments in Pi to maximize carbon-adjusted welfare, Wi (equation 14), subject to equi-
librium conditions (1)-(8).

We consider three cases: (1) Carbon taxes are unavailable, (2) Export subsidies are unavail-
able, (3) All policy instruments but carbon taxes are unavailable. For the sake of exposition, this
appendix focuses on the special case where abatement technologies have a Cobb-Douglas speci-
fication. Namely, we assume a unitary elasticity of substitution between labor and carbon inputs,
i.e., ς = 1. Under this assumption, the carbon cost share, αi,k, is constant and can be interpreted as
the CO2 emission elasticity. Without loss of generality, we also assume that αi,k = αk is common
across origins.
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C.1 The government is unable to use carbon taxes

As the emission elasticity approaches zero, i.e., αk → 0, our model collapses to a model with ex-
ogenous emission intensity à la Markusen (1975). As such, carbon taxes are redundant and can
be dropped from the model as firms do not undertake abatement. In this case, the optimal pro-
duction subsidy will include the markup-correcting term γk

γk−1 plus an extra term that subsidizes
low-carbon-intensive (low-v) industries. Namely,

1 + s??i,k =
γk

γk − 1
(
1 + δ̃ii,kvi,k

)−1

As before, the carbon-reducing term depends on γk−1
γk

because there are scale economies in abate-
ment. For instance, it may be optimal to subsidize a high-returns-to-scale industry that exhibits
a high carbon intensity. That is because subsidizing such an industry may lower CO2emission
through scale effects, dominating the relocation effects that promote high-carbon-intensive firms.

Alternatively, maintaining the assumption that αk ∈ (0, 1), we could examine second-best
production subsidies in cases where the government is not afforded the ability to directly tax
carbon. Suppose vi,k is the emission intensity under some carbon tax that is different from the
unilaterally optimal. This might be either because emission is unabated, or quite the opposite,
because home country has set its carbon tax in line with international agreements at a higher
level compared to the unilaterally first best. In either case, production taxes must correct emission
externalities that are too little or too much from the unilateral point of view:

1 + s??i,k =
γk

γk − 1
[
1 + δ̃ii,k(vi,k − v?i,k)

]−1 ,

where v?k is the first-best carbon intensity attainable under the unilaterally optimal policy. Con-
sider a country that emits a unilaterally sub-optimal amount of carbon, i.e., vi,k < v?i,k. This sce-
nario would occur if the country is abiding by international climate agreements. It is optimal in
that case to offer additional subsidies to possibly carbon-intensive industries to promote domestic
production.

C.2 The government is unable to use export subsidies

In this case, the optimal carbon tax remains uniform and follows the same rule as in the first-best
case. Derivations for this case are similar to those resulting in Theorem 2. There is, however,
one key difference between this second-best case and the first-best. When export subsidies are
restricted, Lemma 2 no longer holds. That is, wage effects are no longer welfare neutral. Instead,
even when P̃i is chosen optimally, country i can improve its terms-of-trade by inflating wi relative
to w−i. The resulting optimal tax schedule internalizes these gains by featuring an additional
tariff shifter, t̄i, that is uniform and strictly positive. In particular,

1 + t?ji,k = (1 + t̄i)(1 + ωji,k) + δ̃ji,kvj,k
γk−1

γk
∀j, k

1 + s?i,k =
γk

γk−1 ∀k
τ?

i,k = τ?
i = δ̃ii,k ∀k

(C.1)

More formally, t̄i ≡
(

∂ ln(wi Li+Ti)
∂ ln wi

)
P̂i ,Y

/(
∂Bi

∂ ln wi

)
P̂i ,Y

where Bi ≡ ∑k ∑j 6=i

[
Pji,kQji,k − 1

1+si,k
Pij,kQij,k

]
denotes country i’s balanced trade condition and P̂i ≡ Pi−{P̃ij,k}j 6=i,k is the second-best policy set
that excludes export subsidies. Intuitively, t̄i is zero under the first-best policy schedule—because
when export subsidies are available, they can more-than-replicate the gains from shifting tariffs
by t̄i > 0.
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C.3 Carbon taxes are used as protection in disguise

Suppose the government is banned from using all tax instruments apart from carbon taxes. In
that case, optimal carbon taxes are no longer uniform. It is instead optimal for country i to apply
a higher carbon tax on industries where it possesses more export market power—using carbon
taxes as protection in disguise. To make this point succinctly, consider a simplified version of our
baseline model with the following set of assumptions:

1. Preferences are given by the Cobb-Douglas-CES specification under equation (25);

2. Country i is a small open economy with δ−ii,k = 0 ; and

3. All industries are perfectly competitive, i.e., γk → ∞ and f̄i,k = 0 for all i and k.

Below, we present an implicit formula for optimal carbon taxes, which indicates that (when the
government is banned from using trade policy measures) it is optimal to tax carbon above the
first-best level in low-σ industries.

Proposition 1. Suppose the government in i is unable to apply any tax instruments apart from carbon
taxes. The unilaterally optimal carbon tax in this second-best scenario is given by

τ∗i,k =

(
α(1− σk) (1− λii,krii,k) + 1

α̃i(1− σk) (1− λii,krii,k) + rii,k

)
δ̃ii, (C.2)

where α̃i > α is a country-wide term that depends on the industry-composition of country i’s production.

Proof. We can express global vector of CO2emissions in terms of Z(Y, P̃) ≡ Z(D(Y, P̃)) where
D(Y, P̃) ≡

{
Djn,k(Yn, P̃n)

}
j,n,k denotes the global vector of Marshallian demand functions. Ap-

pealing to this choice of notation, the first-order condition w.r.t. 1− ai,k can be expressed as,(
∂Vi(Yi, P̃i)

∂Yi
− ∂∆i(Z(Y, P̃))

∂Yi

)(
∂Yi

∂ ln(1− ai,k)

)
w
+

(
∂Vi(.)
∂ ln P̃i

− ∂∆i(Z(Y, P̃))
∂ ln P̃i

)
·
(

∂ ln P̃i

∂ ln(1− ai,k)

)
w

+

(
∂Vi(.)
∂ ln w

− ∂∆i(Z)
∂w

)
· d ln w

d ln(1− ai,k)
= 0,

(C.3)

where ∆i(Z) ≡ ∑n,k (δniZn,k) and Yi = wiLi + ∑k [αi,kPii,kQi,k]. Under constant returns to scale,(
∂ ln Pin,k

∂ ln(1−ai,k)

)
w

= −1. Also, noting that Zi,k = vi,kPii,kQi,k and δ−ii = 0, we can write the partial
derivative of CO2emissions w.r.t. abatement as follows

∂∆i(Z(.))
∂ ln P̃i

·
(

∂ ln P̃i

∂ ln(1− ai,k)

)
w
+

∂∆i(Z(.))
∂Yi

(
∂Yi

∂ ln(1− ai,k)

)
w

=− δii,kvi,k ∑
n

[
Pin,kQij,kε

(in,k)
in,k

]
+

(
1

αi,k
− 1
)

δii,kvi,kPii,kQi,k + δii,kvi,kPii,kQii,k

(
∂Yi

∂ ln(1− ai,k)

)
w

.

