Introduction to Quantitative Trade Models

International Trade (PhD), Fall 2024

Ahmad Lashkaripour

Indiana University

Background

- The class of trade models covered in this class (*e.g.*, Armington, Krugman, Eaton-Kortum, Melitz-Pareto) deliver a common macro-level representation for general equilibrium.
- These models have two appealing features:
 - 1. They predict trade values consistent with a gravity equation:

Trade Value_{in}
$$\propto \frac{\text{GDP}_i \times \text{GDP}_n}{\text{Distance}_{in}^{\beta}}$$
 (origin *i*, destination *n*)

which amounts to good in-sample predictive power w.r.t. trade flows.

- 2. They can be used to perform counterfactual analyses based on easy-to-obtain sufficient statistics:
 - (1) trade shares, (2) national accounts data, and (3) trade elasticities.

Road Map for Today's Lecture

- *First*, we present the common representation of general equilibrium implied by quantitative trade models (*e.g.*, Armington, Krugman, Eaton-Kortum, Melitz-Pareto).
- *Second*, we overview the *ex-post* and *ex-ante* applications of these models, highlighting their merits relative to alternative research designs (*e.g.*, diff-in-diff, shift-share).
- *Third*, we discuss the structural estimation of these models and the exact hat-algebra technique for obtaining counterfactual (or out-of-sample) predictions.

Environment

- The global economy consist of N > 1 countries.
- We use $i, j, n \in \{1, ..., N\}$ to index countries
- Labor is the only factor of production
- Country i is endowed with L_i units of labor

¹See Adao, Costinot, Donaldson (2017, AER) and Costinot & Rodriguez-Clare (2018, JEP).

Environment

- The global economy consist of N > 1 countries.
- We use $i, j, n \in \{1, ..., N\}$ to index countries
- Labor is the only factor of production
- Country i is endowed with L_i units of labor
- Note: The class of trade models we study can be alternatively cast as a fictitious endowment economy in which trade values reflect the international demand for each country's labor services.¹

¹See Adao, Costinot, Donaldson (2017, AER) and Costinot & Rodriguez-Clare (2018, JEP).

Exogenous Parameters or Variables

- L_i is country i 's labor endowment
- χ_i encompasses information on country *i*'s technological endowment
- τ_{in} is the iceberg trade cost associated with origin i's sales to destination n
- ϵ is the elasticity of trade values w.r.t. trade costs (i.e., the trade elasticity)
- D_i is country *i*'s trade deficit vis-à-vis the rest of the world ($\sum_i D_i = 0$).

Exogenous Parameters or Variables

- L_i is country i 's labor endowment
- χ_i encompasses information on country i's technological endowment
- τ_{in} is the iceberg trade cost associated with origin *i*'s sales to destination *n*
- ϵ is the elasticity of trade values w.r.t. trade costs (i.e., the trade elasticity)
- D_i is country *i*'s trade deficit vis-à-vis the rest of the world ($\sum_i D_i = 0$).

Note: only L_i and D_i are directly observable, the remaining parameters must be estimated.

Endogenous Equilibrium Outcomes

Main independent outcome

- the vector of national-level wages $\{w_1,...,w_N\}$

Outcomes determined by wages exogenous parameters

- λ_{in} ~ the share of country n's expenditure on goods originating from country i
- E_n ~ country n's total expenditure (GDP + deficit)

Endogenous Equilibrium Outcomes

Main independent outcome

- the vector of national-level wages $\{w_1,...,w_N\}$

Outcomes determined by wages exogenous parameters

- λ_{in} ~ the share of country n's expenditure on goods originating from country i
- E_n ~ country n's total expenditure (GDP + deficit)

Note that λ_{in} and E_n are readily observable, whereas w_i is difficult to measure as it represents a national-level index of factor prices.

The General Equilibrium

Given parameters $\{\epsilon, \chi_i, L_i, D_i, \tau_{in}\}_{i,n}$, equilibrium wages, $\{w_i\}_i$, satisfy the labor market clearing condition in each country:

$$\sum_{n=1}^{N} \underbrace{\lambda_{in}(w_1, ..., w_N) E_n(w_n)}_{\text{country } i\text{'s sales to country } n} = w_i \mathbf{L}_i, \forall i$$

with bilateral expenditure shares (λ_{in}) and national expenditure (E_n) given by

$$\begin{cases} \lambda_{in}\left(w_{1},...,w_{N}\right) = \frac{\chi_{i}\left(\tau_{in}w_{i}\right)^{-\epsilon}}{\sum_{j=1}^{N}\chi_{j}\left(\tau_{jn}w_{j}\right)^{-\epsilon}} & \forall i,j \\ E_{n}\left(w_{n}\right) = w_{n}L_{n} + D_{n} & \forall n \end{cases}$$

