## Multi-Country Ricardian Model

Eaton and Kortum (2002)

International Trade (PhD), Spring 2024

Ahmad Lashkaripour

Indiana University

# Roadmap

- Today, we will cover Eaton and Kortum (2002).
- The Eaton-Kortum model extends DFS1977 by allowing for
  - arbitrarily many countries
  - arbitrary trade costs
- The Eaton-Kortum model provides a Ricardian foundation for the gravity equation

Ricardian specialization  $\longrightarrow$  Trade Value  $\propto \frac{\text{Exporter's GDP} \times \text{Importer's GDP}}{\text{Distance}^{\beta}}$ 

#### Environment

- The global economy consist of  $N \geq 2$  countries
- We use  $i, j, n \in \{1, .., N\}$  to index countries
- There is a continuum of homogeneous goods  $\omega \in [0, 1]$
- Each good  $\omega$  which is sourced from the chepast supplier.
- Labor is the only factor of production:
  - country i is populated by  $L_i$  workers
  - $w_i$  denotes the wage rate in country i
- Perfect competition + constant returns to scale.

## Demand

**CES Utility Function** 

- The representative consumer in country *i* has a CES utility function:

$$U_{i}\left(\mathbf{q}
ight)=\left[\int_{\omega}q_{i}\left(\omega
ight)^{rac{\sigma-1}{\sigma}}d\omega
ight]^{rac{\sigma}{\sigma-1}}$$

- $\sigma$  is the elasticity of substitution across goods.
- The Cobb-Douglas utility function in DFS1977 is a special case of the CES utility function, where  $\sigma \rightarrow 1$ .

## Demand

#### **CES Utility Function**

- Utility maximization  $\longrightarrow$  expenditure on good  $\omega$  equals

$$p_i(\omega)q_i(\omega) = rac{p_i(\omega)^{1-\sigma}}{\int_{\omega'} p_i(\omega')^{1-\sigma}d\omega}Y_i$$

- $p_i(\omega)$  is the price of good  $\omega$  in country *i*.
- $Y_i = w_i L_i$  is total income in country *i*.

# Supply

- The price of good  $\omega$  in country *i* if sourced from country *n* 

$$p_{ni}(\omega) = \tau_{ni} a_n(\omega) w_n$$

- $\tau_{ni}$  is the iceberg trade cost
- $a_n(\omega)$  is the unit labor cost of producing  $\omega$  in country n

- Country *i* buys good  $\omega$  from the cheapest supplier:

$$p_i(\omega) = \min \left\{ p_{1i}(\omega), ..., p_{Ni}(\omega) \right\}$$

Technology

- Let  $z_n(\omega) \equiv 1/a_n(\omega)$  denote productivity.
- Let  $F_n(.)$  denote the distribution of country *n*'s productivity:

$$F_n(z) \equiv \Pr\{z_n(\omega) \le z\}$$

- EK2002 assume  $F_n(z)$  is Frechet:

$$F_n(z) = \exp\left(-T_n z^{-\theta}\right)$$

- Why FRECHET? If ideas arrive with a POISSON distribution, and the technology of producing goods is determined by the best "idea," then the limiting distribution is FRECHET, where  $T_n$  reflects the country *n*'s stock of ideas.

# The Frechet Distribution



Source: Fieler (2011, Econometrica)

- The probability that  $p_{ni}(\omega) \leq p$  is given by

$$G_{ni}(p) \equiv \Pr(p_{ni}(\omega) \le p)$$
  
=  $\left\{ \frac{w_n}{z_n(\omega)} \tau_{ni} \le p \right\} = 1 - \exp\{-\Phi_{ni}p^{\theta}\}$ 

where  $\Phi_{ni} \equiv T_n (w_n \tau_{ni})^{-\theta}$ .

- The probability that  $p_{ni}(\omega) \leq p$  is given by

$$G_{ni}(p) \equiv \Pr(p_{ni}(\omega) \le p) \\ = \left\{ \frac{w_n}{z_n(\omega)} \tau_{ni} \le p \right\} = 1 - \exp\{-\Phi_{ni}p^{\theta}\}$$

where  $\Phi_{ni} \equiv T_n (w_n \tau_{ni})^{-\theta}$ .

