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Abstract

To what extent can trade policy serve as a remedy for environmental pollution? We examine

this question using a multi-country multi-industry general equilibrium trade model with trans-

boundary pollution externalities. Our framework features important margins such as firm-delocation

in response to policy, multilateral carbon leakage, and returns to scale in abatement. Our central

result is a set of simple formulas for unilaterally optimal trade and emission taxes in an open econ-

omy. The optimal policy consists of (i) a uniform emission tax across all industries; (ii) industry-

level production subsidies that restore marginal-cost-pricing independent of the industry’s emis-

sion intensity; (iii) industry-level import taxes that penalize high-emission imports but less so in

high-returns-to-scale industries; and (vi) industry-level export taxes that (in addition to improv-

ing the terms of trade) promote clean exports against high-emission foreign competition. These

formulas reveal a tension between emission reduction and scale economies that limits the efficacy

of trade taxes at correcting transboundary emission. Our formulas parsimoniously map to data,

enabling us to uncover the full potential of trade policy at tackling global emission.

1 Introduction

Despite growing concerns over greenhouse gas emissions, international agreements such as the 1997

KYOTO PROTOCOL and the 2015 PARIS CLIMATE ACCORD have failed to deliver desirable outcomes.

This failure has prompted experts to propose agreements that incentivize global cooperation with a

mixture of environmental taxes and trade policies (Nordhaus (2015)). Relatedly, some experts have

advocated for sub-global agreements wherein a bloc of nations use trade policy to achieve extraterri-

torial environmental objectives.1

1See Copeland et Taylor (2004) for a survey of the literature on trade and environment.
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The basic idea behind these proposals is that governments can tackle cross-border carbon leakage

or penalize non-cooperative governments with trade taxes. Evaluating these proposals is challenging

since it requires a full characterization of each government’s optimal environmental and trade policy

in a multilateral, general equilibrium setting.

Our understanding of optimal trade taxes under environmental concerns is, meanwhile, limited.

On the theoretical side, the literature has analyzed the use of trade taxes for environmental objectives

in partial equilibrium or two-country settings. These analyses typically abstract from product differ-

entiation, abatement decisions, or scale economies, and are difficult to map to data for quantitative

applications (see e.g., Markusen (1975)).2 On the quantitative side, most research has circumvented

the task of computing optimal trade taxes for environmental objectives. Instead, trade taxes have

been chosen sub-optimally based on easy-to-implement criteria. As such, little is known about the

full potential of trade taxes at tackling carbon leakage or enforcing global environmental cooperation.

In this paper, we characterize the unilaterally optimal trade and environmental policy in a multi-

country multi-industry general equilibrium framework that incorporates international trade costs,

product differentiation, endogenous entry, scale economies, and firm-level abatement decisions. We

also characterize the optimal policy under second-best scenarios, in which governments are banned

from using certain policy instruments.

To this goal, we produce an intermediate envelop result that helps us overcome the main challenges

in characterizing optimal policy in general equilibrium. Our result concerns the welfare-neutrality

of general equilibrium wage and income effects at the optimum. This envelope result holds under

general conditions, and can be employed for policy analysis in many alternative setups.

We use our theory to cast light on several unresolved questions: First, to what extent could trade

taxes correct transboundary emission externalities and cross-border pollution leakages? Second, can

trade taxes serve as an effective remedy for the free-riding problem in environmental agreements?

Third, how much can unilateralism achieve relative to global cooperation, insofar as environmental

objectives are concerned?

Our framework exhibits two properties that make it suitable for addressing these questions. First,

our model accommodates endogenous entry and tracks the relocation of firms across space and in-

dustries in response to policy. These responses generate scale economies in both production and

abatement. To put this property in perspective, the prior literature on trade and environmental pol-

2Several papers have advanced the pioneering work of Markusen (1975). See Sections 2 and 3 of Sturm (2003) for a

detailed survey of subsequent works.
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icy has often overlooked issues involving endogenous entry, economies of scale, or firm-delocation.

However, recent evidence suggest that these features are crucial to how firms respond to environ-

mental and trade policy changes (Shapiro et Walker (2018)).3

Second, our theory delivers sufficient statistics formulas for optimal taxes on emission, produc-

tion, and trade, which can be readily mapped to data. This feature simplifies and enriches our quan-

titative analysis in several ways. Above all, our analytic formulas simplify the task of computing

optimal trade taxes under environmental concerns —a task that has often eluded the past literature.

Our analytical characterization of optimal policy delivers the minimum set of elasticities and base-

line data required for quantitative analysis. Invoking this feature, we can uncover the full potential

of trade taxes at delivering environmental objectives, and tractably account for previously-neglected

interactions between firm entry, abatement, and scale economies.

At another level, our theory uncovers a set of new environmental trade-offs that trade taxes

face. Most importantly, we find that endogenous entry creates scale economies in abatement, which

dampen the effectiveness of optimal trade taxes at correcting cross-border carbon leakage. Specifi-

cally, governments may compromise on tackling cross-border carbon leakage by lowering taxes on

dirty imports in order to exploit scale effects in abatement. Furthermore, we find that (absent en-

vironmental concerns) non-cooperative tariffs subsidize high-returns to scale industries. Since high

returns-to-scale industries are also carbon-intensive, our finding highlights a new terms-of-trade-

driven rationale for the environmental bias of trade policy—a bias that has been recently documented

by Shapiro (2020).

Related Literature

Our work is related to several strands of literature. We integrate efforts to characterize optimal poli-

cies in modern trade theories with the literature on trade and environment, in a manner that can be

connected to data for quantitative analyses.

First, we contribute to the theoretical literature on optimal trade and emission taxes in open econ-

omy. A central insight from this literature is that optimal unilateral tariffs include a tax on trans-

boundary emission (e.g., Markusen (1975); Copeland (1996)). For all its merits, this body of literature

has generally relied on partial equilibrium or two-country models that abstract from product dif-

3A special case of our framework is a multi-industry Ricardian model that itself nests Dornbusch et al. (1977) and Eaton

et Kortum (2002). We use this special case to highlight the policy effects derived from non-Ricardian forces such as scale

economies.
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ferentiation, endogenous abatement, or firm-delocation. As a result, the results from this literature

have been rarely used to guide the quantitative analysis of trade and environmental policy. We

complement this literature by characterizing optimal policy in a multi-country general equilibrium

trade model that accommodates several previously-overlooked features of the global economy and

is straightforward to calibrate to data.

Second, our analysis is related to an emerging body of quantitative work that analyzes the ef-

ficacy of trade policy at tackling environmental pollution (e.g., Babiker (2005); Elliott et al. (2010);

Nordhaus (2015); Böhringer et al. (2016)). Despite their rich structure, existing analyses have mostly

quantified the efficacy of easy-to-implement but sub-optimal trade policy initiatives. This approach

allows researchers to circumvent the computational difficulties associated with optimal policy analy-

sis. However, it does not uncover the full potential of trade taxes at tackling environmental pollution.

In comparison, we derive analytic formulas for optimal policy, which help us bypass computational

difficulties, making us able to uncover the full potential of trade taxes at tackling environmental

pollution.

Third, our intermediate envelope result speaks to an emerging literature that studies optimal

policy in modern quantitative trade models (Costinot et al. (2015, 2016); Lashkaripour et Lugovskyy

(2016); Bartelme et al. (2019); Beshkar et Lashkaripour (2020)). These studies have bridged a long-

standing divide between classic partial equilibrium trade policy models and modern general equi-

librium trade theories. This divide is partly driven by classic trade policy models assuming away

general equilibrium wage and income effects. Our envelope result is a step forward in filling this di-

vide. Specifically, it shows that the simplifying assumptions in dealing with wage and income effects

can be relaxed without sacrificing richness of analysis.

Finally, we contribute to the ongoing revival and enhancement of quantitative trade theories.

Over the past two decades, quantitative trade models have been enriched to account for firm-selection,

scale economies, input-output linkages, multinational production, and more (Costinot et Rodríguez-

Clare (2014)). But less attention has been paid to embedding pollution externalities into the state-of-

the-art quantitative trade models (Cherniwchan et al. (2017)). Our conceptual framework and optimal

policy formulas can help bridge this gap. They can enable future analyses of trade liberalization to

formally account for environmental costs and benefits.

This paper is organized as follows: In Section 2 we present our theoretical framework. In Section

3 we present our intermediate envelope result which we use to derive simple formulas for optimal

unilateral policy. In Section 4 we discuss second-best scenarios as well as international cooperative
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or non-cooperative policies. In Section 5 we map our theory with our optimal policy formulas to data

in order to quantify the efficacy of trade policy at tackling environmental pollution.

2 Theoretical Setup

The global economy consists of multiple countries indexed by i, j, n ∈ C and multiple industries

indexed by k, g ∈ K. Each country i is endowed by L̄i units of workers who are perfectly mobile

across industries but immobile across countries.

2.1 Demand

We denote by subscript ji, k the composite variety that corresponds to supplying country j, purchas-

ing country i, industry k. The representative consumer in country i maximizes a non-parametric

utility function Ui(Qi) by choosing the vector of quantities, Qi =
{

Qji,k
}

j∈C,, k∈K
subject to the bud-

get constraint,

Yi = ∑
j

∑
k

P̃ji,kQji,k + D̄i, (1)

where Yi is national income, D̄i is exogenous national debt (trade deficits), and P̃ji,k denotes the con-

sumer price index of composite variety ji, k. The tilde notation on price distinguishes between after-

tax consumer prices (P̃ji,k) and before-tax producer prices (Pji,k). Let P̃i = {P̃ji,k} be the vector of

after-tax consumer prices in country i. The consumer problem implies Vi(Yi, P̃i) as indirect utility

function, and Qji,k = Dji,k(Yi, P̃i) as quantity of demand for variety ji, k. The behavior of the demand

function is characterized by a set of demand elasticities. First, the elasticity of demand for (ji, k)

relative to price of every variety (ni, g),

ε
(ni,g)
ji,k ≡

∂ lnDji,k(Yi, P̃i)

∂ ln P̃ni,g
,

with ε ji,k ≡ ε
(ji,k)
ji,k denoting the own-price elasticity. Second, the elasticity of demand for ji, k relative

to income is:

ηji,k ≡
∂ lnDji,k(Yi, P̃i)

∂ ln Yi
.
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2.2 Supply

Firms and Market Structure. Production in every country-industry j, k takes place by monopolistically

competitive firms indexed by ω ∈ Ωj,k. Firms employ labor for entry and production. A large pool

of ex-ante identical firms can pay entry costs wj f̄ j,k to serve markets with their firm-level variety.

wj is labor wage and f̄ j,k is the labor requirement for entry. Upon entry, every firm ω may devote a

fraction aj,k(ω) ∈ [0, 1] of its labor input to abatement activities, and the rest to production. The choice

of aj,k(ω) is regulated by country-industry specific pollution tax, τj,k. Firms choose the abatement

aj,k(ω) ≡ aj,k, deliver the output quantity qji,k(ω) ≡ qjik to every market i where they incur iceberg

trade costs d̄ji,k ≥ 1 with d̄jj,k = 1,4 and as an externality they generate pollution zji,k(ω) ≡ zji,k.

Following Copeland et Taylor (2004), the pollution per unit of output in the location of firm,

zji,k/(dji,kqji,k), equals (1− aj,k)
1/αk−1. Here, αk > 0 is the “pollution elasticity” which varies across

industries k ∈ K. Given a choice of abatement aj,k, marginal cost of production equals cji,k =

d̄ji,k(1 − αk)
−1(1 − aj,k)

−1(wj/ϕ̄j,k), where ϕ̄j,k is labor productivity. A higher level of abatement

means less pollution, and so, less pollution taxes paid by the firm, whereas it raises the marginal

cost of production.

Industry-Level Aggregates. The composite output of ji, k, Qji,k, aggregates over firm-level quantities

qji,k(ω),

Qji,k =

(∫
ω∈Ωj,k

qji,k(ω)
γk−1

γk dω

) γk
γk−1

where γk > 1 is the elasticity of substitution across firm-level varieties. Facing this substitution

elasticity, firms charge a constant markup over their marginal cost, implying the following industry-

level producer price index:

Pji,k = M
1

1−γk
j,k

γk

γk − 1
d̄ji,kwj

ϕ̄j,k(1− αk)(1− aj,k)
, (Price)

where Mj,k ≡
∣∣Ωj,k

∣∣ denotes the mass of firms. Mj,k is pinned down by the free entry condition,

that requires entry costs, Mj,kwj f̄ j,k, to equal gross profits, ∑i
1

γk
Pji,kQji,k. Putting these together with

Pji,k = d̄ji,kPjj,k and Qj,k = ∑i d̄ji,kQji,k, implies the mass of firms:

Mj,k =
Pjj,kQj,k

γk f̄ j,kwj
(Entry)

4Our model allows for nontradeables: Products in industry k are nontradeable if d̄ji,k → ∞ for all i, j 6= i.
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Using the equations of (Price) and (Entry), we rewrite the following industry-level variables as func-

tions of abatement and quantities:

Pji,k(wj, aj,k; Qj,k) = d̄ji,k p̄jj,kwj(1− aj,k)
1

γk
−1Q

− 1
γk

j,k (2)

Zj,k(ajk; Qj,k) = z̄j,k(1− aj,k)
1

αk
+ 1

γk
−1Q

1− 1
γk

j,k (3)

Mj,k(ajk; Qj,k) = m̄j,k(1− aj,k)
−1+ 1

γk Q
1− 1

γk
j,k (4)

where p̄jj,k, z̄j,k, m̄j,k are exogenous shifters of price, pollution, and mass of firms.5 Internal economies

of scale operate through endogenous mass of firms, given by equation (4). The resulting scale effects

on price and pollution are reflected by
(
Qj,k/(1− aj,k)

)−1/γk in equations (2) and (3), which highlights

that scale economies are operative through both production and abatement, to a common extent

governed by γk.

Lastly, the optimal choice of abatement is given by:6

(1− aj,k) =
( αk

1− αk

)αk
(wj/ϕ̄j,k

τj,k

)αk
. (5)

Optimal abatement is a function of wage relative to pollution tax, with the extent of the relationship

controlled by the pollution elasticity αk.7

2.3 Policy Instruments

The government in country i has access to the following set of tax instruments:8

5Specifically, p̄jj,k ≡
(

γk f̄ j,k

)1/γk
(

γk
γk−1

1
ϕ̄j,k(1−αk)

)(γk−1)/γk
, z̄j,k ≡ ∑i

(
γk f̄ j,k/ p̄jj,k

)1/(γk−1)
, m̄j,k ≡ p̄jj,k/(γk f̄ j,k).

6Our specification can be alternatively interpreted as one in which production employs a pollutant input (whose unit

cost is the pollution tax) and labor, d̄ji,kqji,k(ω) =
(

zji,k(ω)
)αk
(

ϕj,klji,k(ω)
)1−αk

where d̄ji,kqji,k(ω) ≡ d̄ji,kqji,k, zji,k(ω) ≡ zji,k

and ljik(ω) ≡ lji,k are firm-level output, pollution, and labor for production of ji, k. In this alternative formulation, the

unit cost of ji, k is given by cji,k = d̄ji,kα−αk
k (1 − αk)

−(1−αk)ταk
j,k(wj/ϕ̄j,k)

1−αk , pollution by zji,k = αkcji,k d̄ji,kqji,k/τj,k, and

labor by lji,k = (1 − αk)cji,k d̄ji,kqji,k/wj. Replacing these in the relation between abatement and pollution, (1 − aj,k) =(
zji,k

/
ϕ̄j,klji,k

)αk
, delivers equation (5). In addition, note that our framework nests a model with exogenous emission

intensities (no abatement) if αk → 0. In this case, d̄ji,kqji,k(ω) = ϕj,klji,k(ω), and aj,k = 0.
7For completeness, (for 0 < αk < 1) we specify that aj,k = 0 if τj,k ≤ τmin

j,k ≡
αk

1−αk
(wj/ϕ̄j,k).