Following Appendix ??, we can set d ln w−i
d ln(1−ai,k)

≈ 0 by choice of numeriare—noting that the approx-
imation holds exactly in the two-country case. General equilibrium wage effects relating to wi
can be characterized by applying the Implicit Function Theorem to the balanced trade condition,
Bi(ai, wi; w̄−i) = ∑j 6=i ∑g

(
Pji,g(w̄j)Qji,g(ai, wi; w̄−i)− Pij,g(ai, wi)Qij,g(ai, wi; w̄−i)

)
. This applica-

tion yields the following:

d ln wi
d ln(1− ai,k)

= −
(

∑
j 6=i

[
Pji,kQji,kε

(ii,k)
ji,k − Pij,kQij,k

(
1 + ε

(ij,k)
ij,k

)]
+ ∑

j 6=i
∑
g

(
Pji,gQji,g

) ( ∂Yi
∂ ln(1− ai,k)

)
w

)(
∂Bi

∂ ln wi

)−1
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Plugging the above two expressions back into Equation C.3, invoking Roy’s identity ( ∂Vi
∂P̃ni,k

=

− ∂Vi
∂Yi

Qni,k), and recalling that Yi = wiLi + ∑k αi,kPii,kQi,k, yields the following equation that de-
scribes the first-order condition w.r.t. ai,k,

Pii,kQii,k − αi,k ∑
j

[
Pij,kQij,k

(
1 + ε

(ij,k)
ij,k

)]
+ δ̃iivi,k ∑

j

[
Pij,kQij,kε

(ij,k)
ij,k

]
−
(

1
αk
− 1
)

δ̃ii,kvi,kPii,kQi,k −∑
g

([
αi,g − δ̃ii,gvi,g

]
Pii,gQii,g

) ( ∂ ln Yi

∂ ln(1− ai,k)

)
w

− ∆̄i

[
∑
j 6=i

[
Pji,kQji,kεii

ji,k − Pij,kQij,k
(
1 + ε ij,k

)]
+ ∑

j 6=i
∑
g

(
Pji,gQji,g

) ( ∂ ln Yi

∂ ln(1− ai,k)

)
w

]
= 0,

(C.4)

where δ̃ii,k = P̃iδii,k denotes the CPI-adjusted disutility from carbon and ∆̄i ≡ ∂(Vi−∆i(Z))/∂ ln wi
∂Bi(a,wi ;w̄−i)/∂ ln wi

is
a uniform term without an industry subscript. Dividing Equation C.4 by total sales from origin
i, Ri,k = ∑n Pin,kQin,k, and defining Ei,k ≡ ∑j

[
rij,k

(
1 + ε

(ij,k)
ij,k

)]
= −εk (1− rii,kλii,k) allows us to

express the above equation in more compact form as follows,

rii,k − αi,kEi,k + αk
δ̃ii

τi,k
(Ei,k − 1)− (1− αi,k)

δ̃ii,k

τi,k

+∑
g

(
αi,g

[
1− δ̃ii

τi,g

]
rii,gri,g

)(
∂ ln Yi

∂ ln(1− ai,k)

)
w

r−1
i,k − ∆̄i

[
Ei,k + (1− λii)

(
∂ ln Yi

∂ ln(1− ai,k)

)
w

r−1
i,k

]
= 0.

(C.5)

Next, we need to characterize
(

∂Yi
∂ ln(1−ai,k)

)
w

.To this end, we apply the Implicit Function Theorem

to Yi = wiLi + ∑k [αi,kPii,kQi,k], treating w as given. In this process we also note that ηin,k = 1
given our parametric assumption with regards to preferences. Performing this step delivers the
following expression for the partial derivative of income w.r.t. abatement,(

∂Yi

∂ ln(1− ai,k)

)
w
=
−αi,k ∑j

[
Pij,kQij,k

(
1 + ε ij,k

)]
Yi −∑g αi,gηii,gPii,gQii,g

=
−αi,kEi,k

1− ᾱiλii
ri,k.

where ᾱi = ∑k αi,kri,k is the weighted average carbon elasticity associated with economy i. Plug-
ging the above equation back into the first-order condition characterized by Equation C.5 yields
the following implicit formula for second-best carbon taxes:

δ̃ii,k

τi,k
− 1 =

(α̃i,k − αi,k)Ei,k + 1− rii,k

αi,kEi,k − 1
=⇒ τi,k =

(
αikEi,k − 1

α̃i,kEi,k − rii,k

)
δ̃ii,k,

where α̃i,k is a composite term that is defined as follows relative to αi,k:

α̃i,k − αi,k ≡ ∆̄i

[
1− αi,k

1− ᾱiλii

]
− αi,k

1− ᾱiλii
∑
g

(
αi,g

[
1−

δ̃ii,g

τi,g

]
rii,gri,g

)
.

To finalize the proof, we need to characterize ∆̄i, which will in turn deliver a more specific char-
acterization of α̃i,k. For this purpose , we appeal to the definition, ∆̄i ≡ ∂(Vi−∆i(Z))/∂ ln wi

∂Bi(a,wi ;w̄−i)/∂ ln wi
, which
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implies that

∆̄i =
(1− ᾱi)− λii + ∑k

([
αi,kEi,k − αk

δ̃ii,k
τi,k

(Ei,k − 1)
]

ri,k

)
+ ∑k ([αi,k − δii,kvi,k] rii,kri,k)

(
∂Yi

∂ ln wi

)
ai

(1− λii)
(

∂Yi
∂ ln wi

)
ai
−∑k [Ei,kri,k]

We can replace for αkEi,k − αi,k
δ̃ii
τi,k

(Ei,k − 1) from the F.O.C. (Equation C.5), which implies

∆̄i =

(1− ᾱi)− λii + ∑g

([
rii,g −

(
1− αi,g

) δ̃ii,g
τi,g

]
ri,g

)
+ ∑g

(
αi,g

[
1− δ̃ii,g

τi,g

]
rii,gri,g

) [(
∂Yi

∂ ln wi

)
ai
+ ∑g

(
∂ ln Yi

∂ ln(1−ai,g)