- *Note*: The above probability is the same for all goods  $\omega$ 

- The probability that good  $\omega$  is supplied at a price lower than p in country i

$$G_{i}(p) = \Pr \{ p_{i}(\omega) \le p \}$$
  
=  $1 - \prod_{n=1}^{N} (1 - G_{ni}(p)) = 1 - \exp \{ -\Phi_{i} p^{\theta} \}$ 

where  $\Phi_i$  is defined as

$$\Phi_i = \sum_{n=1}^N \Phi_{ni}$$
,  $\Phi_{ni} \equiv T_n \left( w_n au_{ni} 
ight)^{- heta}$ 

- The probability that country n is the lowest cost supplier of good  $\omega$  to country i is

$$\pi_{ni} \equiv \Pr\left\{p_{ni}(\omega) \le \min_{j \ne n} p_{ji}(\omega)\right\} = \int_0^\infty \Pr\left\{\min_{j \ne n} p_{ji}(\omega) \ge p\right\} dG_{ni}(p)$$
$$= \int_0^\infty \prod_{j \ne n} \left(1 - G_{ji}(p)\right) dG_{ni}(p)$$

- Substituting  $G_{ni}(p) = 1 - \exp(-\Phi_{ni}p^{\theta})$  in the last line, yields:  $\pi_{ni} = \frac{\Phi_{ni}}{\Phi_i} = \frac{T_n (\tau_{ni}w_n)^{-\theta}}{\sum_{j=1}^N T_j (\tau_{ji}w_j)^{-\theta}}$ 

- The probability that country n is the lowest cost supplier of good  $\omega$  to country i is

$$\pi_{ni} \equiv \Pr\left\{p_{ni}(\omega) \le \min_{j \ne n} p_{ji}(\omega)\right\} = \int_0^\infty \Pr\left\{\min_{j \ne n} p_{ji}(\omega) \ge p\right\} dG_{ni}(p)$$
$$= \int_0^\infty \prod_{j \ne n} \left(1 - G_{ji}(p)\right) dG_{ni}(p)$$

- Substituting  $G_{ni}(p) = 1 \exp\left(-\Phi_{ni}p^{\theta}\right)$  in the last line, yields:  $\pi_{ni} = \frac{\Phi_{ni}}{\Phi_i} = \frac{T_n \left(\tau_{ni}w_n\right)^{-\theta}}{\sum_{j=1}^N T_j \left(\tau_{ji}w_j\right)^{-\theta}}$
- Because (*a*) all goods receive *i.i.d.* draws and (*b*) there are a continuum of varieties, by the law of large numbers, this probability will be equal to the fraction of goods sourced from origin *n*.

- *Claim*: The distribution of *realized* (*R*) prices for goods purchased from origin *n* is independent of country *n*'s characteristics!
- **Proof:** Define the distribution of realized prices from origin *n* as

$$G_{ni}^{\mathcal{R}}(p) \equiv \left\{ p_{ni}(\omega) \le p \mid p_{ni}(\omega) \le \min_{j \ne n} p_{ji}(\omega) \right\}$$

- We can easily verify that  $G_{ni}^{\mathcal{R}}(p)$  is independent of *n*:

$$G_{ni}^{\mathcal{R}}(p) = \frac{\int_0^p \prod_{j \neq n} \left(1 - G_{ji}(\tilde{p})\right) dG_{ni}(\tilde{p})}{\pi_{ni}} = G_i(p)$$

- *Claim*: The distribution of *realized* (*R*) prices for goods purchased from origin *n* is independent of country *n*'s characteristics!
- **Proof:** Define the distribution of realized prices from origin *n* as

$$G_{ni}^{\mathcal{R}}(p) \equiv \left\{ p_{ni}(\omega) \le p \mid p_{ni}(\omega) \le \min_{j \ne n} p_{ji}(\omega) \right\}$$

- We can easily verify that  $G_{ni}^{\mathcal{R}}(p)$  is independent of *n*:

$$G_{ni}^{\mathcal{R}}(p) = \frac{\int_0^p \prod_{j \neq n} \left(1 - G_{ji}(\tilde{p})\right) dG_{ni}(\tilde{p})}{\pi_{ni}} = G_i(p)$$

- *Implication*: the fraction of goods sourced from origin *n* is equal to the fraction of income spent on goods from *n*:

$$\lambda_{ni} \sim \pi_{ni} \longrightarrow X_{ni} = \lambda_{ni} Y_i$$

## Equilibrium Price Index

- The CES utility implies that the price index in country i is

$$P_{i} = \left(\int_{\omega} p_{i}(\omega)^{1-\sigma} d\omega\right)^{\frac{1}{1-\sigma}} = \left(\int_{0}^{\infty} p^{1-\sigma} dG_{i}(p)\right)^{\frac{1}{1-\sigma}}$$

- Noting that (a)  $G_i(p) = 1 - \exp(-\Phi_i p^{\theta})$ , and (b)  $\Phi_i = \sum_{n=1}^N T_n (w_n \tau_{ni})^{-\theta}$ , the above expressions yields

$$P_i = C\left(\sum_{n=1}^N T_n \left(w_n \tau_{ni}\right)^{-\theta}\right)^{\frac{-1}{\theta}},$$

where  $C \equiv \Gamma \left(\frac{\theta+1-\sigma}{\theta}\right)^{\frac{1}{1-\sigma}}$  (reminder:  $\Gamma(t) = \int_0^\infty x^{t-1} e^{-x} dx$ ).