8Adding consumption and abatement taxes does not bring any new potential in policy since the entire effect from these

two taxes can be replicated by an appropriate choice of the current instruments.
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1. An import tax, tji,k, applied to each imported variety ji, k (tii,k = 0 by design)

2. An export tax, xij,k, applied to each exported variety ij, k (xii,k = 0 by design)

3. A production tax, si,k, applied to all outputs in country-industry i, k irrespective of the location

of final sales.

4. A pollution tax, τi,k, applied to all outputs in country-industry i, k irrespective of the location of

final sales.

The first three tax instruments create a wedge between the consumer and producer price of a given

variety. The following one-to-one mapping holds between the set of instruments {tji,k, xij,k, si,k}j,k and

the set of prices {P̃ji,k, P̃ij,k, P̃ii,k}j 6=i,k ,

(1 + tji,k) =
P̃ji,k

Pji,k
, (1 + xij,k) =

P̃ij,k

Pij,k

P̃ii,k

Pii,k
, (1 + si,k) =

P̃ii,k

Pii,k
(6)

In addition to these price wedges, according to equation (5), the government can choose abatement

levels {ai,k}k to replicate pollution taxes {τi,k}. These equivalences highlight which variables every

tax instrument directly targets.

2.4 General Equilibrium

Revenues. Total income in country i, Yi, which equals total expenditure in i given by equation (1), is

the sum of wages, lump-sum tax revenues, Ti, which are collected from pollution and non-pollution

taxes, and trade deficit, D̄i:

Yi = wi L̄i + D̄i + Ti (7)

where Ti is the sum of payments for pollution taxes (equivalent to the compensation of pollution as

a factor of production), and imports, exports, and production tax revenues:

Ti =

pollution taxes︷ ︸︸ ︷
∑

k∈K

∑
j∈C

(
αk

γk − 1
γk

Pij,kQij,k

)
+

production taxes︷ ︸︸ ︷
∑

k∈K

[(
P̃ii,k − Pii,k

)
Qii,k

]
(8)

+ ∑
k∈K

∑
j∈C,j 6=i

[(
P̃ji,k − Pji,k

)
Qji,k

]
︸ ︷︷ ︸

imports taxes

+ ∑
k∈K

∑
j∈C,j 6=i

[(
P̃ij,k − Pij,k

)
Qij,k

]
︸ ︷︷ ︸

exports taxes

We treat the trade deficit as exogenous in our model. By construction, trade deficits satisfy an adding-

up constraint, ∑i D̄i = 0.
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Definition. For every country i, j ∈ C and industry k ∈ K, given taxes {tji,k, xij,k, si,k, τi,k}j,k, an equi-

librium is a vector of wages {wj} such that before-tax prices {Pji,k} are given by (2), pollution {Zj,k}
by (3), mass of firms {Mj,k} by (4), abatement {aj,k} by (5), demand quantities by Qji,k = Dji,k(Yi, P̃i)

in which after-tax prices {P̃ji,k} are given by (6) and Yi is national expenditure according to (1) that

equals national income according to (7) where tax revenues are given by (8)„ and labor markets clear:9

wi L̄i − ∑
k∈K

∑
i∈C

(1− αk
γk − 1

γk
)Pij,kQij,k = 0 (9)

Expenditure/Revenue Shares and Pollution Intensity. To streamline the presentation of our theory, we

define the following variables. The share of country i’s expenditure on variety ji, k is denoted by eji,k,

eji,k ≡
P̃ji,kQji,k

∑ ̂∈C ∑k̂∈K
P̃̂i,k̂Q ̂i,k̂

=
P̃ji,kQji,k

Yi
(10)

The within-industry share of country j’s revenues collected from sales of variety ji, k is denoted by

rji,k,

rji,k ≡
Pji,kQji,k

∑k̂∈K
Pjı̂,k̂Qjı̂,k̂

, (11)

In addition, we use vj,k to denote the pollution intensity per unit value of output in country-industry

j, k.

vj,k ≡
Zj,k

Pjj,kQj,k
=

γk − 1
γk

αk

τj,k
(12)

Lastly, we denote within-industry expenditure share on ji, k by λji,k,

λji,k ≡
P̃ji,kQji,k

∑ ̂∈C P̃̂i,kQ ̂i,k
(13)

2.5 Governments and Their Objectives

In this section, we define the objective function that the government in a country aims to maximize.

Let Ii stack the instruments of policy for the government in country i, Ii ≡ {tji,k, xij,k, si,k, τi,k}j,k. The

objective function of the government in country i is given by:

9The labor market clearing condition (LMC) is equivalent to trade deficit condition (TDC),

∑k∈K ∑j 6=i∈C

(
Pji,kQji,k − P̃ij,kQij,k

)
=D̄i, where exports and imports of every country i are measured in values out-

side the border of i (that are, exports are after-tax, but imports are before-tax). In our policy analysis, we sometimes use

(TDC) instead of (LMC).
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Wi = Vi(Yi(Ii, w), P̃i)−∑
n

∑
k
(δniZn,k) (14)

The first term in this objective function reproduces indirect utility, taking into account that income Yi

depends on the vector of wages w = {wi} as well as policy instruments Ii. The second term sums

over all pollution externalities from global production. δni is the disutility to residents of country i

from every unit of pollution generated in every country n. For instance, a unit of pollution generated

in a country may have a greater negative effect on that country or its nearby countries than those

that are faraway. One particular case in which δni = δA + δB if n = i, and δni = δB if n 6= i, sets

the disutility at (δA × local pollution + δB × global pollution). That is, the government may assign

an additional weight to local pollution beyond its care for global pollution. One can interpret the

disutility from global pollution as the present discounted externality from global climate change—

see Shapiro (2016).

We can write δni = L̄i δ̄ni to reflect that the disutility to every nation i is scaled by its population

L̄i. In addition, we will use δ̃ni ≡ P̃iδni as the CPI-adjusted welfare cost per unit of pollution, where

P̃i ≡ (∂Vi(.)/∂Yi)
−1.

Definition. The Optimal Unilateral Policy for country i is achieved by choosing policy instruments, Ii,

that maximize country i’s welfare,Wi (equation 14), subject to equilibrium conditions (1)-(9).

Following the above definition, we present in Appendix A.1 a minimal set of equations that de-

scribe the unilateral policy problem.

3 Optimal Unilateral Policy

In this section, we characterize the unilaterally optimal tax schedule. The unilateral policy incorpo-

rates a number of non-cooperative motives. First, non-cooperative governments only care about the

domestic disutility of (local or global) emission and neglect their country’s transboundary emission

externality on the rest of the world. Second, non-cooperative governments resort to trade taxes to

correct the emission externality imposed on them by the rest of the world. Third, a non-cooperative

government may use trade taxes to improve its country’s terms-of-trade at the expense of trading

partners.

We currently have a limited understanding of how these distinct policy motives interact. To shed

light on their interaction, we analytically characterize the optimal unilateral tax schedule. This is a
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challenging task, which explains why previous characterizations of optimal trade and environmental

policies have typically restricted their attention to two-country or partial equilibrium setups, with all

or some of these simplifying assumptions: perfect competition, fixed location of firms, fixed set of

products, exogenous emission intensities, and constant-returns-to-scale production technologies.

Before turning to present our results, we discuss our methodological approach. Here, our goal

is to demonstrate that we have a systematic way of deriving the optimal policy schedules with ap-

plications beyond this work. The analysis of optimal policy in open economy introduces a number

of challenges, such as the way one has to address general equilibrium wage and income effects of

policy. These challenges are in turn responsible for some of the limitations in the previous literature.

To fully address these issues, we establish an intermediate envelope result which we continue to ex-

plain. Throughout the paper, if not reported in the main text, we will report our derivations and

proofs in the appendix.

3.1 Intermediate Envelope Result

In this section, we present an intermediate envelope result that greatly facilitates our optimal policy

analysis. In summary, this result allows us to convert our general equilibrium optimization problem

into a simpler problem characterized by a set of partial equilibrium derivatives. We establish this

result in three steps.

Step 1: Reformulate the optimal policy problem in terms of consumer prices and abatement

The government in i can choose consumer prices {P̃ji,k, P̃ij,k, P̃ii,k}j 6=i,k according to equation (6) to

replicate any set of {tji,k, xij,k, si,k}j,k, and abatement levels {ai,k}k to replicate any set of pollution

taxes {τi,k} according to equation (5). These equivalences highlight which variables every tax directly

targets. Shifting the focus from the vector of taxes Ii ≡ {tji,k, xij,k, si,k, τi,k}j,k to their target variables

Pi ≡ {P̃ji,k, P̃ij,k, P̃ii,k, ai,k}j 6=i,k proves useful in our analysis. As a point of reference, we define Pi

formally.

Definition 1. Pi ≡
{

P̃ij, P̃ji, P̃ii, ai
}

denotes the vector of policy instruments for country i in the

reformulated optimal policy problem, where P̃ji =
{

Pji,k
}

j 6=i,k, P̃ij =
{

Pij,k
}

j 6=i,k, P̃ii = {Pii,k}k, and

ai = {ai,k}k.

Appealing to the above definition, our optimal policy problem can be simplified when it is cast

as the problem of choosing consumers prices and abatement instead of taxes. Once we solve that
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problem, then we can recover optimal taxes using equation (6) and (12).

Lemma 1. Given optimal prices and abatement levels, P?
i = {P̃?

ji,k, P̃?
ij,k, P̃?

ii,k, a?i,k}j 6=i,k, optimal taxes I?i =

{t?ji,k, x?ij,k, s?i,k, τ?
i,k}j,k can be recovered according to the following one-to-one mapping:

1 + t?ji,k =
P̃?

ji,k

Pji,k
, 1 + x?ij,k =

P̃?
ij,k

Pij,k

P̃?
ii,k

Pii,k
, 1 + s?i,k =

P̃?
ii,k

Pii,k
, τ?

i,k =
γk − 1

γk

αk

vi,k(a?i,k)

This lemma states that once we find the vector of optimal consumers prices and abatement levels,

we can easily recover the vector of optimal taxes.

Step 2: Conditional welfare-neutrality of wage effects

The choice of Pi affects the vector of wages whose subsequent effect on welfare complicates the anal-

ysis. We show that conditional on holding policy Pi fixed, the wage effects are welfare-neutral. To

make this point, we formulate all variable outcomes as a function of Pi and wage vector w in a sys-

tem where all equilibrium relationships hold with the exception of labor market clearing condition.

Appendix A.2 details this formulation. This characterizes welfare in country i as Wi(Pi; w), prices as

Pij,k(Pi; w), quantities as Qij,k(Pi; w), etc. Note, however, that all (Pi; w) pairs are not feasible. Given

Pi, a feasible vector of wages must satisfy labor market clearing conditions.

Definition 2. A policy-wage pair, (Pi; w) is feasible iff, the vector of wages w ≡ {wn}n∈C satisfy the

labor-market clearing conditions, given a policy vector Pi,

(Pi; w) ∈ Fw
i ⇐⇒ ∑

j,k

[(
1− αk

γk − 1
γk

)
Pnj,k(Pi; w)Qnj,k(Pi; w)

]
= wn L̄n, for all n ∈ C. (15)

Using this definition, we express the government’s problem (P1) as:

max
Pi

Wi(Pi; w), subject to (Pi; w) ∈ Fw
i (P1)

where Wi(Pi; w) = Vi(Yi(Pi; w), P̃i)−δi ·Z(Pi; w). Here, the inner product δi ·Z(Pi; w) = ∑j,k δjiZj,k(Pi; w)

summarizes the disutility from global pollution to country i. The necessary condition for the opti-

mality of a policy instrument P ∈ Pi is then given by:

dWi(Pi; w)

d lnP =
∂Vi(.)
∂ lnP +

∂Vi(.)
∂Yi

(
∂Yi(Pi; w)

∂ lnP

)
w
−
(

∂δi · Z(Pi; w)

∂ lnP

)
w
+

∂Wi(Pi; w)

∂w
dw

d lnP︸ ︷︷ ︸
wage effects

= 0,

Recall that Vi(.) ≡ Vi(Yi, P̃i) denotes the indirect utility function from consumption, and ∂Vi(.)
∂ lnP is

nonzero only if P is one of prices faced by home consumers, P ∈ P̃i ≡ {P̃ji, P̃ii}. In the above
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FOC, the first three terms correspond to the effects of policy P ∈ Pi on welfare holding w = {wn}n∈C

fixed.10 The last term accounts for the general equilibrium wage effects from every country. By choice

of numeraire, we normalize wage in one of foreign countries, say n, to unity. That implies dwn
d lnP = 0.

We show in Appendix A.4 that

rji × λ`i,k ≈ 0 if (j 6= i) ∧ (` 6= i) =⇒
dw−{i,n}

d lnP ≈ 0.

Throughout this section we maintain the assumption that rji × λ`i,k ≈ 0 if j and ` 6= i. Later, when

mapping out theory to data, we show that this assumption is strikingly consistent with actual data.

Regardless, the most important wage effect is the one from home itself. Finding this wage effect

appears to be a major obstacle when solving problem (P1). The next lemma allows us to overcome this

challenge. It states that for any (Pi; w) ∈ Fw
i , if the government has access to all policy instruments,

country i’s own wage effects are also welfare-neutral.

Lemma 2. Within the feasible policy-wage set (Pi; w) ∈ Fw
i , conditional on a choice of policy vector Pi,

welfare in country i is invariant to wage wi:(
∂Wi(Pi; w)

∂wi

)
w−i

= 0, ∀(Pi; w) ∈ Fw
i .

To take stock, the above result indicates that home’s wage has no effect on home’s welfare, pro-

vided that the labor market clearing condition holds and the government has access to all policy

instruments. This result would hold even if the government did not choose the policy vector opti-

mally. To provide intuition, note that as long as policy Pi is fixed, wi affects welfare, Wi, only though

its effect on income Yi. Lemma 2 can, thus, be established by showing that ∂Yi/∂wi = 0. To show

that ∂Yi/∂wi = 0, note that an increase in wi has two opposite but equal-size effects on income Yi,

as long as the policy vector, Pi, is held fixed. On one hand, an increase in wage wi raises income

Yi directly through wage incomes wi L̄i. On the other hand, it decreases income indirectly through

raising producer prices, which reduce tax revenues. Importantly, this latter effect appears because

the after-tax price of home-made varieties, {P̃ij, P̃ii}, are held fixed. The two opposing effects also

sum up to zero, because the tax revenue effect is proportional to country i’s total sales, and total (net)

sales equal wage incomes in equilibrium.

10On our notation: (1) For any vector y, y−n ≡ y/{yn}. (2) In cases where there might be ambiguity, we include

endogenous variables that we hold fixed in the subscript of a derivative. For function G(x; y) with x as the policy vector,

and y as the vector of endogenous variables,
(

∂G(x,y)
∂xm

)
y

denotes the derivative of G wrt xm, holding fixed y and x−m, and(
∂G(x,y)

∂yn

)
y−n

denotes the derivative of G wrt yn, holding fixed y−n and x.

13



Lemma 2 greatly facilitates our analysis, since it allows us to identify the optimal policy by treat-

ing the wage vector w as fixed. Once we fix w, income in the rest of the world, Y−i = w−i � L̄−i, is

also fixed by construction. The next step shows that income in country i, Yi, can also be treated as

fixed since domestic income effects are welfare neutral at the optimum.