)
w

]
(1− λii)

[(
∂Yi

∂ ln wi

)
ai
+ ∑k

(
∂Yi

∂ ln(1−ai,k)

)
w

]

=
∑g

[
(1− αi,g)

(
1− δ̃ii,g

τi,g

)
ri,g

]
+ ∑g

(
αi,g

[
1− δ̃ii,g

τi,g

]
rii,gri,g

) [(
∂Yi

∂ ln wi

)
ai
+ ∑g

(
∂ ln Yi

∂ ln(1−ai,g)

)
w

]
(1− λii)

[(
∂Yi

∂ ln wi

)
ai
+ ∑k

(
∂Yi

∂ ln(1−ai,k)

)
w

]
(C.6)

Considering the updated expression for ∆̄i we can reapply the Implicit Function Theorem to Yi =

wiLi + ∑k (αi,kPii,kQi,k) to characterize the term
(

∂Yi
∂ ln wi

)
ai
+ ∑g

(
∂ ln Yi

∂ ln(1−ai,g)

)
w

in the numerator and

denominator. In particular,(
∂Yi

∂ ln wi

)
ai

+∑
g

(
∂ ln Yi

∂ ln(1− ai,g)

)
w
=

1−∑k (αi,kri,k) + ∑k (αi,kEiri,k)

1− ᾱiλii
−∑

k

αi,kEiri,k

1− ᾱiiλii
=

1− ᾱi

1− ᾱiiλii
.

Plugging the above expression back into Equation C.6 and assuming that αi,k = α for all k, yields
the following equation that implicitly determines 1−α

1−αλii
∆̄i:

(1− λii)
1− α

1− αλii
∆̄i = (1− α)∑

g

[(
1− δ̃ii

τi,g

)
ri,g

]
+

1− α

1− αλii
∑
g

(
α

[
1− δ̃ii

τi,g

]
rii,gri,g

)
,

Finally, plugging the expression for 1−α
1−αλii

∆̄i implied by the above equation back into our earlier
expression for α̃i,k − α, updates the expression as follows:

α̃i,k − α =

[
(1− α)∑

g

[(
1− δ̃ii

τi,g

)
ri,g

]
+ α ∑

g

([
1− δ̃ii

τi,g

]
rii,gri,g

)]
(1− λii)

−1

= ∑
[(

1− δ̃ii

τi,k

)
1− α(1− rii,g)

1− λii
ri,g

]
= −∑

g

[(
(α̃i,g − α)Ei,g + 1− rii,g

αEi,g − 1

)
1− α(1− rii,g)

(1− λii)
ri,g

]
.

The above system implies that α̃i,k = α̃i is uniform, provided that the emission elasticity αi,k = α ,
is also uniform. Capitalizing on this observation and replacing Ei,g = −εg

(
1− rii,gλii,g

)
, we can

obtain the following expression for α̃i in terms of α, which asserts that α̃i > α:

α̃i − α =
∑g

[
1−rii,g

εk(1−rii,gλii,g)+1
1−α(1−rii,g)

(1−λii)
ri,g

]
∑g

[(
1 +

εg(1−rii,gλii,g)
εg(1−rii,gλii,g)+1

1−α(1−rii,g)

(1−λii)

)
ri,g

] > 0
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D Proofs and Derivations for Cooperative Border and Production Taxes

D.1 Globally Optimal Carbon Border Taxes

We first solve for globally optimal carbon border taxes in the perfectly competitive case (γk → ∞)
where the market equilibrium is globally efficient barring climate externalities. To present the
optimal policy problem, we formulate all equilibrium variables as a function of global tariffs,
t,global wages, w, and global income levels, Y, following the logic discussed in Section 3.1 and
Appendix A.2. When working with this formulation of equilibrium variables, note that w and
Y are implicit functions of t. Accordingly, (t; w, Y) is feasible if w and Y satisfy the labor market
clearing and balanced budget conditions given t. In line with our earlier choice of notation, we let
E denote the set of feasible policy–wage–income combinations that satisfy the general equilibrium
constraints. Under this notation, carbon-adjusted welfare in country i can be expressed as

Wi(t; w, Y) = Vi(wiLi + Ti(t; w, Y), P̃i(t; w))− ∆i(Z(t; w, Y)).

Globally optimum carbon border taxes solve the following problem, wherein a central planner
chooses t to maximize global welfare subject to feasibility:

t? = arg max
t

N

∑
i=1

Wi (t; w, Y) s.t. (t; w, Y) ∈ E (P)

Similar to the unilaterally optimal policy problem, we can simplify Problem (P) by capitalizing on
a set of intermediate envelope results. First, we can appeal to a version of the Lerner symmetry
to show that wage effects are welfare neutral. To present this result, it is easiest to temporarily
switch notation and express welfare in terms of feasible tariff–wage combinations, (t, w) ∈ Ew.
Here, Ew is defined with the same logic as the discussed earlier: (t, w) ∈ Ew if w satisfies the
labor market clearing conditions given t. Let tji and tij respectively denote the tariffs collected
and paid by country i. Relatedly, let t−i ≡ t −

{
tji, tij

}
denote all tariff variables unrelated to

economy i. Appealing to the Lerner symmetry (and noting our temporary switch of notation) we
can conclude that for any a ∈ R+,{

(tji, tij, t−i; wi, w−i) ∈ Ew =⇒ (atji, tij/a, t−i; awi, w−i) ∈ Ew

Wn(tji, tij, t−i; wi, w−i) = Wn(atji, tij/a, t−i; awi, w−i) ∀n
.

The above result immediately indicates that any possible welfare gains from changing w, can be
perfectly mimicked with an appropriate adjustment to the global tariff vector t. Hence, any gains
that channel through wage effects will be already internalized by the optimal choice t∗:

∂W(t∗; w∗)
∂w

= 0.

Second, since the planner has access to lump-sum international income transfers, it effectively
has full control over Y. That is, conditional on the optimum choice of transfers, income effects are
welfare neutral:

∂W(t∗; w∗, Y∗)
∂Y

= 0.

Before using these two envelope results, it is useful to reformulate Problem (P) into a problem
where the central planner chooses prices rather than tariffs. Note that—by assumption—the cen-
tral planner cannot apply domestic subsidies but has full discretion vis-à-vis tariffs. That is to
say, the central planner can set all consumer prices associated with goods that cross international
borders—namely,

{
P̃−nn

}
n∈C

where P̃−nn ≡ P̃n − P̃nn. Using this correspondence, we can refor-
mulate all equilibrium variables as function of

{
P̃−nn

}
n, and the vector of wages, w, and income
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levels, Y. After the reformulation, welfare in country i can be expressed as follows:

Wi (t; w, Y) ∼Wi(
{

P̃−nn
}

n ; w, Y) ≡ Vi(wiLi +Ti(
{

P̃−nn
}

n ; w, Y), P̃−ii, P̃ii(wi))−∆i(Z(
{

P̃−nn
}

n ; w, Y)).