The General Equilibrium

- Given $\{\epsilon, L_i, D_i, \chi_i, \tau_{ij}\}_{i,j}$, the vector of wages $\{w_1, ..., w_N\}$ can be computed by solving a non-linear system of *N*-equations and *N*-unknowns²

$$\frac{1}{w_{i}} \sum_{n=1}^{N} \left[\frac{\chi_{i} (\tau_{in} w_{i})^{-\epsilon}}{\sum_{j=1}^{N} \chi_{j} (\tau_{jn} w_{j})^{-\epsilon}} (w_{n} L_{n} + D_{n}) \right] = \underbrace{L_{i}}_{\text{labor supply}}$$
demand for country *i*'s labor

- Workhorse trade models can be cast as a fictitious endowment economy in which countries directly exchange labor services *subject to* constant elasticity demand functions.
- The main equilibrium outcome is a vector of wages that equalizes the supply and demand for each country's labor.

²Link to Matlab routine that solves the above system

Equilibrium in Country i given Foreign Wages (\mathbf{w}_{-i})

The General Equilibrium

- When mapping trade models to data is useful to specify equilibrium in terms of national income or GDP ($Y_i = w_i L_i$) rather than wages.
- Given $\{\epsilon, L_i, D_i, \tilde{\chi}_i, \tau_{ij}\}_{i,j}$ equilibrium can be alternatively defined as a vector $\{Y_1, ..., Y_N\}$ that solve the following system of equations

$$\sum_{n=1}^{N} \left[\frac{\tilde{\chi}_{i} \left(\tau_{in} Y_{i} \right)^{-\epsilon}}{\sum_{j=1}^{N} \tilde{\chi}_{j} \left(\tau_{jn} Y_{j} \right)^{-\epsilon}} \left(Y_{n} + D_{n} \right) \right] = Y_{i}, \text{ where } \tilde{\chi}_{i} \equiv \chi_{i} L_{i}^{\epsilon}$$

The General Equilibrium

- When mapping trade models to data is useful to specify equilibrium in terms of national income or GDP ($Y_i = w_i L_i$) rather than wages.
- Given $\{\epsilon, L_i, D_i, \tilde{\chi}_i, \tau_{ij}\}_{i,j}$ equilibrium can be alternatively defined as a vector $\{Y_1, ..., Y_N\}$ that solve the following system of equations

$$\sum_{n=1}^{N} \left[\frac{\tilde{\chi}_{i} \left(\tau_{in} Y_{i} \right)^{-\epsilon}}{\sum_{j=1}^{N} \tilde{\chi}_{j} \left(\tau_{jn} Y_{j} \right)^{-\epsilon}} \left(Y_{n} + D_{n} \right) \right] = Y_{i}, \text{ where } \tilde{\chi}_{i} \equiv \chi_{i} L_{i}^{\epsilon}$$

- The above formulation is also useful for deriving the gravity equation.

- Let $X_{in} = \lambda_{in} \times E_n$ denotes trade flows from origin *i* to destination *n*

$$X_{in} = \frac{\tilde{\chi}_i \left(\tau_{in} Y_i\right)^{-\epsilon}}{\sum_{j=1}^N \tilde{\chi}_j \left(\tau_{jn} Y_j\right)^{-\epsilon}} E_n$$

- Let $X_{in} = \lambda_{in} \times E_n$ denotes trade flows from origin *i* to destination *n*

$$X_{in} = \frac{\tilde{\chi}_i \left(\tau_{in} Y_i\right)^{-\epsilon}}{\sum_{j=1}^N \tilde{\chi}_j \left(\tau_{jn} Y_j\right)^{-\epsilon}} \underbrace{E_n}_{Y_n + D_n}$$

– Let $X_{in} = \lambda_{in} \times E_n$ denotes trade flows from origin i to destination n

$$X_{in} = au_{in}^{-\epsilon} \quad \underbrace{ ilde{\chi}_{i} \left(Y_{i}
ight)^{-\epsilon}}_{\Phi_{i}} \quad \underbrace{rac{E_{n}}{\sum_{j=1}^{N} ilde{\chi}_{j} \left(au_{jn} Y_{j}
ight)^{-\epsilon}}}_{\Omega_{n}}$$