Step 3: Conditional welfare-neutrality of income effects at the optimum

Following Step 2, we treat wages as invariant to policy. This means that, for a given vector of policy

Pi, we can hold wages fixed at their values that satisfy market clearing conditions, w = w̄. This

intermediate result also implies that we can hold income in foreign countries fixed, Yn = Ȳn for

n 6= i. With these considerations, we re-formulate all equilibrium variables as a function of policy

vector Pi and income Yi. Under this formulation, all equilibrium relationships hold except the budget

constraint, Yi = w̄i L̄i + D̄i + Ti(Pi; Yi). This formulation is detailed in Appendix A.3. Notice, tax

revenues Ti depend on income Yi because home’s demand schedule, whose position matters for the

amount of tax revenues, depends on income. This brings us to define feasible pairs of policy-income.

Definition 3. A policy-income pair, (Pi; Yi) is feasible iff , income Yi equals total wages plus tax revenues, for

a given policy Pi,

(Pi; Yi) ∈ FY
i ⇐⇒ Yi = w̄i L̄i + D̄i + Ti(Pi; Yi). (16)

We continue with an observation that further facilitates our analysis. Restricting the system to

the feasible policy-income pairs, we observe that income Yi affects welfare exclusively through de-

mand quantities. Behind this observation is that income affects producer prices, emissions, and

taxes only though income effects in demand, meaning that we can express these variables as Pni,g =

Pni,g(Pi, Qi(Pi, Yi)), Zn,g = Zn,g(Pi, Qi(Pi, Yi)), Ti = Ti(Pi, Qi(Pi, Yi)), where Qi ≡ {Qni,g, Qin,g}n∈C,g∈K

is the vector of country i’s output and consumption quantities. The equilibrium value for con-

sumption quantities are given by Qni,g = Dnig(Yi, P̃i). Export quantities are Qin,g = Ding(Ȳj =

w̄j L̄j, P̃in, P̃−in(w̄−i)).

The optimal policy problem of country i can now be expressed as:

max
Pi

Wi(Pi; Qi(Pi, Yi)) subject to (Pi;Yi)∈ FY
i (P2)

where:

Wi(Pi, Qi(Pi, Yi)) = Vi(w̄i L̄i + D̄i + Ti(Pi, Qi(Pi, Yi))︸ ︷︷ ︸
Yi

, P̃i)− δi · Z(Pi, Qi(Pi, Yi))
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Capitalizing on our reformulation with (P2), we explain the conditions for the welfare neutrality

of income effects. The first order condition w.r.t. to policyP ∈ Pi is given by
[

∂Vi
∂Yi

∂Ti(.)
∂P + ∂Vi

∂P −
∂δi ·Z(.)

∂P

]
=

0. We expand the components of this equation using the following derivatives,
∂Ti(.)

∂P =
(

∂Ti
∂P

)
Qi

+ ∂Ti
∂Qi
·
[(

∂Qi
∂P

)
Yi
+ ∂Qi

∂Yi

dYi
dP

]
∂δi ·Z(.)

∂P =
(

∂δi ·Z
∂P

)
Qi

+ ∂δi ·Z
∂Qi
·
[(

∂Qi
∂P

)
Yi
+ ∂Qi

∂Yi

dYi
dP

] ,

where dYi
dP can be calculated by applying the Implicit Function Theorem to Equation 16 to ensure

feasibility. To elaborate, tax revenues Ti(.) and emission disutility δi · Z(.) react to policy P directly

by fixing quantities, and indirectly through quantities. Note that, once we hold quantities fixed, we

are also holding income fixed. Putting together, and recalling that P̃i ≡
(

∂Vi(.)
∂Yi

)−1
, the FOC collapses

to:

P̃i
∂Vi(.)

∂P +

(
∂Ti

∂P

)
Qi

− P̃i

(
∂δi · Z

∂P

)
Qi

+

[
∂Ti

∂Qi
− P̃i

∂δi · Z
∂Qi

]
·
(

∂Qi
∂P

)
Yi︸ ︷︷ ︸(

∂Wi
∂P

)
Yi

+

[
∂Ti

∂Qi
− P̃i

∂δi · Z
∂Qi

]
· ∂Qi

∂Yi︸ ︷︷ ︸
∂Wi
∂Yi

dYi

dP = 0 (17)

In equation (17), the first four terms represent the direct welfare effect of policy P holding income

fixed,
(

∂Wi
∂P

)
Yi

, and the last term represents the indirect general equilibrium effect of policy P on

welfare through income (hence, the term “income effects”). We will rely on this system of FOCs to

solve for the optimal policy schedule, but we pause that analysis for the moment to illustrate the

conditions for the neutrality of income effects.

Suppose P be one of consumer prices in home P̃ji,k ∈ P̃i. The price index P̃ji,k can be for one of

domestic (j = i) or imported (j 6= i) varieties. In this case,(
∂Ti

∂P̃ji,k

)
Qi

= Qji,k, P̃i

(
∂Vi

∂P̃ji,k

)
= −Qji,k,

(
∂δi · Z
∂P̃ji,k

)
Qi

= 0 =⇒ P̃i
∂Vi(.)
∂P̃ji,k

+

(
∂Ti

∂P̃ji,k

)
Qi

− P̃i

(
∂δi · Z
∂P̃ji,k

)
Qi

= 0

where the first equality reflects the direct effect of consumer price P̃ji,k on tax revenues, the second

equality is Roy’s identity, and the third equality holds because emission depends on abatement and

quantities. From setting P̃i
∂Vi(.)

∂P +
(

∂Ti
∂P

)
Qi

− P̃i

(
∂δi ·Z

∂P

)
Qi

= 0 in equation (17) and noting that ∂Qin
∂P̃ji,k

=

∂Qin
∂P̃ii,k

= ∂Qin
∂Yi

= 0, we can conclude that a trivial solution in case of P = P̃ji,k or P̃ii,k ∈ P̃i ⊂ Pi is

achieved where
∂Ti

∂Qni
− P̃i

∂δi · Z
∂Qni

=
N

∑
n=1

K

∑
k=1

[
∂Ti

∂Qni,k
− P̃i

∂δi · Z
∂Qni,k

]
= 0
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We show in the next section that this trivial solution is also the unique solution to the system of FOCs.

It, therefore, follows that for the choices of P̃ii,k and P̃ji,k ∈ P̃i to be optimal, it is necessary that income

effects be welfare neutral: ∂Wi
∂Yi

= 0. We summarize our discussion in the following lemma.

Lemma 3. Within the feasible policy-income set, (Pi; Yi) ∈ FY
i , if P̃i ⊂ Pi is chosen optimally, then the

income effect is welfare-neutral, ∂Wi
∂Yi

= 0.

Putting the Three Steps Together

We outline the results from Lemmas 1,2,3 in the following proposition.

Proposition 1. [Intermediate Envelope Result] Country i’s optimal policy, P?
i , is the solution to a system

of equations that asserts optimality w.r.t. all Pi ∈ Pi by holding fixed wages and income,

P̃i
∂Vi(.)
∂ lnP +

(
∂Ti

∂ lnP

)
w,Qi

− P̃i

(
∂δi · Z
∂ lnP

)
w,Qi

+

[(
∂Ti

∂Qi

)
w
− P̃i

(
∂δi · Z

∂Qi

)
w

]
·
(

∂Qi
∂P

)
Yi

= 0 (?).

We refer to Proposition 1 as an intermediate envelop result, because it reduces our general equi-

librium optimal policy problem into one in which wage and income effects can be ignored. In other

words, we can derive the optimal policy schedule while treating w as constant and ignoring Yi’s im-

pact on country i’s demand schedule. Below, we discuss several aspects of this intermediate envelope

result.

As noted in the build up to Lemma 3, the first three terms in Equation (?) collapse to zero when

P = P̃ji,k or P̃ii,k ∈ Pi. Relatedly, ∂Vi(.)
∂ ln(1−ai,k)

= ∂Vi(.)
∂ ln P̃ij,k

= 0 since neither ai,k or P̃ij,k explicitly enter

the indirect utility function. Furthermore,
(

∂δi ·Z
∂ ln P̃ij,k

)
w,Qi

= 0 since P̃ij,k affects emission only through

its effect on output quantities, Qi; and
(

∂Qi
∂ ln(1−ai,k)

)
Yi

= 0 since holding prices and income fixed

abatement has not effect on the demand schedule. Accounting for these equal-to-zero terms, P?
i

solve the following system according to Proposition 1:

(
∂Ti

∂ ln(1−ai,k)

)
w,Qi

−
(

∂δi ·Z
∂ ln(1−ai,k)

)
w,Qi

= 0 [ai,k]

P̃ij,kQij,k + ∑n∈C ∑k∈K

[(
∂Ti

∂Qnj,k
− P̃i

∂δi ·Z
∂Qnj,k

)
∂Dnj,k(.)
∂ ln P̃nj,k

]
= 0 [P̃ij,k]

∑n∈C ∑k∈K

[
∂Ti

∂Qni,k
− P̃i

∂δi ·Z
∂Qni,k

]
= 0 [P̃ji,k, P̃ii,k]

(18)

Before solving the above system, a few details about Proposition 1 are in order. Above all, Proposition

1 holds when country i’s government has access to all price-related policy instruments. As for wage

effects, if the government is banned from manipulating any of instruments belonging to after-tax
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prices of varieties originated from home, {P̃ii, P̃ij}, then Lemma 2 fails. The intuition is the following.

The government in home country i can improve its terms-of-trade by manipulating home’s relative

wage , wi (relative to value of labor in one of foreign countries that is chosen as numeraire). The gains

from manipulating wage wi can be perfectly mimicked with an appropriate adjustment in production

and export taxes, {si,k, xij,k}j 6=i,k, that are associated with committing to price vectors, P̃ii and P̃ij. More

specifically, with a proper adjustment in production and export taxes the government can achieve any

level of national sales; and, as long as the labor market clears, national sales pin down home’s wage.

This argument holds even if choices of {P̃ii, P̃ij} are not optimal, but it fails if the government is

banned from manipulating one element of these price vectors. In that case, wage effects should be

properly tracked when solving the optimal policy problem

A similar argument applies to Lemma 3. If the government can set all price variables associated

with the local consumption market optimally, then income effects are redundant. Because any gains

from raising Yi are already internalized by the vector of consumer prices in home. But if the gov-

ernment is banned from manipulating P̃i ≡ {P̃ii, P̃ji} the argument no longer holds. Also notice, the

welfare-neutrality of income effects explain why income elasticities of demand play no role in the

optimal policy schedule.

Finally, note that the ability to set prices in foreign markets, P̃ij, is only relevant to Lemma 2 but

irrelevant to 3. So even if the government cannot set P̃ij, we can still invoke Lemma 3 to simplify

the optimal policy problem. . In addition, if ai is set sub-optimally, Lemmas 2 and 3 continue to

hold. Hence, Proposition 1 applies to scenarios where governments cannot tax emission but can

manipulate the entire vector of after-tax prices {P̃ii, P̃ji, P̃ij}.

3.2 Characterizing the Optimal Tax Schedule

We show in Proposition 1 the system of F.O.C.s that characterize the optimal policy schedule. Since

we assume a non-parametric demand function, we present this system using the own- and cross-

price demand elasticities defined in Section 2.1. The following lemma summarizes this step—see

Appendixes B.2 and B.4 for details.
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Lemma 4. Country i’s optimal policy, P?
i =

{
P̃?

ij, P̃?
ji, P̃?

ii, a?i
}

, solves the following system of F.O.C.s:

[ai,k] δ̃iivi,k(a?i,k)− αk
γk − 1

γk
= 0;

[P̃ni,k = P̃ji,k, P̃ii,k] ∑
n 6=i

∑
g

[(
P̃?

ji,g

Pji,g
−
(

1−ωji,g − δ̃jivj,g
γg − 1

γg

))
eji,gε

(ni,k)
ji,g

]

+ ∑
g

[(
P̃?

ii,g

Pii,g
−
(

1− αg
γg − 1

γg
+ δ̃iivi,g

)
γg − 1

γg

)]
eii,gε

(ji,k)
ii,g = 0

[P̃ij,k] 1−∑
` 6=i

∑
g

[(
ω`i,g + δ̃`iv`,g

γg − 1
γg

)
e`j,g

eij,k
ε
(ij,k)
`j,g

]

++∑
g

[(
1−

(
1− αg

γg − 1
γg

+ δ̃iivi,g

)
γg − 1

γg

P?
ij,g

P̃ij,g

)
eij,g

eij,k
ε
(ij,k)
ij,g

]
= 0

where ωji,k ≡
(

∂ ln Pjj,k
∂ ln Qji,k

)
Pi ,w,Yi

=
−rji,k

γk+∑n 6=i rjn,kε jn,k
denotes the inverse of (backward-falling) export sup-

ply elasticity.

The optimality condition w.r.t. ai,k equalizes the marginal utility loss that stems from raising

marginal cost of production and the marginal utility gain that is associated with a cleaner environ-

ment. Using the F.O.C w.r.t ai,k together with equation (12) that relates emission intensity to emission

tax, and noting that δ̃ii ≡ P̃iδii, the optimal emission tax, τ∗i,k, equals:

τ?
i,k = δ̃ii. (19)

The F.O.C.s w.r.t. P̃ji,k and P̃ii,k are inter-dependent, and contain price ratios in the form of
P̃?

ji,g
Pji,g

that

do not show up in the F.O.C.s w.r.t. P̃ij,k. Setting τ?
i,k = δ̃ii, these F.O.C.s amount to NK equations in

NK unknowns, that can be put in the following matrix equation:


e1i,1ε

(1i,1)
1i,1 · · · eNi,ε

(1i,1)
Ni,1 · · · e1i,Kε

(1i,1)
1i,K · · · eNi,Kε

(1i,1)
Ni,K

...
. . . . . . . . .

...

e1i,1ε
(Ni,K)
1i,1 · · · eNi,ε

(Ni,K)
Ni,1 · · · e1i,Kε

(Ni,K)
1i,K · · · eNi,Kε

(Ni,K)
Ni,K





P̃?
1i,k

P1i,1
−
(

1−ω1i,k − δ̃1iν1,k
γk−1

γk

)
...

P̃?
ii,k

Pii,k
− γk−1

γk
...

P̃?
Ni,k

PNi,k
−
(

1−ωNi,k − δ̃NiνN,k
γk−1

γk

)


= 0.

(20)

where the first matrix is NK × NK and the second is NK × 1. Importantly, the above equation iden-

tifies the optimal tariff, 1 + t?ji,k = P̃?
ji,k/Pji,k, and production tax, 1 + s?i,k = P̃?

ii,k/Pii,k independently

from choices of export taxes, 1 + x?ij,k = P̃?
ij,k/Pij,k. To solve the above matrix equation we invoke on

another intermediate result, which ensures the invertibility of the system.
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Lemma 5. The KN × KN matrix, Ξ =
[
eji,kε

(ni,g)
ji,k

]
ng,jk

, is non-singular, with | det(Ξ) |> ∏n,k eni,k > 0.

Given Lemma 4, the unique solution to Equation 20 is the trivial solution, which indicates that:

1 + t?ji,k =
P̃?

ji,k

Pji,k
= 1−ωji,k − δ̃jivj,k

γk − 1
γk

; 1 + s?i,k =
P̃?

ii,k

Pii,k
=

γk − 1
γk

.

Lastly, we can plug the already-derived values of {τ?
i,k, t?ji,k, s?i,k}j 6=i, k (or equivalently, {a?i,k,

P̃?
ji,k

Pji,k
,

P̃?
ii,k

Pii,k
}j 6=i, k)

into the first-order conditions w.r.t. {P̃ij,k}j 6=i, k. This final step, which solves for x?ij,k, is outlined in

Appendix B.4. The following proposition summarizes the optimal policy schedule in its final form.