Appealing to the above formulation and the previously-discussed envelope conditions, we can
recast Problem (P) as one where global welfare is maximized by directly choosing the “consumer”
price of all traded goods, treating w and Y as fixed vectors.

Lemma 7. Problem (P) can be reformulated as one where a central planer chooses the “consumer” price
of traded varieties while treating w as if it were constant and treating the import demand schedule as if it
were invariant toY. To put it formally, the reformulated optimal policy problem can be expressed as

max
{P̃−ii}i

N

∑
i=1

Wi
({

P̃−nn
}

n ; w, Y
)

(P′),

The solution to which determines the globally optimal carbon border tariffs as the optimal wedge between
consumer and producer prices:

1 + t?ji,k = P̃?
ji,k/Pji,k ∀ji, k 6= ii, k.

Next, we derive the necessary F.O.C.s for optimality w.r.t. each price instrument. Using the
notation introduced for partial derivatives in Section A of the main appendix (under Notation A),
we can express the F.O.C. w.r.t. to P̃ji,k as

N

∑
n=1

(
∂Wn

∂ ln P̃ji,k

)
w,Y

=
∂Vi(.)

∂ ln P̃ji,k
+

N

∑
n=1

[
P̃n

(
∂Tn

∂ ln P̃ji,k

)
w,Y

− δi ·
(

∂Z
∂ ln P̃ji,k

)
w,Y

]
= 0. (D.1)

Capitalizing the same technique presented earlier, we can write the above F.O.C. in terms of Mar-
shallian demand elasticities as follows:

∑
g

∑
n

[
αn,gPni,gQni,gε

(ji,k)
ni,g

]
+ ∑

g
∑
n 6=i

[
(P̃ni,g − Pni,g)Qni,gε

(ji,k)
ni,g

]
−∑

`
∑
n

∑
g

[
δ̃n`νn,gPni,gQni,gε

(ji,k)
ni,g

]
=

∑
g

∑
n 6=i

[(
P̃ni,g − [1 + δ̃−nνn,g]Pni,g

)
Qni,gε

(ji,k)
ni,g

]
− δ̃−i ∑

g

[
νi,gPii,gQii,gε

(ji,k)
ii,g

]
= 0,

(D.2)

where the second line derives from the following equilibrium relationship and definition for δ̃−i:

∑
g

αn,gPni,gQni,g = ∑
g

δ̃nνn,gPni,gQni,g; δ̃−i ≡∑
n

[
δ̃n
]
− δ̃i.

The F.O.C. described by the last line in Equation D.2 describes a system of equations, which can
be expressed as a matrix equation—similar to we did in our baseline optimal policy problem. Be-
fore transitioning into matrix notation, it is useful to simplify Equation D.2 using some primitive
properties of Marshallian demand functions. First, supposing preferences are homothetic, we can
appeal to a corollary of the Slutsky equation—namely, P̃ni,gQni,gε

(ji,k)
ni,g = P̃ji,kQji,kε

(ni,g)
ji,k —to simplify

Equation D.2 as:

∑
g

∑
n 6=i

[(
1− [1 + δ̃−nνn,g]

Pni,g

P̃ni,g

)
ε
(ni,g)
ji,k

]
− δ̃−i ∑

g

[
νi,gε

(ii,g)
ji,k

]
= 0. (D.3)

Since demand is homogeneous of degree zero, we can show that ∑n 6=i ∑g ε
(ni,g)
ji,k = −∑g ε

(ii,g)
ji,k .
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Using this property, the first-order condition w.r.t. P̃ji,k (described by Equation D.3) reduces to

∑
g

∑
n 6=i

[
Pni,g

P̃ni,g
[1 + δ̃−nνn,g]ε

(ni,g)
ji,k

]
= ∑

g

[
[1 + δ̃−iνi,g]ε

(ii,g)
ji,k

]
. (D.4)

We can write the system of F.O.C.s specified by the above equation in matrix algebra and solve for

the l N(K − 1)× 1 vector of optima import price wedges T∗−ii =

[
Pji,k

P̃∗ji,k

]
jk

. In particular, Equation

D.4 is analogous to the following matrix equation:

T∗−ii =
(

Ẽ(−ii)
−ii

)−1
Ẽ(ii)
−ii1K,

where1 is a K× 1 column vector of ones; and Ẽ(−ii)
−ii and Ẽ(ii)

−ii are respectively (N− 1)K×N(K− 1)
and N(K− 1)× K matrixes of CO2-adjusted demand elasticities:

Ẽ(−ii)
−ii ≡

[(
1 + δ̃−nνn,g

)
ε
(ni,g)
ji,k

]
jk,ng

; Ẽ(ii)
−ii ≡

[(
1 + δ̃−iνi,g

)
ε
(ii,g)
ji,k

]
jk,g

.

As in the baseline optimal policy problem, the optimal price wedges identified by T∗−ii fully de-

termine the optimal tariff w.r.t. to each traded goods as 1 + t∗ji,k =
P̃∗ji,k
Pji,k

. Finally, note that the

invertibility of Ẽ(−ii)
−ii can be established using the same logic presented under Lemma 5.

Cobb-Douglas-CES Preferences. We can derive simple formulas for globally optimal carbon
border taxes in the special case where preferences have a Cobb-Douglas-CES specification (see
Section 3.3 for details about this specification). In that case, Marshallian demand elasticities as-
sume the following formulations:

ε
ni,g
ji,k = 0 if g 6= k; ε

(ni,k)
ji,k = (σk − 1)λni,k if n 6= j; ε

(ji,k)
ji,k = −1− (σk − 1)(1− λji,k).

Plugging these elasticity values back into Equation D.4, delivers the following first-order condi-
tion w.r.t. the price of good ji, k:

∑
n 6=i

[
Pni,k

P̃ni,k
[1 + δ̃−nνn,k]

[
(σk − 1) λni,k − 1n=j (1 + (σk − 1))

]]
= [1 + δ̃−iνi,k] (σk − 1) λii,k

One immediately observe from the above equation that the first-order condition w.r.t. to the price
of good ji, k has no index specific to ji, k. Capitalizing on this observation, we define Tni,k ≡
Pni,g

P̃ni,g
[1 + δ̃−nνn,g] and rewrite the above equation as

∑
n 6=i

[
Tni,k

[
(σk − 1) λni,k − 1n=j (1 + (σk − 1))

]]
= [1 + δ̃−iνi,k] (σk − 1) λii,k.

