Isomorphism & Welfare Analysis

International Trade (PhD), Fall 2024

Ahmad Lashkaripour

Indiana University

General Setup

- The representative consumer in country *i* has a CES utility aggregator over composite goods sourced from various origin countries n = 1, ..., N. Namely,

-

.....

$$U_{i}(Q_{1i},...,Q_{Ni}) = \left(Q_{1i}^{\frac{\sigma-1}{\sigma}} + ... + Q_{Ni}^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}},$$

where $Q_{ni} = \left(\int_{\omega \in \Omega_{ni}} q_{ni}(\omega)^{\frac{\sigma-1}{\sigma}} d\omega\right)^{\frac{\sigma}{\sigma-1}}$ over individual goods indexed by ω .

- Utility maximization *s.t.* budget constraint $(\sum_{n} P_{ni}Q_{ni} \leq E_i)$ implies

$$\lambda_{ni} \equiv \frac{P_{ni}Q_{ni}}{E_i} = \left(\frac{P_{ni}}{P_i}\right)^{1-\sigma}, \qquad P_i = \left[\sum_{n'=1}^N P_{n'i}^{1-\sigma}\right]^{\frac{1}{1-\sigma}}$$

- Trade is balanced + labor is the sole factor of production $\longrightarrow E_i = Y_i = w_i L_i$

A General Representation of Aggregate Price Indexes

Following Costinot and Rodriguez-Clare (2014) we can specify the price indexes implied by quantitative trade models including Krugman, Eaton-Kortum, and Melitz-Pareto as

$$P_{ni} = \tau_{ni}w_n \times \left(\left(\frac{L_i}{f_{ni}}\right)^{\frac{\delta}{1-\sigma}} \frac{\tau_{ni}w_n}{P_i}\right)^{\eta} \times \left(\frac{L_n}{f_n^e}\right)^{\frac{\delta}{1-\sigma}} \times \xi_{ni}$$

- τ_{ni} : iceberg trade cost
- f_{ni} : fixed operating cost
- f_n^e : sunk entry cost
- ξ_{ni} is composed of structural parameters unrelated to τ_{ni}

A General Representation of Aggregate Price Indexes

Following Costinot and Rodriguez-Clare (2014) we can specify the price indexes implied by quantitative trade models including Krugman, Eaton-Kortum, and Melitz-Pareto as

$$P_{ni} = \tau_{ni} w_n \times \underbrace{\left(\left(\frac{L_i}{f_{ni}}\right)^{\frac{\delta}{1-\sigma}} \frac{\tau_{ni} w_n}{P_i}\right)^{\eta}}_{\text{firm-selection effects}} \times \underbrace{\left(\frac{L_n}{f_n^e}\right)^{\frac{\delta}{1-\sigma}}}_{\text{entry effects}} \times \xi_{ni}$$

- τ_{ni} : iceberg trade cost
- f_{ni} : fixed operating cost
- f_n^e : sunk entry cost
- ξ_{ni} is composed of structural parameters unrelated to τ_{ni}

A General Representation of Aggregate Price Indexes

Following Costinot and Rodriguez-Clare (2014) we can specify the price indexes implied by quantitative trade models including Krugman, Eaton-Kortum, and Melitz-Pareto as

$$P_{ni} = \tau_{ni} w_n \times \underbrace{\left(\left(\frac{L_i}{f_{ni}}\right)^{\frac{\delta}{1-\sigma}} \frac{\tau_{ni} w_n}{P_i}\right)^{\eta}}_{\text{firm-selection effects}} \times \underbrace{\left(\frac{L_n}{f_n^e}\right)^{\frac{\delta}{1-\sigma}}}_{\text{entry effects}} \times \xi_{ni}$$

- Armington: $\delta = \eta = 0$
- Krugman: $\delta=1$ and $\eta=0$
- Eaton-Kortum $\delta=0$ and $\eta=\left(rac{ heta}{\sigma-1}
 ight)\left(1+rac{1-\sigma}{ heta}
 ight)$

- Melitz-Pareto
$$\delta = 1$$
 and $\eta = \left(rac{\gamma}{\sigma-1}
ight) \left(1 + rac{1-\sigma}{\gamma}
ight)$

- Let W_i denote welfare in country i

$$W_i = rac{E_i}{P_i} \xrightarrow{ ext{balanced trade}} W_i = rac{Y_i}{P_i}$$

- The welfare impacts of a generic shock to trade costs, $\{d \ln \tau_{in}\}_{i,n}$:

 $\mathrm{dln}W_i = \mathrm{d}\ln Y_i - \mathrm{d}\ln P_i$

- Let W_i denote welfare in country i

$$W_i = rac{E_i}{P_i} \stackrel{ ext{balanced trade}}{\longrightarrow} W_i = rac{Y_i}{P_i}$$

- The welfare impacts of a generic shock to trade costs, $\{d \ln \tau_{in}\}_{i,n}$:

$$\mathrm{dln}W_i = \mathrm{d}\ln Y_i - \sum_{n=1}^N \lambda_{ni} \mathrm{d}\ln P_{ni}$$

- Let W_i denote welfare in country i

$$W_i = rac{E_i}{P_i} \quad \stackrel{ ext{balanced trade}}{\longrightarrow} \quad W_i = rac{Y_i}{P_i}$$

- The welfare impacts of a generic shock to trade costs, $\{d \ln \tau_{in}\}_{i,n}$:

$$\mathrm{dln}W_i = \mathrm{dln}\,Y_i - \sum_{n=1}^N \lambda_{ni}\mathrm{dln}\,P_{ni}$$

- We can update the expression for $dln W_i$ by appealing to the CES demand structure:

$$d\ln\lambda_{ni} - d\ln\lambda_{ii} = (1 - \sigma) (d\ln P_{ni} - d\ln P_{ii})$$

- Let W_i denote welfare in country i

$$W_i = rac{E_i}{P_i} \xrightarrow{ ext{balanced trade}} W_i = rac{Y_i}{P_i}$$

- The welfare impacts of a generic shock to trade costs, $\{d \ln \tau_{in}\}_{i,n}$:

$$\mathrm{dln}W_i = \mathrm{dln}\,Y_i - \sum_{n=1}^N \lambda_{ni}\mathrm{dln}\,P_{ni}$$

- We can update the expression for dln W_i by appealing to the CES demand structure:

$$d\ln P_{ni} = d\ln P_{ii} + \frac{1}{1-\sigma} (d\ln \lambda_{ni} - d\ln \lambda_{ii})$$

Growth Accounting in the Armington Model

- Plugging the expression for $d \ln P_{ni}$ into the welfare equation yields

$$d\ln W_i = d \ln Y_i - \sum_{n=1}^N \lambda_{ni} d \ln P_{ni}$$

= $d \ln Y_i - d \ln P_{ii} - \frac{1}{1 - \sigma} \sum_n [\lambda_{ni} (d \ln \lambda_{ni} - d \ln \lambda_{ii})]$

Growth Accounting in the Armington Model

- Plugging the expression for $d \ln P_{ni}$ into the welfare equation yields

$$d\ln W_i = d \ln Y_i - \sum_{n=1}^N \lambda_{ni} d \ln P_{ni}$$

= $d \ln Y_i - d \ln P_{ii} - \frac{1}{1 - \sigma} \sum_n [\lambda_{ni} (d \ln \lambda_{ni} - d \ln \lambda_{ii})]$

- Noting that $\sum_{n} \lambda_{ni} d \ln \lambda_{ni} = 0$ and $\sum_{n} \lambda_{ni} = 1$, the last line reduces to

$$\mathrm{dln}W_i = \frac{1}{1-\sigma}\mathrm{d\ln\lambda_{ii}} + (\mathrm{d\ln}Y_i - \mathrm{d\ln}P_{ii})$$

Growth Accounting in the Armington Model

- Plugging the expression for $d \ln P_{ni}$ into the welfare equation yields

$$d\ln W_i = d \ln Y_i - \sum_{n=1}^N \lambda_{ni} d \ln P_{ni}$$

= $d \ln Y_i - d \ln P_{ii} - \frac{1}{1 - \sigma} \sum_n [\lambda_{ni} (d \ln \lambda_{ni} - d \ln \lambda_{ii})]$

- Noting that $\sum_{n} \lambda_{ni} d \ln \lambda_{ni} = 0$ and $\sum_{n} \lambda_{ni} = 1$, the last line reduces to

$$d\ln W_i = \frac{1}{1-\sigma} d\ln \lambda_{ii} + \left(\underbrace{d\ln Y_i}_{= d\ln w_i} - d\ln P_{ii} \right)$$

Dissecting the Welfare Gains from Trade Liberalization

The welfare gains from trade liberalization, $\{d \ln \tau_{ni}\}_{n,i} < 0$, can be decomposed as

$$d\ln W_i = \underbrace{\frac{1}{1-\sigma} d\ln \lambda_{ii}}_{\text{gains from variety}} + \underbrace{\left(d\ln w_i - d\ln P_{ii}\right)}_{\text{productivity gains}}$$