- $\tau_{in}^{-\epsilon}$ represents trade frictions relating to taste differences, transport costs, or policy.
- Φ_i is the *exporter fixed effect*, summarizing all relevant information on origin i
- Ω_n is the *importer fixed effect*, summarizing all relevant information on destination n

– Let $X_{in} = \lambda_{in} \times E_n$ denotes trade flows from origin i to destination n

$$X_{in} = \tau_{in}^{-\epsilon} \Phi_i \Omega_n$$

- $au_{in}^{-\epsilon}$ represents trade frictions relating to taste differences, transport costs, or policy.
- Φ_i is the *exporter fixed effect*, summarizing all relevant information on origin i
- Ω_n is the *importer fixed effect*, summarizing all relevant information on destination n

– Let $X_{in} = \lambda_{in} \times E_n$ denotes trade flows from origin i to destination n

$$X_{in} = \tau_{in}^{-\epsilon} \Phi_i \Omega_n$$

- $au_{in}^{-\epsilon}$ represents trade frictions relating to taste differences, transport costs, or policy.
- Φ_i is the *exporter fixed effect*, summarizing all relevant information on origin i
- Ω_n is the *importer fixed effect*, summarizing all relevant information on destination n

- The Labor Market Clearing condition specifies Φ_i in terms of Y_i

$$\sum_{n=1}^{N} X_{in} = \Phi_i \sum_{n=1}^{N} \left[\tau_{in}^{-\epsilon} \Omega_n \right] = Y_i \quad \Longrightarrow \quad \Phi_i = \frac{Y_i}{\sum_n \Omega_n \tau_{in}^{-\epsilon}} \quad (*)$$

- The national-level budget constraint specifies Ω_i in terms of E_i

$$\sum_{n=1}^{N} X_{ni} = \sum_{n=1}^{N} \left[\Phi_n \tau_{ni}^{-\epsilon} \right] \Omega_i = E_i \quad \Longrightarrow \quad \Omega_i = \frac{E_i}{\sum_n \Phi_n \tau_{ni}^{-\epsilon}} \quad (**)$$

- Combining equation (*) and (**) and noting that $\tau_{in}^{-\epsilon} \sim \text{Dist}_{in}^{-\beta}$, yields

$$X_{in} = \frac{Y_i}{\sum_n \Omega_n \text{Dist}_{in}^{-\beta}} \times \frac{E_n}{\sum_n \Phi_n \text{Dist}_{ni}^{-\beta}} \times \text{Dist}_{in}^{-\beta}$$

An Implicit Property of Quantitative Trade Models

Proposition. If trade trade costs are symmetric and there are no *aggregate* trade imbalances, then trade values are bilaterally balanced

$$\begin{cases} \tau_{ji} = \tau_{ij} & \forall i, j \\ D_i = 0 & \forall i \end{cases} \implies X_{ij} = X_{ji} \ (\forall i, j)$$

- The above proposition can be proven by appealing to Equations (*) and (**), and showing that $\Phi_i = \Omega_i$ if $\tau_{ji} = \tau_{ij}$ and $D_i = 0$.
- **Implication:** bilateral trade imbalances may be a mere reflection of aggregate trade imbalances rather than asymmetric trade barriers.

Applications of Quantitative Trade Models

- Quantitative trade models can be used to examine the *ex-ante* or *ex-post* impacts of shocks to the global economy.

Example of ex-ante application

- What is the impact of a eliminating aggregate trade imbalances?
- The shock we seek to examine ($D_i \rightarrow 0$) has not materialized yet, so non-structural research designs such as *diff-in-diff* or *shift-share* are not applicable.

Example of ex-post application

- What was the impact of NAFTA on the US economy?
- The NAFTA shock ($\Delta \tau^{\text{NAFTA}} < 0$) has already materialized, but non-structural research designs (if applicable) may fail to identify the GE effects of NAFTA.

Two Approaches to Performing Counterfactual Analyses

- The noted applications require that we simulate the counterfactual equilibrium that emerges after say the NAFTA shock. This task can be accomplished in two ways.

First Approach

- Estimate the full parameters of the model
- shock the parameters and re-solve the model to obtain counterfactual outcomes

Second Approach

- Apply the exact the hat-algebra technique
- Under this approach we no longer need to estimate τ_{ni} or $\tilde{\chi}_i$, since the information on these parameters if fully embedded in expenditure shares and income levels.

Class Assignment

- Quantitative trade models predict trade flows are given by

$$X_{in} = \frac{\tilde{\chi}_i \left(\tau_{in} Y_i\right)^{-\epsilon}}{\sum_{j=1}^N \tilde{\chi}_j \left(\tau_{jn} Y_j\right)^{-\epsilon}} E_n$$

and satisfy the adding up constraint $\sum_{n} X_{in} = Y_{i}$ for all i.