Theorem 1. The optimal unilateral tax schedule for country i is given by

1 + t?ji,k = 1 + ωji,k + δ̃jivj,k
γk−1

γk
∀j, k

1 + x?ij,k =
εij,k

1+εij,k
χ−1

ij,k ∀j, k

1 + s?i,k =
γk−1

γk
∀k

τ?
i,k = τ?

i = δ̃ii ∀k

(21)

where χij,k is an export subsidy intended at lowering the emission of product varieties competing with ij, k, and

is given by χij =

[
ẽij,gε

(ij,k)
ij,g

ẽij,kεij,k

]−1

k,g

[
∑n 6=i t?ni,g ẽnj,gε

(ij,k)
nj,g

∑n̂ 6=i,ĝ ẽn̂j,ĝε
(ij,k)
n̂j,ĝ

]
k,g

1K.

To put in words, the optimal unilateral policy for country i includes (i) a uniform Pigouvian

tax on emission, τ?
i , (ii) an industry-specific Pigouvian production subsidy, s?i,k, that eliminates the

cross-industry markup heterogeneity, (iii) import taxes, t?ji,k that penalize high-emission imports and

take advantage of unexploited import market power, and (iv) export taxes, x?ij,k, that promote low-

emission exports and take advantage of unexploited export market power.

Optimal trade taxes are designed to both improve the terms-of-trade (ToT) and correct trans-

boundary emission. So, a decomposition of these taxes is in order. First, consider the import tax on

variety ji, k. The optimal rate, as implied by Proposition 1, can be decomposed as follows:

1 + t?ji,k = 1 + ωji,k︸ ︷︷ ︸
ToT driven

+ δ̃jivj,k
γk − 1

γk︸ ︷︷ ︸
Emission correcting

.

The ToT-driven component is motivated by country i’s import market power. It corresponds to

an optimal mark-down on the producer price of goods imported from country j. This mark-down

equals the inverse of the export supply elasticity, ωji,k < 0. The environmentally-driven component
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is intended to correct the transboundary emission externality of goods imported from country j.

Intuitively, this component is higher on high-emission (high-v) partners.

Likewise, export taxes are also designed to both improve the terms-of-trade (ToT) and correct

transboundary emission. The export tax on good ij, k, therefore, exhibit two distinct components:

1 + x∗ij,k =
ε ij,k

1 + ε ij,k︸ ︷︷ ︸
ToT driven

× χ−1
ij,k︸︷︷︸

Emission correcting

.

The ToT-driven term equals an optimal markup, if country i was pricing its composite export goods

as a single representative monopolist. The emission-correcting term subsidizes exports of varieties

that compete with dirty (high-v) varieties in foreign markets. This correcting term itself incorporates

import taxes of home across its trade partners. The intuition can be put as follows. If home country

i exported more to country j, then a third country n would reallocate its export away from j and

possibly back to home country i. This gives home some leverage to curb emission in every third-

country n using its import tax. We provide a more detailed discussion when we consider CES-Cobb-

Douglas preferences.

Special Case: Ricardian Model. In the limit where γk → ∞ and f e
k → 0, firms can be viewed as per-

fectly competitive and our framework reduces to Ricardian trade model. The Ricardian special case

of our framework is isomorphic to the multi-industry Eaton et Kortum (2002) model. The optimal

tax formulas in the Ricardian case can be attained by plugging the following values into Theorem 1:

γk

γk − 1
→ 1; ωji,k → 0 (Ricardian Model)

Note that, in principle, Proposition 1 applies equally to a model with a continuum of industries. As

a result, in the limit where ε ij,k → ∞, our optimal tax formulas characterize the optimal policy in the

Dornbusch et al. (1977) model.

Special Case: Cobb-Douglas-CES preferences. To gain further intuition about the optimal policy

schedule, consider the special case where preferences have a Cobb-Douglas-CES formulation,

Ui(Qi) = ∏
k

(
∑

j
b1/σk

ji,k Q
σk−1

σk
ji,k

)ei,k
σk

σk−1

, (22)

where ei,k is expenditure share of country i on industry k, and σk is the (Armington) elasticity of

substitution between origin countries. In this case, ε ji,k = −1− (σk − 1)(1− λji,k), ε
(ji,k)
ni,g = 0 if g 6= k,
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and ε
(ji,k)
ni,k = (σk − 1)λji,k. Also, for the sake of exposition, suppose each country is sufficiently small

relative to the rest of the world, so that λji,k, rij,k ≈ 0 if j 6= i. Plugging these values into Proposition

1, yields the following expression for the optimal trade taxes,

1 + tji,k = 1 + δ̃jivj,k
γk − 1

γk

1 + x∗ij,k =
(

σk

σk − 1

)[
1 +

γk − 1
γk

∑
n 6=i

δ̃nivn,kλnj,k

]−1

. (23)

The optimal import tax is the product of (1) δ̃jivj,k, which taxes high-emission imports, and (2) γk−1
γk

,

which operates as a tax deflator for industries that exhibit high returns-to-scale in emission (low-

γk). Considering this decomposition, the effectiveness of import taxes at reducing transboundary

is dictated by Covk(vj,k, γk). If Covk(vj,k, γk) > 0 import taxes are an ineffective emission-reducing

instrument because the high-emission industries that have to be penalized are also the high-returns-

to-scale industries whose production should not be contracted. Alternatively, if Covk(vj,k, γk) < 0

import taxes can be quite effective as they are hitting two birds with one stone.

Similarly, the optimal export tax includes an emission-correcting term (in brackets) that promotes

country i’s clean exports against its high-emission competition in market j. Specifically, suppose that

good ij, k competes with high-emission (high-δ̃nivn,k) varieties in market j. In that case, country i’s

government will apply a relatively low export tax or even an export subsidy to good ij, k to increase

its sales in market j against high-emission rivals there.11

To dig deeper, the magnitude of the emission-correcting term depends on the interaction between

three terms. First, the lower γk, the larger the scope for scale economies in abatement. Hence, penal-

izing foreign varieties with export tax adjustments is less effective. Second, the smaller the perceived

disutility from foreign emissions (lower δnivni for n 6= i), the larger the incentive to use export policy

to correct these emissions. Third, the greater the market share of high-emission international vari-

eties in market j (higher λnj,k), the greater the incentive to promote exports of clean, locally-produced

varieties to that market.

11Recall from Theorem 1, that emission-correcting term is governed by the emission externality of rival varieties

({δ̃nivn,k}n 6=i) and the degree of cross-substitutability between ij, k and these rival varieties (ε(ij,k)nj,g ). The latter effect in

this special case is factored out in the term that depends on σk.
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4 Policy Outcomes under Alternative Scenarios

In this section, we discuss policy outcomes in cases other than the unilateral first-best. In Section

4.1, we examine second-best scenarios in which governments act unilaterally in their self interest,

but are afforded fewer tax instruments than is necessary to attain the first-best. We then change

our perspective to the case of multi-lateral policies. In Section 4.2, we discuss global optimum that

can be achieved via a deep international agreement among cooperative members. In Section 4.3, we

characterize the non-cooperative Nash equilibrium where non-cooperative countries simultaneously

chose their optimal unilateral policy.

4.1 Optimal Environmental Policy in Second-Best Scenarios

Theorem 1 concerns a unilaterally first-best scenario where government have access to a complete

set of policy instruments. However, a government may face limitations in using all instruments of

policy to achieve the first-best. The following definition puts it formally.

Definition. The Second-best Unilateral Policy for country i is achieved by choosing a subset of policy

instruments to maximizeWi (equation 14) subject to equilibrium conditions (1)-(9).

In addition to prevalent political economy issues, second-best scenarios may arise from agree-

ments on trade or environment that ties the hands of policymakers to flexibly exercise policy tools.

For example, the WTO requires its members not to use export subsidies and set tariffs based on the

principle of most-favored-nation among other principles. In that case, a country may manipulate its

environmental policy not only for environmental objectives but also to manipulate its imports and

exports. The opposite case would be a country that may use trade policy partly for environmental

objectives. In line with these cases, we consider two second-best scenarios that are both of practical

importance and have received considerable attention in the prior literature.

Case #1: Emission Taxes are Unavailable As the emission elasticity approaches zero, i.e., αk → 0,

our model collapses to a model with exogenous pollution intensity à la Markusen (1975) (See footnote

(6) As such, emission taxes can be dropped from the model as firms do not undertake abatement. In

this case, the optimal production tax will include the markup-correcting term γk−1
γk

plus an extra term

that taxes high-emission (high-v) industries. Namely,

1 + s??i,k =
γk − 1

γk

(
1 + δ̃iivi,k

)
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As before, the emission-correcting term depends on γk−1
γk

because there are scale economies in emis-

sion. For instance, it may be optimal to subsidize a high-returns-to-scale industry that exhibits a high

emission intensity. That is because subsidizing such an industry may lower emission through scale

effects that dominate the higher firm-level emission intensity.

Alternatively, maintaining the assumption that αk ∈ (0, 1), we could examine second-best pro-

duction taxes within our general model. In this case, under non-optimal emission taxes, production

taxes must correct the remaining emission externalities:

1 + s??i,k =
γk − 1

γk

[
1 + δ̃ii(vi,k − v?i,k)

]
where v?k is the emission intensity attainable under the first-best policy schedule.

Case #2: Emission Taxes are Used as Protection in Disguise There is widespread skepticism that

environmental policies are occasionally used as protection in disguise. The argument is that when

governments are banned from using trade taxes, they may turn to emission taxes as a second best

trade-restricting instrument. Against this backdrop, we establish two important results. First, sup-

pose export taxes are banned but governments can apply production and import taxes. In that case,

the optimal emission tax remains uniform and coincides with the first-best optimal rate:

τ∗i,k = τ∗i = δ̃∗ii. (s, τ, t available but x banned)

Intuitively, import and production taxes are strictly more effective than emission taxes at mimicking

export taxes. So, when import and production taxes are applicable, there is no rationale for using

emission taxes to mimic export taxes.

Second, suppose that all tax instruments but emission taxes are banned. In that case, optimal

emission taxes will be no longer uniform. Instead, it is optimal for country i to apply a higher emis-

sion tax on industries where it possesses more export market power. To make this point succinctly,

consider a perfectly competitive economy ( f e
i,k = 0, γk → ∞) in which αk = α is uniform across in-

dustries and preferences have a Cobb-Douglas-CES parmaterization given by equation (22). Then, as

shown in Appendix C, the optimal emission tax is given by

τ∗i,k =

(
α(1− σk) (1− λii,krii,k) + 1

α̃i(1− σk) (1− λii,krii,k) + rii,k

)
δ̃ii (only τ available)

where α̃i > α is a country-wide term that depends on the industry-composition of country i’s pro-
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duction.12 The above formula suggests that it is optimal to tax emission above the first-best level in

low-σ industries. Doing so, enables country i to contract exports in high-market-power industries as

an indirect means to extract a markup from the rest of the world.

Next, we present the optimal tax schedule in the case of international cooperation as well the

non-cooperative Nash equilibrium case where countries simultaneously set their optimal unilateral

policy. The former is akin to setting taxes in a closed-economy, and the latter relies on the optimal

unilateral tax seclude presented in the previous section.

4.2 Global Optimum under International Cooperation

The globally optimal policy is the first-best from the global perspective. In other words, this is the

best outcome expected from a deep international agreement on trade and environment between co-

operative countries.

Definition. The Global Optimum is achieved by choosing policy instruments in each country to max-

imize global welfare, ∑iWi, subject to equilibrium condition (1)-(9).

The globally optimal outcome involves zero trade taxes, as these taxes create inefficient distor-

tions from a global perspective. The globally optimal production taxes solely correct the inefficiency

from cross-industry markup heterogeneity. The globally optimal emission taxes are of Pigouvian

nature correcting the local and transboundary emission externality. Stated formally, the optimal pro-

duction subsidy and emission tax in country i is given by

x∗i = t∗i = 0

1 + s∗i,k =
γk − 1

γk

τ∗i,k = τ∗i = ∑
j∈C

P̃jδij

To provide intuition, optimal emission taxes discriminate by country of origin because (i) the disutil-

ity δij from emission in i is non-uniform across locations j, and (ii) converting a dollar loss in i (as a

12More specifically, α̃i exhibits the following formulation:

α̃i = α +
∑g

(
[1−α(1−rii,g)](1−rii,g)

[αεg(1−λii,grii,g)−1](1−λii)
ri,g

)
1−∑g

(
[εg(1−λii,grii,g)](1−α(1−rii,g))
[αεg(1−λii,grii,g)−1](1−λii)

ri,g

)
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result of higher emission taxes) to a welfare loss requires an adjustment by the consumer price index

in i. To gains more intuition, consider the special case where δij = L̄jδ̄, i.e., the disutility from a unit

of emission produced in origin i is uniformly harmful to each individual irrespective of residence. In

that case, the optimal emission tax relative to CPI is uniform across countries, τ∗i /P̃j = δ̄L̄world.

4.3 Non-Cooperative Nash Equilibrium

As in the previous cases, we start with a formal definition of the non-cooperative Nash equilibrium.

Definition. The Non-Cooperative Nash Equilibrium corresponds to a case where non-cooperative coun-

tries simultaneously choose their optimal unilateral policy taking the policy choice in the rest of the

world as given.13

In the Nash equilibrium, the unilaterally optimal emission and production tax formulas are still

characterized by Theorem 1. However, the trade share, λnj,k, and emission intensities, νj,k, in these

formulas now depend on policy choices in the rest of the world. Specifically, Consider country i’s op-

timal export and import taxes. They depend on transboundary emission intensities, {vj,k}j 6=i, which

are regulated by optimal emission taxes adopted by other countries (j 6= i). Using equation (12) and

given that τ∗j,k = δ̃jj for all j ∈ C,

v?j,k = αk
γk − 1

γk
δ̃−1

jj

Supposing preferences are Cobb-Douglas-CES and each country is sufficiently small relative to the

rest of the world, we can plug the above expression into Equation (23) to arrive at the following

optimal trade tax schedule.

Proposition 2. The non-cooperative Nash equilibrium is characterized by each country applying the following

tax schedule: 

1 + t∗ji,k = 1 + αk

(
γk−1

γk

)2 δ̃ji

δ̃jj

1 + x∗ij,k =
σk

σk−1

[
1 + αk

(
γk−1

γk

)2
∑n 6=i

δ̃ni
δ̃nn

λnj,k

]−1

1 + s∗i,k =
γk−1

γk

τ∗i,k = τ∗i = δ̃ii

.

13This situation is akin to a one-shot non-cooperative Nash game.
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The optimal emission and production taxes remain the same (as in Equation 21), even though

all countries simultaneously apply trade, emission, and production taxes. That is because, as long as

trade taxes are available, the unilaterally optimal tax rate for emission and production is independent

of economic variables in the rest of the world—see Theorem 1.

As in the unilateral case, optimal trade taxes in country i correct transboundary emission ex-

ternalities. But the extent of these externalities, here, depends on cross-national differences in the

perceived cost of emission. For instance, suppose country i’s government cares significantly more

about pollution than its counterpart in country j. This situation corresponds to a high δ̃ji/δ̃jj, and

asks for a large tariff on imports from country j. Correspondingly, if governments care significantly

less about transboundary versus local emission, then δ̃ji/δ̃jj ≈ 0 and tariffs may become redundant.