- With CES preferences, a country always gains from importing differentiated varieties from the rest of the world.
- In some settings (*e.g.*, Eaton-Kortum, Melitz) trade liberalization also increases aggregate labor productivity (TFP):

$$P_{ii}Q_i = w_iL_i \longrightarrow \frac{w_i}{P_{ii}} = \frac{Q_i}{L_i} \sim \text{TFP}_i \longrightarrow \text{d}\ln w_i - \text{d}\ln P_{ii} = \text{d}\ln \text{TFP}_i$$

Dissecting the Welfare Gains from Trade Liberalization

The welfare gains from trade liberalization, $\{d \ln \tau_{ni}\}_{n,i} < 0$, can be decomposed as

$$d\ln W_i = \underbrace{\frac{1}{1-\sigma} d\ln \lambda_{ii}}_{\text{gains from variety}} + \underbrace{\left(d\ln w_i - d\ln P_{ii}\right)}_{\text{productivity gains}}$$

- With CES preferences, a country always gains from importing differentiated varieties from the rest of the world.
- In some settings (*e.g.*, Eaton-Kortum, Melitz) trade liberalization also increases aggregate labor productivity (TFP):

$$P_{ii}Q_i = w_iL_i \longrightarrow \frac{w_i}{P_{ii}} = \frac{Q_i}{L_i} \sim \text{TFP}_i \longrightarrow \text{d} \ln w_i - \text{d} \ln P_{ii} = \text{d} \ln \text{TFP}_i$$

effective ouput adjusted for iceberg & fixed cost payments

A Special Case Reviewed Earlier: THE ARMINGTON MODEL

- Aggregate TFP in the Armington model is invariant to trade by assumption:

$$P_{ni} = \underbrace{\frac{1}{A_n} \tau_{ni}}_{\text{constant}} w_n \longrightarrow (d \ln w_i - d \ln P_{ii}) = 0$$

- The welfare gains from incremental trade liberalization are, therefore,

$$\mathrm{d}\ln W_i = \frac{1}{1-\sigma} \mathrm{d}\ln \lambda_{ii}$$

- Considering that $au^{
m autarky} = \infty$ and $\lambda_{ii}^{
m autarky} = 1$, the overall gains from trade are

$$\mathrm{GT}_{i} \equiv -\int_{\tau}^{\infty} \mathrm{d} \ln W_{i} = -\int_{\lambda_{ii}}^{1} \frac{1}{1-\sigma} \mathrm{d} \ln \lambda_{ii} = \frac{1}{1-\sigma} \ln \lambda_{ii}$$

$$P_{ni} = \tau_{ni} w_n \times \underbrace{\left(\left(\frac{L_i}{f_{ni}}\right)^{\frac{\delta}{1-\sigma}} \frac{\tau_{ni} w_n}{P_i}\right)^{\eta}}_{\text{firm-selection effects}} \times \underbrace{\left(\frac{L_n}{f_n^e}\right)^{\frac{\delta}{1-\sigma}}}_{\text{entry effects}} \times \xi_{ni}$$

- Armington: $\delta = \eta = 0$
- Krugman: $\delta=1$ and $\eta=0$
- Eaton-Kortum $\delta=0$ and $\eta=\left(rac{ heta}{\sigma-1}
 ight)\left(1+rac{1-\sigma}{ heta}
 ight)$

- Melitz-Pareto
$$\delta=1$$
 and $\eta=\left(rac{\gamma}{\sigma-1}
ight)\left(1+rac{1-\sigma}{\gamma}
ight)$

$$P_{ii} = \underbrace{\tau_{ii}}_{=1} w_i \times \underbrace{\left(\left(\frac{L_i}{f_{ii}}\right)^{\frac{\delta}{1-\sigma}} \frac{\tau_{ii}}{L_i} \frac{Y_i}{P_i}\right)^{\eta}}_{\text{firm-selection effects}} \times \underbrace{\left(\frac{L_i}{f_i^e}\right)^{\frac{\delta}{1-\sigma}}}_{\text{entry effects}} \times \xi_{ii}$$

- Armington: $\delta = \eta = 0$
- Krugman: $\delta=1$ and $\eta=0$
- Eaton-Kortum $\delta=0$ and $\eta=\left(rac{ heta}{\sigma-1}
 ight)\left(1+rac{1-\sigma}{ heta}
 ight)$