- X_{ni} , Y_i , and E_i are observable in the data.
- How would you estimate $\tilde{\chi}_i$, τ_{in} , and ϵ ?

Class Assignment

- Quantitative trade models predict trade flows are given by

$$X_{in} = \frac{\tilde{\chi}_i \left(\tau_{in} Y_i\right)^{-\epsilon}}{\sum_{j=1}^N \tilde{\chi}_j \left(\tau_{jn} Y_j\right)^{-\epsilon}} E_n$$

and satisfy the adding up constraint $\sum_{n} X_{in} = Y_{i}$ for all i.

- X_{ni} , Y_i , and E_i are observable in the data.
- How would you estimate $\tilde{\chi}_i$, τ_{in} , and ϵ ?
- I will create an "Announcement" on Canvas. Submit your answer as a comment underneath the announcement before Tuesday, next week.

Estimation of Quantitative Trade Models

Estimation Setup

- Data points: $\mathbb{D} = \left\{X_{ni}^{data}, Y_i^{data}, E_i^{data}\right\}_{i,n}$
- Unobserved parameters: $\Theta = \{ au_{in}, ilde{\chi}_i, \epsilon\}_{i,n}$
- Model's prediction *w.r.t.* trade flows, given $\left\{Y_i^{data}\right\}_i$ and $\left\{E_i^{data}\right\}_i$

$$X_{in}\left(\Theta; \mathbb{D}\right) = \frac{\tilde{\chi}_{i} \left(\tau_{in} Y_{i}^{data}\right)^{-\epsilon}}{\sum_{j=1}^{N} \tilde{\chi}_{j} \left(\tau_{jn} Y_{j}^{data}\right)^{-\epsilon}} E_{n}^{data}$$

Note: ϵ cannot be separately identified from τ_{in} with information on $\mathbb D$

- Parameter combinations $\{\tilde{\chi}_i, \tau_{in}, \epsilon\}_{i,n}$ and $\{\tilde{\chi}_i, \tau'_{in}, \epsilon'\}_{i,n}$ are observationally equivalent in terms of their prediction vis-à-vis \mathbb{D} iff $\tau_{in}^{-\epsilon} = (\tau'_{in})^{-\epsilon'}$.

Generic Estimation Strategy

- We can normalize ϵ and estimate the remaining elements of Θ by minimizing the distance between the model's predictions and data *subject to* equilibrium constraints:

$$\min_{\Theta} \sum_{n,i} \left(\log X_{in} \left(\Theta; \mathbb{D} \right) - \log X_{in}^{data} \right)^{2} \qquad s.t. \qquad \sum_{n} X_{in} \left(\Theta; \mathbb{D} \right) = Y_{i}^{data} \quad (\forall i)$$

- The above problem is exactly identified, *i.e.*, there exists a Θ^* such that

$$X_{in}\left(\Theta^*;\mathbb{D}\right) = X_{in}^{data} \quad (\forall i, n)$$

- We can use Θ^* to perform counterfactuals (*e.g.*, eliminating trade imbalances),

Generic Estimation Strategy

- We can normalize ϵ and estimate the remaining elements of Θ by minimizing the distance between the model's predictions and data *subject to* equilibrium constraints:

$$\min_{\Theta} \sum_{n,i} \left(\log X_{in} \left(\Theta; \mathbb{D} \right) - \log X_{in}^{data} \right)^{2} \qquad s.t. \qquad \sum_{n} X_{in} \left(\Theta; \mathbb{D} \right) = Y_{i}^{data} \quad (\forall i)$$

- The above problem is exactly identified, *i.e.*, there exists a Θ^* such that

$$X_{in}\left(\Theta^*;\mathbb{D}\right) = X_{in}^{data} \quad (\forall i, n)$$

- We can use Θ^* to perform counterfactuals (*e.g.*, eliminating trade imbalances), *but* this task can be performed more efficiently with *exact hat algebra*.