#### General Equilibrium (solution algorithm)

For any given vector of exogenous parameters and variables  $\{\tau_{in}, T_i, L_i, \theta\}_{i,n}$ , equilibrium is a vector wage,  $\{w_i\}_i$ , such that labor markets clear in all countries. Namely,

$$\sum_{n=1}^{N} \underbrace{\lambda_{in}(w_1, ..., w_N) \times E_n(w_n)}_{\text{country } n's \text{ demand for } i's \text{ labor services}} = w_i L_i \quad , \forall i$$

where the expenditure shares  $(\lambda_{in})$  and total national expenditure  $(E_n)$  are given by

$$\begin{cases} \lambda_{in}(w_1, ..., w_N) = \frac{T_i(\tau_{in}w_i)^{-\theta}}{\sum_{j=1}^N T_j(\tau_{jn}w_j)^{-\theta}} & (\forall i, j) \\ E_n(w_n) = w_n L_n & (\forall i, \text{ balance budegt}) \end{cases}$$

#### General Equilibrium—defined in terms of Y

For any given vector of exogenous parameters and variables  $\{\tau_{in}, T_i, L_i, \theta\}_{i,n}$ , equilibrium is a vector

of GDP levels,  $\{Y_i\}_i$ , such that labor markets clear in all countries. Namely,

$$\sum_{n=1}^{N} \underbrace{\lambda_{in}(Y_1, ..., Y_N) \times E_n(Y_n)}_{\text{country } n's \text{ demand for } i's \text{ labor services}} = Y_i \quad , \forall i$$

where the expenditure shares  $(\lambda_{in})$  and total national expenditure  $(E_n)$  are given by

$$\begin{cases} \lambda_{in}(Y_1, ..., Y_N) = \frac{T_i L_i^{\theta} (\tau_{in} Y_i)^{-\theta}}{\sum_{j=1}^N T_j L_j^{\theta} (\tau_{jn} Y_j)^{-\theta}} & (\forall i, j) \\ E_n(Y_n) = Y_n & (\forall i, \text{ balance budegt}) \end{cases}$$

#### An Overview of the Eaton-Kortum Model

- The Eaton-Kortum model belongs to the quantitative class of models reviewed earlier:

$$ilde{\chi}_i \sim T_i L_i^ heta, \qquad \qquad \epsilon \sim \sigma - 1$$

- The indirect utility or welfare of the representative consumer in country i is

~

$$W_{i} = \frac{Y_{i}}{P_{i}}, \qquad P_{i} = \left[\sum_{n=1}^{N} \int_{\omega \in \Omega_{ni}} p_{ni} (\omega)^{1-\sigma} d\omega\right]^{\frac{1}{1-\sigma}}$$

1

#### An Overview of the Eaton-Kortum Model

- The Eaton-Kortum model belongs to the quantitative class of models reviewed earlier:

$$ilde{\chi}_i \sim T_i L_i^ heta$$
,  $\epsilon \sim \sigma - 1$ 

- The indirect utility or welfare of the representative consumer in country i is

~

$$W_i = \frac{Y_i}{P_i}, \qquad P_i = C \times \left[\sum_{n=1}^N T_n L_n^{\theta} (\tau_{ni} Y_n)^{-\theta}\right]^{-\frac{1}{\theta}}$$

1

#### An Overview of the Eaton-Kortum Model

- The Eaton-Kortum model belongs to the quantitative class of models reviewed earlier:

$$ilde{\chi_i} \sim T_i L_i^ heta, \qquad \qquad \epsilon \sim \sigma - 1$$

- The indirect utility or welfare of the representative consumer in country i is

$$W_{i} = \frac{Y_{i}}{P_{i}}, \qquad P_{i} = C \times \left[\sum_{n=1}^{N} T_{n}L_{n}^{\theta} (\tau_{ni}Y_{n})^{-\theta}\right]^{-\frac{1}{\theta}}$$
  
encapsulates non-country-specific constants

1

#### Eaton-Kortum vs. Armington

- The Eaoton-Kortum model predicts similar ex post gains from trade (up-to a choice of trade elasticity) as the Armington model:

$$GT_i \equiv \frac{W_i - W_i^{(autarky)}}{W_i} \sim \text{gains from trade}$$

#### Eaton-Kortum vs. Armington

- The Eaoton-Kortum model predicts similar ex post gains from trade (up-to a choice of trade elasticity) as the Armington model:

$$GT_i = 1 - \lambda_{ii}^{\frac{1}{\theta}} \sim 1 - \lambda_{ii}^{\frac{1}{\epsilon}}$$