- Melitz-Pareto
$$\delta=1$$
 and $\eta=\left(rac{\gamma}{\sigma-1}
ight)\left(1+rac{1-\sigma}{\gamma}
ight)$

$$\frac{P_{ii}}{w_i} = \left(\frac{Y_i}{P_i}\right)^{\eta} \times \underbrace{\left(\left(\frac{L_i}{f_{ii}}\right)^{\frac{\delta}{1-\sigma}} \frac{1}{L_i}\right)^{\eta} \left(\frac{L_i}{f_i^e}\right)^{\frac{\delta}{1-\sigma}} \xi_{ii}}_{\text{invariant to } d \ln \tau}$$

- Armington: $\delta = \eta = 0$
- Krugman: $\delta=1$ and $\eta=0$
- Eaton-Kortum $\delta=0$ and $\eta=\left(rac{ heta}{\sigma-1}
 ight)\left(1+rac{1-\sigma}{ heta}
 ight)$

- Melitz-Pareto
$$\delta=1$$
 and $\eta=\left(rac{\gamma}{\sigma-1}
ight)\left(1+rac{1-\sigma}{\gamma}
ight)$

$$(\mathrm{d}\ln w_i - \mathrm{d}\ln P_{ii}) = -\eta \,\mathrm{d}\ln\left(\frac{Y_i}{P_i}\right) = -\eta \,\mathrm{d}\ln W_i$$

- Armington: $\delta = \eta = 0$
- Krugman: $\delta=1$ and $\eta=0$
- Eaton-Kortum $\delta = 0$ and $\eta = \left(rac{ heta}{\sigma-1}
 ight) \left(1 + rac{1-\sigma}{ heta}
 ight)$

- Melitz-Pareto
$$\delta = 1$$
 and $\eta = \left(rac{\gamma}{\sigma-1}\right) \left(1 + rac{1-\sigma}{\gamma}\right)$

- Plugging $(d \ln w_i - d \ln P_{ii}) = -\eta d \ln W_i$ back into our earlier formula for $d \ln W_i$, yields

$$d\ln W_i = -\frac{1}{\epsilon} d\ln \lambda_{ii} \sim \frac{1}{(1-\sigma)(1+\eta)} d\ln \lambda_{ii}$$

- Plugging $(d \ln w_i - d \ln P_{ii}) = -\eta d \ln W_i$ back into our earlier formula for $d \ln W_i$, yields

$$d \ln W_i = -\frac{1}{\epsilon} d \ln \lambda_{ii} \longrightarrow GT_i = -\int_{\tau}^{\infty} d \ln W_i = -\frac{1}{\epsilon} \ln \lambda_{ii}$$

- Plugging $(d \ln w_i - d \ln P_{ii}) = -\eta d \ln W_i$ back into our earlier formula for $d \ln W_i$, yields

$$d \ln W_i = -\frac{1}{\epsilon} d \ln \lambda_{ii} \longrightarrow GT_i = -\int_{\tau}^{\infty} d \ln W_i = -\frac{1}{\epsilon} \ln \lambda_{ii}$$

- Plugging $(d \ln w_i - d \ln P_{ii}) = -\eta d \ln W_i$ back into our earlier formula for $d \ln W_i$, yields

$$d \ln W_i = -\frac{1}{\epsilon} d \ln \lambda_{ii} \longrightarrow GT_i = -\int_{\tau}^{\infty} d \ln W_i = -\frac{1}{\epsilon} \ln \lambda_{ii}$$

where $\boldsymbol{\epsilon}$ is the *trade elasticity* that is defined as

$$\epsilon \equiv -\frac{\partial \ln \left(\frac{\lambda_{ni}}{\lambda_{ii}}\right)}{\partial \ln \tau_{ni}} = -\frac{\partial \ln \left(\frac{\lambda_{ni}}{\lambda_{ii}}\right)}{\partial \ln \left(\frac{P_{ni}}{P_{ii}}\right)} \times \frac{\partial \ln \left(\frac{P_{ni}}{P_{ii}}\right)}{\partial \ln \tau_{ni}} = (\sigma - 1) \times (1 + \eta)$$

Procedure for Computing the Gains from Trade

- Use data on trade shares, $\{\lambda_{ji}\}$, and trade costs, $\{\tau_{ji}\}$, to estimate ϵ as

$$\log\left(\frac{\lambda_{ni}}{\lambda_{ii}}\right) = -\epsilon \, \log \tau_{ni} \, + \, \varepsilon_{ni}$$

- Use the estimated $\hat{\epsilon}$ and data on λ_{ii} , to compute the gains from trade as

$$GT_i = \lambda_{ii}^{-\frac{1}{\epsilon}}$$

Note: the above procedure is model-blind, but the interpretation of *ε* depends on the underlying model (*e.g.*, Krugman *vs*. Eaton-Kortum *vs*. Melitz)

Taking Stock

- Arkolakis, Costinot, Rodriguez-Clare (2012, ACR) where to first to popularize the sufficient statistics approach to the gains from trade.