Estimating the Determinants of Trade Costs

- We can use a similar strategy to estimate the determinants of τ_{in} .
- Suppose we have data on bilateral distance, FTAs, common language, common border, and conflict for many country pairs.
- We can parameterize bilateral trade costs as

$$\tau_{in} = \bar{\tau} \left(\text{Dist}_{in} \right)^{\beta_d} \cdot \beta_f^{\text{FTA}_{in}} \cdot \beta_l^{\text{Lang}_{in}} \cdot \beta_b^{\text{Border}_{in}} \cdot \beta_c^{\text{Conflict}_{in}}$$

Estimating the Determinants of Trade Costs

- We can use a similar strategy to estimate the determinants of τ_{in} .
- Suppose we have data on bilateral distance, FTAs, common language, common border, and conflict for many country pairs.
- We can parameterize bilateral trade costs as

$$\tau_{in} = \bar{\tau} \left(\text{Dist}_{in} \right)^{\beta_d} \cdot \beta_f^{\text{FTA}_{in}} \cdot \beta_l^{\text{Lang}_{in}} \cdot \beta_b^{\text{Border}_{in}} \cdot \beta_c^{\text{Conflict}_{in}}$$

Interpretation of Parameters

- $\beta_f = 0.75$ implies that a typical FTA reduces trade costs by 25%
- $\beta_c = 1.5$ implies that conflict increases trade costs by 50%; *etc.*

Estimation

- Reduced set of parameters: $\tilde{\Theta} = \{\tilde{\chi}_i, \beta_d, \beta_f, \beta_l, \beta_b, \beta_c, \epsilon\}$
- We can normalize ϵ and estimate the remaining elements of $\tilde{\Theta}$ as

$$\min_{\tilde{\Theta}} \sum_{n,i} \left(\log X_{in} \left(\tilde{\Theta}; \mathbb{D} \right) - \log X_{in}^{data} \right)^{2} \qquad s.t. \qquad \sum_{n} X_{in} \left(\tilde{\Theta}; \mathbb{D} \right) = Y_{i}^{data} \quad (\forall i)$$

- The above estimation is akin to a standard gravity estimation—though, as we'll note later in the semester, there are easier ways to perform gravity estimation (*e.g.*, PPML)

Estimation

- Reduced set of parameters: $\tilde{\Theta} = \{\tilde{\chi}_i, \beta_d, \beta_f, \beta_l, \beta_b, \beta_c, \epsilon\}$
- We can normalize ϵ and estimate the remaining elements of $\tilde{\Theta}$ as

$$\min_{\tilde{\Theta}} \sum_{n,i} \left(\log X_{in} \left(\tilde{\Theta}; \mathbb{D} \right) - \log X_{in}^{data} \right)^{2} \qquad s.t. \qquad \sum_{n} X_{in} \left(\tilde{\Theta}; \mathbb{D} \right) = Y_{i}^{data} \quad (\forall i)$$

- The above estimation is akin to a standard gravity estimation—though, as we'll note later in the semester, there are easier ways to perform gravity estimation (*e.g.*, PPML)
- The estimation of β 's unveils policy-relevant shocks for counterfactual analysis—*e.g.*,

aboloshing FTAs
$$\sim \Delta \ln \tau_{in}' pprox \begin{cases} eta_f - 1 & \text{if } \operatorname{FTA}_{in} = 1 \\ 0 & \text{if } \operatorname{FTA}_{in} = 0 \end{cases}$$

Estimation

- Reduced set of parameters: $\tilde{\Theta} = \{\tilde{\chi}_i, \beta_d, \beta_f, \beta_l, \beta_b, \beta_c, \epsilon\}$
- We can normalize ϵ and estimate the remaining elements of $\tilde{\Theta}$ as

$$\min_{\tilde{\Theta}} \sum_{n,i} \left(\log X_{in} \left(\tilde{\Theta}; \mathbb{D} \right) - \log X_{in}^{data} \right)^{2} \qquad s.t. \qquad \sum_{n} X_{in} \left(\tilde{\Theta}; \mathbb{D} \right) = Y_{i}^{data} \quad (\forall i)$$

- The above estimation is akin to a standard gravity estimation—though, as we'll note later in the semester, there are easier ways to perform gravity estimation (*e.g.*, PPML)
- The estimation of β 's unveils policy-relevant shocks for counterfactual analysis—*e.g.*,

global conflict
$$\sim \Delta \ln \tau_{in}' \approx \begin{cases} 0 & \text{if } \operatorname{Conflict}_{in} = 1 \\ \beta_c - 1 & \text{if } \operatorname{Conflict}_{in} = 0 \end{cases}$$