Since the above equation is independent of ji, k, the optimal price vector should yields a Tni,k
that is independent of j and uniform across all export partners—i.e., T ∗ji,k = T ∗i,k. Invoking this
observation about uniformity, it is straightforward to solve for T ∗i,k, which yields the following
formula for the globally optimal carbon border tariff on good ji, k:

1 + t∗ji,k =
P̃∗ji,k
Pji,k

=
1 + (σk − 1)λii,k

1 + [1 + φ̃−iνi,k] (σk − 1)λii,k

(
1 + φ̃−jνj,k

)
.
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D.2 Globally Optimal Production Taxes

Globally optimal carbon border taxes are limited by their inability to tax domestic transactions.
This is a serious limitation since most CO2emissions are associated with goods that never cross
international borders. Cooperative can overcome this limitation by applying global optimal pro-
duction taxes. The optimal policy problem, in that case, choose the entire vector of consumer
prices not just those that cross international borders:

max
{P̃n}n

N

∑
i=1

Wi
({

P̃n
}

n ; w, Y
)

(P′′).

We can repeat the steps presented above to derive an analytical solution for the above problem.
Without repeating all the derivation details, the optimal production subsidy to goods associated
with origin i–industry k is given by

1 + s∗i,k =
Pin,k

P̃∗in,k
=

1
1 + φ̃−ivi,k

.

The above tax schedule differs from the optimal border tax in two ways. First, it applies to all
goods and services including those that are produced and sold within-national borders. Second, it
does not feature the correction for cross-demand effects. The reason is that all goods can be taxed,
so there is no need for taxes to internalize cross-substitution between taxable and non-taxable
goods. Later, in Appendix F, we show that globally optimal production taxes are significantly
more effective at cutting global CO2 emissions that pure carbon border taxes.

D.3 Border Adjustments Intended to Level the Playing Field

Carbon border adjustments can be used to level the playing field for firms subjected to high car-
bon taxes in climate conscious countries. Suppose country i applies its a carbon tax rate in ex-
cess of its unilaterally. The high carbon tax prompts abatement by local firms, which raises their
marginal cost and puts them at a competitive disadvantage against foreign firms. The level the
playing field for individual domestic industries, the government in i can offer the following bor-
der tax adjustment:

1 + t∗ji,k =
(
1− a∗i,k

) 1−γk
ςγk ; 1 + xij,k =

(
1− a∗i,k

) γk−1
ςγk ,

where a∗i,k is the abatement choice implied by the globally optimum tax rate. The efficacy of the
above policy is limited by a possible misalignment between firm-level profits and national-level
welfare. Specifically, under a set of plausible assumptions, the above tariff and export subsidy
schedule may very well worsen the national-level terms of trade. So, it appears to be motivated
primarily by political economy rather than welfarist considerations.

E Data and Calibration

Expenditures, Revenues, and CO2 Emissions. Given information on expenditure, CO2 emis-
sion, and applied tariffs

{
P̃ji,kQji,k, Zi,k, tji,k

}
ji,k, and the estimated structural parameters, {γk, σk, αi,k}i,k,

we construct the baseline data, Bv ≡ {λji,k, ei,k, rji,k, ρj,k, vi,k, wi L̄i, Yi}ji,k, needed to implement our
quantitative analysis. Values for CO2 emission intensities, vi,k, are calculated as follows

vi,k =
Zi,k

∑15
n=1

1
1+tin,k

P̃in,kQin,k
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where by structure, tii,k = 0. Total national expenditure Yi and expenditure share variables, λji,k,
and ei,k can be recovered from variety-level expenditure and tariff data as follows:

Yi =
15

∑
j=1

19

∑
k=1

P̃ji,kQji,k, λji,k =
P̃ji,kQji,k

∑15
n=1 P̃ni,kQni,k

, ei,k =
∑15

n=1 P̃ni,kQni,k

Yi
.

Finally, the national wage bill, wi L̄i, industry-level labor shares, ρi,k, and revenue shares, rji,k,
can be constructed as follows, given variety-level expenditure and tariff data and the estimated
structural parameters:

wi L̄i =
15

∑
j=1

19

∑
k=1

[(
1− αi,k

γk − 1
γk

)
1

1 + tij,k
P̃ij,kQij,k

]
;

ρi,k =
∑15

j=1

(
1− αi,k

γk−1
γk

)
P̃ij,kQij,k
1+tij,k

wi L̄i
; rji,k =

1
1+tin,k

P̃in,kQin,k

∑ 1
1+tin,k

P̃in,kQin,k
.

Environmentally-related Taxes. We have collected environmentally-related tax data from EU-
ROSTAT and OECD-PINE. Both of these data report environmentally-related taxes based on the
same definition making them compatible in order for us to merge them. Specifically, in both
data sets, environmentally-related taxes consist of taxes on energy, pollution, transports, and re-
sources. The data from EUROSTAT cover only European countries, reported for every industry
and also for the category of household consumption. The data from OECD-PINE cover more than
a hundred countries, reported at the level of countries, meaning that in these data we observe
neither disaggregated industry-level records nor the distinction between firms and households.
We call these environmentally-related taxes as emission taxes.

We face two issues in mapping our model to these data. First, our model allows emission
taxes only on production while in the data, a portion of them are paid by households. Second, we
do not observe these taxes by industry disaggregation in non-European countries. We continue
to explain how we re-calibrate the data to make our model quantification consistent with the
accounting of taxes and emissions.

For a generic variable x, let xi,k be that variable in country-industry ik, and xi be the country-
level aggregate. In addition, let xP be that variable from production side, and xH from house-
hold consumption side, amounting to x = xP + xH. Specifically, we have: TE

i,k = τi,kZi,k, where
TE

i,k refers to emission tax paid by country-industry ik, Zi,k measures tonnes of CO2 emission in
country-industry ik, and τi,k is the associated tax rate. First, we explain how we scale the data
from production side to make them consistent with the national accounting of taxes and emis-
sions. For European countries, we directly observe these variables by industry disaggregation,
but for household consumption, we only observe variables at the country level. Starting with
CO2 emissions, let cZ

i be an adjustment scalar that brings emission data into country-level aggre-
gates. This adjustment requires: Zi,k = cZ

i ZP
i,k where cZ

i ≡
Zi
ZP

i
. Similarly, let cτ

i be an adjustment to

bring emission tax data into country-level aggregate: τi,k = cτ
i τP

i,k where cτ
i ≡

TE
i

∑k τP
i,kZi,k

. With these

two adjustments, for every country we re-scale the emission and tax data from the production
side to make their aggregates equal to the observed levels in the entire economy.