In the case that countries have similar and symmetric preferences vis-à-vis local and transboundary

emission, i.e., δ̃jj = δ̃ji, it is optimal for country i to charge an import tax that is proportional to the

industry-level emission elasticity:

1 + t∗ji,k = 1 + αk

(
γk − 1

γk

)2

.

Intuitively, from country i’s perspective, country j’s emission tax on good ji, k is sub-optimal as it

does not internalize the transboundary cost of emission. So, it is optimal for country i to tax im-

ports originating from high-αk×high-γk industries in country j to partially correct the transboundary

pollution externality.

A similar logic explains why the square of the inverse markup,
(

γk−1
γk

)2
, appears in formulas

specified under Proposition 2. According to equation (3), emission intensity per unit of production,

Zn,k/Qn,k is proportional to (Qn,k/(1− an,k))
−1/γk . That is, the emission intensity is affected by scale

economies in both production and abatement, governed by a common parameter γk. Now, consider

the formula for optimal import taxes t∗ji,k. The first (γk− 1)/γk reflects the importing country i’s desire

to dampen the emission-correcting tariff given scale economies in “production”. The second (γk −
1)/γk is due to the origin country j’s emission taxes interacting with scale economies in “emission”.

5 Mapping Theory to Data

This section describes how our optimal tax formulas map to data. Our objective is to use this mapping

to quantify the environmental gains from optimal trade taxation. To this end, we can run different

exercises depending on which scenario we choose for the baseline emission taxes. Below, we adopt

26



the conservative assumption that, under the status quo, home country i applies its optimal emission

taxes and every foreign country j 6= i has zero emission taxes. This scenario is not as restrictive as it

may appear, since the optimal emission tax can assume any value depending on δii. Perhaps more

restrictive, we assume that the applied emission tax prompts abatement by the local firms.

To quantify the gains from taxation with our formulas, we focus on the Cobb-Douglas-CES case of

our model and employ the exact hat-algebra technique. The basic idea behind our approach is to track

the (taxation-induced) change in every variable z, using the hat notation: ẑ = z′/z. Invoking this

notation, we jointly solve a system of equations consisting of our optimal tax formula and equilibrium

conditions.

The system of equations that determine the gains from optimal policy can be expressed as follows:

1 + t∗ji,k = 1 + δ̃jivj,kv̂j,k
ˆ̃Pi −

rji,k r̂ji,k

γk −∑ rjn,k r̂jn,k
(
1 + εk(1− λjn,kλ̂jn,k)

) (import tax)

1 + x∗ij,k =

(
1 +

1
εk(1− λij,kλ̂ij,k)

)[
1 + ∑

n 6=i
δ̃nivn,kλnj,kv̂n,kλ̂nj,k

ˆ̃
iP

]−1

(export tax)

1 + s∗i,k = (γk − 1)/γk; τ̂∗i,k =
ˆ̃Pi; (emission and production tax)

ν̂i,k = αk/τ̂∗i,k; 1̂− ai,k = (ŵi/τ̂i,k

)αk
; 1̂− aj,k = 1, j 6= i

ˆ̃Pi,k =

[
∑
n

λni,kP̃−εk
ni,k

]−1/εk

; ˆ̃Pni,k = ŵn(1 + t∗ni,k)(1 + x∗ni,k)(1 + s∗n,k)(1̂− an,k)
1

γk
−1Q̂

− 1
γk

n,k

λ̂ji,k =
(

ŵn(1 + t∗ji,k)(1 + x∗ji,k)(1 + s∗j,k)
)−εk ˆ̃Pεk

i,k; Q̂i,k = ∑
n

rin,k
λ̂in,kŶn

ˆ̃Pin,k

ŶiYi = ŵiwi L̄i + T̂iTi + R̂iRi; (Income = Wage Bill + Emission Tax Rev. + Production/Trade Tax Rev.)

ŵiwi L̄i = ∑
k∈K

∑
i∈C

[
(1− αk

γk−1
γk

)λ̂ij,kλij,kej,kŶjYj

(1 + si,k)(1 + xij,k)(1 + tij,k)

]
; T̂iTi = ∑

k∈K

∑
i∈C

[
αk

γk−1
γk

λ̂ij,kλij,kej,kŶjYj

(1 + si,k)(1 + xij,k)(1 + tij,k)

]

R̂iRi = ∑
k∈K

∑
i∈C

[[
(1 + si,k)(1 + xij,k)− 1

]
λ̂ij,kλij,kej,kŶjYj

(1 + si,k)(1 + xij,k)(1 + tij,k)
+

tji,kλ̂ji,kλji,kei,kŶiYi

(1 + sj,k)(1 + xji,k)(1 + tji,k)

]

The first three rows, in the above system, govern the optimal tax choice. The remaining rows govern

the change in equilibrium variables, subject to optimal production/consumption choices and market

clearing conditions.

To evaluate the above system we need to estimate following parameters per industry:

1. The trade elasticity, εk ≡ (σk − 1);
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2. The emission elasticity, αk; and

3. The degree of firm-level market power, γk, which is tied to the markup, µk ≡ γk/(γk − 1).

We also need data on total expenditure Yi; expenditure shares, λji,k, and ei,k; revenue shares, rji,k;

applied taxes, tji,k, xij,k, and si,k; emission intensities, vi,k; and the unit cost of emission to welfare, δ̃ni.

5.1 Data Sources

[To be completed]

5.2 Estimation of γk, εk, and αk

[To be completed]

5.3 Quantitative Exercises

[To be completed]

References

Mustafa H BABIKER : Climate change policy, market structure, and carbon leakage. Journal of inter-

national Economics, 65(2):421–445, 2005. 1

Dominick G BARTELME, Arnaud COSTINOT, Dave DONALDSON et Andrés RODRÍGUEZ-CLARE : The

textbook case for industrial policy: Theory meets data. Rapport technique, National Bureau of

Economic Research, 2019. 1

Mostafa BESHKAR et Ahmad LASHKARIPOUR : The cost of dissolving the wto: The role of global

value chains. 2020. 1

Christoph BÖHRINGER, Jared C CARBONE et Thomas F RUTHERFORD : The strategic value of carbon

tariffs. American Economic Journal: Economic Policy, 8(1):28–51, 2016. 1

Jevan CHERNIWCHAN, Brian R COPELAND et M Scott TAYLOR : Trade and the environment: New

methods, measurements, and results. Annual Review of Economics, 9:59–85, 2017. 1

Brian R COPELAND : Pollution content tariffs, environmental rent shifting, and the control of cross-

border pollution. Journal of international Economics, 40(3-4):459–476, 1996. 1

28



Brian R COPELAND et M Scott TAYLOR : Trade, growth, and the environment. Journal of Economic

literature, 42(1):7–71, 2004. 1, 2.2

Arnaud COSTINOT, Dave DONALDSON, Jonathan VOGEL et Iván WERNING : Comparative advan-

tage and optimal trade policy. The Quarterly Journal of Economics, 130(2):659–702, 2015. 1

Arnaud COSTINOT et Andrés RODRÍGUEZ-CLARE : Trade theory with numbers: Quantifying the

consequences of globalization. In Handbook of international economics, volume 4, pages 197–261.

Elsevier, 2014. 1

Arnaud COSTINOT, Andrés RODRÍGUEZ-CLARE et Iván WERNING : Micro to macro: Optimal trade

policy with firm heterogeneity. Rapport technique, National Bureau of Economic Research, 2016. 1

Rudiger DORNBUSCH, Stanley FISCHER et Paul Anthony SAMUELSON : Comparative advantage,

trade, and payments in a ricardian model with a continuum of goods. The American Economic

Review, 67(5):823–839, 1977. 3, 3.2

Jonathan EATON et Samuel KORTUM : Technology, geography, and trade. Econometrica, 70(5):1741–

1779, 2002. 3, 3.2

Joshua ELLIOTT, Ian FOSTER, Samuel KORTUM, Todd MUNSON, Fernando PEREZ CERVANTES et

David WEISBACH : Trade and carbon taxes. American Economic Review, 100(2):465–69, 2010. 1

Roger A HORN et Charles R JOHNSON : Matrix analysis. Cambridge university press, 2012. B.3, B.4

Ahmad LASHKARIPOUR et Volodymyr LUGOVSKYY : Profits, scale economies, and the gains from

trade and industrial policy. 2016. 1

James R MARKUSEN : International externalities and optimal tax structures. Journal of international

economics, 5(1):15–29, 1975. 1, 2, 1, 4.1

Andreu MAS-COLELL, Michael Dennis WHINSTON, Jerry R GREEN et al. : Microeconomic theory,

volume 1. Oxford university press New York, 1995. B.3

William NORDHAUS : Climate clubs: Overcoming free-riding in international climate policy. Ameri-

can Economic Review, 105(4):1339–70, 2015. 1, 1

Alexander M OSTROWSKI : Note on bounds for determinants with dominant principal diagonal.

Proceedings of the American Mathematical Society, 3(1):26–30, 1952. B.3

29



Joseph S SHAPIRO : Trade costs, co 2, and the environment. American Economic Journal: Economic

Policy, 8(4):220–54, 2016. 2.5

Joseph S SHAPIRO : The environmental bias of trade policy. Rapport technique, National Bureau of

Economic Research, 2020. 1

Joseph S SHAPIRO et Reed WALKER : Why is pollution from us manufacturing declining? the roles

of environmental regulation, productivity, and trade. American Economic Review, 108(12):3814–54,

2018. 1

Daniel M STURM : Trade and the environment: A survey of the literature. In Environmental policy in

an international perspective, pages 119–149. Springer, 2003. 2

Appendix

A Theoretical Preliminaries

A.1 Detailed Statement of the Optimal Unilateral Policy Problem

We derive optimal unilateral policy for the government in country i, which here we refer to as the

home country. We denote by Pi ≡ {P̃ii,k, P̃ji,k, P̃ij,k, ai,k}j 6=i,j∈C, k∈K the policy instruments in country i,

by P̃i ≡ {P̃ji,k}j∈C, k∈K the vector of consumer prices in country i, and by w ≡{wj}j∈C the vector of

wages. The problem of the government in country i is:

max
Ii

Vi(Yi, P̃i)− ∑
n∈C

∑
g∈K

δniZn,g(an,g; Qn,g)

subject to the following equilibrium relationships, for all i, j ∈ C,and k ∈ K,

(Optimal Demand) Qji,k = Dji,k(Yi, P̃i)

(Producer Price) Pji,k(wj, aj,k; Qj,k) = d̄ji,k p̄jj,kwj(1− aj,k)
1

γk
−1Q

− 1
γk

j,k

(Pollution) Zj,k(aj,k; Qj,k) ≡ z̄j,k(1− aj,k)
1

αk
+ 1

γk
−1Q

1− 1
γk

j,k

(Income = Revneue) Yi = wi L̄i + ∑
k, j 6=i

[(
P̃ji,k − Pji,k

)
Qji,k

]
+ ∑

k, j

[(
P̃ij,k − (1− αk

γk − 1
γk

)Pij,k

)
Qij,k

]
+ D̄i

(Trade Deficit) Bi ≡∑
j 6=i

∑
k

Pji,kQji,k −∑
j 6=i

∑
k

P̃ij,kQij,k − D̄i = 0
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Here, we have written every variable as a function of (1) wages, (2) all or a subset of policy instru-

ments, and (3) quantities. Equations for producer price and pollution reproduce (2) and (3), in which

Qj,k = ∑i d̄ji,kQji,k. The equation for income reproduces (7) only in a more compact way by replacing

for taxes from (8), and the trade deficit condition is equivalent to factor market clearing condition

(See footnote 9). The demand function Dji,k is characterized by the set demand elasticities defined in

Section 2.1. Throughput our proof, we assign the factor in one foreign country as the numeraire.

A.2 Expressing Equilibrium Outcomes as a Function of (Pi; w)

Consider system (Sw) that incorporates all equilibrium conditions excluding the labor-market clear-

ing condition. For all n, j ∈ C,and k ∈ K,

(Optimal Demand) Qnj,k(Pi; w) =

Dni,k(P̃i, Yi(Pi; w)) if j = i

Dnj,k(P̃ij, {P̃nj(Pi; w)}n 6=i, Yj(Pi; w)) if j 6= i

(Indusry Output) Qn,k(Pi; w) = ∑j∈C d̄nj,kQnj,k(Pi; w)

(Producer Price) Pnj,k(Pi; w) = d̄nj,k p̄nn,kwn(1− an,k)
1

γk
−1

(Qn,k(Pi; w))
− 1

γk

(Pollution) Zn,k(Pi; w) = z̄n,k(1− an,k)
1

αk
+ 1

γk
−1

(Qn,k(Pi; w))
− 1

γk

(Tax Revenues) Tn(Pi; w) =


∑k, j 6=i

[(
P̃ji,k − Pji,k(Pi; w)

)
Qji,k(Pi; w)

]
if n = i

+∑k, j

[(
P̃ij,k − (1− αk

γk−1
γk

)Pij,k(Pi; w)
)

Qij,k(Pi; w)
]

0 if n 6= i

(Income) Yn(Pi; w) = wn L̄n + D̄n + Tn(Pi; w)

(Sw)

Here, P̃i ⊂ Pi is the vector of consumer prices in home country i, P̃ij ⊂ Pi is the vector of consumer

prices in foreign country j of varieties produced in home, and ai,k ∈ Pi is the abatement in home.

All these are instruments of policy to be chosen by the home government. In contrast, every foreign

country n 6= i has some fixed abatement level an,k = ān,k and no tax revenues Tn = 0. System (Sw)

characterizes quantities, producer prices, emissions, tax revenues, and income in all economies as a

function of (Pi, w) . Correspondingly, welfare in country i can be formulated as,

Wi(Pi; w) = Vi(Yi(Pi; w), P̃i)−∑
n,k

δniZi,k(Pi; w).

By design, system (Sw) excludes the labor-market clearing condition, and it is understood that many

wage vectors may satisfy (Sw). For a given choice of policy, Pi, a wage vector, w, is in the feasible set
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Fw
i if and only if it satisfies the labor-market clearing conditions:

∑
j,k

[(
1− αk

γk − 1
γk

)
Pnj,k(Pi; w)Qnj,k(Pi; w)

]
= wn L̄n, ∀n.

A.3 Expressing Equilibrium Outcomes as a Function of (Pi; Yi)

Following Lemma 2, we treat wages as fixed. Consider system (SY) that incorporates all equilibrium

conditions excluding the budget constraint. For all n, j ∈ C,and k ∈ K,

(Optimal Demand) Qnj,k(Pi; Yi) =

Dni,k(P̃i, Yi) if j = i

Dnj,k(P̃ij, {P̃nj(Pi; Yi)}n 6=i, Ȳj) if j 6= i

(Indusry Output) Qn,k(Pi; Yi) = ∑j∈C d̄nj,kQnj,k(Pi; Yi)

(Producer Price) Pnj,k(Pi; Yi) = d̄nj,k p̄nn,kw̄n(1− an,k)
1

γk
−1

(Qn,k(Pi; Yi))
− 1

γk

(Pollution) Zn,k(Pi; Yi) = z̄n,k(1− an,k)
1

αk
+ 1

γk
−1

(Qn,k(Pi; Yi))
1− 1

γk

(Taxes) Tn(Pi; Yi) =


∑k, j 6=i

[(
P̃ji,k − Pji,k(Pi; Yi)

)
Qji,k(Pi; Yi)

]
if n = i

+∑k, j

[(
P̃ij,k − (1− αk

γk−1
γk

)Pij,k(Pi; Yi)
)

Qij,k(Pi; Yi)
]

0 if n 6= i

(SY)

System (SY) characterizes quantities, producer prices, emissions, and tax revenues in all economies

as a function of (Pi, Yi). Correspondingly, welfare in country i can be formulated as,

Wi(Pi; Yi) = Vi(w̄i L̄i + D̄i + Ti(Pi; Yi), P̃i)−∑
n,k

δniZi,k(Pi; Yi).