The Exact Hat-Algebra Approach

Definition of Equilibrium

- For any set of exogenous parameters and variables $\{\tau_{in}, \tilde{\chi}_i, D_i, \epsilon\}$, equilibrium is a vector of national GDP levels, $\mathbf{Y} = \{Y_1, ..., Y_N\}$, that satisfy

$$Y_i = \sum_{n=1}^{N} \left[\lambda_{in} \left(\mathbf{Y} \right) imes \overbrace{\left(Y_n + D_n \right)}^{E_n} \right], \quad (\forall i)$$

where the expenditure share $\lambda_{in}(\mathbf{Y})$ is given by

$$\lambda_{in}\left(\mathbf{Y}\right) = \frac{\tilde{\chi}_{i}\left(\tau_{in}Y_{i}\right)^{-\epsilon}}{\sum_{j=1}^{N}\tilde{\chi}_{j}\left(\tau_{jn}Y_{j}\right)^{-\epsilon}}, \quad (\forall i, n)$$

Hat-Algebra Notation

For a generic variable (x)

- x baseline value under the status quo
- χ' ~ counterfactual value after some external shock
- $\widehat{x} \equiv \frac{x'}{x}$

Example: suppose countries i and n sign an FTA that lowers their bilateral trade cost by 25% and increases their bilateral trade value by 15%:

$$\hat{\tau}_{in} = \hat{\tau}_{ni} = 0.75;$$

$$\widehat{X}_{in} = \widehat{X}_{ni} = 1.15$$

Counterfactual Expenditure Shares

- Consider an external shock to trade costs: $\{\hat{\tau}_{in}\}_{i,n}$
- Considering that exogenous parameters ($\tilde{\chi}_i$ and ϵ) are unaffected by the shock, counterfactual expenditure shares are

$$\lambda'_{in} = rac{ ilde{\chi}_i \left(au'_{in} Y'_i
ight)^{-\epsilon}}{\sum_{j=1}^N ilde{\chi}_j \left(au'_{jn} Y'_j
ight)^{-\epsilon}}$$

- Noting that $\tau'_{in} = \hat{\tau}_{in} \tau_{in}$ and $Y'_{i} = \hat{Y}_{i} Y_{i}$ we can rewrite this equation as

$$\lambda_{in}' = \frac{\tilde{\chi}_{i} \left(\hat{\tau}_{in} \tau_{in} \, \widehat{Y}_{i} Y_{i}\right)^{-\epsilon}}{\sum_{j=1}^{N} \tilde{\chi}_{j} \left(\hat{\tau}_{jn} \tau_{jn} \, \widehat{Y}_{j} Y_{j}\right)^{-\epsilon}} = \frac{\lambda_{in} \left(\hat{\tau}_{in} \widehat{Y}_{i}\right)^{-\epsilon}}{\sum_{j=1}^{N} \lambda_{jn} \left(\hat{\tau}_{jn} \widehat{Y}_{j}\right)^{-\epsilon}}$$

- Labor-market clearing condition in the counterfactual equilibrium:

$$Y_i' = \sum_{n=1}^{N} \left[\lambda_{in}' \times (Y_n' + D_n) \right]$$

- Labor-market clearing condition in the counterfactual equilibrium:

$$\hat{Y}_i Y_i = \sum_{n=1}^N \left[rac{\lambda_{in} \left(\hat{ au}_{in} \widehat{Y}_i
ight)^{-\epsilon}}{\sum_{j=1}^N \lambda_{jn} \left(\hat{ au}_{jn} \widehat{Y}_j
ight)^{-\epsilon}} imes \left(\widehat{Y}_n Y_n + D_n
ight)
ight]$$

- Labor-market clearing condition in the counterfactual equilibrium:

$$\widehat{\underline{Y}}_{i}Y_{i} = \sum_{n=1}^{N} \left[\frac{\lambda_{in} \left(\widehat{\tau}_{in} \widehat{\underline{Y}}_{i} \right)^{-\epsilon}}{\sum_{j=1}^{N} \lambda_{jn} \left(\widehat{\tau}_{jn} \widehat{\underline{Y}}_{j} \right)^{-\epsilon}} \times \left(\widehat{\underline{Y}}_{n} Y_{n} + D_{n} \right) \right]$$

- Labor-market clearing condition in the counterfactual equilibrium:

$$\widehat{\mathbf{Y}}_{i}Y_{i} = \sum_{n=1}^{N} \left[\frac{\lambda_{in} \left(\widehat{\boldsymbol{\tau}}_{in} \widehat{\mathbf{Y}}_{i} \right)^{-\epsilon}}{\sum_{j=1}^{N} \lambda_{jn} \left(\widehat{\boldsymbol{\tau}}_{jn} \widehat{\mathbf{Y}}_{j} \right)^{-\epsilon}} \times \left(\widehat{\mathbf{Y}}_{n} Y_{n} + D_{n} \right) \right]$$