Next, we explain our data construction regarding that we do not observe environmentally-
related taxes by industry disaggregation in non-European countries. For country i, we observe
from OECD-PINE the emission taxes collected as percentage of GDP. From here, we calculate total
emission taxes TE

i in country i. We observe these taxes by industry disaggregation, TE
i,k, only for

the EU. For non-European countries, we make the assumption that τi,k/τi,k0 = τEU,k/τEU,k0 —that
is, the relative emission tax rate of industry k to that of a reference industry is the same between
the EU and that in other countries. For a non-EU country i, the accounting of taxes and emissions
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require that: TE
i = ∑k τi,kZi,k, which then implies TE

i,k =
τEU,kZi,k

∑k τEU,kZi,k
TE

i . Using this proportionality
assumption, we construct industry-level emission taxes for non-European countries in a way that
is consistent with their total emission taxes which we observe in OECD-PINE data.

Emission Disutility Parameters. Our calibration of countries’ perceived CPI-adjusted disutil-
ity from emissions is based on two assumptions: (a) unilaterally optimal domestic emission tax
equals the currently-applied energy tax in a country; (b) the globally optimal CO2 tax equals
world’s disutility from CO2 emissions,{

TE
i = ∑k(φ̃i,k + φ̃i)Zi,k (a)

SCC = ∑i φ̃i (b)
. (E.1)

We let φ̃i be proportional to country i’s share of world GDP adjusted for differences in energy tax
rates across countries. Specifically, we recover relative values of φ̃i across countries, by making
two assumptions: (i) If every individual person cares equally about global warming, the aggre-
gate care of a larger country will be proportionally larger. To reflect the importance of size, it is
more plausible to denote the damage from climate change as a percentage of countries’ real GDP.
This means that, φi

φj
∝ Yi/P̃i

Yj/P̃j
, which is equivalent to φ̃i

φ̃j
∝ Yi

Yj
. (ii) We then acknowledge that coun-

tries do not care equally about carbon taxes. We take a stand that countries’ care about climate
change is reflected in their current policy toward the environmental damage of burning fossil
fuels. As such, we make the assumption that country i relative to j’s care about climate change

is proportional to their observed emission taxes per tonne of CO2, which means: φ̃i
φ̃j

∝ (TE
i /Zi)(

TE
j /Zj

) .

Putting these two assumptions together, we can specify φ̃i as

φ̃i = h̄yi(TE
i /Zi), yi ≡ Yi/YW .

Equation (42)-b requires that if countries could act cooperatively, they would target the social cost
of carbon with their domestic CO2 taxes, ∑i φ̃i = SCC. This pins down scalar h̄ in the above
equation, h̄ = SCC

∑i yi(TE
i /Zi)

, and delivers φ̃i as

φ̃i =
yiTE

i /Zi

∑i yi(TE
i /Zi)

SCC.

Using equation (42)-a, we can then calibrate the local adjustment to carbon taxes, φ̃i,k, by attribut-
ing the difference between observed emission taxes and the calibrated φ̃i to the local component
of emission taxes,φ̃i,k, TE

i = ∑k(φ̃i + φ̃i,k)Zi,k ⇒ ∑k φ̃i,kZi,k = TE
i − φ̃iZi. Notice that, φ̃i,k ≡ φ̃0

i ζ̄i,k
where we observe ζ̄i,k in the data as the amount of local pollutants generated in country-industry
i, k (for every one tonne of CO2). Putting together, this delivers φ̃i,k as

φ̃i,k =
ζi,k(1− hi)TE

i

∑k ζi,kZi,k
, hi =

yiSCC
∑i yi(Ti/Zi)

.

F Additional Quantitative Exercises

F.1 Globally Optimal Carbon Border Taxes

In this appendix, we quantify the CO2 reduction and welfare gains associated with cooperative
carbon border taxes (see Section 4.2). These consequences are then compared to those of coopera-
tive production and carbon taxes. This comparison illuminates the reasons behind the inefficacy
of border taxes at cutting CO2 emissions.
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Following Section 4.2, the change in tariffs when transitioning from the applied rate to the
globally optimal carbon border tax rate is described by:

1̂ + tji,k =

(
1 + (σk − 1)λ̂ii,kλii,k

) (
1 + tji,k

)−1

1 +
[
1 + ∑n 6=i

[
φ̃nP̂n

]
ν̂i,kνi,k

]
(σk − 1)λ̂ii,kλii,k

(
1 + ∑

n 6=j

[
φ̃nP̂n

]
ν̂j,kνj,k

)
.

Solving the above equation alongside equilibrium conditions 32-37, determines the change to
equilibrium variablesR ≡ {Rv,Rt} as a function of baseline data and parametersB ≡ {Bv,Bt,Bφ,Be}.
In this process we are assuming away changes in export subsidies and production taxes, i.e.,
̂1 + xij,k = 1̂ + si,k = 1, and setting carbon taxes to their unilaterally optimal level.

The first two columns in Table A.1 report the CO2 reduction and welfare effects implied by
globally optimal (or cooperative) carbon border taxes. The adoption of cooperative carbon border
taxes by all countries can cut global CO2 emissions by 0.3% and raise global welfare by a mere
0.03%. Clearly, cooperative carbon border taxes prevent the substantive welfare loss implied
by non-cooperative border taxes. However, they deliver a smaller reduction in CO2 emissions
compared to the non-cooperative border taxes (Table 3). There is a simple intuition behind this
contrast. Cooperative carbon border taxes cut CO2 emissions purely through composition effects.
Noncooperative border taxes, on the other hand, cut CO2 emissions through both composition
and scale effects. The latter effect results from a sever shrinkage of global output under the non-
cooperative Nash equilibrium.