#### Eaton-Kortum vs. Armington

- The Eaoton-Kortum model predicts similar ex post gains from trade (up-to a choice of trade elasticity) as the Armington model:

$$GT_i = 1 - \lambda_{ii}^{\frac{1}{\theta}} \sim 1 - \lambda_{ii}^{\frac{1}{\varepsilon}}$$

- It also predict the same *ex ante* welfare impacts in response to a trade cost shock  $\{\hat{\tau}_{in}\}_{i,n}$ :

$$\widehat{W}_{i} = \frac{\widehat{Y}_{i}}{\widehat{P}_{i}}, \qquad \qquad \widehat{P}_{i} = \left[\sum_{n} \lambda_{ni} \,\widehat{\tau}_{ni}^{-\theta} \,\widehat{Y}_{n}^{-\theta}\right]^{-\frac{1}{\theta}}$$

where  $\widehat{Y}_i$  can be calculated with data on baseline expenditure shares,  $\{\lambda_{in}\}_{i,n}$ , and GDP levels,  $\{Y_i\}_i$ , via the following system:

$$\widehat{Y}_{i}Y_{i} = \sum_{n=1}^{N} \left[ \frac{\lambda_{in} \, \widehat{\tau}_{in}^{-\theta} \, \widehat{Y}_{i}^{-\theta}}{\sum_{j=1}^{N} \lambda_{jn} \, \widehat{\tau}_{jn}^{-\theta} \, \widehat{Y}_{j}^{-\theta}} \widehat{Y}_{n} Y_{n} \right]$$

# Other Elements of Eaton & Kortum (2003)

- The Eaton-Kortum model satisfies the common macro-level representation covered earlier → the same quantitative techniques apply
- Other elements of Eaton & Kortum (2002)
  - roundabout production (a special case of input-output extension covered later)
  - non-traded sector (a special case of the multi-sector extension covered later)
  - two approaches to estimating the trade elasticity,  $\theta$ , which we will review later.

# Additional Material

# Algorithm for Calculating The Equilibrium Wages

Alvarez & Lucas (2007) rewrite the excess demand function as

$$f_i(\mathbf{w}) = \frac{1}{w_i} \left[ \sum_{n=1}^N \frac{T_i \left( \tau_{in} w_i \right)^{-\theta}}{\sum_{j=1}^N T_j \left( \tau_{jn} w_j \right)} w_n L_n - w_i L_n \right],$$

and show that it satisfies the following properties for  $\mathbf{w}\gg 0$ 

- 1.  $f_i(.)$  is continuous.
- 2.  $f_i(.)$  is homogeneous of degree zero:  $f_i(\alpha \mathbf{w}) = f_i(\mathbf{w})$
- 3.  $\sum_{i=1}^{N} Y_i f_i(\mathbf{w}) = 0$  (Walras' law)
- 4. There exists a b > 0 such that  $f_i(\mathbf{w}) > -b$ ,  $(\forall i)$ .

5. Let  $\bar{\mathbf{w}}$  be a vector of GDP where  $\bar{w}_l = 0$  and  $\bar{w}_n > 0$  for all  $n \neq l$ . Then,  $\lim_{\mathbf{w}\to\bar{\mathbf{w}}} \max_i f_i(\mathbf{w}) = \infty$ 

# Algorithm for Calculating The Equilibrium Wages

- Alvarez & Lucas (2007) also show that  $f_i(.)$  satisfies the gross substitute property:

$$rac{\partial f_i(\mathbf{w})}{\partial w_k} > 0 \;\; orall k 
eq i$$

- The above property sates that if the wage in other countries rises, the demand for goods from country *i* increases.
- $f_i(.)$  satisfies the gross substitute property  $\longrightarrow$  *unique* equilibrium.

# Algorithm for Calculating The Equilibrium Wages

- To compute the equilibrium wages, define the following mapping:

$$M_i(\mathbf{w}) = w_i \left[ 1 + \lambda rac{f_i(\mathbf{w})}{L_i} 
ight]$$

- If we start with a vector of wages that satisfy  $\sum_i w_i L_i = 1$ , then  $\sum_i M_i(\mathbf{w}) L_i = 1$ .
- Starting with an initial guess  $\mathbf{w}^0$ , and updating according to  $\mathbf{w}^m = M_i(\mathbf{w}^{m-1})$ , yields the unique equilibrium wage:  $\mathbf{w}^* = M_i(\mathbf{w}^*)$ .

return