- The above system determines $\left\{\widehat{Y}_{1},...,\widehat{Y}_{N}\right\}$ with information on observables $\mathbb{D}=\left\{Y_{i},D_{i},\lambda_{in}\right\}_{i,n}$ and the trade elasticity, ϵ

- Labor-market clearing condition in the counterfactual equilibrium:

$$\widehat{Y}_{i}Y_{i} = \sum_{n=1}^{N} \left[\frac{\lambda_{in} \left(\widehat{\tau}_{in} \widehat{Y}_{i} \right)^{-\epsilon}}{\sum_{j=1}^{N} \lambda_{jn} \left(\widehat{\tau}_{jn} \widehat{Y}_{j} \right)^{-\epsilon}} \times \left(\widehat{Y}_{n} Y_{n} + D_{n} \right) \right]$$

- The above system determines $\{\widehat{Y}_1, ..., \widehat{Y}_N\}$ with information on observables $\mathbb{D} = \{Y_i, D_i, \lambda_{in}\}_{i,n}$ and the trade elasticity, ϵ
- Given \widehat{Y}_i , we can calculate the change in trade values in response to $\{\widehat{\tau}_{in}\}_{i,n}$ as

$$\widehat{X}_{in} = \widehat{\lambda}_{in} \times \underbrace{\frac{Y_n \widehat{Y}_n + D_n}{Y_n + D_n}}_{\widehat{E}_n}, \quad \text{where} \quad \widehat{\lambda}_{in} = \frac{\left(\widehat{\tau}_{in} \widehat{Y}_i\right)^{-\epsilon}}{\sum_{j=1}^{N} \lambda_{jn} \left(\widehat{\tau}_{jn} \widehat{Y}_j\right)^{-\epsilon}}$$

6/30

Example: the US and the Rest of the World

- Two countries: US (i = 1) and ROW (i = 2)

$$\lambda = \begin{bmatrix} 0.88 & 0.02 \\ 0.12 & 0.98 \end{bmatrix}; \qquad \mathbf{Y} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}; \qquad \mathbf{D} = \begin{bmatrix} 0.04 \\ -0.04 \end{bmatrix}$$

- Suppose international trade costs fall by 20%:

$$\hat{m{ au}} = \left[egin{array}{cc} 1 & 0.80 \ 0.80 & 1 \end{array}
ight]$$

Example: the US and the Rest of the World

- System of equations specifying labor-market clearing conditions:

$$Y_{1}\widehat{\mathbf{Y}_{1}} = \frac{\lambda_{11}\left(\widehat{\tau}_{11}\widehat{\mathbf{Y}_{1}}\right)^{-\epsilon} \times \left(Y_{1}\widehat{\mathbf{Y}_{1}} + D_{1}\right)}{\lambda_{11}\left(\widehat{\tau}_{11}\widehat{\mathbf{Y}_{1}}\right)^{-\epsilon} + \lambda_{21}\left(\widehat{\tau}_{21}\widehat{\mathbf{Y}_{2}}\right)^{-\epsilon}} + \frac{\lambda_{12}\left(\widehat{\tau}_{12}\widehat{\mathbf{Y}_{1}}\right)^{-\epsilon} \times \left(Y_{2}\widehat{\mathbf{Y}_{2}} + D_{2}\right)}{\lambda_{12}\left(\widehat{\tau}_{12}\widehat{\mathbf{Y}_{1}}\right)^{-\epsilon} + \lambda_{22}\left(\widehat{\tau}_{22}\widehat{\mathbf{Y}_{2}}\right)^{-\epsilon}}$$

$$Y_{2}\widehat{\mathbf{Y}_{2}} = \frac{\lambda_{21}\left(\widehat{\tau}_{21}\widehat{\mathbf{Y}_{2}}\right)^{-\epsilon} \times \left(Y_{1}\widehat{\mathbf{Y}_{1}} + D_{1}\right)}{\lambda_{11}\left(\widehat{\tau}_{11}\widehat{\mathbf{Y}_{1}}\right)^{-\epsilon} + \lambda_{21}\left(\widehat{\tau}_{21}\widehat{\mathbf{Y}_{2}}\right)^{-\epsilon}} + \frac{\lambda_{22}\left(\widehat{\tau}_{22}\widehat{\mathbf{Y}_{2}}\right)^{-\epsilon} \times \left(Y_{2}\widehat{\mathbf{Y}_{2}} + D_{2}\right)}{\lambda_{12}\left(\widehat{\tau}_{12}\widehat{\mathbf{Y}_{1}}\right)^{-\epsilon} + \lambda_{22}\left(\widehat{\tau}_{22}\widehat{\mathbf{Y}_{2}}\right)^{-\epsilon}}$$

- Assuming $\epsilon = 5$, solving the system implies³

$$\widehat{\mathbf{Y}} = \begin{bmatrix} 1.025 \\ 1.062 \end{bmatrix} \quad \Longrightarrow \quad \widehat{\mathbf{X}} = \begin{bmatrix} 0.86 & 3.66 \\ 2.22 & 1.01 \end{bmatrix}$$

³See Canvas for the Matlab code that generates these numbers.