Caveat 1:

- The ACR result is occasionally interpreted as gains from trade being blind to firm heterogeneity
- A different interpretation is that the ACR result speaks to strong distributional assumptions (like Pareto) rather than firm-heterogeneity per se.

Caveat 2:

- τ_{ni} is often unobservable; so ϵ is often estimated using tariff data
 - $\,\,\widetilde{\epsilon}\equiv$ the elasticity of trade w.r.t. tariffs
 - without firm-election, $\epsilon = ilde{\epsilon}$
 - with firm-election, $\epsilon
 eq ilde{\epsilon}$

Taking Stock

- Arkolakis, Costinot, Rodriguez-Clare (2012, ACR) where to first to popularize the sufficient statistics approach to the gains from trade.

Caveat 1:

- The ACR result is occasionally interpreted as gains from trade being blind to firm heterogeneity
- A different interpretation is that the ACR result speaks to strong distributional assumptions (like Pareto) rather than firm-heterogeneity per se.

Caveat 2:

- τ_{ni} is often unobservable; so ϵ is often estimated using tariff data
 - $\,\,\widetilde{\epsilon}\equiv$ the elasticity of trade w.r.t. tariffs
 - without firm-election, $\epsilon = ilde{\epsilon}$
 - with firm-election, $\epsilon
 eq ilde{\epsilon}$

Taking Stock

- Arkolakis, Costinot, Rodriguez-Clare (2012, ACR) where to first to popularize the sufficient statistics approach to the gains from trade.

Caveat 1:

- The ACR result is occasionally interpreted as gains from trade being blind to firm heterogeneity
- A different interpretation is that the ACR result speaks to strong distributional assumptions (like Pareto) rather than firm-heterogeneity per se.

Caveat 2:

- τ_{ni} is often unobservable; so ϵ is often estimated using tariff data
 - $\tilde{\epsilon} \equiv$ the elasticity of trade w.r.t. tariffs
 - without firm-election, $\epsilon = ilde{\epsilon}$
 - with firm-election, $\epsilon \neq \tilde{\epsilon}$ –

the choice of model determines how the estimated $ilde{\epsilon}$ maps into ϵ

Some Number Using Data from 2008 and $\epsilon=5$

	λ_{ii}	% GT
Ireland	0.68	8%
Belgium	0.70	7.5%
Germany	0.80	4.5%
China	0.88	2.6%
U.S.	0.92	1.8%

Some Number Using Data from 2008 and $\epsilon=5$

	λ_{ii}	% GT
Ireland	0.68	8%
Belgium	0.70	7.5%
Germany	0.80	4.5%
China	0.88	2.6%
U.S.	0.92	1.8%

- Based on the above numbers ACR (2012) conclude that gains from trade are small.

The Gains from Trade: Reduced-Form Evidence

- Reduced-from evidence from Frankel & Romer (1999) indicate that

$$\ln (\text{Real GDP}_i) = 3.94 \underbrace{(1 - \lambda_{ii})}_{\frac{1}{2}\text{OPENNESS}} + \varepsilon_i$$

- Considering that $\ln \lambda_{ii} \approx -(1 - \lambda_{ii})$ for small λ_{ii} , quantitative trade model predict

$$\ln \left(\text{Real GDP}_i \right) \approx \frac{1}{\epsilon} \left(1 - \lambda_{ii} \right) + \tilde{\epsilon}_i$$

- If we believe that $\epsilon \approx 5 \implies$ reduced-form evidence imply gains that are 20-times larger than those predicted by quantitative trade models!

The Gains from Trade: Reduced-Form Evidence

- The gap between the gains predicted by quantitative trade models and the gains predicted by Frankel & Romer (1999) can be *partially* eliminated if we account for
 - multiple industries with different trade elasticities
 - intermediate input trade (input-output linkages)
 - trade-led technology adoption
- However, even after adding all the above elements, the gap still persists!