Table A.1: Cooperative border taxes vs. other cooperative tax instruments

Cooperative Taxes (CRS)
Carbon Border Tax Production Tax Carbon Tax

Country ∆CO2e ∆W ∆CO2e ∆W ∆CO2e ∆W

AUS 0.9% 0.14% -6.2% 0.19% -47.3% 0.46%
EU 1.0% 0.19% 0.0% 0.37% -9.2% 1.62%
BRA -0.1% 0.00% -6.9% -0.01% -69.1% -0.31%
CAN 0.1% 0.00% -2.0% 0.05% -46.4% 0.23%
CHN -0.5% -0.06% -9.2% -0.12% -68.8% -0.44%
IDN -0.7% -0.04% -6.7% -0.07% -66.5% -0.48%
IND -1.5% -0.17% -15.3% -0.36% -75.6% -0.98%
JPN 0.3% 0.16% -1.2% 0.32% -22.5% 1.34%
KOR -2.3% 0.11% -8.5% 0.17% -45.6% 0.26%
MEX -0.3% -0.09% -5.3% -0.12% -78.8% -0.28%
RUS -0.6% -0.43% -10.9% -0.58% -80.4% -0.72%
TUR 0.2% 0.11% -2.6% 0.23% -39.5% 0.15%
TWN -4.9% 0.33% -16.6% 0.33% -59.1% 0.18%
USA -0.1% 0.07% -7.1% 0.10% -47.9% 0.28%
RoW -0.6% -0.23% -6.0% -0.30% -84.5% -0.34%
Global -0.3% 0.03% -7.0% 0.08% -60.3% 0.47%

In summary, the first two columns in Table A.1 re-establish the inefficacy of carbon border
taxes. The remaining columns clarify why that is the case. As previously argued, carbon taxes lack
efficacy for two reasons: (1) most CO2emissions are produced by industries that are less-tradable,
and (2) carbon border taxes are not granular enough to induce firm-level abatement. The second
two columns in Table A.1 elucidate Reason (1). If cooperative governments are willing to tax
all production–not just traded production—for climate objectives, they can cut CO2 emissions
by 7%. To put it differently, the ability to tax non-traded production yields a more than 20-fold
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increase in efficacy. Carbon taxes are even more effective because they can directly target firm-
level abatement. The last two columns in Table A.1 report the gains from cooperative carbon
taxes, which elucidate Reason (2). Cooperative carbon taxes can cut CO2 emissions by 60%, which
is close to 9-times higher than what is achievable via production taxes.

F.2 Impact of Carbon Border Adjustments Adopted Unilaterally by the EU

Recall from Section 3.2 that unilaterally optimal border taxes exhibit a terms-of-trade-driven com-
ponent and a carbon-reducing component. In this appendix, we attempt to isolate the pure impact
of the carbon-reducing component. Specifically, we consider a counterfactual scenario wherein
the EU adopts its unilaterally optimal policy while other countries remain passive. We contrast
the results from this exercise to a policy scenario in which the EU does not incorporate the car-
bon border tax component in its policy schedule (i.e., by setting δni,k = 0 for i = EU, n 6= EU
while keeping δEU,EU,k at its original value). We report the difference in the equilibrium outcomes
between these two policy scenarios as the effect of the carbon-reducing component of the EU’s
unilaterally optimal trade policy.

We find that the optimal carbon border adjustments to import tariffs and export subsidies
are on average 0.71 and 0.95 percentage points, respectively. These numbers reflect the carbon
content of the EU’s optimal border taxes. Figure A.1 shows the carbon border adjustments as-
sociated with the EU’s optimal import tariffs and export subsidies across non-service industries.
As explained above, these reported values are calculated as the difference between two different
equilibria. Hence, these values differ from a simple calculation of border adjustments at the same
baseline values. This also explains why in a few cases, the border adjustment is slightly negative.
In any event, carbon border adjustments tend to be larger under the constant-returns to scale
assumption.

Before concluding this appendix, we should clarify a basic point about unilaterally optimal
carbon border taxes. These taxes induce a relocation of firms from foreign countries into the
EU, in which case the EU can tax their carbon content more effectively. As a result of these firm
delocation effects, CO2 emissions rise slightly in the EU but decrease elsewhere, prompting a
0.17% reduction in global emissions. This is, however, a modest effect if we take into account that
the EU is the largest region in terms of GDP and has the highest aversion to CO2 emissions in our
sample.
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Figure A.1: Unilaterally Optimal Border Carbon Taxes of the EU

(a) Carbon border taxes (as a part of tariffs)

(b) Carbon border subsidies (as a part of export subsidies)

Notes: This figure shows optimal carbon border adjustments in tariffs and export subsidies set by the EU. Each dot
is an average across trade partners for an industry reported in percentage points. CRS stands for constant returns to
scale, and IRS for increasing returns to scale (as our main specification).
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G Additional Figures and Tables

Additional Figures

Figure A.2: Industry-level Share of Global Emissions vs Trade-to-GDP Ratio

Note: This figure shows the scatter plot of CO2 emission of every industry as a share of total emissions against trade-
to-GDP ratios.
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Figure A.3: Optimal Carbon Border Taxes for the EU

Note: This figure shows for every industry the carbon border taxes adopted optimally and unilaterally by the EU, at
our baseline data and parameter estimates, for three values of SCC.

Figure A.4: Welfare Gains of Staying vs Leaving the Club-of-all-nations - Constant Returns to
Scale

Note: This figure shows for the case of constant-returns-to-scale (CRS), for every country, the percentage change to
welfare of staying in the club-of-all-nations relative to leaving the club-of-all-nations unilaterally.
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Figure A.5: Reduction in CO2 Emissions under Globally Optimal Carbon Taxes

Note: This figure shows the absolute value of percentage change to CO2 emissions under the globally first-best carbon
tax, for all values of carbon demand elasticity between zero and one, and two values of SCC, 31 $/tC and 68 $/tC.

Additional Tables

Table A.2: Countries and their Select Characteristics

Country Share of Share of Carbon Emission CO2 Normalized
World GDP World CO2 Intensity (v̄i) Tax Rate (τ̄i) Disutility (φ̃i) φ̃i

AUS 1.7% 1.4% 100.00 32.51 0.49 40.43
EU 27.2% 12.1% 53.57 80.41 19.12 100.00
BRA 2.4% 2.4% 121.33 13.43 0.28 16.70
CAN 2.0% 1.7% 102.68 20.83 0.37 25.90
CHN 13.6% 23.1% 204.31 6.93 0.82 8.61
IDN 1.0% 1.8% 218.95 8.43 0.07 10.48
IND 2.2% 6.5% 359.48 5.25 0.10 6.53
JPN 8.4% 2.9% 40.99 69.13 5.08 85.97
KOR 1.9% 1.6% 99.68 26.80 0.44 33.33
MEX 1.2% 1.4% 137.31 3.76 0.04 4.67
RUS 2.0% 5.8% 344.11 3.69 0.07 4.59
TUR 1.0% 0.9% 116.09 48.45 0.41 60.25
TWN 0.7% 0.8% 139.84 13.69 0.09 17.03
USA 21.1% 15.3% 87.32 18.18 3.35 22.61
RoW 13.5% 22.1% 197.23 2.21 0.26 2.75