Example: the US and the Rest of the World

- System of equations specifying labor-market clearing conditions:

$$\begin{split} \widehat{Y}_1 &= \frac{0.88 \left(\widehat{Y}_1\right)^{-\epsilon} \times \left(\widehat{Y}_1 + 0.04\right)}{0.88 \left(\widehat{Y}_1\right)^{-\epsilon} + 0.12 \left(0.80 \widehat{Y}_2\right)^{-\epsilon}} + \frac{0.02 \left(0.80 \widehat{Y}_1\right)^{-\epsilon} \times \left(4 \widehat{Y}_2 - 0.04\right)}{0.02 \left(0.80 \widehat{Y}_1\right)^{-\epsilon} + 0.98 \left(\widehat{Y}_2\right)^{-\epsilon}} \\ 4\widehat{Y}_2 &= \frac{0.12 \left(0.80 \widehat{Y}_2\right)^{-\epsilon} \times \left(\widehat{Y}_1 + 0.04\right)}{0.88 \left(\widehat{Y}_1\right)^{-\epsilon} + 0.12 \left(0.80 \widehat{Y}_2\right)^{-\epsilon}} + \frac{0.98 \left(\widehat{Y}_2\right)^{-\epsilon} \times \left(4 \widehat{Y}_2 - 0.04\right)}{0.02 \left(0.80 \widehat{Y}_1\right)^{-\epsilon} + 0.98 \left(\widehat{Y}_2\right)^{-\epsilon}} \end{split}$$

- Assuming $\epsilon = 5$, solving the system implies³

$$\widehat{\mathbf{Y}} = \begin{bmatrix} 1.025 \\ 1.062 \end{bmatrix} \implies \widehat{\mathbf{X}} = \begin{bmatrix} 0.86 & 3.66 \\ 2.22 & 1.01 \end{bmatrix}$$

³See Canvas for the Matlab code that generates these numbers.

Taking Stock

- The exact hat-algebra approach enables us to perform counterfactuals without estimating the trade cost or technology parameters (τ and $\tilde{\chi}$).
- Performing counterfactuals requires two sets of sufficient statistics:
 - 1. Observable statistics: λ_{in} , Y_i , and E_i .
 - 2. Trade Elasticity: ϵ

Taking Stock

- The exact hat-algebra approach enables us to perform counterfactuals without estimating the trade cost or technology parameters (τ and $\tilde{\chi}$).
- Performing counterfactuals requires two sets of sufficient statistics:
 - 1. Observable statistics: λ_{in} , Y_i , and E_i .
 - 2. Trade Elasticity: ϵ
- In the class of models we study, the change in welfare in response to an external shock,

 $\{\hat{\tau}_{in}, \hat{\chi}_i\}_{i,n}$, can be also calculated using *exact hat-algebra* as

$$\hat{W}_i = \hat{\tau}_{ii}^{-1} \times \hat{\chi}_i^{\frac{1}{\epsilon}} \times \hat{\lambda}_{ii}^{-\frac{1}{\epsilon}}$$

- In the earlier example: $\hat{ au}_{ii} = \hat{\chi}_i = 1 \longrightarrow \widehat{W}_i = \widehat{\lambda}_{ii}^{-\frac{1}{\epsilon}}.$

Accompanying Code

- Link to the code and data accompanying this lecture, which includes
 - 1. Matlab code for MPEC estimation
 - 2. Matlab code for nested fixed point estimation
 - 3. Matlab code corresponding to the exact hat-algebra example

Accompanying Code

- Link to the code and data accompanying this lecture, which includes
 - 1. Matlab code for MPEC estimation
 - 2. Matlab code for nested fixed point estimation
 - 3. Matlab code corresponding to the exact hat-algebra example
- Class assignment: modify 'HAT_ALGEBRA_EXAMPLE.m'' to calculate the effect of eliminating aggregate trade imbalances ($D_i \rightarrow D_i' = 0$) on US's exports & imports.