A policy-income pair is feasible, denoted by (Pi, Yi) ∈ FY
i , if and only if Yi = w̄i L̄i + D̄i + Ti(Pi; Yi).

A.4 Characterizing Equilibrium Wage Effects

Suppose we formulate all equilibrium variables as a function of Pi and w (described in Appendix

A.2). The feasible vector of wages, w, solves the following system of labor market clearing conditions:
f1(Pi; w) ≡ w1L1 −∑j∈C ∑k∈K(1− αk

γk−1
γk

)P1j,k(Pi; w)Q1j,k(Pi; w) = 0
...

fN(Pi; w) ≡ wN LN −∑j∈C ∑k∈K(1− αk
γk−1

γk
)PNj,k(Pi; w)QNj,k(Pi; w) = 0

(24)
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Also, note that by Walras’ law one equation is redundant so we can assign one element of w as the

numeraire:

∑
n

fn(Pi; w) = 0. [Walras’ Law]

To characterize the term dw
dPi

in the F.O.C., we can apply the Implicit Function Theorem to the above

system as follows:
d ln w
d lnPi

= −
(

∂ f
∂ ln w

)−1

Pi

∂ f
∂ lnPi

.

To characterize the matrix ∂ f
∂w , let us briefly abstract from scale economies and abatement, which

amounts to setting αk
γk−1

γk
= 0 in System 24. This simplification helps us convey our main point

succinctly; but it does not imply it. As we argue shortly, our main claim goes through without this

simplification. Taking partial derivatives from System 24 w.r.t. w holding Pi fixed, yields

(
∂ f

∂ ln w

)
Pi

=



∂ f1
∂ ln w1

∂ f1
∂ ln w2

· · · ∂ f1
∂ ln wN

∂ f2
∂ ln w1

∂ f2
∂ ln w2

· · · ∂ f2
∂ ln wN

...
. . . . . .

...
∂ fN

∂ ln w1

∂ fN
∂ ln w2

· · · ∂ fN
∂ ln wN

 =


1−∑k,g r11,k

(
η11,k + ε

(11,g)
11,k

)
· · · −∑k,g r1N,k

(
η1N,k + ε

(NN,g)
1N,k

)
1−∑k,g r21,k

(
η21,k + ε

(11,g)
21,k

)
· · · −∑k,g r2N,k

(
η2N,k + ε

(NN,g)
2N,k

)
...

. . .
...

1−∑k,g rN1,k

(
ηN1,k + ε

(11,g)
N1,k

)
· · · −∑k,g rNN,k

(
ηNN,k + ε

(NN,g)
NN,k

)

 .

Under Cobb-Douglas-CES preferences, the above matrix assumes the following parameterization:

(
∂ f

∂ ln w

)
Pi

= I−


−∑k [r11,kεk(1− λ11,k)] ∑k [r12,k (1 + εkλ22,k)] · · · ∑k [r1N,k (1 + εkλNN,k)]

∑k [r21,k (1 + εkλ11,k)] −∑k [r22,kεk(1− λ22,k)] · · · ∑k [r2N,k (1 + εkλNN,k)]
...

. . . . . .
...

∑k [rN1,k (1 + εkλ11,k)] ∑k [rN2,k (1 + εkλ22,k)] · · · −∑k [rNN,kεk(1− λNN,k)]


︸ ︷︷ ︸

A

Noting that rij,kεk(1− λjj,k)� 1 if j 6= i, we can produce the following approximation:14

(
∂ f

∂ ln w

)−1

Pi

= (I−A)−1 = I + A + A2 + · · · ≈

I +
∞

∑
m=1

diag

([
− ∑

k∈K

rii,kεk(1− λii,k)

]m)
= diag

[∑
k∈K

1 + rii,kεk(1− λii,k)

]−1
 .

14The last line follows from the fact that for a ∈ R+,

∞

∑
n=1

(−a)n = − a
1 + a

.

33



The above equation indicates that
(

∂ f
∂ ln w

)
Pi

is nearly diagonal with smaller-than-unity diagonal ele-

ments. Now, consider the case where Pi = P̃ji,k and assign wj as the numeraire. The derivative of f−j

(i.e., f excluding row j) w.r.t. P̃ji,k holding w and Pi − P̃ji,k fixed is given by:

∂ f−j

∂ ln P̃ji,k
=



∂ f1
∂ ln P̃ji,k

∂ f2
∂ ln P̃ji,k

...
∂ fN

∂ ln P̃ji,k


=


∑g r1i,gε

(ji,k)
1i,g

∑g r2i,gε
(ji,k)
2i,g

...

∑g rNi,gε
(ji,k)
Ni,g

 Cobb-Douglas-CES
−−−−−−−−−−−−−→

=



r1i
...

rj−1i

rj+1i
...

rNi


λji,kεk

Given that (i) λji,krni ≈ 0 if n and j 6= i, and (ii)
(

∂ f
∂ ln w

)
Pi

is nearly diagonal with smaller-than-unity

diagonal elements, it immediately follows that

d ln w−{i,j}
d ln P̃ji,k

=

(
∂ f−j

∂ ln w−{i,j}

)−1

Pi

∂ f−j

∂ ln P̃ij
≈ 0,

where w−{i,j} denotes the wage vector w excluding elements i and j. The same steps can be taken

with regards to nay other price instrument in Pi. Furthermore, the above argument goes through if

we allow for a finite γk and a non-zero αk.

A.5 Some Useful Relationships

Before turning to our derivations of optimal policy, we show two sets of useful relationships. The

first one is the effects of policy instruments on emission levels. The second one is the effects of policy

instruments on producer prices through industry-level scale economies.

Scale Effects in Emission. Recall that total emission, as a function of abatement and output, is given

by

Zj,k(aj,k; Qj,k) ≡ z̄j,k(1− aj,k)
1

αk
+ 1

γk
−1Q

1− 1
γk

j,k .

To track the policy response of emission we use two following partial derivatives. The first one,

accounts for scale effects in emission:

∂ ln Zj,k(aj,k, Qj,k)

∂ ln Qj,k
= 1− 1

γk
, (25)
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and, the second one accounts for abatement effects in emission:

∂ ln Zj,k(aj,k, Qj,k)

∂ ln(1− aj,k)
=

1
αk

+
1
γk
− 1. (26)

Note that ai,k is directly chosen by the policy-maker in our reformulated optimal policy problem.

Qj,k(Pi; w, Yi) is implicitly determined by the policy-maker with respect to abatement and the re-

maining price instruments.

Scale Economies in Production and the Export Supply Elasticity. Below, we define and character-

ize the export supply elasticity. To that end, we first introduce some intermediate partial derivatives

that enter the export supply elasticity formula. These partial derivatives are also independently use-

ful to our subsequent optimal analysis.

Note that total output in origin j–industry k is given by

Qj,k(Qj1,k, ...QjN,k) = d̄j1,kQj1,k + ... + d̄jN,kQjN,k,

The change in total output in response to changes in destination-specific demand can be expressed

as
∂ ln Qj,k(Qj1,k, ...QjN,k)

∂Qji,k
=

d̄ji,kQji,k

Qj,k
≡ rji,k,

where rji,k is the (within-industry) revenue share that is collected from sales to destination i. Now,

consider the producer price index associated with origin j–industry k, which is an explicit function

of abatement, wage, and output schedule (Qi,k ≡
{

Qj1,k, ...QjN,k
}

):

Pjj,k(aj,k, Qj,k, wj) = p̄jj,kwj(1− aj,k)
1

γk
−1Qj,k(Qj1,k, ...QjN,k)

− 1
γk .

Also note that price in various destinations is a constant iceberg cost times the price at origin: Pji,k =

d̄ji,kPjj,k. Suppose country j is the one setting policy. In that case the elasticity of Pji,k w.r.t. to different

elements of the origin j’s output vector is given by:

(
∂ ln Pji,k(.)
∂ ln Qjn,g

)
Pj,w,Yj

=

0 g 6= k

− 1
γk

rin,k g = k

To given intuition, Pi fixes all price associated with origin j. Hence, a change in output has a direct

effect on the price index but no ripple effects. By ripple effects we mean that an increase in Qjn,k

lowers Pji,k, but this reduction has no further effect on consumer prices which are fixed by Pi. Hence,

the reduction in Pji,k has not feedback effect on output through demand effects.
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This is no longer the case, if country j is not choosing the policy instruments in our optimal policy

problem. Suppose instead that country i is the one choosing its optimal policy vector. In that case

an increase in Qjn,k will lower origin j’s “consumer” prices in all markets but i. This reduction will

further raise demand for origin j’s output triggering further scale effects and so forth. To keep track

of these ripple effects, we can apply the Implicit Function Theorem to the following equation:

Gj,k(Pjj,k, Qjn,k, ...) = ln Pjj,k − ln

 p̄jj,kwj(1− aj,k)
1

γk
−1

[
N

∑
j=1

dji,kQji,k(Pjj,k)

]− 1
γk

 = 0,

which yields the following formula for the export supply elasticity facing variety jn, k (j 6= i):(
∂ ln Pji,k

∂ ln Qjn,k

)
Pi ,w,Yi

=

(
∂ ln Pjj,k

∂ ln Qjn,k

)
Pi ,w,Yi

= −
∂Gj,k(.)/∂ ln Qjn,k

∂Gj,k(.)/∂ ln Pjj,k

=
− 1

γk

∂ ln Qj,k
∂ ln Qjn,k

1 + ∑n 6=i
1

γk

∂ ln Qj,k
∂ ln Qjn,k

∂ ln Qjn,,k

∂ ln P̃jn,,k

∂ ln P̃jn,,k
∂ ln Pjj,,k

=
− 1

γk
rjn,k

1 + ∑n 6=i
1

γk
rjn,kε jn,k

≡ ωjn,k.

To economize on the notation, we use ωjn,k to denote the export supply elasticity, noting that this is a

variable but estimable reduced-form elasticity.

A.6 Multiplicity of Policy Schedules

[To be added]

B Proofs and Derivations

B.1 Proof of Lemma 2

Step 1. We first show that ∂ ln Yi
∂ ln wi

= 0 if the policy vector Pi is fixed and policy-wage is feasible

(Pi; wi) ∈ Fw
i . Using the income equation, and holding fixed {P̃ji,k, P̃ij,k, P̃ii,k}j 6=i,k ∈ Pi,

∂Yi

∂ ln wi
= wi L̄i− ∑

k, j 6=i

[
∂ ln Pji,k

∂ ln wi
+

∂ ln Qji,k

∂ ln wi

]
Pji,kQji,k−∑

k, j
(1− αk

γk − 1
γk

)

∂ ln Pij,k

∂ ln wi
+

∂ ln Qij,k

∂ ln wi︸ ︷︷ ︸
=0 if j 6=i

 Pij,kQij,k

Notice that home’s wage, wi, affects price of a variety directly if that variety is produced at home,

and also indirectly through scale economies,
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∂ ln Yi
∂ ln wi

= wi L̄i
Yi
−∑k, j 6=i

[
∂ ln Pji,k
∂ ln Qj,k

∂ ln Qj,k
∂ ln Qji,k

∂ ln Qji,k
∂ ln wi

+
∂ ln Qji,k
∂ ln wi

]
Pji,kQji,k

Yi

−∑k, j(1− αk
γk−1

γk
)(1 + ∂ ln Pij,k

∂ ln Qi,k

∂ ln Qi,k
∂ ln Qii,k

∂ ln Qii,k
∂ ln wi

)
Pij,kQij,k

Yi
−∑k(1− αk

γk−1
γk

)
∂ ln Qii,k
∂ ln wi

Pii,kQii,k
Yi

= wi L̄i
Yi
−∑k, j 6=i(1− 1

γk
rji,k)ηji,k

∂ ln Yi
∂ ln wi

Pji,kQji,k
Yi

−∑k, j(1− αk
γk−1

γk
)(1− 1

γk
rii,kηii,k

∂ ln Yi
∂ ln wi

)
Pij,kQij,k

Yi
−∑k(1− αk

γk−1
γk

)ηii,k
∂ ln Yi
∂ ln wi

Pii,kQii,k
Yi

where ∂ ln Qj,k
∂ ln Qji,k

= rji,k. Reorganizing terms,

ΛY
i

(
∂ ln Yi
∂ ln wi

)
− 1

Yi

(
wi L̄i −∑

k, j
(1− αk

γk − 1
γk

)Pij,kQij,k

)
︸ ︷︷ ︸

=0

= 0

where the second term equals zero since the policy-wage pair is feasible, (Pi; wi) ∈ Fw
i , meaning

that the labor market clearing condition (XXX) has to hold; and, ΛY
i summarizes the coefficient of the

wage effect on income,

ΛY
i ≡ 1 + ∑

k, j 6=i
(1−

rji,k

γk
)ηji,k

Pji,kQji,k

Yi
−∑

k

rii,k

γk
ηii,k

wi L̄i

Yi
+ ∑

k
(1− αk

γk − 1
γk

)ηii,k
∂ ln Yi

∂ ln wi

Pii,kQii,k

Yi

From the fact that ΛY
i is generically non-zero, it follows that:

∂ ln Yi

∂ ln wi
= 0.

Step 2. Within the feasible set of policy-wage, (Pi; wi) ∈ Fw
i , and holding fixed the policy vector Pi,

we can express the derivative of Wi(Pi; w) w.r.t. wi as follows:

∂Wi(.)
∂wi

=
∂Vi(.)

∂Yi

(
∂Yi

∂wi

)
− 1

Yi
∑

j
∑

k

(
δjiZj,k

∂ ln Zj,k(.)
∂ ln Qj,k

∂ ln Qj,k(.)
∂ ln Qji,k

∂ ln Dji,k(.)
∂ ln Yi

)(
∂Yi

∂wi

)
= 0

where we use ∂ ln Yi
∂ ln wi

= 0 from Step 1.

B.2 Proof of Lemma 3

Notice that we have already sketched a proof for Lemma 3 in the buildup to the formal statement of

the lemma. However, here we prove this lemma using a somewhat different approach that allows us

to provide more details.

Recall that Applying the chain rule to Wi(Pi; Yi) = Vi(w̄i L̄i + Ti(Pi; Yi), P̃i)− δi · Z(Pi; Yi), yields

the following expression:

dWi(Pi; Yi)

d lnP =
∂Vi(.)
∂ lnP +

∂Vi(.)
∂Yi

(
∂Ti(Pi; Yi)

∂ lnP

)
Yi

−
(

∂δi · Z(Pi; Yi)

∂ lnP

)
Yi

+

(
∂Wi(Pi; Yi)

∂ ln Yi

)
Pi

d ln Yi

d lnP .
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Before moving forward, let us emphasize two important details:

1. Following Lemma 2, we are treating the vector of wages, w = w̄, as constant throughout our

proof. So, the partial derivatives subject to Yi can be more-broadly interpreted as partial deriva-

tives subject to holding both Yi and w fixed, i.e.,
(

∂Ti(Pi ;Yi)
∂ lnP

)
Yi
∼
(

∂Ti(Pi ;Yi)
∂ lnP

)
Yi ,w

.

2. Every time we differentiated w.r.t. a P ∈ Pi, we are also fixing the remaining elements of Pi.

That is because the government is directly choosing every single element of Pi. So, to be even

more precise, we may interpret the partial derivative subject to Yi as derivative subject to fixing

Yi, w, and Pi − {P}, i.e.,
(

∂Ti(Pi ;Yi)
∂ lnP

)
Yi
∼
(

∂Ti(Pi ;Yi)
∂ lnP

)
Yi ,w,Pi−{P}

.