Note: This table shows for every of the 15 regions (13 countries + the EU + the RoW), their share of world GDP, share of
world CO2 emissions, carbon intensity (CO2 emissions per dollar of output) normalized by that of Australia, emission
tax rate (dollar per tonne of CO2), calibrated CPI-adjusted disutility parameter from one tonne of CO2 emission (φ̃i),
and the ratio of φ̃i to country i’s GDP normalized to 100 for the EU. All CO2 measures are CO2 equivalent.
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Table A.3: Non-cooperative and Cooperative Outcomes - Alternative Baseline Equilibrium

Increasing Returns to Scale
Non-Cooperative Global Cooperation

Country ∆CO2 ∆V ∆W ∆CO2 ∆V ∆W

AUS 10.5% 0.5% 0.2% -36.6% 1.8% 2.4%
EU 18.8% 1.8% 1.3% 7.0% 3.1% 4.5%
BRA 21.8% 1.6% 1.5% -62.1% 1.6% 2.0%
CAN 7.6% -1.3% -1.5% -34.8% 2.4% 3.0%
CHN 22.8% 1.6% 1.5% -63.4% 1.3% 1.6%
IDN 23.7% 0.8% 0.7% -57.8% 1.1% 1.5%
IND 25.0% -0.6% -0.7% -70.4% 1.2% 1.6%
JPN 21.7% 2.4% 2.0% -9.5% 3.2% 4.5%
KOR 37.8% 1.6% 1.3% -39.3% 2.7% 3.4%
MEX 19.7% 0.7% 0.7% -75.0% 3.3% 3.4%
RUS 8.6% 1.1% 1.1% -76.7% 3.7% 3.9%
TUR 14.8% 1.7% 1.2% -27.3% 4.4% 5.5%
TWN 67.3% 0.3% -0.0% -57.8% 1.2% 1.7%
USA 16.7% 1.2% 1.0% -40.4% 2.6% 3.1%
RoW 13.3% -2.5% -2.6% -81.5% -1.2% -1.1%
Global 18.6% 0.9% 0.6% -53.4% 2.0% 2.8%

Note: This table shows for every country the change to CO2 emission, real consumption, and welfare from the baseline
to non-cooperative and cooperative equilibrium. The baseline is observed data, which means that the effects of optimal
production taxes, which restore marginal-cost pricing, are also considered.

Table A.4: Non-cooperative and Cooperative Outcomes - CRS

Constant Returns to Scale
Non-Cooperative Global Cooperation

Country ∆CO2 ∆V ∆W ∆CO2 ∆V ∆W

AUS -5.2% -1.8% -1.8% -47.3% -0.4% 0.5%
EU 0.2% -1.0% -1.0% -9.2% -0.0% 1.6%
BRA -5.5% -1.1% -1.1% -69.1% -0.7% -0.3%
CAN -8.7% -4.1% -4.1% -46.4% -0.4% 0.2%
CHN 2.1% -0.9% -0.9% -68.8% -0.8% -0.4%
IDN -2.2% -1.5% -1.5% -66.5% -0.9% -0.5%
IND -0.3% -3.6% -3.6% -75.6% -1.4% -1.0%
JPN 0.7% -1.0% -1.0% -22.5% -0.1% 1.3%
KOR 1.9% -2.9% -2.9% -45.6% -0.5% 0.3%
MEX -1.2% -3.5% -3.5% -78.8% -0.4% -0.3%
RUS -6.7% -4.1% -4.1% -80.4% -1.0% -0.7%
TUR -4.3% -3.5% -3.5% -39.5% -1.1% 0.1%
TWN 9.9% -4.8% -4.9% -59.1% -0.4% 0.2%
USA -0.1% -1.5% -1.5% -47.9% -0.2% 0.3%
RoW -4.7% -2.6% -2.6% -84.5% -0.5% -0.3%
Global -1.3% -1.6% -1.6% -60.3% -0.3% 0.5%

Note: For the case of constant-returns to scale (CRS), this table shows for every country the change to CO2 emission,
real consumption, and welfare from the baseline to non-cooperative and cooperative equilibrium.
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Table A.5: Alternative Specifications and Policy Scenarios for Carbon Border Taxes

∆CO2 ∆CO2 as % of 1st-best ∆V

Main specification -0.62% 1.02% -1.71%
Main specification with SCC=68 $/tC -0.71% 1.01% -1.72%
Main specification with ς = 1 (Cobb-Douglas) -2.07% 2.85% -1.64%
CRS -1.29% 2.16% -1.63%
CRS with SCC=68 $/tC -1.42% 2.04% -1.64%
CRS with ς = 1 (Cobb-Douglas) -2.70% 3.74% -1.64%
No ToT border taxes (base: zero tariffs) -0.87% 1.42% -0.01%
No ToT border taxes (base: applied tariffs) -0.31% 0.51% 0.01%
Cooperative border taxes -0.34% 0.56% 0.03%

Note: This table shows the effects of optimal border taxes (Proposal 1) on emission and consumption under alternative
scenarios/specifications. The columns report the change to CO2 emissions, and that as percentage of the reduction
attainable in the globally first-best outcome, as well as the change to real consumption. The 1st column reproduces
the results of the main specification. The 2nd column reports results of the main specification under SCC of 68 $/tC.
The 3rd column reports results of the main specification under the Cobb-Douglas production function corresponding
to ς = 1. The 4th-6th columns repeat the same exercises for the case of constant-returns-to-scale (CRS). The 7th
and 8th columns report results for the cases in which carbon border taxes exclude terms-of-trade driven components
and include only carbon-reducing components, with the baselines of zero tariffs or currently applied tariffs. The last
column reports results of optimal cooperative border taxes.

Table A.6: Climate Club Game - Successive Dominant Strategies - Constant Returns to Scale

Core Members 1st Round 2nd Round 3rd Round
EU, USA CAN, MEX, ROW AUS, BRA, IND, JPN, KOR, RUS, TUR, TWN CHN, IDN

Table A.7: Climate Club Game, SCC= 31, ς = 0.25

Core Members 1st Round 2nd Round 3rd Round Remain Outside of the Club
EU, USA CAN, ROW AUS, JPN, KOR, RUS, TUR, TWN MEX BRA, IND, CHN, IDN

Table A.8: Climate Club Game, SCC= 31, ς = 0.99

Core Members 1st Round 2nd Round 3rd Round
EU, USA CAN, ROW AUS, IND, JPN, KOR, MEX, RUS, TUR, TWN BRA, CHN, IDN

Table A.9: Climate Club Game, SCC= 68, ς = 0.63

Core Members 1st Round 2nd Round 3rd-5th Round Remain Outside of the Club
EU, USA CAN, ROW AUS, JPN, TWN KOR, MEX, RUS, TUR BRA, IND, CHN, IDN
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