Noting the above explanation, we now proceed with the proof in two steps.

Step #1: Characterizing
(

∂Wi
∂Yi

)
Pi

.

To characterize
(

∂Wi
∂Yi

)
Pi

, we can apply the chain rule, which implies

(
∂Wi(Pi; Yi)

∂ ln Yi

)
Pi

=
∂Vi(.)

∂Yi

(
∂Ti(.)
∂ ln Yi

)
Pi

−
(

∂δi · Z(Pi; Yi)

∂ ln Yi

)
Pi

. (27)

As outlined in Appendix A.3 , Ti(.) and Zj,k(.) are formulated as
Ti(Pi; Yi) = ∑k

(
αk

γk−1
γk

Pii,k(Pi; Yi)Qi,k(Pi; Yi)
)

+∑k,j
[
(P̃ij,k − Pij,k(Pi; Yi))Qij,k(Pi)

]
+ ∑k,j 6=i

[
(P̃ji,k − Pji,k(Pi; Yi))Qji,k(Pi; Yi)

]
;

Zj,k(Pi; Yi) = z̄j,k(1− aj,k)
1

αk
+ 1

γk
−1Qj,k(Pi; Yi)

1− 1
γk ;

with the equilibrium quantity and producer prices given by

Qjn,k(Pi; Yi) =

Djn,k(P̃in, P−in, Ȳn) if n 6= i

Dji,k(P̃i, Yi) if n = i
;

Qi,k(Pi; Yi) = ∑
j

dij,kQij,k(Pi; Yi);

Pjn,k(Pi; Yi) = ρjn,k(1− aj,k)
1

γk
−1Qj,k(Pi; Yi)

− 1
γk .
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where ρjn,k ≡ d̄jn,k p̄jj,kw̄j. Using our definition for the income elasticity of demand, we can produce

the following partial derivatives for quantities and producer prices:(
∂ ln Qji,k(.)

∂ ln Yi

)
Pi

=
∂ lnDji,k(.)

∂ ln Yi
= ηji,k;

(
∂ ln Qjn,k(.)

∂ ln Yi

)
Pi

= 0, (j 6= i)(
∂ ln Qj,k(.)

∂ ln Yi

)
Pi

=

(
∂ ln Qj,k

∂ ln Qji,k

)
Pi

(
∂ ln Qji,k(.)

∂ ln Yi

)
Pi

= rji,kηji,k(
∂ ln Pij,k(.)

∂ ln Yi

)
Pi

=

(
∂ ln Pii,k(.)

∂ ln Qi,k

)
Pi

(
∂ ln Qi,k

∂ ln Qii,k

)
Pi

(
∂ ln Qji,k(.)

∂ ln Yi

)
Pi

= − 1
γk

rii,kηii,k(
∂ ln Pji,k(.)

∂ ln Yi

)
Pi

=

(
∂ ln Pjj,k(.)
∂ ln Qji,k

)
P̃ji,k

(
∂ ln Qji,k(.)

∂ ln Yi

)
Pi

= ωji,kηji,k (j 6= i)

where ωji,k denotes the export supply elasticity as defined in Appendix A.5. Using the above expres-

sions and noting that

Ti(Pi; Yi) = ∑
k,j 6=i

[
(P̃ji,k − Pji,k(Pi; Yi))Qji,k(Pi; Yi)

]
+ ∑

k,j

[
(P̃ij,k − (1− αk

γk − 1
γk

)Pij,k(Pi; Yi))Qij,k(Pi; Yi)

]
,

produces the following formulation for
(

∂Ti(.)
∂ ln Yi

)
Pi

and
(

∂Zj,k(.)
∂ ln Yi

)
Pi

:



(
∂Ti(.)
∂ ln Yi

)
Pi

= −∑k

[(
1− αk

γk−1
γk

)
1

γk
ηii,kPii,kQii,k

]
+∑k

[(
P̃ii,k − (1− αk

γk−1
γk

)Pii,k

)
Qii,kηii,k

]
+ ∑k,j 6=i

[
(P̃ji,k − (1 + ωji,k)Pji,k)Qji,kηji,k

]
;(

∂Zj,k(.)
∂ ln Yi

)
Pi

=
(

1− 1
γk

)
Zj,krji,kηji,k =

γk−1
γk

vj,kPji,kQji,kηji,k.

To provide more detail: The first line in the expression for
(

∂Ti(.)
∂ ln Yi

)
Pi

derives from the following

intermediate result:

N

∑
j=1

[(
∂ ln Pij,g

∂ ln Qii,g

)
Pi

Pij,gQij,g

]
=

N

∑
j=1

[(
∂ ln Pii,g

∂ ln Qi,g

)
Pi

∂ ln Qi,g(Qi1,g...QiN,g)

∂ ln Qii,g
Pij,gQij,g

]

= −
N

∑
j=1

(
1

γg
rii,gPij,gQij,g

)
= − 1

γg
rii,g

N

∑
j=1

(
Pij,gQij,g

)
= − 1

γg
Pii,gQii,g

(28)
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Plugging the expressions for
(

∂Ti(.)
∂ ln Yi

)
Pi

and
(

∂Zj,k(.)
∂ ln Yi

)
Pi

back into Equation 27, and noting that ∑j
(

Pij,kQij,krii,k
)
=

Pii,kQi,krii,k = Pii,kQii,k, yields

(
∂Wi

∂ ln Yi

)
Pi

=∑
k

(P̃ii,k −
γk − 1

γk

(
1− αk

γk − 1
γk

+ δ̃ii,kvi,k

)
Pii,k

)
Qii,kηii,k + ∑

j 6=i

([
P̃ji,k − (1 + ωji,k −

γk − 1
γk

δjivj,k)Pji,k

]
Qji,kηji,k

)
=∑

k

(1− γk − 1
γk

(
1− αk

γk − 1
γk

+ δ̃ii,kvi,k

)
Pii,k

P̃ii,k

)
eii,kηii,k + ∑

j 6=i

([
1− (1 + ωji,k −

γk − 1
γk

δjivj,k)
Pji,k

P̃ji,k

]
eji,kηji,k

)Yi.

(29)

Step #2: Proving that
(

∂Wi
∂Yi

)
Pi

= 0 at the optimum.

This step establishes that if for all P ∈
{

ai, P̃ii, P̃ji
}

if

∂Vi(.)
∂ lnP +

∂Vi(.)
∂Yi

(
∂Ti(Pi; Yi, w)

∂ lnP

)
w,Yi

−
(

∂δi · Z(Pi; Yi, w)

∂ lnP

)
w,Yi

= 0,

then
(

∂Wi
∂Yi

)
Pi

= 0. For the sake of clarity, our notation indicates explicitly that the partial derivative

w.r.t. P are taken while holding both w and Yi (in the demand function) constant.

[Abatement Level: ai] First, consider the case where P = 1− ai,k. Keep in mind that the instrument

set Pi includes all consumers prices in the local economy. So, holding all instruments except ai,k (i.e.,

Pi − {ai,k}) fixed, then ai,k has no direct effect on Vi(Yi = w̄i L̄i + Ti, P̃i). However, ai,k does affect tax

revenues and local emission levels as indicated below:

∂Vi(.)
∂ ln(1+ai,k)

= 0(
∂Ti(Pi ;Yi ,w)
∂ ln(1+ai,k)

)
w,Yi

= −∑N
j=1

(
(1− αk

γk−1
γk

)Pij,kQij,k

(
∂ ln Pii,k

∂ ln(1−ai,k)

)
w,Yi

)
= (1− αk

γk−1
γk

)γk−1
γk

∑N
j=1
(

Pij,kQij,k
)

(
∂δi ·Z(Pi ;Yi ,w)

∂ ln(1+ai,k)

)
w,Yi

= δii

(
∂Zi,k(...,1−ai,k)

∂ ln(1−ai,k)

)
w,Yi

=
(

1
αk
− γk−1

γk

)
δiiZi,k .

Combining the above equation yields (note that Pii,kQi,k = ∑N
j=1 Pij,kQij,k)

∂Vi(.)
∂ ln(1 + ai,k)

+
∂Vi(.)

∂Yi

(
∂Ti(Pi; Yi)

∂ ln(1 + ai,k)

)
w,Yi

−
(

∂δi · Z(Pi; Yi)

∂ ln(1 + ai,k)

)
w,Yi

=
∂Vi(.)

∂Yi

[
1− αk

γk − 1
γk

]
γk − 1

γk
Pii,kQi,k −

1
αk

δiiZi,k

[
1− αk

γk − 1
γk

]
= 0. (30)

[Domestic and Import Prices: P̃ii, and P̃ji,] Next, consider the case where P = P̃ii,k or P̃ji,k (where

j 6= i). We are combining both instruments, as the partial derivative w.r.t. to both P̃ii,k and P̃ji,k

produce similar-looking equation. So, we henceforth use n to denote the origin country with the

40



understanding that either n = i or n = j. For this case, we first detail the partial derivative of tax

revenues, Ti(.), which is more involved:(
∂Ti(Pi; Yi, w)

∂ ln P̃ni,k

)
w,Yi

= P̃ii,kQii,k + ∑
g

[(
P̃ii,g − [1− αg

γg − 1
γg

]Pii,g

)
Qii,g

(
∂ ln Qii,g

∂ ln P̃ni,k

)
w,Yi

]

−∑
g

∑


[
[1− αg

γg − 1
γg

]Pi,gQi,g

(
∂ ln Pi,g

∂ ln Qii,g

)
w,Yi

(
∂ ln Qii,g

∂ ln P̃ni,k

)
w,Yi

]

+ ∑
j 6=i

∑
g

[(
P̃ji,g − [1 +

(
∂ ln Pji,g

∂ ln Qji,g

)
w,Yi

]Pji,g

)
Qji,g

(
∂ ln Qji,g

∂ ln P̃ni,k

)
w,Yi

]
.

As before,
(

∂ ln Qni,g

∂ ln P̃ni,k

)
w,Yi

=
∂ lnDni,g(Yi ,P̃i)

∂ ln P̃ni,k
= ε

(ii,k)
ni,g . The second line can also be simplified the steps

outlined under Equation 28. Accordingly, we can express the different elements in Equation



∂Vi(.)
∂ ln P̃ii,k

= −Pii,kQii,k
∂Vi(.)

∂Yi
[Roy’s identity](

∂Ti(Pi ;Yi ,w)
∂ ln P̃ii,k

)
w,Yi

= ∑n 6=i ∑g

[(
1− (1 + ωni,g)

Pni,g

P̃ni,g

)
P̃ni,gQni,gε

(ii,k)
ni,g

]
+ ∑g

[(
1−

(
1− αg

γg−1
γg

)
γg−1

γg

Pii,g

P̃ii,g

)
P̃ii,gQii,gε

(ii,k)
ii,g

]
(

∂δi ·Z(Pi ;Yi ,w)
∂ ln P̃ii,k

)
w,Yi

= ∑g ∑j δji

(
∂Zj,g(...;Qj,g)

∂ ln Qj,g

∂ ln Qj,g(Qj1,k ,...,QjN,k)

∂ ln Qji,g

∂ ln Qji,g

∂ ln P̃ii,k

)
w,Yi

= ∑g ∑j

[
δji

γk−1
γk

vj,kε
(ni,k)
ji,g Pji,gQji,g

]
where the last line follows from the fact that (1) ∂Zj,g(...;Qj,g)

∂ ln Qj,g
= γk−1

γk
Zj,g, (2) ∂ ln Qj,g(Qj1,k ,...,QjN,k)

∂ ln Qji,g
= rji,g,

and (3) vj,k ≡ Zj,k/Pjj,kQj,k. Combining the above equations yields

∂Vi(.)
∂ ln P̃ni,k

+
∂Vi(.)

∂Yi

(
∂Ti(Pi; Yi)

∂ ln P̃ni,k

)
w,Yi

−
(

∂δi · Z(Pi; Yi)

∂ ln P̃ni,k

)
w,Yi

=

∑
g

[
∑
j 6=i

(
1−

(
1 + ωji,g + δ̃jiνj,g

γg − 1
γg

) Pji,g

P̃ji,g

)
eji,gε

(ni,k)
ji,g

]
Yi + ∑

g

[(
1−

(
1− αg

γg − 1
γg

+ δ̃iiνi,g

)
γg − 1

γg

Pii,g

P̃ii,g

)
eii,gε

(ni,k)
ii,g

]
Yi = 0

(31)

For Equation 30 to hold it should be that αk
γk−1

γk
Pii,kQi,k − δ̃iiZi,k = 0. Plugging this expression into

Equation 31 yields

∑
g

[
∑
j 6=i

(
1−

(
1 + ωji,g + δ̃jiνj,g

γg − 1
γg

)
Pji,g

P̃ji,g

)
eji,gε

(ni,k)
ji,g

]
+ ∑

g

[(
1−

γg − 1
γg

Pii,g

P̃ii,g

)
eii,gε

(ni,k)
ii,g

]
= 0.

The above equation specifies the optimality condition for N × K different price instruments, P̃ni,k. Si-

multaneously solving the above equation for all P̃ni,k amounts to solving the following matrix equa-
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tion.


e1i,1ε

(1i,1)
1i,1 · · · eNi,ε

(1i,1)
Ni,1 · · · e1i,Kε

(1i,1)
1i,K · · · eNi,Kε

(1i,1)
Ni,K

...
. . . . . .

...

e1i,1ε
(Ni,K)
1i,1 · · · eNi,ε

(Ni,K)
Ni,1 · · · e1i,Kε

(Ni,K)
1i,K · · · eNi,Kε

(Ni,K)
Ni,K





P̃?
1i,k

P1i,1
−
(

1 + ω1i,k + δ̃1iν1,k
γk−1

γk

)
...

P̃?
ii,k

Pii,k
− γk−1

γk
...

P̃?
Ni,k

PNi,k
−
(

1 + ωNi,k + δ̃NiνN,k
γk−1

γk

)


k

= 0.

As discussed in Section 3.1 and proven in the following appendix, is non-singular. So, the unique

solution to the above equation is

P̃?
ji,k

Pji,1
= 1 + ωji,k + δ̃jivj,k

γk − 1
γk

;
P̃?

ii,k

Pii,k
− γk − 1

γk
, (32)

which when plugged into Equation 29, trivially implies
(

∂Wi
∂ ln Yi

)
Pi

= 0.

B.3 Proof of Lemma 5

Following Proposition 2.E.2 in Mas-Colell et al. (1995) the Walrasian demand function satisfies eji,k =|
eji,kε

(ji,k)
ji,k | −∑n,g 6=j,k | eni,gε

(ji,k)
ni,g |. Hence, since there exists a ji, k such that eji,k > 0, the matrix Ξ is

strictly diagonally dominant. The Lèvy-Desplanques Theorem (Horn et Johnson (2012)), therefore,

ensures that Ξ is non-singular. The lower bound on det(Ξ) follows trivially from Gerschgorin’s circle

theorem. Specifically, following Ostrowski (1952),

| det (Ξ) |≥∏
j

∏
k

(
| eji,kε

(ji,k)
ji,k | − ∑

n,g 6=j,k
| eni,gε

(ji,k)
ni,g |

)
= ∏

j
∏

k
eji,k > 0.

B.4 Proof of Theorem 1

As discussed in Section 3.2, the expression for emission taxes follows from combining cost mini-

mization with the optimal tax condition (refer to Equation 19). Domestic and import taxes were also

implicitly derived in Appendix B.2 under Equation 32. Combining these expressions, we have:

τ?
i,k = δ̃ii, 1 + s?i,k =

P̃?
ii,k

Pii,k
=

γk − 1
γk

; 1 + t?ji,k =
P̃?

ji,k

Pji,k
= 1 + ωji,k + δ̃jivj,k

γk − 1
γk

.

To determine the export tax we can appeal to Proposition 1, whereby the necessary condition for

optimality w.r.t. P̃ij,k (j 6= i) is

∂Vi(.)
∂ ln P̃ij,k

+
∂Vi(.)

∂Yi

(
∂Ti(Pi; Yi, w)

∂ ln P̃ij,k

)
w,Yi

−
(

∂δi · Z(Pi; Yi)

∂ ln P̃ij,k

)
w,Yi

= 0. (33)
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First not that P̃ij,k does not directly enter the indirect utility function, so ∂Vi(.)
∂ ln P̃ij,k

= 0. Recalling the

expression for Ti(Pi; Yi, w) we can express the term corresponding to tax revenue effects as(
∂Ti(Pi; Yi, w)

∂ ln P̃ij,k

)
w,Yi

= P̃ij,kQij,k + ∑
g

(P̃ij,g − [1− αg
γg − 1

γg
]Pij,g

)
Qij,g

(
∂ ln Qij,g

∂ ln P̃ij,k

)
w,Yi


−∑

g
∑



[1− αg
γg − 1

γg
]Pi,gQi,g

(
∂ ln Pi,g

∂ ln Qij,g

)
w,Yi

(
∂ ln Qij,g

∂ ln P̃ij,k

)
w,Yi


−∑

n 6=i
∑
g

Pni,gQji,g

(
∂ ln Pni,g

∂ ln Qnj,g

)
w,Yi

(
∂ ln Qnj,g

∂ ln P̃ij,k

)
w,Yi

 = 0.

To simplify the above equation, we can appeal to Equation 28 (Appendix B.2) and the following

relationship: (
∂ ln Pni,g

∂ ln Qnj,g

)
w,Yi

Pni,gQni,g =

(
∂ ln Pnn,g

∂ ln Qnj,g

)
w,Yi

Pni,gQni,g,

=

(
∂ ln Pnn,g

∂ ln Qni,g

)
w,Yi

Pnj,gQnj,g ≡ ωni,gPnj,gQnj,g.

Doing so yields the following equation:(
∂Ti(Pi; Yi, w)

∂ ln P̃ij,k

)
w,Yi

= P̃ij,kQij,k + ∑
g

[(
P̃ij,g − [1− αg

γg − 1
γg

]
γk − 1

γk
Pij,g

)
Qij,gε

(ij,k)
ij,g

]
−∑

g
∑



[
ωni,gPnj,gQnj,gε

(ij,k)
nj,g

]
.

Likewise the last term in Equation 33 (that accounts for emission effects) can be specified as(
∂δi · Z(Pi; Yi)

∂ ln P̃ij,k

)
w,Yi

= ∑
n,g

δni

(
∂Zn,g(..., Qn,g)

∂ ln Qnj,g

∂ ln Qn,g(Qn1,g, ..., QnN,g)

∂ ln Qnj,g

∂ ln Qnj,g

∂ ln P̃ij,k

)
w,Yi

 =
∂Vi(.)

∂Yi
∑
n,g

[
δ̃niνn,g

γg − 1
γg

Pnj,gQnj,g

]
.

Plugging the above expressions back into Equation 33 (and dividing everything by ∂Vi(.)
∂Yi

P̃ij,kQij,k)

yields the following optimality condition: ∂Vi(.)
∂ ln P̃ij,k

+
∂Vi(.)

∂Yi

(
∂Ti(Pi; Yi, w)

∂ ln P̃ij,k

)
w,Yi

−
(

∂δi · Z(Pi; Yi)

∂ ln P̃ij,k

)
w,Yi


[

∂Vi(.)
∂Yi

Pij,kQij,k

]−1

=

1 + ∑
g

[(
1−

(
1− αg

γg − 1
γg

+ δ̃iiνi,g

)
γg − 1

γg

Pij,g

P̃ij,g

)
eij,g

eij,k
ε
(ij,k)
ij,g

]
− ∑

n 6=i
∑
g

[(
ωni,g + δ̃nizn,k

γk − 1
γk

) enj,g

eij,k
ε
(ij,k)
nj,g

]
= 0

To detect the optimal export taxes, we guess the following formulation:

1 + xij,k ≡
P̃ij,k/Pij,g

P̃ii,g/Pii,g
=

γk − 1
γk

P̃ij,k

P̃ij,k
=

ε ij,k

1 + ε ij,k
χ−1

ij,k
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Plugging the above guess back into the F.O.C. yields the following:

1 + ∑
g

(1− χij,k
1 + ε ij,k

ε ij,k

) eij,gε
(ij,k)
ij,g

eij,k

−∑
n 6=i

∑
g

t∗ni,g

enj,gε
(ij,k)
nj,g

eij,k

 = 0; [P̃ij,k]

Noting that 1 + ∑g

[
eij,g
eij,k

ε
(ij,k)
ij,g

]
= −∑n 6=i ∑g

[
enj,g
eij,k

ε
(ij,k)
nj,g

]
and dividing the above equation by 1 + ε ij,k,

−∑
g

χij,k
eij,g

eij,k

ε
(ij,k)
ij,g

ε ij,k

−∑
n 6=i

∑
g

 (1 + t∗ni,g)enj,gε
(ij,k)
nj,g

eij,k
(
1 + ε ij,k

)
 = 0

Noting that
(
1 + ε ij,k

)
eij,k = −∑n 6=i ∑g enj,gε

(ij,k)
nj,g , we can write the above equation in matrix as


eij,1
eij,1

ε
(ij,1)
ij,1
εij,1

... eij,K
eij,K

ε
(ij,1)
ij,K
εij,1

... ... ...
eij,1
eij,K

ε
(ij,K)
ij,1
εij,K

... eij,K
eij,K

ε
(ij,K)
ij,K
εij,K


︸ ︷︷ ︸

Eij


χij,1

...

χij,K

 =


1 +

∑n 6=i ∑g t∗ni,genj,gε
(ij,1)
nj,g

∑n 6=i ∑g enj,gε
(ij,1)
nj,g

...

1 +
∑n 6=i ∑g t∗ni,genj,gε

(ij,K)
nj,g

∑n 6=i ∑g enj,gε
(ij,K)
nj,g

 .

Since | eij,kε
(ij,k)
ij,k | −∑k 6=j eij,gε

(ij,k)
ij,g = eij,k + ∑n 6=i ∑g eij,gε

(ij,k)
nj,g > 0, then Eji ≡

[
eij,gε

(ij,k)
ij,g

eij,kεij,g

]
k,g

is strict

diagonally dominant. Hence, following the Lèvy-Desplanques Theorem, Eji is invertible (Horn et

Johnson (2012)) and we can compute the vector χij as

χij =

 eij,gε
(ij,k)
ij,g

eij,kε ij,g

−1

k,g

1K +

∑n 6=i t∗ni,genj,gε
(ij,k)
nj,g

∑n 6=i ∑g enj,gε
(ij,k)
nj,g


k

 . (34)

Combining the above result with the previously-derived formulas for emission, domestic, and import

taxes yields


1 + s?i,k =

γk−1
γk

; τ?
i,k = δ̃ii

1 + t?ji,k = (1 + ωni,k) + δ̃ni

(
γk−1

γk

)
vn,k

1 + x?ij,k =
εij,k

1+εij,k
χ−1

ij,k

, (35)

where χij,k is given by Equation 34.
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C Optimal Emission Policy when Other Taxes are Banned

The F.O.C. w.r.t. 1− ai,k can be expressed as (Zi ≡ ∑n,k δniZn,k):

∂Vi(.)
∂Yi

∂Yi(w, a)
∂ ln(1− ai,k)

+
∂Vi(.)
∂ ln P̃i

∂ ln P̃i(w, a)
∂ ln(1− ai,k)

+

∂Zi

∂Yi

∂Yi(w, a)
∂ ln(1− ai,k)

+
∂Zi

∂P̃i

∂P̃i(w, a)
∂(1− ai,k)

+
∂Vi(.)
∂ ln w

d ln w
d ln(1− ai,k)

= 0

To simplify the above problem, we impose the following additional assumptions:

1. Preferences are given by the Cobb-Douglas-CES specification;

2. Country i is a small open economy with δ−ii = 0 ; and

3. All industries are perfectly competitive, i.e., γk → ∞.

Noting that ∂ ln Pin,k/∂ ln(1− ai,k) = −1 and noting that Zi,k = vi,kPii,kQi,k, it follows that:

∂Zi

∂ ln(1− ai,k)
=

∂δiiZi,k

∂ ln(1− ai,k)
= −δiivi,k ∑

j

[
Pij,kQij,kε ij,k

]
+

(
1
αk
− 1
)

δiivi,kPii,kQi,k + δiivi,kPii,kQii,k
∂Yi

∂ ln(1− ai,k)

Wage effects can be characterized by applying the Di(ai, wi) = ∑j 6=i ∑g
(

Pji,gQji,g − Pij,gQij,g
)

d ln wi

d ln(1− ai,k)
= −

(
∑
j 6=i

[
Pji,kQji,kεii

ji,k − Pij,kQij,k
(
1 + ε ij,k

)]
+ ∑

j 6=i
∑
g

(
Pji,gQji,g

) ∂Yi

∂ ln(1− ai,k)

)(
∂Di

∂ ln wi

)−1

Using the above expression, invoking Roy’s identity, and noting that Yi = wiLi + ∑k αkPii,kQi,k, yields

the following formulation of the F.O.C.

Pii,kQii,k − αk ∑
j

[
Pij,kQij,k

(
1 + ε ij,k

)]
+ δ̃iivi,k ∑

j

[
Pij,kQij,kε ij,k

]
−
(

1
αk
− 1
)

δ̃iivi,kPii,kQi,k −∑
g

([
αg − δ̃iiνi,g

]
Pii,gQii,g

) ∂ ln Yi

∂ ln(1− ai,k)

−∆̄i

[
∑
j 6=i

[
Pji,kQji,kεii

ji,k − Pij,kQij,k
(
1 + ε ij,k

)]
+ ∑

j 6=i
∑
g

(
Pji,gQji,g

) ∂ ln Yi

∂ ln(1− ai,k)

]
= 0. (36)

45



where ∆̄i ≡ ∂Vi/∂ ln wi
∂Di/∂ ln wi

is a uniform term without industry subscript. Dividing Equation 36 by Ri,k =

∑n Pin,kQin,k and defining Ei,k = ∑j
[
rij,k

(
1 + ε ij,k

)]
= −εk (1− rii,kλii,k) , we can simplify the F.O.C.

rii,k − αkEi,k + αk
δ̃ii

τi,k
(Ei,k − 1)− (1− αk)

δ̃ii

τi,k

+∑
g

(
αg

[
1− δ̃ii

τi,g

]
rii,gri,g

)
∂ ln Yi

∂ ln(1− ai,k)
r−1

i,k − ∆̄i

[
Ei,k + (1− λii)

∂ ln Yi

∂ ln(1− ai,k)
r−1

i,k

]
= 0. (37)

∂Yi/∂ ln(1− ai,k), in the above expression, can be obtained by applying the Implicit Function Theorem

to Yi = wiLi +∑k αkPii,kQi,k, while noting that ηin,k = 1 given our parametric assumption with regards

to preferences. Namely,

∂Yi

∂ ln(1− ai,k)
=
−αk ∑j

[
Pij,kQij,k

(
1 + ε ij,k

)]
Yi −∑g αgηii,gPii,gQii,g

=
−αkEi,k

1− ᾱiλii
ri,k

Plugging the above equation back into the F.O.C. implies

δ̃ii

τi,k
− 1 =

(α̃i,k − αk)Ei,k + 1− rii,k

αkEi,k − 1
=⇒ τi,k =

(
αkEi,k − 1

α̃i,kEi,k − rii,k

)
δ̃ii

where

α̃i,k − αk ≡ ∆̄i

[
1− αk

1− ᾱiλii

]
− αk

1− ᾱiλii
∑
g

(
αg

[
1− δ̃ii

τi,g

]
rii,gri,g

)
.

To finalize the proof, we need to characterize ∆̄i, which will in turn pin down α̃i,k. To this end, we can

appeal to the definition ∆̄i ≡ ∂Vi/∂ ln wi
∂Di/∂ ln wi

, which implies that

∆̄i =
(1− ᾱi)− λii + ∑k

([
αkEi,k − αk

δ̃ii
τi,k

(Ei,k − 1)
]

ri,k

)
+ ∑k ([αk − δiivi,k] rii,kri,k)

∂Yi
∂ ln wi

(1− λii)
∂Yi

∂ ln wi
− Ei

We can replace for αkEi,k − αk
δ̃ii
τi,k

(Ei,k − 1) from the F.O.C. (Equation 37), which implies

∆̄i =
(1− ᾱi)− λii + ∑g

([
rii,g −

(
1− αg

) δ̃ii
τi,g

]
ri,g

)
+ ∑g

(
αg

[
1− δ̃ii

τi,g

]
rii,gri,g

) [
∂Yi

∂ ln wi
+ ∑g

∂ ln Yi
∂ ln(1−ai,g)

]
(1− λii)

[
∂Yi

∂ ln wi
+ ∑k

∂Yi
∂ ln(1−ai,k)

]
=

∑g

[
(1− αg)

(
1− δ̃ii

τi,g

)
ri,g

]
+ ∑g

(
αg

[
1− δ̃ii

τi,g

]
rii,gri,g

) [
∂Yi

∂ ln wi
+ ∑g

∂ ln Yi
∂ ln(1−ai,g)

]
(1− λii)

[
∂Yi

∂ ln wi
+ ∑k

∂Yi
∂ ln(1−ai,k)

] (38)

Reapplying the Implicit Function Theorem to Yi = wiLi + ∑k αkPii,kQi,k implies that

∂ ln Yi

∂ ln wi
+ ∑

k

∂ ln Yi

∂ ln(1− ai,k)
=

1−∑k (αkri,k) + ∑k (αkEiri,k)

1− ᾱiλii
−∑

k

αkEiri,k

1− ᾱiiλii
=

1− ᾱi

1− ᾱiiλii
.
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Combining the above expression with Equation 38 and assuming that αk = α for all k, yields the

following:

(1− λii)
1− α

1− αλii
∆̄i = (1− α)∑

g

[(
1− δ̃ii

τi,g

)
ri,g

]
+

1− α

1− αλii
∑
g

(
α

[
1− δ̃ii

τi,g

]
rii,gri,g

)
,

Finally, noting the definition for α̃i,k − α, delivers the following expression

α̃i,k − α =

[
(1− α)∑

g

[(
1− δ̃ii

τi,g

)
ri,g

]
+ α ∑

g

([
1− δ̃ii

τi,g

]
rii,gri,g

)]
(1− λii)

−1

= ∑
[(

1− δ̃ii

τi,k

)
1− α(1− rii,g)

1− λii
ri,g

]
= −∑

g

[(
(α̃i,g − α)Ei,g + 1− rii,g

αEi,g − 1

)
1− α(1− rii,g)

(1− λii)
ri,g

]
.

The above system implies that α̃i,k = α̃i is uniform. So, given that Ei,g = −εg
(
1− rii,gλii,g

)
, we can

solve for α̃i as

α̃i − α =
∑g

[
1−rii,g

εk(1−rii,gλii,g)+1
1−α(1−rii,g)

(1−λii)
ri,g

]
∑g

[(
1 +

εg(1−rii,gλii,g)
εg(1−rii,gλii,g)+1

1−α(1−rii,g)

(1−λii)

)
ri,g

] > 0
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